forked from espressif/esp-idf
		
	
		
			
				
	
	
		
			427 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			427 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
 | 
						|
//     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
#include <rom/ets_sys.h>
 | 
						|
 | 
						|
#include <freertos/heap_regions.h>
 | 
						|
 | 
						|
#include "esp_heap_alloc_caps.h"
 | 
						|
#include "spiram.h"
 | 
						|
#include "esp_log.h"
 | 
						|
#include <stdbool.h>
 | 
						|
 | 
						|
static const char* TAG = "heap_alloc_caps";
 | 
						|
 | 
						|
/*
 | 
						|
This file, combined with a region allocator that supports tags, solves the problem that the ESP32 has RAM that's 
 | 
						|
slightly heterogeneous. Some RAM can be byte-accessed, some allows only 32-bit accesses, some can execute memory,
 | 
						|
some can be remapped by the MMU to only be accessed by a certain PID etc. In order to allow the most flexible
 | 
						|
memory allocation possible, this code makes it possible to request memory that has certain capabilities. The
 | 
						|
code will then use its knowledge of how the memory is configured along with a priority scheme to allocate that
 | 
						|
memory in the most sane way possible. This should optimize the amount of RAM accessible to the code without
 | 
						|
hardwiring addresses.
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
//Amount of priority slots for the tag descriptors.
 | 
						|
#define NO_PRIOS 3
 | 
						|
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    const char *name;
 | 
						|
    uint32_t prio[NO_PRIOS];
 | 
						|
    bool aliasedIram;
 | 
						|
} tag_desc_t;
 | 
						|
 | 
						|
/*
 | 
						|
Tag descriptors. These describe the capabilities of a bit of memory that's tagged with the index into this table.
 | 
						|
Each tag contains NO_PRIOS entries; later entries are only taken if earlier ones can't fulfill the memory request.
 | 
						|
Make sure there are never more than HEAPREGIONS_MAX_TAGCOUNT (in heap_regions.h) tags (ex the last empty marker)
 | 
						|
 | 
						|
WARNING: The current code assumes the ROM stacks are located in tag 1; no allocation from this tag can be done until
 | 
						|
the FreeRTOS scheduler has started.
 | 
						|
*/
 | 
						|
static const tag_desc_t tag_desc[]={
 | 
						|
    { "DRAM", { MALLOC_CAP_DMA|MALLOC_CAP_8BIT, MALLOC_CAP_32BIT, 0 }, false},                        //Tag 0: Plain ole D-port RAM
 | 
						|
    { "D/IRAM", { 0, MALLOC_CAP_DMA|MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_EXEC }, true},       //Tag 1: Plain ole D-port RAM which has an alias on the I-port
 | 
						|
    { "IRAM", { MALLOC_CAP_EXEC|MALLOC_CAP_32BIT, 0, 0 }, false},                                     //Tag 2: IRAM
 | 
						|
    { "PID2IRAM", { MALLOC_CAP_PID2, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false},                   //Tag 3-8: PID 2-7 IRAM
 | 
						|
    { "PID3IRAM", { MALLOC_CAP_PID3, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false},                   //
 | 
						|
    { "PID4IRAM", { MALLOC_CAP_PID4, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false},                   //
 | 
						|
    { "PID5IRAM", { MALLOC_CAP_PID5, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false},                   //
 | 
						|
    { "PID6IRAM", { MALLOC_CAP_PID6, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false},                   //
 | 
						|
    { "PID7IRAM", { MALLOC_CAP_PID7, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false},                   //
 | 
						|
    { "PID2DRAM", { MALLOC_CAP_PID2, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, false},                     //Tag 9-14: PID 2-7 DRAM
 | 
						|
    { "PID3DRAM", { MALLOC_CAP_PID3, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, false},                     //
 | 
						|
    { "PID4DRAM", { MALLOC_CAP_PID4, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, false},                     //
 | 
						|
    { "PID5DRAM", { MALLOC_CAP_PID5, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, false},                     //
 | 
						|
    { "PID6DRAM", { MALLOC_CAP_PID6, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, false},                     //
 | 
						|
    { "PID7DRAM", { MALLOC_CAP_PID7, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, false},                     //
 | 
						|
    { "SPISRAM", { MALLOC_CAP_SPISRAM, 0, MALLOC_CAP_DMA|MALLOC_CAP_8BIT|MALLOC_CAP_32BIT}, false},   //Tag 15: SPI SRAM data
 | 
						|
    { "", { MALLOC_CAP_INVALID, MALLOC_CAP_INVALID, MALLOC_CAP_INVALID }, false} //End
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
Region descriptors. These describe all regions of memory available, and tag them according to the
 | 
						|
capabilities the hardware has. This array is not marked constant; the initialization code may want to
 | 
						|
change the tags of some regions because eg BT is detected, applications are loaded etc.
 | 
						|
 | 
						|
The priorities here roughly work like this:
 | 
						|
- For a normal malloc (MALLOC_CAP_8BIT), give away the DRAM-only memory first, then pass off any dual-use IRAM regions,
 | 
						|
  finally eat into the application memory.
 | 
						|
- For a malloc where 32-bit-aligned-only access is okay, first allocate IRAM, then DRAM, finally application IRAM.
 | 
						|
- Application mallocs (PIDx) will allocate IRAM first, if possible, then DRAM.
 | 
						|
- Most other malloc caps only fit in one region anyway.
 | 
						|
 | 
						|
These region descriptors are very ESP32 specific, because they describe the memory pools available there.
 | 
						|
 | 
						|
Because of requirements in the coalescing code as well as the heap allocator itself, this list should always
 | 
						|
be sorted from low to high start address.
 | 
						|
 | 
						|
This array is *NOT* const because it gets modified depending on what pools are/aren't available.
 | 
						|
*/
 | 
						|
static HeapRegionTagged_t regions[]={
 | 
						|
    { (uint8_t *)0x3F800000, 0x20000, 15, 0}, //SPI SRAM, if available
 | 
						|
    { (uint8_t *)0x3FFAE000, 0x2000, 0, 0}, //pool 16 <- used for rom code
 | 
						|
    { (uint8_t *)0x3FFB0000, 0x8000, 0, 0}, //pool 15 <- if BT is enabled, used as BT HW shared memory
 | 
						|
    { (uint8_t *)0x3FFB8000, 0x8000, 0, 0}, //pool 14 <- if BT is enabled, used data memory for BT ROM functions.
 | 
						|
    { (uint8_t *)0x3FFC0000, 0x2000, 0, 0}, //pool 10-13, mmu page 0
 | 
						|
    { (uint8_t *)0x3FFC2000, 0x2000, 0, 0}, //pool 10-13, mmu page 1
 | 
						|
    { (uint8_t *)0x3FFC4000, 0x2000, 0, 0}, //pool 10-13, mmu page 2
 | 
						|
    { (uint8_t *)0x3FFC6000, 0x2000, 0, 0}, //pool 10-13, mmu page 3
 | 
						|
    { (uint8_t *)0x3FFC8000, 0x2000, 0, 0}, //pool 10-13, mmu page 4
 | 
						|
    { (uint8_t *)0x3FFCA000, 0x2000, 0, 0}, //pool 10-13, mmu page 5
 | 
						|
    { (uint8_t *)0x3FFCC000, 0x2000, 0, 0}, //pool 10-13, mmu page 6
 | 
						|
    { (uint8_t *)0x3FFCE000, 0x2000, 0, 0}, //pool 10-13, mmu page 7
 | 
						|
    { (uint8_t *)0x3FFD0000, 0x2000, 0, 0}, //pool 10-13, mmu page 8
 | 
						|
    { (uint8_t *)0x3FFD2000, 0x2000, 0, 0}, //pool 10-13, mmu page 9
 | 
						|
    { (uint8_t *)0x3FFD4000, 0x2000, 0, 0}, //pool 10-13, mmu page 10
 | 
						|
    { (uint8_t *)0x3FFD6000, 0x2000, 0, 0}, //pool 10-13, mmu page 11
 | 
						|
    { (uint8_t *)0x3FFD8000, 0x2000, 0, 0}, //pool 10-13, mmu page 12
 | 
						|
    { (uint8_t *)0x3FFDA000, 0x2000, 0, 0}, //pool 10-13, mmu page 13
 | 
						|
    { (uint8_t *)0x3FFDC000, 0x2000, 0, 0}, //pool 10-13, mmu page 14
 | 
						|
    { (uint8_t *)0x3FFDE000, 0x2000, 0, 0}, //pool 10-13, mmu page 15
 | 
						|
    { (uint8_t *)0x3FFE0000, 0x4000, 1, 0x400BC000}, //pool 9 blk 1
 | 
						|
    { (uint8_t *)0x3FFE4000, 0x4000, 1, 0x400B8000}, //pool 9 blk 0
 | 
						|
    { (uint8_t *)0x3FFE8000, 0x8000, 1, 0x400B0000}, //pool 8 <- can be remapped to ROM, used for MAC dump
 | 
						|
    { (uint8_t *)0x3FFF0000, 0x8000, 1, 0x400A8000}, //pool 7 <- can be used for MAC dump
 | 
						|
    { (uint8_t *)0x3FFF8000, 0x4000, 1, 0x400A4000}, //pool 6 blk 1 <- can be used as trace memory
 | 
						|
    { (uint8_t *)0x3FFFC000, 0x4000, 1, 0x400A0000}, //pool 6 blk 0 <- can be used as trace memory
 | 
						|
    { (uint8_t *)0x40070000, 0x8000, 2, 0}, //pool 0
 | 
						|
    { (uint8_t *)0x40078000, 0x8000, 2, 0}, //pool 1
 | 
						|
    { (uint8_t *)0x40080000, 0x2000, 2, 0}, //pool 2-5, mmu page 0
 | 
						|
    { (uint8_t *)0x40082000, 0x2000, 2, 0}, //pool 2-5, mmu page 1
 | 
						|
    { (uint8_t *)0x40084000, 0x2000, 2, 0}, //pool 2-5, mmu page 2
 | 
						|
    { (uint8_t *)0x40086000, 0x2000, 2, 0}, //pool 2-5, mmu page 3
 | 
						|
    { (uint8_t *)0x40088000, 0x2000, 2, 0}, //pool 2-5, mmu page 4
 | 
						|
    { (uint8_t *)0x4008A000, 0x2000, 2, 0}, //pool 2-5, mmu page 5
 | 
						|
    { (uint8_t *)0x4008C000, 0x2000, 2, 0}, //pool 2-5, mmu page 6
 | 
						|
    { (uint8_t *)0x4008E000, 0x2000, 2, 0}, //pool 2-5, mmu page 7
 | 
						|
    { (uint8_t *)0x40090000, 0x2000, 2, 0}, //pool 2-5, mmu page 8
 | 
						|
    { (uint8_t *)0x40092000, 0x2000, 2, 0}, //pool 2-5, mmu page 9
 | 
						|
    { (uint8_t *)0x40094000, 0x2000, 2, 0}, //pool 2-5, mmu page 10
 | 
						|
    { (uint8_t *)0x40096000, 0x2000, 2, 0}, //pool 2-5, mmu page 11
 | 
						|
    { (uint8_t *)0x40098000, 0x2000, 2, 0}, //pool 2-5, mmu page 12
 | 
						|
    { (uint8_t *)0x4009A000, 0x2000, 2, 0}, //pool 2-5, mmu page 13
 | 
						|
    { (uint8_t *)0x4009C000, 0x2000, 2, 0}, //pool 2-5, mmu page 14
 | 
						|
    { (uint8_t *)0x4009E000, 0x2000, 2, 0}, //pool 2-5, mmu page 15
 | 
						|
    { NULL, 0, 0, 0} //end
 | 
						|
};
 | 
						|
 | 
						|
/* For the startup code, the stacks live in memory tagged by this tag. Hence, we only enable allocating from this tag 
 | 
						|
   once FreeRTOS has started up completely. */
 | 
						|
#define NONOS_STACK_TAG 1
 | 
						|
 | 
						|
static bool nonos_stack_in_use=true;
 | 
						|
 | 
						|
void heap_alloc_enable_nonos_stack_tag()
 | 
						|
{
 | 
						|
    nonos_stack_in_use=false;
 | 
						|
}
 | 
						|
 | 
						|
//Modify regions array to disable the given range of memory.
 | 
						|
static void disable_mem_region(void *from, void *to) {
 | 
						|
    int i;
 | 
						|
    //Align from and to on word boundaries
 | 
						|
    from=(void*)((uint32_t)from&~3);
 | 
						|
    to=(void*)(((uint32_t)to+3)&~3);
 | 
						|
    for (i=0; regions[i].xSizeInBytes!=0; i++) {
 | 
						|
        void *regStart=regions[i].pucStartAddress;
 | 
						|
        void *regEnd=regions[i].pucStartAddress+regions[i].xSizeInBytes;
 | 
						|
        if (regStart>=from && regEnd<=to) {
 | 
						|
            //Entire region falls in the range. Disable entirely.
 | 
						|
            regions[i].xTag=-1;
 | 
						|
        } else if (regStart>=from && regEnd>to && regStart<to) {
 | 
						|
            //Start of the region falls in the range. Modify address/len.
 | 
						|
            int overlap=(uint8_t *)to-(uint8_t *)regStart;
 | 
						|
            regions[i].pucStartAddress+=overlap;
 | 
						|
            regions[i].xSizeInBytes-=overlap;
 | 
						|
            if (regions[i].xExecAddr) regions[i].xExecAddr+=overlap;
 | 
						|
        } else if (regStart<from && regEnd>from && regEnd<=to) {
 | 
						|
            //End of the region falls in the range. Modify length.
 | 
						|
            regions[i].xSizeInBytes-=(uint8_t *)regEnd-(uint8_t *)from;
 | 
						|
        } else if (regStart<from && regEnd>to) {
 | 
						|
            //Range punches a hole in the region! We do not support this.
 | 
						|
            ESP_EARLY_LOGE(TAG, "region %d: hole punching is not supported!", i);
 | 
						|
            regions[i].xTag=-1; //Just disable memory region. That'll teach them!
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
Warning: These variables are assumed to have the start and end of the data and iram
 | 
						|
area used statically by the program, respectively. These variables are defined in the ld
 | 
						|
file.
 | 
						|
*/
 | 
						|
extern int _data_start, _heap_start, _init_start, _iram_text_end;
 | 
						|
 | 
						|
/*
 | 
						|
Initialize the heap allocator. We pass it a bunch of region descriptors, but we need to modify those first to accommodate for 
 | 
						|
the data as loaded by the bootloader.
 | 
						|
ToDo: The regions are different when stuff like trace memory, BT, ... is used. Modify the regions struct on the fly for this.
 | 
						|
Same with loading of apps. Same with using SPI RAM.
 | 
						|
*/
 | 
						|
void heap_alloc_caps_init() {
 | 
						|
    int i;
 | 
						|
    //Compile-time assert to see if we don't have more tags than is set in heap_regions.h
 | 
						|
    _Static_assert((sizeof(tag_desc)/sizeof(tag_desc[0]))-1 <= HEAPREGIONS_MAX_TAGCOUNT, "More than HEAPREGIONS_MAX_TAGCOUNT tags defined!");
 | 
						|
    //Disable the bits of memory where this code is loaded.
 | 
						|
    disable_mem_region(&_data_start, &_heap_start);           //DRAM used by bss/data static variables
 | 
						|
    disable_mem_region(&_init_start, &_iram_text_end);        //IRAM used by code
 | 
						|
    disable_mem_region((void*)0x40070000, (void*)0x40078000); //CPU0 cache region
 | 
						|
    disable_mem_region((void*)0x40078000, (void*)0x40080000); //CPU1 cache region
 | 
						|
 | 
						|
    /* Warning: The ROM stack is located in the 0x3ffe0000 area. We do not specifically disable that area here because
 | 
						|
       after the scheduler has started, the ROM stack is not used anymore by anything. We handle it instead by not allowing
 | 
						|
       any mallocs from tag 1 (the IRAM/DRAM region) until the scheduler has started.
 | 
						|
 | 
						|
       The 0x3ffe0000 region also contains static RAM for various ROM functions. The following lines
 | 
						|
       reserve the regions for UART and ETSC, so these functions are usable. Libraries like xtos, which are
 | 
						|
       not usable in FreeRTOS anyway, are commented out in the linker script so they cannot be used; we
 | 
						|
       do not disable their memory regions here and they will be used as general purpose heap memory.
 | 
						|
 | 
						|
       Enabling the heap allocator for this region but disabling allocation here until FreeRTOS is started up
 | 
						|
       is a somewhat risky action in theory, because on initializing the allocator, vPortDefineHeapRegionsTagged
 | 
						|
        will go and write linked list entries at the start and end of all regions. For the ESP32, these linked 
 | 
						|
       list entries happen to end up in a region that is not touched by the stack; they can be placed safely there.*/
 | 
						|
    disable_mem_region((void*)0x3ffe0000, (void*)0x3ffe0440); //Reserve ROM PRO data region
 | 
						|
    disable_mem_region((void*)0x3ffe4000, (void*)0x3ffe4350); //Reserve ROM APP data region
 | 
						|
 | 
						|
#if CONFIG_BT_ENABLED
 | 
						|
#if CONFIG_BT_DRAM_RELEASE
 | 
						|
    disable_mem_region((void*)0x3ffb0000, (void*)0x3ffb3000); //Reserve BT data region
 | 
						|
    disable_mem_region((void*)0x3ffb8000, (void*)0x3ffbbb28); //Reserve BT data region
 | 
						|
    disable_mem_region((void*)0x3ffbdb28, (void*)0x3ffc0000); //Reserve BT data region
 | 
						|
#else
 | 
						|
    disable_mem_region((void*)0x3ffb0000, (void*)0x3ffc0000); //Reserve BT hardware shared memory & BT data region
 | 
						|
#endif
 | 
						|
    disable_mem_region((void*)0x3ffae000, (void*)0x3ffaff10); //Reserve ROM data region, inc region needed for BT ROM routines
 | 
						|
#else
 | 
						|
    disable_mem_region((void*)0x3ffae000, (void*)0x3ffae2a0); //Reserve ROM data region
 | 
						|
#endif
 | 
						|
 | 
						|
#if CONFIG_MEMMAP_TRACEMEM
 | 
						|
#if CONFIG_MEMMAP_TRACEMEM_TWOBANKS
 | 
						|
    disable_mem_region((void*)0x3fff8000, (void*)0x40000000); //Reserve trace mem region
 | 
						|
#else
 | 
						|
    disable_mem_region((void*)0x3fff8000, (void*)0x3fffc000); //Reserve trace mem region
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
#if 0
 | 
						|
    enable_spi_sram();
 | 
						|
#else
 | 
						|
    disable_mem_region((void*)0x3f800000, (void*)0x3f820000); //SPI SRAM not installed
 | 
						|
#endif
 | 
						|
 | 
						|
    //The heap allocator will treat every region given to it as separate. In order to get bigger ranges of contiguous memory,
 | 
						|
    //it's useful to coalesce adjacent regions that have the same tag.
 | 
						|
 | 
						|
    for (i=1; regions[i].xSizeInBytes!=0; i++) {
 | 
						|
        if (regions[i].pucStartAddress == (regions[i-1].pucStartAddress + regions[i-1].xSizeInBytes) &&
 | 
						|
                                    regions[i].xTag == regions[i-1].xTag ) {
 | 
						|
            regions[i-1].xTag=-1;
 | 
						|
            regions[i].pucStartAddress=regions[i-1].pucStartAddress;
 | 
						|
            regions[i].xSizeInBytes+=regions[i-1].xSizeInBytes;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    ESP_EARLY_LOGI(TAG, "Initializing. RAM available for dynamic allocation:");
 | 
						|
    for (i=0; regions[i].xSizeInBytes!=0; i++) {
 | 
						|
        if (regions[i].xTag != -1) {
 | 
						|
            ESP_EARLY_LOGI(TAG, "At %08X len %08X (%d KiB): %s", 
 | 
						|
                    (int)regions[i].pucStartAddress, regions[i].xSizeInBytes, regions[i].xSizeInBytes/1024, tag_desc[regions[i].xTag].name);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    //Initialize the malloc implementation.
 | 
						|
    vPortDefineHeapRegionsTagged( regions );
 | 
						|
}
 | 
						|
 | 
						|
//First and last words of the D/IRAM region, for both the DRAM address as well as the IRAM alias.
 | 
						|
#define DIRAM_IRAM_START 0x400A0000
 | 
						|
#define DIRAM_IRAM_END   0x400BFFFC
 | 
						|
#define DIRAM_DRAM_START 0x3FFE0000
 | 
						|
#define DIRAM_DRAM_END   0x3FFFFFFC
 | 
						|
 | 
						|
/*
 | 
						|
  This takes a memory chunk in a region that can be addressed as both DRAM as well as IRAM. It will convert it to
 | 
						|
  IRAM in such a way that it can be later freed. It assumes both the address as wel as the length to be word-aligned.
 | 
						|
  It returns a region that's 1 word smaller than the region given because it stores the original Dram address there.
 | 
						|
  
 | 
						|
  In theory, we can also make this work by prepending a struct that looks similar to the block link struct used by the
 | 
						|
  heap allocator itself, which will allow inspection tools relying on any block returned from any sort of malloc to
 | 
						|
  have such a block in front of it, work. We may do this later, if/when there is demand for it. For now, a simple
 | 
						|
  pointer is used.
 | 
						|
*/
 | 
						|
static void *dram_alloc_to_iram_addr(void *addr, size_t len) 
 | 
						|
{
 | 
						|
    uint32_t dstart=(int)addr; //First word
 | 
						|
    uint32_t dend=((int)addr)+len-4; //Last word
 | 
						|
    configASSERT(dstart>=DIRAM_DRAM_START);
 | 
						|
    configASSERT(dend<=DIRAM_DRAM_END);
 | 
						|
    configASSERT((dstart&3)==0);
 | 
						|
    configASSERT((dend&3)==0);
 | 
						|
    uint32_t istart=DIRAM_IRAM_START+(DIRAM_DRAM_END-dend);
 | 
						|
    uint32_t *iptr=(uint32_t*)istart;
 | 
						|
    *iptr=dstart;
 | 
						|
    return (void*)(iptr+1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
Standard malloc() implementation. Will return standard no-frills byte-accessible data memory.
 | 
						|
*/
 | 
						|
void *pvPortMalloc( size_t xWantedSize )
 | 
						|
{
 | 
						|
    return pvPortMallocCaps( xWantedSize, MALLOC_CAP_8BIT );
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 Standard free() implementation. Will pass memory on to the allocator unless it's an IRAM address where the
 | 
						|
 actual meory is allocated in DRAM, it will convert to the DRAM address then.
 | 
						|
 */
 | 
						|
void vPortFree( void *pv )
 | 
						|
{
 | 
						|
    if (((int)pv>=DIRAM_IRAM_START) && ((int)pv<=DIRAM_IRAM_END)) {
 | 
						|
        //Memory allocated here is actually allocated in the DRAM alias region and
 | 
						|
        //cannot be de-allocated as usual. dram_alloc_to_iram_addr stores a pointer to
 | 
						|
        //the equivalent DRAM address, though; free that.
 | 
						|
        uint32_t* dramAddrPtr=(uint32_t*)pv;
 | 
						|
        return vPortFreeTagged((void*)dramAddrPtr[-1]);
 | 
						|
    }
 | 
						|
 | 
						|
    return vPortFreeTagged(pv);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
Routine to allocate a bit of memory with certain capabilities. caps is a bitfield of MALLOC_CAP_* bits.
 | 
						|
*/
 | 
						|
void *pvPortMallocCaps( size_t xWantedSize, uint32_t caps ) 
 | 
						|
{
 | 
						|
    int prio;
 | 
						|
    int tag, j;
 | 
						|
    void *ret=NULL;
 | 
						|
    uint32_t remCaps;
 | 
						|
    if (caps & MALLOC_CAP_EXEC) {
 | 
						|
        //MALLOC_CAP_EXEC forces an alloc from IRAM. There is a region which has both this
 | 
						|
        //as well as the following caps, but the following caps are not possible for IRAM.
 | 
						|
        //Thus, the combination is impossible and we return NULL directly, even although our tag_desc
 | 
						|
        //table would indicate there is a tag for this.
 | 
						|
        if ((caps & MALLOC_CAP_8BIT) || (caps & MALLOC_CAP_DMA)) {
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        //If any, EXEC memory should be 32-bit aligned, so round up to the next multiple of 4.
 | 
						|
        xWantedSize=(xWantedSize+3)&(~3);
 | 
						|
    }
 | 
						|
    for (prio=0; prio<NO_PRIOS; prio++) {
 | 
						|
        //Iterate over tag descriptors for this priority
 | 
						|
        for (tag=0; tag_desc[tag].prio[prio]!=MALLOC_CAP_INVALID; tag++) {
 | 
						|
            if (nonos_stack_in_use && tag == NONOS_STACK_TAG) {
 | 
						|
                //Non-os stack lives here and is still in use. Don't alloc here.
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            if ((tag_desc[tag].prio[prio]&caps)!=0) {
 | 
						|
                //Tag has at least one of the caps requested. If caps has other bits set that this prio
 | 
						|
                //doesn't cover, see if they're available in other prios.
 | 
						|
                remCaps=caps&(~tag_desc[tag].prio[prio]); //Remaining caps to be fulfilled
 | 
						|
                j=prio+1;
 | 
						|
                while (remCaps!=0 && j<NO_PRIOS) {
 | 
						|
                    remCaps=remCaps&(~tag_desc[tag].prio[j]);
 | 
						|
                    j++;
 | 
						|
                }
 | 
						|
                if (remCaps==0) {
 | 
						|
                    //This tag can satisfy all the requested capabilities. See if we can grab some memory using it.
 | 
						|
                    if ((caps & MALLOC_CAP_EXEC) && tag_desc[tag].aliasedIram) {
 | 
						|
                        //This is special, insofar that what we're going to get back is probably a DRAM address. If so,
 | 
						|
                        //we need to 'invert' it (lowest address in DRAM == highest address in IRAM and vice-versa) and
 | 
						|
                        //add a pointer to the DRAM equivalent before the address we're going to return.
 | 
						|
                        ret=pvPortMallocTagged(xWantedSize+4, tag);
 | 
						|
                        if (ret!=NULL) return dram_alloc_to_iram_addr(ret, xWantedSize+4);
 | 
						|
                    } else {
 | 
						|
                        //Just try to alloc, nothing special.
 | 
						|
                        ret=pvPortMallocTagged(xWantedSize, tag);
 | 
						|
                        if (ret!=NULL) return ret;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    //Nothing usable found.
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
size_t xPortGetFreeHeapSizeCaps( uint32_t caps )
 | 
						|
{
 | 
						|
    int prio;
 | 
						|
    int tag;
 | 
						|
    size_t ret=0;
 | 
						|
    for (prio=0; prio<NO_PRIOS; prio++) {
 | 
						|
        //Iterate over tag descriptors for this priority
 | 
						|
        for (tag=0; tag_desc[tag].prio[prio]!=MALLOC_CAP_INVALID; tag++) {
 | 
						|
            if ((tag_desc[tag].prio[prio]&caps)!=0) {
 | 
						|
                ret+=xPortGetFreeHeapSizeTagged(tag);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
size_t xPortGetMinimumEverFreeHeapSizeCaps( uint32_t caps )
 | 
						|
{
 | 
						|
    int prio;
 | 
						|
    int tag;
 | 
						|
    size_t ret=0;
 | 
						|
    for (prio=0; prio<NO_PRIOS; prio++) {
 | 
						|
        //Iterate over tag descriptors for this priority
 | 
						|
        for (tag=0; tag_desc[tag].prio[prio]!=MALLOC_CAP_INVALID; tag++) {
 | 
						|
            if ((tag_desc[tag].prio[prio]&caps)!=0) {
 | 
						|
                ret+=xPortGetMinimumEverFreeHeapSizeTagged(tag);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
size_t xPortGetFreeHeapSize( void )
 | 
						|
{
 | 
						|
    return xPortGetFreeHeapSizeCaps( MALLOC_CAP_8BIT );
 | 
						|
}
 | 
						|
 | 
						|
size_t xPortGetMinimumEverFreeHeapSize( void )
 | 
						|
{
 | 
						|
    return xPortGetMinimumEverFreeHeapSizeCaps( MALLOC_CAP_8BIT );
 | 
						|
}
 | 
						|
 | 
						|
 |