Merge branch 'feature/usb_host/cdc_ch340' into 'master'

USB Host: Expand VCP example

Closes IDFGH-7370 and IDFGH-8156

See merge request espressif/esp-idf!18940
This commit is contained in:
Tomas Rezucha
2022-12-08 15:14:51 +08:00
9 changed files with 76 additions and 552 deletions

View File

@@ -5,20 +5,22 @@
(See the README.md file in the upper level 'examples' directory for more information about examples.)
This example shows how to extend CDC-ACM driver for Virtual Communication Port devices,
such as CP210x or FTDI FT23x devices.
This example shows how to extend CDC-ACM driver for Virtual Communication Port (VCP) devices,
such as CP210x, FTDI FT23x or CP34x devices.
The drivers are fetched from [IDF Component Registry](https://components.espressif.com/) together with VCP service that automatically loads correct driver for plugged-in device.
## How to use example
1. Pick your USB-to-UART device by executing `idf.py menuconfig` and navigating to `Example Configuration -> USB-to-UART device type`
2. Change baudrate and other line coding parameters in `cdc_acm_vcp.cpp` to match your needs
3. Now you can use the CDC-ACM to API to control the device and send data. Data are received in `handle_rx` callback
1. Connect your USB<->UART converter to ESP32-S2/S3, the device will be automatically enumerated and correct driver will be picked
2. Change baudrate and other line coding parameters in [cdc_acm_vcp_example_main.cpp](main/cdc_acm_vcp_example_main.cpp) to match your needs
3. Now you can use the usual CDC-ACM API to control the device and send data. Data are received in `handle_rx` callback
4. Try disconnecting and then reconnecting of the USB device to experiment with USB hotplugging
### Hardware Required
* ESP board with USB-OTG supported
* Silicon Labs CP210x or FTDI FT23x USB to UART converter
* Silicon Labs CP210x, FTDI FT23x or CP34x USB to UART converter
Connect USB_D+, USB_D-, GND and +5V signals of your ESP chip to matching signals on USB to UART converter.

View File

@@ -1,3 +1,4 @@
idf_component_register(SRCS "cdc_acm_vcp.cpp" "cp210x_usb.cpp" "ftdi_usb.cpp"
INCLUDE_DIRS ".")
target_compile_options(${COMPONENT_LIB} PRIVATE "-Wno-format")
idf_component_register(
SRCS "cdc_acm_vcp_example_main.cpp"
INCLUDE_DIRS "."
)

View File

@@ -1,15 +0,0 @@
menu "Example Configuration"
choice
prompt "USB-to-UART device type"
default EXAMPLE_USE_CP210X
help
Type of UART converter to use in this example.
config EXAMPLE_USE_FTDI
bool "FT232"
config EXAMPLE_USE_CP210X
bool "CP2012"
endchoice
endmenu

View File

@@ -6,15 +6,19 @@
#include <stdio.h>
#include <string.h>
#include "sdkconfig.h"
#include "cp210x_usb.hpp"
#include "ftdi_usb.hpp"
#include "usb/usb_host.h"
#include "esp_log.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "usb/cdc_acm_host.h"
#include "usb/vcp_ch34x.hpp"
#include "usb/vcp_cp210x.hpp"
#include "usb/vcp_ftdi.hpp"
#include "usb/vcp.hpp"
#include "usb/usb_host.h"
using namespace esp_usb;
// Change these values to match your needs
@@ -23,16 +27,26 @@ using namespace esp_usb;
#define EXAMPLE_PARITY (0) // 0: None, 1: Odd, 2: Even, 3: Mark, 4: Space
#define EXAMPLE_DATA_BITS (8)
static const char *TAG = "VCP example";
namespace {
const char *TAG = "VCP example";
SemaphoreHandle_t device_disconnected_sem;
static SemaphoreHandle_t device_disconnected_sem;
static void handle_rx(uint8_t *data, size_t data_len, void *arg)
/**
* @brief Data received callback
*
* Just pass received data to stdout
*/
void handle_rx(uint8_t *data, size_t data_len, void *arg)
{
printf("%.*s", data_len, data);
}
static void handle_event(const cdc_acm_host_dev_event_data_t *event, void *user_ctx)
/**
* @brief Device event callback
*
* Apart from handling device disconnection it doesn't do anything useful
*/
void handle_event(const cdc_acm_host_dev_event_data_t *event, void *user_ctx)
{
switch (event->type) {
case CDC_ACM_HOST_ERROR:
@@ -43,13 +57,18 @@ static void handle_event(const cdc_acm_host_dev_event_data_t *event, void *user_
xSemaphoreGive(device_disconnected_sem);
break;
case CDC_ACM_HOST_SERIAL_STATE:
ESP_LOGI(TAG, "serial state notif 0x%04X", event->data.serial_state.val);
ESP_LOGI(TAG, "Serial state notif 0x%04X", event->data.serial_state.val);
break;
case CDC_ACM_HOST_NETWORK_CONNECTION:
default: break;
}
}
/**
* @brief USB Host library handling task
*
* @param arg Unused
*/
void usb_lib_task(void *arg)
{
while (1) {
@@ -65,7 +84,13 @@ void usb_lib_task(void *arg)
}
}
}
}
/**
* @brief Main application
*
* This function shows how you can use VCP drivers
*/
extern "C" void app_main(void)
{
device_disconnected_sem = xSemaphoreCreateBinary();
@@ -80,37 +105,36 @@ extern "C" void app_main(void)
ESP_ERROR_CHECK(usb_host_install(&host_config));
// Create a task that will handle USB library events
xTaskCreate(usb_lib_task, "usb_lib", 4096, NULL, 10, NULL);
BaseType_t task_created = xTaskCreate(usb_lib_task, "usb_lib", 4096, NULL, 10, NULL);
assert(task_created == pdTRUE);
ESP_LOGI(TAG, "Installing CDC-ACM driver");
ESP_ERROR_CHECK(cdc_acm_host_install(NULL));
// Register VCP drivers to VCP service.
VCP::register_driver<FT23x>();
VCP::register_driver<CP210x>();
VCP::register_driver<CH34x>();
// Do everything else in a loop, so we can demonstrate USB device reconnections
while (true) {
const cdc_acm_host_device_config_t dev_config = {
.connection_timeout_ms = 10000,
.connection_timeout_ms = 5000, // 5 seconds, enough time to plug the device in or experiment with timeout
.out_buffer_size = 64,
.event_cb = handle_event,
.data_cb = handle_rx,
.user_arg = NULL,
};
#if defined(CONFIG_EXAMPLE_USE_FTDI)
FT23x *vcp;
try {
ESP_LOGI(TAG, "Opening FT232 UART device");
vcp = FT23x::open_ftdi(FTDI_FT232_PID, &dev_config);
}
#else
CP210x *vcp;
try {
ESP_LOGI(TAG, "Opening CP210X device");
vcp = CP210x::open_cp210x(CP210X_PID, &dev_config);
}
#endif
catch (esp_err_t err) {
ESP_LOGE(TAG, "The required device was not opened.\nExiting...");
return;
// You don't need to know the device's VID and PID. Just plug in any device and the VCP service will pick correct (already registered) driver for the device
ESP_LOGI(TAG, "Opening any VCP device...");
auto vcp = std::unique_ptr<CdcAcmDevice>(VCP::open(&dev_config));
if (vcp == nullptr) {
ESP_LOGI(TAG, "Failed to open VCP device");
continue;
}
vTaskDelay(10);
ESP_LOGI(TAG, "Setting up line coding");
cdc_acm_line_coding_t line_coding = {
@@ -129,8 +153,14 @@ extern "C" void app_main(void)
ESP_ERROR_CHECK(vcp->tx_blocking((uint8_t *)"Test string", 12));
*/
// Send some dummy data
ESP_LOGI(TAG, "Sending data through CdcAcmDevice");
uint8_t data[] = "test_string";
ESP_ERROR_CHECK(vcp->tx_blocking(data, sizeof(data)));
ESP_ERROR_CHECK(vcp->set_control_line_state(true, true));
// We are done. Wait for device disconnection and start over
ESP_LOGI(TAG, "Done. You can reconnect the VCP device to run again.");
xSemaphoreTake(device_disconnected_sem, portMAX_DELAY);
delete vcp;
}
}

View File

@@ -1,82 +0,0 @@
/*
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: CC0-1.0
*/
#include "cp210x_usb.hpp"
#include "usb/usb_types_ch9.h"
#include "esp_log.h"
#include "esp_check.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#define SILICON_LABS_VID (0x10C4)
#define CP210X_READ_REQ (USB_BM_REQUEST_TYPE_TYPE_VENDOR | USB_BM_REQUEST_TYPE_RECIP_INTERFACE | USB_BM_REQUEST_TYPE_DIR_IN)
#define CP210X_WRITE_REQ (USB_BM_REQUEST_TYPE_TYPE_VENDOR | USB_BM_REQUEST_TYPE_RECIP_INTERFACE | USB_BM_REQUEST_TYPE_DIR_OUT)
namespace esp_usb {
CP210x *CP210x::open_cp210x(uint16_t pid, const cdc_acm_host_device_config_t *dev_config, uint8_t interface_idx)
{
return new CP210x(pid, dev_config, interface_idx);
}
CP210x::CP210x(uint16_t pid, const cdc_acm_host_device_config_t *dev_config, uint8_t interface_idx)
: intf(interface_idx)
{
esp_err_t err;
err = this->open_vendor_specific(SILICON_LABS_VID, pid, this->intf, dev_config);
if (err != ESP_OK) {
throw(err);
}
// CP210X interfaces must be explicitly enabled
err = this->send_custom_request(CP210X_WRITE_REQ, CP210X_CMD_IFC_ENABLE, 1, this->intf, 0, NULL);
if (err != ESP_OK) {
throw(err);
}
};
esp_err_t CP210x::line_coding_get(cdc_acm_line_coding_t *line_coding)
{
assert(line_coding);
ESP_RETURN_ON_ERROR(this->send_custom_request(CP210X_READ_REQ, CP210X_CMD_GET_BAUDRATE, 0, this->intf, sizeof(line_coding->dwDTERate), (uint8_t *)&line_coding->dwDTERate), "CP210X",);
uint8_t temp_data[2];
ESP_RETURN_ON_ERROR(this->send_custom_request(CP210X_READ_REQ, CP210X_CMD_GET_LINE_CTL, 0, this->intf, 2, temp_data), "CP210X",);
line_coding->bCharFormat = temp_data[0] & 0x0F;
line_coding->bParityType = (temp_data[0] & 0xF0) >> 4;
line_coding->bDataBits = temp_data[1];
return ESP_OK;
}
esp_err_t CP210x::line_coding_set(cdc_acm_line_coding_t *line_coding)
{
assert(line_coding);
if (line_coding->dwDTERate != 0) {
ESP_RETURN_ON_ERROR(this->send_custom_request(CP210X_WRITE_REQ, CP210X_CMD_SET_BAUDRATE, 0, this->intf, sizeof(line_coding->dwDTERate), (uint8_t *)&line_coding->dwDTERate), "CP210X",);
}
if (line_coding->bDataBits != 0) {
const uint16_t wValue = line_coding->bCharFormat | (line_coding->bParityType << 4) | (line_coding->bDataBits << 8);
return this->send_custom_request(CP210X_WRITE_REQ, CP210X_CMD_SET_LINE_CTL, wValue, this->intf, 0, NULL);
}
return ESP_OK;
}
esp_err_t CP210x::set_control_line_state(bool dtr, bool rts)
{
const uint16_t wValue = (uint16_t)dtr | ((uint16_t)rts << 1) | 0x0300;
return this->send_custom_request(CP210X_WRITE_REQ, CP210X_CMD_SET_MHS, wValue, this->intf, 0, NULL);
}
esp_err_t CP210x::send_break(uint16_t duration_ms)
{
ESP_RETURN_ON_ERROR(this->send_custom_request(CP210X_WRITE_REQ, CP210X_CMD_SET_BREAK, 1, this->intf, 0, NULL), "CP210x",);
vTaskDelay(pdMS_TO_TICKS(duration_ms));
return this->send_custom_request(CP210X_WRITE_REQ, CP210X_CMD_SET_BREAK, 0, this->intf, 0, NULL);
}
}

View File

@@ -1,114 +0,0 @@
/*
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: CC0-1.0
*/
#pragma once
#include "usb/cdc_acm_host.h"
#define CP210X_PID (0xEA60) // Single i.e. CP2101 - CP2104
#define CP2105_PID (0xEA70) // Dual
#define CP2108_PID (0xEA71) // Quad
// @see AN571: CP210x Virtual COM Port Interface, chapter 5
#define CP210X_CMD_IFC_ENABLE (0x00) // Enable or disable the interface
#define CP210X_CMD_SET_BAUDDIV (0x01) // Set the baud rate divisor
#define CP210X_CMD_GET_BAUDDIV (0x02) // Get the baud rate divisor
#define CP210X_CMD_SET_LINE_CTL (0x03) // Set the line control
#define CP210X_CMD_GET_LINE_CTL (0x04) // Get the line control
#define CP210X_CMD_SET_BREAK (0x05) // Set a BREAK
#define CP210X_CMD_IMM_CHAR (0x06) // Send character out of order
#define CP210X_CMD_SET_MHS (0x07) // Set modem handshaking
#define CP210X_CMD_GET_MDMSTS (0x08) // Get modem status
#define CP210X_CMD_SET_XON (0x09) // Emulate XON
#define CP210X_CMD_SET_XOFF (0x0A) // Emulate XOFF
#define CP210X_CMD_SET_EVENTMASK (0x0B) // Set the event mask
#define CP210X_CMD_GET_EVENTMASK (0x0C) // Get the event mask
#define CP210X_CMD_GET_EVENTSTATE (0x16) // Get the event state
#define CP210X_CMD_SET_RECEIVE (0x17) // Set receiver max timeout
#define CP210X_CMD_GET_RECEIVE (0x18) // Get receiver max timeout
#define CP210X_CMD_SET_CHAR (0x0D) // Set special character individually
#define CP210X_CMD_GET_CHARS (0x0E) // Get special characters
#define CP210X_CMD_GET_PROPS (0x0F) // Get properties
#define CP210X_CMD_GET_COMM_STATUS (0x10) // Get the serial status
#define CP210X_CMD_RESET (0x11) // Reset
#define CP210X_CMD_PURGE (0x12) // Purge
#define CP210X_CMD_SET_FLOW (0x13) // Set flow control
#define CP210X_CMD_GET_FLOW (0x14) // Get flow control
#define CP210X_CMD_EMBED_EVENTS (0x15) // Control embedding of events in the data stream
#define CP210X_CMD_GET_BAUDRATE (0x1D) // Get the baud rate
#define CP210X_CMD_SET_BAUDRATE (0x1E) // Set the baud rate
#define CP210X_CMD_SET_CHARS (0x19) // Set special characters
#define CP210X_CMD_VENDOR_SPECIFIC (0xFF) // Read/write latch values
namespace esp_usb {
class CP210x : public CdcAcmDevice {
public:
/**
* @brief Factory method for this CP210x driver
*
* @note USB Host library and CDC-ACM driver must be already installed
*
* @param[in] pid PID eg. CP210X_PID
* @param[in] dev_config CDC device configuration
* @param[in] interface_idx Interface number
* @return CP210x Pointer to created and opened CP210x device
*/
static CP210x *open_cp210x(uint16_t pid, const cdc_acm_host_device_config_t *dev_config, uint8_t interface_idx = 0);
/**
* @brief Get Line Coding method
*
* @see AN571: CP210x Virtual COM Port Interface chapters 5.6 and 5.8
* @note Overrides default implementation in CDC-ACM driver
* @param[out] line_coding Line Coding structure
* @return esp_err_t
*/
esp_err_t line_coding_get(cdc_acm_line_coding_t *line_coding);
/**
* @brief Set Line Coding method
*
* @see AN571: CP210x Virtual COM Port Interface chapters 5.5 and 5.7
* @note Overrides default implementation in CDC-ACM driver
* @param[in] line_coding Line Coding structure
* @return esp_err_t
*/
esp_err_t line_coding_set(cdc_acm_line_coding_t *line_coding);
/**
* @brief Set Control Line State method
*
* @see AN571: CP210x Virtual COM Port Interface chapter 5.9
* @note Overrides default implementation in CDC-ACM driver
* @note Both signals are active low
* @param[in] dtr Indicates to DCE if DTE is present or not. This signal corresponds to V.24 signal 108/2 and RS-232 signal Data Terminal Ready.
* @param[in] rts Carrier control for half duplex modems. This signal corresponds to V.24 signal 105 and RS-232 signal Request To Send.
* @return esp_err_t
*/
esp_err_t set_control_line_state(bool dtr, bool rts);
/**
* @brief Send Break method
*
* @see AN571: CP210x Virtual COM Port Interface chapter 5.20
* @note Overrides default implementation in CDC-ACM driver
* @param[in] duration_ms Duration of the break condition in [ms]
* @return esp_err_t
*/
esp_err_t send_break(uint16_t duration_ms);
private:
const uint8_t intf;
// Constructors are private, use factory method to create this object
CP210x();
CP210x(uint16_t pid, const cdc_acm_host_device_config_t *dev_config, uint8_t interface_idx = 0);
// Make open functions from CdcAcmDevice class private
using CdcAcmDevice::open;
using CdcAcmDevice::open_vendor_specific;
};
} // namespace esp_usb

View File

@@ -1,175 +0,0 @@
/*
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: CC0-1.0
*/
#include <string.h>
#include "ftdi_usb.hpp"
#include "usb/usb_types_ch9.h"
#include "esp_log.h"
#include "esp_check.h"
#define FTDI_VID (0x0403)
#define FTDI_READ_REQ (USB_BM_REQUEST_TYPE_TYPE_VENDOR | USB_BM_REQUEST_TYPE_DIR_IN)
#define FTDI_WRITE_REQ (USB_BM_REQUEST_TYPE_TYPE_VENDOR | USB_BM_REQUEST_TYPE_DIR_OUT)
namespace esp_usb {
FT23x *FT23x::open_ftdi(uint16_t pid, const cdc_acm_host_device_config_t *dev_config, uint8_t interface_idx)
{
return new FT23x(pid, dev_config, interface_idx);
}
FT23x::FT23x(uint16_t pid, const cdc_acm_host_device_config_t *dev_config, uint8_t interface_idx)
: intf(interface_idx), user_data_cb(dev_config->data_cb), user_event_cb(dev_config->event_cb),
user_arg(dev_config->user_arg), uart_state(0)
{
cdc_acm_host_device_config_t ftdi_config;
memcpy(&ftdi_config, dev_config, sizeof(cdc_acm_host_device_config_t));
// FT23x reports modem status in first two bytes of RX data
// so here we override the RX handler with our own
if (dev_config->data_cb) {
ftdi_config.data_cb = ftdi_rx;
ftdi_config.user_arg = this;
}
if (dev_config->event_cb) {
ftdi_config.event_cb = ftdi_event;
ftdi_config.user_arg = this;
}
esp_err_t err;
err = this->open_vendor_specific(FTDI_VID, pid, this->intf, &ftdi_config);
if (err != ESP_OK) {
throw(err);
}
// FT23x interface must be first reset and configured (115200 8N1)
err = this->send_custom_request(FTDI_WRITE_REQ, FTDI_CMD_RESET, 0, this->intf + 1, 0, NULL);
if (err != ESP_OK) {
throw(err);
}
cdc_acm_line_coding_t line_coding = {
.dwDTERate = 115200,
.bCharFormat = 0,
.bParityType = 0,
.bDataBits = 8,
};
err = this->line_coding_set(&line_coding);
if (err != ESP_OK) {
throw(err);
}
};
esp_err_t FT23x::line_coding_set(cdc_acm_line_coding_t *line_coding)
{
assert(line_coding);
if (line_coding->dwDTERate != 0) {
uint16_t wIndex, wValue;
calculate_baudrate(line_coding->dwDTERate, &wValue, &wIndex);
ESP_RETURN_ON_ERROR(this->send_custom_request(FTDI_WRITE_REQ, FTDI_CMD_SET_BAUDRATE, wValue, wIndex, 0, NULL), "FT23x",);
}
if (line_coding->bDataBits != 0) {
const uint16_t wValue = (line_coding->bDataBits) | (line_coding->bParityType << 8) | (line_coding->bCharFormat << 11);
return this->send_custom_request(FTDI_WRITE_REQ, FTDI_CMD_SET_LINE_CTL, wValue, this->intf, 0, NULL);
}
return ESP_OK;
}
esp_err_t FT23x::set_control_line_state(bool dtr, bool rts)
{
ESP_RETURN_ON_ERROR(this->send_custom_request(FTDI_WRITE_REQ, FTDI_CMD_SET_MHS, dtr ? 0x11 : 0x10, this->intf, 0, NULL), "FT23x",); // DTR
return this->send_custom_request(FTDI_WRITE_REQ, FTDI_CMD_SET_MHS, rts ? 0x21 : 0x20, this->intf, 0, NULL); // RTS
}
void FT23x::ftdi_rx(uint8_t* data, size_t data_len, void *user_arg)
{
FT23x *this_ftdi = (FT23x *)user_arg;
// Dispatch serial state if it has changed
if (this_ftdi->user_event_cb) {
cdc_acm_uart_state_t new_state;
new_state.val = 0;
new_state.bRxCarrier = data[0] & 0x80; // DCD
new_state.bTxCarrier = data[0] & 0x20; // DSR
new_state.bBreak = data[1] & 0x10;
new_state.bRingSignal = data[0] & 0x40;
new_state.bFraming = data[1] & 0x08;
new_state.bParity = data[1] & 0x04;
new_state.bOverRun = data[1] & 0x02;
if (this_ftdi->uart_state != new_state.val) {
cdc_acm_host_dev_event_data_t serial_event;
serial_event.type = CDC_ACM_HOST_SERIAL_STATE;
serial_event.data.serial_state = new_state;
this_ftdi->user_event_cb(&serial_event, this_ftdi->user_arg);
this_ftdi->uart_state = new_state.val;
}
}
// Dispatch data if any
if (data_len > 2) {
this_ftdi->user_data_cb(&data[2], data_len - 2, this_ftdi->user_arg);
}
}
void FT23x::ftdi_event(const cdc_acm_host_dev_event_data_t *event, void *user_ctx)
{
FT23x *this_ftdi = (FT23x *)user_ctx;
this_ftdi->user_event_cb(event, this_ftdi->user_arg);
}
int FT23x::calculate_baudrate(uint32_t baudrate, uint16_t *wValue, uint16_t *wIndex)
{
#define FTDI_BASE_CLK (3000000)
int baudrate_real;
if (baudrate > 2000000) {
// set to 3000000
*wValue = 0;
*wIndex = 0;
baudrate_real = 3000000;
} else if (baudrate >= 1000000) {
// set to 1000000
*wValue = 1;
*wIndex = 0;
baudrate_real = 1000000;
} else {
const float ftdi_fractal[] = {0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1};
const uint8_t ftdi_fractal_bits[] = {0, 0x03, 0x02, 0x04, 0x01, 0x05, 0x06, 0x07};
uint16_t divider_n = FTDI_BASE_CLK / baudrate; // integer value
int ftdi_fractal_idx = 0;
float divider = FTDI_BASE_CLK / (float)baudrate; // float value
float divider_fractal = divider - (float)divider_n;
// Find closest bigger FT23x fractal divider
for (ftdi_fractal_idx = 0; ftdi_fractal[ftdi_fractal_idx] <= divider_fractal; ftdi_fractal_idx++) {};
// Calculate baudrate errors for two closest fractal divisors
int diff1 = baudrate - (int)(FTDI_BASE_CLK / (divider_n + ftdi_fractal[ftdi_fractal_idx])); // Greater than required baudrate
int diff2 = (int)(FTDI_BASE_CLK / (divider_n + ftdi_fractal[ftdi_fractal_idx - 1])) - baudrate; // Lesser than required baudrate
// Chose divider and fractal divider with smallest error
if (diff2 < diff1) {
ftdi_fractal_idx--;
} else {
if (ftdi_fractal_idx == 8) {
ftdi_fractal_idx = 0;
divider_n++;
}
}
baudrate_real = FTDI_BASE_CLK / (float)((float)divider_n + ftdi_fractal[ftdi_fractal_idx]);
*wValue = ((0x3FFFF) & divider_n) | (ftdi_fractal_bits[ftdi_fractal_idx] << 14);
*wIndex = ftdi_fractal_bits[ftdi_fractal_idx] >> 2;
}
ESP_LOGD("FT23x", "wValue: 0x%04X wIndex: 0x%04X", *wValue, *wIndex);
ESP_LOGI("FT23x", "Baudrate required: %d, set: %d", baudrate, baudrate_real);
return baudrate_real;
}
} // esp_usb

View File

@@ -1,126 +0,0 @@
/*
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: CC0-1.0
*/
#pragma once
#include "usb/cdc_acm_host.h"
#define FTDI_FT232_PID (0x6001)
#define FTDI_FT231_PID (0x6015)
#define FTDI_CMD_RESET (0x00)
#define FTDI_CMD_SET_FLOW (0x01)
#define FTDI_CMD_SET_MHS (0x02) // Modem hanshaking
#define FTDI_CMD_SET_BAUDRATE (0x03)
#define FTDI_CMD_SET_LINE_CTL (0x04)
#define FTDI_CMD_GET_MDMSTS (0x05) // Modem status
namespace esp_usb {
class FT23x : public CdcAcmDevice {
public:
/**
* @brief Factory method for this FTDI driver
*
* @note USB Host library and CDC-ACM driver must be already installed
*
* @param[in] pid PID eg. FTDI_FT232_PID
* @param[in] dev_config CDC device configuration
* @param[in] interface_idx Interface number
* @return FT23x Pointer to created and opened FTDI device
*/
static FT23x *open_ftdi(uint16_t pid, const cdc_acm_host_device_config_t *dev_config, uint8_t interface_idx = 0);
/**
* @brief Set Line Coding method
*
* @note Overrides default implementation in CDC-ACM driver
* @param[in] line_coding Line Coding structure
* @return esp_err_t
*/
esp_err_t line_coding_set(cdc_acm_line_coding_t *line_coding);
/**
* @brief Set Control Line State method
*
* @note Overrides default implementation in CDC-ACM driver
* @note Both signals are active low
* @param[in] dtr Indicates to DCE if DTE is present or not. This signal corresponds to V.24 signal 108/2 and RS-232 signal Data Terminal Ready.
* @param[in] rts Carrier control for half duplex modems. This signal corresponds to V.24 signal 105 and RS-232 signal Request To Send.
* @return esp_err_t
*/
esp_err_t set_control_line_state(bool dtr, bool rts);
private:
/**
* @brief FT23x's RX data handler
*
* First two bytes are status bytes, the RX data start at data[2].
* Coding of status bytes:
* Byte 0:
* Bit 0: Full Speed packet
* Bit 1: High Speed packet
* Bit 4: CTS
* Bit 5: DSR
* Bit 6: RI
* Bit 7: DCD
* Byte 1:
* Bit 1: RX overflow
* Bit 2: Parity error
* Bit 3: Framing error
* Bit 4: Break received
* Bit 5: Transmitter holding register empty
* Bit 6: Transmitter empty
*
* @todo When CTS is asserted, this driver should stop sending data.
*
* @param[in] data Received data
* @param[in] data_len Received data length
* @param[in] user_arg Pointer to FT23x class
*/
static void ftdi_rx(uint8_t* data, size_t data_len, void *user_arg);
// Just a wrapper to recover user's argument
static void ftdi_event(const cdc_acm_host_dev_event_data_t *event, void *user_ctx);
/**
* @brief Construct a new calculate baudrate object
*
* A Baud rate for the FT232R, FT2232 (UART mode) or FT232B is generated using the chips
* internal 48MHz clock. This is input to Baud rate generator circuitry where it is then divided by 16
* and fed into a prescaler as a 3MHz reference clock. This 3MHz reference clock is then divided
* down to provide the required Baud rate for the device's on chip UART. The value of the Baud rate
* divisor is an integer plus a sub-integer prescaler.
* Allowed values for the Baud rate divisor are:
* Divisor = n + 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875; where n is an integer between 2 and
* 16384 (214).
*
* Note: Divisor = 1 and Divisor = 0 are special cases. A divisor of 0 will give 3 MBaud, and a divisor
* of 1 will give 2 MBaud. Sub-integer divisors between 0 and 2 are not allowed.
* Therefore the value of the divisor needed for a given Baud rate is found by dividing 3000000 by the
* required Baud rate.
*
* @see FTDI AN232B-05 Configuring FT232R, FT2232 and FT232B Baud Rates
* @param[in] baudrate
* @param[out] wValue
* @param[out] wIndex
*/
static int calculate_baudrate(uint32_t baudrate, uint16_t *wValue, uint16_t *wIndex);
// Constructors are private, use factory method open_ftdi() to create this object
FT23x();
FT23x(uint16_t pid, const cdc_acm_host_device_config_t *dev_config, uint8_t interface_idx = 0);
// Make open functions from CdcAcmDevice class private
using CdcAcmDevice::open;
using CdcAcmDevice::open_vendor_specific;
const uint8_t intf;
const cdc_acm_data_callback_t user_data_cb;
const cdc_acm_host_dev_callback_t user_event_cb;
void *user_arg;
uint16_t uart_state;
};
} // namespace esp_usb

View File

@@ -1,4 +1,7 @@
## IDF Component Manager Manifest File
dependencies:
usb_host_cdc_acm: "1.*"
idf: ">=4.4"
usb_host_ch34x_vcp: "^1"
usb_host_cp210x_vcp: "^1"
usb_host_ftdi_vcp: "^1"
usb_host_vcp: "^1"
idf: ">=5.1.0"