forked from espressif/esp-idf
		
	1. move dport access header files to soc 2. reduce dport register write protection. Only protect read operation
		
			
				
	
	
		
			995 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			995 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// Copyright 2017 Espressif Systems (Shanghai) PTE LTD
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
 | 
						|
//     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
//
 | 
						|
// Hot It Works
 | 
						|
// ************
 | 
						|
 | 
						|
// 1. Components Overview
 | 
						|
// ======================
 | 
						|
 | 
						|
// Xtensa has useful feature: TRAX debug module. It allows recording program execution flow during run-time without disturbing CPU commands flow.
 | 
						|
// Exectution flow data are written to configurable Trace RAM block. Besides accessing Trace RAM itself TRAX module also allows to read/write
 | 
						|
// trace memory via its registers by means of JTAG, APB or ERI transactions.
 | 
						|
// ESP32 has two Xtensa cores with separate TRAX modules on them and provides two special memory regions to be used as trace memory.
 | 
						|
// ESP32 allows muxing access to trace memory blocks in such a way that while one block is accessed by CPUs another can be accessed via JTAG by host
 | 
						|
// via reading/writing TRAX registers. Block muxing is configurable at run-time and allows switching trace memory blocks between
 | 
						|
// accessors in round-robin fashion so they can read/write separate memory blocks without disturbing each other.
 | 
						|
// This moduile implements application tracing feature based on above mechanisms. This feature allows to transfer arbitrary user data to
 | 
						|
// host via JTAG with minimal impact on system performance. This module is implied to be used in the following tracing scheme.
 | 
						|
 | 
						|
//                                                    ------>------                                         ----- (host components) -----
 | 
						|
//                                                    |           |                                         |                           |
 | 
						|
// ---------------   -----------------------     -----------------------     ----------------    ------     ---------   -----------------
 | 
						|
// |apptrace user|-->|target tracing module|<--->|TRAX_MEM0 | TRAX_MEM1|---->|TRAX_DATA_REGS|<-->|JTAG|<--->|OpenOCD|-->|trace data file|
 | 
						|
// ---------------   -----------------------     -----------------------     ----------------    ------     ---------   -----------------
 | 
						|
//                             |                      |           |                                |
 | 
						|
//                             |                      ------<------          ----------------      |
 | 
						|
//                             |<------------------------------------------->|TRAX_CTRL_REGS|<---->|
 | 
						|
//                                                                           ----------------
 | 
						|
 | 
						|
// In general tracing happens in the following way. User aplication requests tracing module to send some data by calling esp_apptrace_buffer_get(),
 | 
						|
// moduile allocates necessary buffer in current input trace block. Then user fills received buffer with data and calls esp_apptrace_buffer_put().
 | 
						|
// When current input trace block is filled with app data it is exposed to host and the second block becomes input one and buffer filling restarts.
 | 
						|
// While target application fills one memory block host reads another block via JTAG.
 | 
						|
// To control buffer switching and for other communication purposes this implementation uses some TRAX registers. It is safe since HW TRAX tracing
 | 
						|
// can not be used along with application tracing feature so these registers are freely readable/writeable via JTAG from host and via ERI from ESP32 cores.
 | 
						|
// So this implementation's target CPU overhead is produced only by calls to allocate/manage buffers and data copying.
 | 
						|
// On host special OpenOCD command must be used to read trace data.
 | 
						|
 | 
						|
// 2.1.1.1 TRAX Registers layout
 | 
						|
// =============================
 | 
						|
 | 
						|
// This module uses two TRAX HW registers to communicate with host SW (OpenOCD).
 | 
						|
//  - Control register uses TRAX_DELAYCNT as storage. Only lower 24 bits of TRAX_DELAYCNT are writable. Control register has the following bitfields:
 | 
						|
//   | 31..XXXXXX..24 | 23 .(host_connect). 23| 22..(block_id)..15 | 14..(block_len)..0 |
 | 
						|
//    14..0  bits - actual length of user data in trace memory block. Target updates it every time it fills memory block and exposes it to host.
 | 
						|
//                  Host writes zero to this field when it finishes reading exposed block;
 | 
						|
//    22..15 bits - trace memory block transfer ID. Block counter. It can overflow. Updated by target, host should not modify it. Actually can be 1-2 bits;
 | 
						|
//    23     bit  - 'host connected' flag. If zero then host is not connected and tracing module works in post-mortem mode, otherwise in streaming mode;
 | 
						|
// - Status register uses TRAX_TRIGGERPC as storage. If this register is not zero then currentlly CPU is changing TRAX registers and
 | 
						|
//   this register holds address of the instruction which application will execute when it finishes with those registers modifications.
 | 
						|
//   See 'Targets Connection' setion for details.
 | 
						|
 | 
						|
// 3. Modes of operation
 | 
						|
// =====================
 | 
						|
 | 
						|
// This module supports two modes of operation:
 | 
						|
//  - Post-mortem mode. This is the default mode. In this mode application tracing module does not check whether host has read all the data from block
 | 
						|
//    exposed to it and switches block in any case. The mode does not need host interaction for operation and so can be useful when only the latest
 | 
						|
//    trace data are necessary, e.g. for analyzing crashes. On panic the latest data from current input block are exposed to host and host can read them.
 | 
						|
//    There is menuconfig option CONFIG_ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TRAX_THRESH which control the threshold for flushing data on panic.
 | 
						|
//  - Streaming mode. Tracing module enters this mode when host connects to targets and sets respective bit in control register. In this mode tracing
 | 
						|
//    module waits for specified time until host read all the data from exposed block.
 | 
						|
//    On panic tracing module waits (timeout is configured via menuconfig via ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TMO) for the host to read all data
 | 
						|
//    from the previously exposed block.
 | 
						|
 | 
						|
// 4. Communication Protocol
 | 
						|
// =========================
 | 
						|
 | 
						|
// 4.1 Trace Memory Blocks
 | 
						|
// ^^^^^^^^^^^^^^^^^^^^^^^^^
 | 
						|
 | 
						|
// Communication is controlled via special register. Host periodically polls control register on each core to find out if there are any data avalable.
 | 
						|
// When current input trace memory block is filled tracing module exposes block to host and updates block_len and block_id fields in control register.
 | 
						|
// Host reads new register value and according to it starts reading data from exposed block. Meanwhile target starts filling another trace block.
 | 
						|
// When host finishes reading the block it clears block_len field in control register indicating to target that it is ready to accept the next block.
 | 
						|
 | 
						|
// 4.2 User Data Chunks Level
 | 
						|
// --------------------------
 | 
						|
 | 
						|
// Since trace memory block is shared between user data chunks and data copying is performed on behalf of the API user (in its normal context) in
 | 
						|
// multithreading environment it can happen that task/ISR which copies data is preempted by another high prio task/ISR. So it is possible situation
 | 
						|
// that task/ISR will fail to complete filling its data chunk before the whole trace block is exposed to the host. To handle such conditions tracing
 | 
						|
// module prepends all user data chunks with 4 bytes header which contains allocated buffer size and actual data length within it. OpenOCD command
 | 
						|
// which reads application traces will report error when it will read incompleted user data block.
 | 
						|
 | 
						|
// 4.3 Targets Connection/Disconnection
 | 
						|
// ------------------------------------
 | 
						|
 | 
						|
// When host is going to start tracing in streaming mode it needs to put both ESP32 cores into initial state when 'host connected' bit is set
 | 
						|
// on both cores. To accomplish this host halts both cores and sets this bit in TRAX registers. But target code can be halted in state when it has read control
 | 
						|
// register but has not updated its value. To handle such situations target code indicates to the host that it is updating control register by writing
 | 
						|
// non-zero value to status register. Actually it writes address of the instruction which it will execute when it finishes with
 | 
						|
// the registers update. When target is halted during control register update host sets breakpoint at the address from status register and resumes CPU.
 | 
						|
// After target code finishes with register update it is halted on breakpoint, host detects it and safely sets 'host connected' bit. When both cores
 | 
						|
// are set up they are resumed. Tracing starts without further intrusion into CPUs work.
 | 
						|
// When host is going to stop tracing in streaming mode it needs to disconnect targets. Disconnection process is done using the same algorithm
 | 
						|
// as for connecting, but 'host connected' bits are cleared on ESP32 cores.
 | 
						|
 | 
						|
// 5. Module Access Synchronization
 | 
						|
// ================================
 | 
						|
 | 
						|
// Access to internal module's data is synchronized with custom mutex. Mutex is a wrapper for portMUX_TYPE and uses almost the same sync mechanism as in
 | 
						|
// vPortCPUAcquireMutex/vPortCPUReleaseMutex. The mechanism uses S32C1I Xtensa instruction to implement exclusive access to module's data from tasks and
 | 
						|
// ISRs running on both cores. Also custom mutex allows specifying timeout for locking operation. Locking routine checks underlaying mutex in cycle until
 | 
						|
// it gets its ownership or timeout expires. The differences of application tracing module's mutex implementation from vPortCPUAcquireMutex/vPortCPUReleaseMutex are:
 | 
						|
// - Support for timeouts.
 | 
						|
// - Local IRQs for CPU which owns the mutex are disabled till the call to unlocking routine. This is made to avoid possible task's prio inversion.
 | 
						|
//   When low prio task takes mutex and enables local IRQs gets preempted by high prio task which in its turn can try to acquire mutex using infinite timeout.
 | 
						|
//   So no local task switch occurs when mutex is locked. But this does not apply to tasks on another CPU.
 | 
						|
//   WARNING: Priority inversion can happen when low prio task works on one CPU and medium and high prio tasks work on another.
 | 
						|
// There are some differences how mutex behaves when it is used from task and ISR context when timeout is non-zero:
 | 
						|
// - In task context when mutex can not be locked portYIELD() is called before check for timeout condition to alow othet tasks work on the same CPU.
 | 
						|
// - In ISR context when mutex can not be locked nothing is done before expired time check.
 | 
						|
// WARNING: Care must be taken when selecting timeout values for trace calls from ISRs. Tracing module does not care about watchdogs when waiting on internal locks
 | 
						|
// and when waiting for host to complete previous block reading, so if wating timeout value exceedes watchdog's one it can lead to system reboot.
 | 
						|
 | 
						|
// 6. Timeouts
 | 
						|
// ------------
 | 
						|
 | 
						|
// Timeout mechanism is based on xthal_get_ccount() routine and supports timeout values in micorseconds.
 | 
						|
// There are two situations when task/ISR can be delayed by tracing API call. Timeout mechanism takes into account both conditions:
 | 
						|
// - Trace data are locked by another task/ISR. When wating on trace data lock.
 | 
						|
// - Current TRAX memory input block is full when working in streaming mode (host is connected). When waiting for host to complete previous block reading.
 | 
						|
// When wating for any of above conditions xthal_get_ccount() is called periodically to calculate time elapsed from trace API routine entry. When elapsed
 | 
						|
// time exceeds specified timeout value operation is canceled and ESP_ERR_TIMEOUT code is returned.
 | 
						|
 | 
						|
// ALSO SEE example usage of application tracing module in 'components/log/README.rst'
 | 
						|
 | 
						|
#include <string.h>
 | 
						|
#include "soc/soc.h"
 | 
						|
#include "soc/dport_reg.h"
 | 
						|
#include "eri.h"
 | 
						|
#include "trax.h"
 | 
						|
#include "freertos/FreeRTOS.h"
 | 
						|
#include "freertos/portmacro.h"
 | 
						|
#include "freertos/semphr.h"
 | 
						|
#include "freertos/task.h"
 | 
						|
#include "soc/timer_group_struct.h"
 | 
						|
#include "soc/timer_group_reg.h"
 | 
						|
#include "esp_app_trace.h"
 | 
						|
 | 
						|
#if CONFIG_ESP32_APPTRACE_ENABLE
 | 
						|
#define ESP_APPTRACE_DEBUG_STATS_ENABLE         0
 | 
						|
#define ESP_APPTRACE_BUF_HISTORY_DEPTH          (16*100)
 | 
						|
 | 
						|
#define ESP_APPTRACE_MAX_VPRINTF_ARGS           256
 | 
						|
 | 
						|
#define ESP_APPTRACE_PRINT_LOCK_NONE            0
 | 
						|
#define ESP_APPTRACE_PRINT_LOCK_SEM             1
 | 
						|
#define ESP_APPTRACE_PRINT_LOCK_MUX             2
 | 
						|
#define ESP_APPTRACE_PRINT_LOCK                 ESP_APPTRACE_PRINT_LOCK_NONE//ESP_APPTRACE_PRINT_LOCK_SEM
 | 
						|
 | 
						|
#define ESP_APPTRACE_USE_LOCK_SEM               0 // 1 - semaphore (now may be broken), 0 - portMUX_TYPE
 | 
						|
 | 
						|
#define LOG_LOCAL_LEVEL ESP_LOG_VERBOSE
 | 
						|
#include "esp_log.h"
 | 
						|
const static char *TAG = "esp_apptrace";
 | 
						|
 | 
						|
#if ESP_APPTRACE_PRINT_LOCK != ESP_APPTRACE_PRINT_LOCK_NONE
 | 
						|
#define ESP_APPTRACE_LOG( format, ... )   \
 | 
						|
    do { \
 | 
						|
        esp_apptrace_log_lock(); \
 | 
						|
        ets_printf(format, ##__VA_ARGS__); \
 | 
						|
        esp_apptrace_log_unlock(); \
 | 
						|
    } while(0)
 | 
						|
#else
 | 
						|
#define ESP_APPTRACE_LOG( format, ... )   \
 | 
						|
    do { \
 | 
						|
        ets_printf(format, ##__VA_ARGS__); \
 | 
						|
    } while(0)
 | 
						|
#endif
 | 
						|
 | 
						|
#define ESP_APPTRACE_LOG_LEV( _L_, level, format, ... )   \
 | 
						|
    do { \
 | 
						|
        if (LOG_LOCAL_LEVEL >= level) { \
 | 
						|
            ESP_APPTRACE_LOG(LOG_FORMAT(_L_, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); \
 | 
						|
        } \
 | 
						|
    } while(0)
 | 
						|
 | 
						|
#define ESP_APPTRACE_LOGE( format, ... )  ESP_APPTRACE_LOG_LEV(E, ESP_LOG_ERROR, format, ##__VA_ARGS__)
 | 
						|
#define ESP_APPTRACE_LOGW( format, ... )  ESP_APPTRACE_LOG_LEV(W, ESP_LOG_WARN, format, ##__VA_ARGS__)
 | 
						|
#define ESP_APPTRACE_LOGI( format, ... )  ESP_APPTRACE_LOG_LEV(I, ESP_LOG_INFO, format, ##__VA_ARGS__)
 | 
						|
#define ESP_APPTRACE_LOGD( format, ... )  ESP_APPTRACE_LOG_LEV(D, ESP_LOG_DEBUG, format, ##__VA_ARGS__)
 | 
						|
#define ESP_APPTRACE_LOGV( format, ... )  ESP_APPTRACE_LOG_LEV(V, ESP_LOG_VERBOSE, format, ##__VA_ARGS__)
 | 
						|
#define ESP_APPTRACE_LOGO( format, ... )  ESP_APPTRACE_LOG_LEV(E, ESP_LOG_NONE, format, ##__VA_ARGS__)
 | 
						|
 | 
						|
#define ESP_APPTRACE_CPUTICKS2US(_t_)       ((_t_)/(XT_CLOCK_FREQ/1000000))
 | 
						|
 | 
						|
// TODO: move these (and same definitions in trax.c to dport_reg.h)
 | 
						|
#define TRACEMEM_MUX_PROBLK0_APPBLK1            0
 | 
						|
#define TRACEMEM_MUX_BLK0_ONLY                  1
 | 
						|
#define TRACEMEM_MUX_BLK1_ONLY                  2
 | 
						|
#define TRACEMEM_MUX_PROBLK1_APPBLK0            3
 | 
						|
 | 
						|
// TRAX is disabled, so we use its registers for our own purposes
 | 
						|
// | 31..XXXXXX..24 | 23 .(host_connect). 23| 22..(block_id)..15 | 14..(block_len)..0 |
 | 
						|
#define ESP_APPTRACE_TRAX_CTRL_REG              ERI_TRAX_DELAYCNT
 | 
						|
#define ESP_APPTRACE_TRAX_STAT_REG              ERI_TRAX_TRIGGERPC
 | 
						|
 | 
						|
#define ESP_APPTRACE_TRAX_BLOCK_LEN_MSK         0x7FFFUL
 | 
						|
#define ESP_APPTRACE_TRAX_BLOCK_LEN(_l_)        ((_l_) & ESP_APPTRACE_TRAX_BLOCK_LEN_MSK)
 | 
						|
#define ESP_APPTRACE_TRAX_BLOCK_LEN_GET(_v_)    ((_v_) & ESP_APPTRACE_TRAX_BLOCK_LEN_MSK)
 | 
						|
#define ESP_APPTRACE_TRAX_BLOCK_ID_MSK          0xFFUL
 | 
						|
#define ESP_APPTRACE_TRAX_BLOCK_ID(_id_)        (((_id_) & ESP_APPTRACE_TRAX_BLOCK_ID_MSK) << 15)
 | 
						|
#define ESP_APPTRACE_TRAX_BLOCK_ID_GET(_v_)     (((_v_) >> 15) & ESP_APPTRACE_TRAX_BLOCK_ID_MSK)
 | 
						|
#define ESP_APPTRACE_TRAX_HOST_CONNECT          (1 << 23)
 | 
						|
 | 
						|
static volatile uint8_t *s_trax_blocks[] = {
 | 
						|
    (volatile uint8_t *) 0x3FFFC000,
 | 
						|
    (volatile uint8_t *) 0x3FFF8000
 | 
						|
};
 | 
						|
 | 
						|
#define ESP_APPTRACE_TRAX_BLOCKS_NUM            (sizeof(s_trax_blocks)/sizeof(s_trax_blocks[0]))
 | 
						|
 | 
						|
//#define ESP_APPTRACE_TRAX_BUFFER_SIZE           (ESP_APPTRACE_TRAX_BLOCK_SIZE/4)
 | 
						|
 | 
						|
#define ESP_APPTRACE_TRAX_INBLOCK_START         0//(ESP_APPTRACE_TRAX_BLOCK_ID_MSK - 4)
 | 
						|
 | 
						|
 | 
						|
#define ESP_APPTRACE_TRAX_INBLOCK_MARKER_PTR_GET()  (&s_trace_buf.trax.state.markers[s_trace_buf.trax.state.in_block % 2])
 | 
						|
#define ESP_APPTRACE_TRAX_INBLOCK_GET()             (&s_trace_buf.trax.blocks[s_trace_buf.trax.state.in_block % 2])
 | 
						|
 | 
						|
#if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
 | 
						|
/** keeps info about apptrace API (write/get buffer) caller and internal module's data related to that call
 | 
						|
 * NOTE: used for module debug purposes, currently this functionality is partially broken,
 | 
						|
 * but can be useful in future
 | 
						|
 */
 | 
						|
typedef struct {
 | 
						|
    uint32_t    hnd;        // task/ISR handle
 | 
						|
    uint32_t    ts;         // timestamp
 | 
						|
    uint32_t    stamp;      // test (user) trace buffer stamp
 | 
						|
    uint32_t    in_block;   // TRAX input block ID
 | 
						|
    uint32_t    eri_len[2]; // contents of ERI control register upon entry to / exit from API routine
 | 
						|
    uint32_t    wr_err;     // number of trace write errors
 | 
						|
} esp_trace_buffer_wr_hitem_t;
 | 
						|
 | 
						|
/** apptrace API calls history. History is organized as ring buffer*/
 | 
						|
typedef struct {
 | 
						|
    uint32_t                    hist_rd; // the first history entry index
 | 
						|
    uint32_t                    hist_wr; // the last history entry index
 | 
						|
    esp_trace_buffer_wr_hitem_t hist[ESP_APPTRACE_BUF_HISTORY_DEPTH]; // history data
 | 
						|
} esp_trace_buffer_wr_stats_t;
 | 
						|
 | 
						|
/** trace module stats */
 | 
						|
typedef struct {
 | 
						|
    esp_trace_buffer_wr_stats_t wr;
 | 
						|
} esp_trace_buffer_stats_t;
 | 
						|
#endif
 | 
						|
 | 
						|
/** Trace data header. Every user data chunk is prepended with this header.
 | 
						|
 * User allocates block with esp_apptrace_buffer_get and then fills it with data,
 | 
						|
 * in multithreading environment it can happen that tasks gets buffer and then gets interrupted,
 | 
						|
 * so it is possible that user data are incomplete when TRAX memory block is exposed to the host.
 | 
						|
 * In this case host SW will see that wr_sz < block_sz and will report error.
 | 
						|
 */
 | 
						|
typedef struct {
 | 
						|
    uint16_t   block_sz; // size of allocated block for user data
 | 
						|
    uint16_t   wr_sz;    // size of actually written data
 | 
						|
} esp_tracedata_hdr_t;
 | 
						|
 | 
						|
/** TRAX HW transport state */
 | 
						|
typedef struct {
 | 
						|
    uint32_t                   in_block;                                // input block ID
 | 
						|
    uint32_t                   markers[ESP_APPTRACE_TRAX_BLOCKS_NUM];   // block filling level markers
 | 
						|
#if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
 | 
						|
    esp_trace_buffer_stats_t   stats;                                   // stats
 | 
						|
#endif
 | 
						|
} esp_apptrace_trax_state_t;
 | 
						|
 | 
						|
/** memory block parameters */
 | 
						|
typedef struct {
 | 
						|
    uint8_t   *start;   // start address
 | 
						|
    uint32_t   sz;      // size
 | 
						|
} esp_apptrace_mem_block_t;
 | 
						|
 | 
						|
/** TRAX HW transport data */
 | 
						|
typedef struct {
 | 
						|
    volatile esp_apptrace_trax_state_t  state;                                  // state
 | 
						|
    esp_apptrace_mem_block_t            blocks[ESP_APPTRACE_TRAX_BLOCKS_NUM];   // memory blocks
 | 
						|
} esp_apptrace_trax_data_t;
 | 
						|
 | 
						|
/** tracing module synchronization lock */
 | 
						|
typedef struct {
 | 
						|
    volatile unsigned int   irq_stat;   // local (on 1 CPU) IRQ state
 | 
						|
    portMUX_TYPE            portmux;    // mux for synchronization
 | 
						|
} esp_apptrace_lock_t;
 | 
						|
 | 
						|
#define ESP_APPTRACE_MUX_GET(_m_)   (&(_m_)->portmux)
 | 
						|
 | 
						|
/** tracing module internal data */
 | 
						|
typedef struct {
 | 
						|
#if ESP_APPTRACE_USE_LOCK_SEM == 1
 | 
						|
    SemaphoreHandle_t           lock;
 | 
						|
#else
 | 
						|
    esp_apptrace_lock_t         lock;   // sync lock
 | 
						|
#endif
 | 
						|
    uint8_t                     inited; // module initialization state flag
 | 
						|
    esp_apptrace_trax_data_t    trax;   // TRAX HW transport data
 | 
						|
} esp_apptrace_buffer_t;
 | 
						|
 | 
						|
/** waiting timeout data */
 | 
						|
typedef struct {
 | 
						|
    uint32_t   start;   // waiting start (in ticks)
 | 
						|
    uint32_t   tmo;     // timeout (in us)
 | 
						|
} esp_apptrace_tmo_t;
 | 
						|
 | 
						|
static esp_apptrace_buffer_t s_trace_buf;
 | 
						|
 | 
						|
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
 | 
						|
static SemaphoreHandle_t    s_log_lock;
 | 
						|
#elif ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX
 | 
						|
static esp_apptrace_lock_t   s_log_lock;
 | 
						|
#endif
 | 
						|
 | 
						|
static inline void esp_apptrace_tmo_init(esp_apptrace_tmo_t *tmo, uint32_t user_tmo)
 | 
						|
{
 | 
						|
    tmo->start = xthal_get_ccount();
 | 
						|
    tmo->tmo = user_tmo;
 | 
						|
}
 | 
						|
 | 
						|
static esp_err_t esp_apptrace_tmo_check(esp_apptrace_tmo_t *tmo)
 | 
						|
{
 | 
						|
    unsigned cur, elapsed;
 | 
						|
 | 
						|
    if (tmo->tmo != ESP_APPTRACE_TMO_INFINITE) {
 | 
						|
        cur = xthal_get_ccount();
 | 
						|
        if (tmo->start <= cur) {
 | 
						|
            elapsed = cur - tmo->start;
 | 
						|
        } else {
 | 
						|
            elapsed = 0xFFFFFFFF - tmo->start + cur;
 | 
						|
        }
 | 
						|
        if (ESP_APPTRACE_CPUTICKS2US(elapsed) >= tmo->tmo) {
 | 
						|
            return ESP_ERR_TIMEOUT;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
 | 
						|
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX || ESP_APPTRACE_USE_LOCK_SEM == 0
 | 
						|
static inline void esp_apptrace_mux_init(esp_apptrace_lock_t *mux)
 | 
						|
{
 | 
						|
    ESP_APPTRACE_MUX_GET(mux)->mux = portMUX_FREE_VAL;
 | 
						|
    mux->irq_stat = 0;
 | 
						|
}
 | 
						|
 | 
						|
static esp_err_t esp_apptrace_lock_take(esp_apptrace_lock_t *mux, uint32_t tmo)
 | 
						|
{
 | 
						|
    uint32_t res = ~portMUX_FREE_VAL;
 | 
						|
    esp_apptrace_tmo_t sleeping_tmo;
 | 
						|
 | 
						|
    esp_apptrace_tmo_init(&sleeping_tmo, tmo);
 | 
						|
    while (1) {
 | 
						|
        res = (xPortGetCoreID() << portMUX_VAL_SHIFT) | portMUX_MAGIC_VAL;
 | 
						|
        // first disable IRQs on this CPU, this will prevent current task from been
 | 
						|
        // preempted by higher prio tasks, otherwise deadlock can happen:
 | 
						|
        // when lower prio task took mux and then preempted by higher prio one which also tries to
 | 
						|
        // get mux with INFINITE timeout
 | 
						|
        unsigned int irq_stat = portENTER_CRITICAL_NESTED();
 | 
						|
        // Now try to lock mux
 | 
						|
        uxPortCompareSet(&ESP_APPTRACE_MUX_GET(mux)->mux, portMUX_FREE_VAL, &res);
 | 
						|
        if (res == portMUX_FREE_VAL) {
 | 
						|
            // do not enable IRQs, we will held them disabled until mux is unlocked
 | 
						|
            // we do not need to flush cache region for mux->irq_stat because it is used
 | 
						|
            // to hold and restore IRQ state only for CPU which took mux, other CPUs will not use this value
 | 
						|
            mux->irq_stat = irq_stat;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        // if mux is locked by other task/ISR enable IRQs and let other guys work
 | 
						|
        portEXIT_CRITICAL_NESTED(irq_stat);
 | 
						|
 | 
						|
        if (!xPortInIsrContext()) {
 | 
						|
            portYIELD();
 | 
						|
        }
 | 
						|
 | 
						|
        int err = esp_apptrace_tmo_check(&sleeping_tmo);
 | 
						|
        if (err != ESP_OK) {
 | 
						|
            return err;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t esp_apptrace_mux_give(esp_apptrace_lock_t *mux)
 | 
						|
{
 | 
						|
    esp_err_t ret = ESP_OK;
 | 
						|
    uint32_t res = 0;
 | 
						|
    unsigned int irq_stat;
 | 
						|
 | 
						|
    res = portMUX_FREE_VAL;
 | 
						|
 | 
						|
    // first of all save a copy of IRQ status for this locker because uxPortCompareSet will unlock mux and tasks/ISRs
 | 
						|
    // from other core can overwrite mux->irq_stat
 | 
						|
    irq_stat = mux->irq_stat;
 | 
						|
    uxPortCompareSet(&ESP_APPTRACE_MUX_GET(mux)->mux, (xPortGetCoreID() << portMUX_VAL_SHIFT) | portMUX_MAGIC_VAL, &res);
 | 
						|
    // enable local interrupts
 | 
						|
    portEXIT_CRITICAL_NESTED(irq_stat);
 | 
						|
 | 
						|
    if ( ((res & portMUX_VAL_MASK) >> portMUX_VAL_SHIFT) == xPortGetCoreID() ) {
 | 
						|
        // nothing to do
 | 
						|
    } else if ( res == portMUX_FREE_VAL ) {
 | 
						|
        ret = ESP_FAIL; // should never get here
 | 
						|
    } else {
 | 
						|
        ret = ESP_FAIL;  // should never get here
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static inline esp_err_t esp_apptrace_log_init()
 | 
						|
{
 | 
						|
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
 | 
						|
    s_log_lock = xSemaphoreCreateBinary();
 | 
						|
    if (!s_log_lock) {
 | 
						|
        ets_printf("%s: Failed to create print lock sem!", TAG);
 | 
						|
        return ESP_FAIL;
 | 
						|
    }
 | 
						|
    xSemaphoreGive(s_log_lock);
 | 
						|
#elif ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX
 | 
						|
    esp_apptrace_mux_init(&s_log_lock);
 | 
						|
#endif
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
 | 
						|
static inline void esp_apptrace_log_cleanup()
 | 
						|
{
 | 
						|
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
 | 
						|
    vSemaphoreDelete(s_log_lock);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static inline int esp_apptrace_log_lock()
 | 
						|
{
 | 
						|
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
 | 
						|
    BaseType_t ret;
 | 
						|
    if (xPortInIsrContext()) {
 | 
						|
        ret = xSemaphoreTakeFromISR(s_print_lock, NULL);
 | 
						|
    } else {
 | 
						|
        ret = xSemaphoreTake(s_print_lock, portMAX_DELAY);
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
#elif ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX
 | 
						|
    int ret = esp_apptrace_lock_take(&s_log_lock, ESP_APPTRACE_TMO_INFINITE);
 | 
						|
    return ret;
 | 
						|
#endif
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline void esp_apptrace_log_unlock()
 | 
						|
{
 | 
						|
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
 | 
						|
    if (xPortInIsrContext()) {
 | 
						|
        xSemaphoreGiveFromISR(s_log_lock, NULL);
 | 
						|
    } else {
 | 
						|
        xSemaphoreGive(s_log_lock);
 | 
						|
    }
 | 
						|
#elif ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX
 | 
						|
    esp_apptrace_mux_give(&s_log_lock);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t esp_apptrace_lock_init()
 | 
						|
{
 | 
						|
#if ESP_APPTRACE_USE_LOCK_SEM == 1
 | 
						|
    s_trace_buf.lock = xSemaphoreCreateBinary();
 | 
						|
    if (!s_trace_buf.lock) {
 | 
						|
        ESP_APPTRACE_LOGE("Failed to create lock!");
 | 
						|
        return ESP_FAIL;
 | 
						|
    }
 | 
						|
    xSemaphoreGive(s_trace_buf.lock);
 | 
						|
#else
 | 
						|
    esp_apptrace_mux_init(&s_trace_buf.lock);
 | 
						|
#endif
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t esp_apptrace_lock_cleanup()
 | 
						|
{
 | 
						|
#if ESP_APPTRACE_USE_LOCK_SEM == 1
 | 
						|
    vSemaphoreDelete(s_trace_buf.lock);
 | 
						|
#endif
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t esp_apptrace_lock(uint32_t *tmo)
 | 
						|
{
 | 
						|
    unsigned cur, elapsed, start = xthal_get_ccount();
 | 
						|
 | 
						|
#if ESP_APPTRACE_USE_LOCK_SEM == 1
 | 
						|
    BaseType_t ret;
 | 
						|
    if (xPortInIsrContext()) {
 | 
						|
        ret = xSemaphoreTakeFromISR(s_trace_buf.lock, NULL);
 | 
						|
    } else {
 | 
						|
        ret = xSemaphoreTake(s_trace_buf.lock, portTICK_PERIOD_MS * (*tmo) / 1000);
 | 
						|
    }
 | 
						|
    if (ret != pdTRUE) {
 | 
						|
        return ESP_FAIL;
 | 
						|
    }
 | 
						|
#else
 | 
						|
    esp_err_t ret = esp_apptrace_lock_take(&s_trace_buf.lock, *tmo);
 | 
						|
    if (ret != ESP_OK) {
 | 
						|
        return ESP_FAIL;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    // decrease tmo by actual waiting time
 | 
						|
    cur = xthal_get_ccount();
 | 
						|
    if (start <= cur) {
 | 
						|
        elapsed = cur - start;
 | 
						|
    } else {
 | 
						|
        elapsed = ULONG_MAX - start + cur;
 | 
						|
    }
 | 
						|
    if (ESP_APPTRACE_CPUTICKS2US(elapsed) > *tmo) {
 | 
						|
        *tmo = 0;
 | 
						|
    } else {
 | 
						|
        *tmo -= ESP_APPTRACE_CPUTICKS2US(elapsed);
 | 
						|
    }
 | 
						|
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t esp_apptrace_unlock()
 | 
						|
{
 | 
						|
    esp_err_t ret = ESP_OK;
 | 
						|
#if ESP_APPTRACE_USE_LOCK_SEM == 1
 | 
						|
    if (xPortInIsrContext()) {
 | 
						|
        xSemaphoreGiveFromISR(s_trace_buf.lock, NULL);
 | 
						|
    } else {
 | 
						|
        xSemaphoreGive(s_trace_buf.lock);
 | 
						|
    }
 | 
						|
#else
 | 
						|
    ret = esp_apptrace_mux_give(&s_trace_buf.lock);
 | 
						|
#endif
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
 | 
						|
static void esp_apptrace_trax_init()
 | 
						|
{
 | 
						|
    // Stop trace, if any (on the current CPU)
 | 
						|
    eri_write(ERI_TRAX_TRAXCTRL, TRAXCTRL_TRSTP);
 | 
						|
    eri_write(ERI_TRAX_TRAXCTRL, TRAXCTRL_TMEN);
 | 
						|
    eri_write(ESP_APPTRACE_TRAX_CTRL_REG, ESP_APPTRACE_TRAX_BLOCK_ID(ESP_APPTRACE_TRAX_INBLOCK_START));
 | 
						|
    eri_write(ESP_APPTRACE_TRAX_STAT_REG, 0);
 | 
						|
 | 
						|
    ESP_APPTRACE_LOGI("Initialized TRAX on CPU%d", xPortGetCoreID());
 | 
						|
}
 | 
						|
 | 
						|
// assumed to be protected by caller from multi-core/thread access
 | 
						|
static esp_err_t esp_apptrace_trax_block_switch()
 | 
						|
{
 | 
						|
    int prev_block_num = s_trace_buf.trax.state.in_block % 2;
 | 
						|
    int new_block_num = prev_block_num ? (0) : (1);
 | 
						|
    int res = ESP_OK;
 | 
						|
    extern uint32_t __esp_apptrace_trax_eri_updated;
 | 
						|
 | 
						|
    // indicate to host that we are about to update.
 | 
						|
    // this is used only to place CPU into streaming mode at tracing startup
 | 
						|
    // before starting streaming host can halt us after we read  ESP_APPTRACE_TRAX_CTRL_REG and before we updated it
 | 
						|
    // HACK: in this case host will set breakpoint just after ESP_APPTRACE_TRAX_CTRL_REG update,
 | 
						|
    // here we set address to set bp at
 | 
						|
    // enter ERI update critical section
 | 
						|
    eri_write(ESP_APPTRACE_TRAX_STAT_REG, (uint32_t)&__esp_apptrace_trax_eri_updated);
 | 
						|
 | 
						|
    uint32_t ctrl_reg = eri_read(ESP_APPTRACE_TRAX_CTRL_REG);
 | 
						|
#if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
 | 
						|
    if (s_trace_buf.state.stats.wr.hist_wr < ESP_APPTRACE_BUF_HISTORY_DEPTH) {
 | 
						|
        esp_trace_buffer_wr_hitem_t *hi = (esp_trace_buffer_wr_hitem_t *)&s_trace_buf.state.stats.wr.hist[s_trace_buf.state.stats.wr.hist_wr - 1];
 | 
						|
        hi->eri_len[1] = ctrl_reg;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    uint32_t host_connected = ESP_APPTRACE_TRAX_HOST_CONNECT & ctrl_reg;
 | 
						|
    if (host_connected) {
 | 
						|
        uint32_t acked_block = ESP_APPTRACE_TRAX_BLOCK_ID_GET(ctrl_reg);
 | 
						|
        uint32_t host_to_read = ESP_APPTRACE_TRAX_BLOCK_LEN_GET(ctrl_reg);
 | 
						|
        if (host_to_read != 0 || acked_block != (s_trace_buf.trax.state.in_block & ESP_APPTRACE_TRAX_BLOCK_ID_MSK)) {
 | 
						|
            // ESP_APPTRACE_LOGE("HC[%d]: Can not switch %x %d %x %x/%lx", xPortGetCoreID(), ctrl_reg, host_to_read, acked_block,
 | 
						|
            //     s_trace_buf.trax.state.in_block & ESP_APPTRACE_TRAX_BLOCK_ID_MSK, s_trace_buf.trax.state.in_block);
 | 
						|
            res = ESP_ERR_NO_MEM;
 | 
						|
            goto _on_func_exit;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    s_trace_buf.trax.state.markers[new_block_num] = 0;
 | 
						|
    // switch to new block
 | 
						|
    s_trace_buf.trax.state.in_block++;
 | 
						|
 | 
						|
    DPORT_WRITE_PERI_REG(DPORT_TRACEMEM_MUX_MODE_REG, new_block_num ? TRACEMEM_MUX_BLK0_ONLY : TRACEMEM_MUX_BLK1_ONLY);
 | 
						|
    eri_write(ESP_APPTRACE_TRAX_CTRL_REG, ESP_APPTRACE_TRAX_BLOCK_ID(s_trace_buf.trax.state.in_block) |
 | 
						|
              host_connected | ESP_APPTRACE_TRAX_BLOCK_LEN(s_trace_buf.trax.state.markers[prev_block_num]));
 | 
						|
 | 
						|
_on_func_exit:
 | 
						|
    // exit ERI update critical section
 | 
						|
    eri_write(ESP_APPTRACE_TRAX_STAT_REG, 0x0);
 | 
						|
    asm volatile (
 | 
						|
        "    .global     __esp_apptrace_trax_eri_updated\n"
 | 
						|
        "__esp_apptrace_trax_eri_updated:\n"); // host will set bp here to resolve collision at streaming start
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
static esp_err_t esp_apptrace_trax_block_switch_waitus(uint32_t tmo)
 | 
						|
{
 | 
						|
    int res;
 | 
						|
    esp_apptrace_tmo_t sleeping_tmo;
 | 
						|
 | 
						|
    esp_apptrace_tmo_init(&sleeping_tmo, tmo);
 | 
						|
 | 
						|
    while ((res = esp_apptrace_trax_block_switch()) != ESP_OK) {
 | 
						|
        res = esp_apptrace_tmo_check(&sleeping_tmo);
 | 
						|
        if (res != ESP_OK) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
static uint8_t *esp_apptrace_trax_get_buffer(size_t size, uint32_t *tmo)
 | 
						|
{
 | 
						|
    uint8_t *buf_ptr = NULL;
 | 
						|
    volatile uint32_t *cur_block_marker;
 | 
						|
    esp_apptrace_mem_block_t *cur_block;
 | 
						|
 | 
						|
    int res = esp_apptrace_lock(tmo);
 | 
						|
    if (res != ESP_OK) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
#if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
 | 
						|
    esp_trace_buffer_wr_hitem_t *hi = NULL;
 | 
						|
    if (s_trace_buf.state.stats.wr.hist_wr < ESP_APPTRACE_BUF_HISTORY_DEPTH) {
 | 
						|
        hi = (esp_trace_buffer_wr_hitem_t *)&s_trace_buf.state.stats.wr.hist[s_trace_buf.state.stats.wr.hist_wr++];
 | 
						|
        hi->hnd = *(uint32_t *)(buf + 0);
 | 
						|
        hi->ts = *(uint32_t *)(buf + sizeof(uint32_t));
 | 
						|
        hi->stamp = *(buf + 2 * sizeof(uint32_t));
 | 
						|
        hi->in_block = s_trace_buf.state.in_block;
 | 
						|
        hi->wr_err = 0;
 | 
						|
        hi->eri_len[0] = eri_read(ESP_APPTRACE_TRAX_CTRL_REG);
 | 
						|
        if (s_trace_buf.state.stats.wr.hist_wr == ESP_APPTRACE_BUF_HISTORY_DEPTH) {
 | 
						|
            s_trace_buf.state.stats.wr.hist_wr = 0;
 | 
						|
        }
 | 
						|
        if (s_trace_buf.state.stats.wr.hist_wr == s_trace_buf.state.stats.wr.hist_rd) {
 | 
						|
            s_trace_buf.state.stats.wr.hist_rd++;
 | 
						|
            if (s_trace_buf.state.stats.wr.hist_rd == ESP_APPTRACE_BUF_HISTORY_DEPTH) {
 | 
						|
                s_trace_buf.state.stats.wr.hist_rd = 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    cur_block_marker = ESP_APPTRACE_TRAX_INBLOCK_MARKER_PTR_GET();
 | 
						|
    cur_block = ESP_APPTRACE_TRAX_INBLOCK_GET();
 | 
						|
 | 
						|
    if (*cur_block_marker + size + sizeof(esp_tracedata_hdr_t) >= cur_block->sz) {
 | 
						|
        // flush data, we can not unlock apptrace until we have buffer for all user data
 | 
						|
        // otherwise other tasks/ISRs can get control and write their data between chunks of this data
 | 
						|
        res = esp_apptrace_trax_block_switch_waitus(/*size + sizeof(esp_tracedata_hdr_t),*/*tmo);
 | 
						|
        if (res != ESP_OK) {
 | 
						|
            if (esp_apptrace_unlock() != ESP_OK) {
 | 
						|
                ESP_APPTRACE_LOGE("Failed to unlock apptrace data!");
 | 
						|
                // there is a bug, should never get here
 | 
						|
            }
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        // we switched to new block, update TRAX block pointers
 | 
						|
        cur_block_marker = ESP_APPTRACE_TRAX_INBLOCK_MARKER_PTR_GET();
 | 
						|
        cur_block = ESP_APPTRACE_TRAX_INBLOCK_GET();
 | 
						|
    }
 | 
						|
 | 
						|
    buf_ptr = cur_block->start + *cur_block_marker;
 | 
						|
    ((esp_tracedata_hdr_t *)buf_ptr)->block_sz = size;
 | 
						|
    ((esp_tracedata_hdr_t *)buf_ptr)->wr_sz = 0;
 | 
						|
 | 
						|
    *cur_block_marker += size + sizeof(esp_tracedata_hdr_t);
 | 
						|
 | 
						|
    // now we can safely unlock apptrace to allow other tasks/ISRs to get other buffers and write their data
 | 
						|
    if (esp_apptrace_unlock() != ESP_OK) {
 | 
						|
        ESP_APPTRACE_LOGE("Failed to unlock apptrace data!");
 | 
						|
        // there is a bug, should never get here
 | 
						|
    }
 | 
						|
 | 
						|
    return buf_ptr + sizeof(esp_tracedata_hdr_t);
 | 
						|
}
 | 
						|
 | 
						|
static esp_err_t esp_apptrace_trax_put_buffer(uint8_t *ptr, uint32_t *tmo)
 | 
						|
{
 | 
						|
    int res = ESP_OK;
 | 
						|
    esp_tracedata_hdr_t *hdr = (esp_tracedata_hdr_t *)(ptr - sizeof(esp_tracedata_hdr_t));
 | 
						|
 | 
						|
    // update written size
 | 
						|
    hdr->wr_sz = hdr->block_sz;
 | 
						|
 | 
						|
    // TODO: mark block as busy in order not to re-use it for other tracing calls until it is completely written
 | 
						|
    // TODO: avoid potential situation when all memory is consumed by low prio tasks which can not complete writing due to
 | 
						|
    // higher prio tasks and the latter can not allocate buffers at all
 | 
						|
    // this is abnormal situation can be detected on host which will receive only uncompleted buffers
 | 
						|
    // workaround: use own memcpy which will kick-off dead tracing calls
 | 
						|
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
static esp_err_t esp_apptrace_trax_flush(uint32_t min_sz, uint32_t tmo)
 | 
						|
{
 | 
						|
    volatile uint32_t *in_block_marker;
 | 
						|
    int res = ESP_OK;
 | 
						|
 | 
						|
    in_block_marker = ESP_APPTRACE_TRAX_INBLOCK_MARKER_PTR_GET();
 | 
						|
    if (*in_block_marker > min_sz) {
 | 
						|
        ESP_APPTRACE_LOGD("Wait until block switch for %u us", tmo);
 | 
						|
        res = esp_apptrace_trax_block_switch_waitus(/*0 query any size,*/tmo);
 | 
						|
        if (res != ESP_OK) {
 | 
						|
            ESP_APPTRACE_LOGE("Failed to switch to another block");
 | 
						|
            return res;
 | 
						|
        }
 | 
						|
        ESP_APPTRACE_LOGD("Flushed last block %u bytes", *in_block_marker);
 | 
						|
        *in_block_marker = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
static esp_err_t esp_apptrace_trax_dest_init()
 | 
						|
{
 | 
						|
    for (int i = 0; i < ESP_APPTRACE_TRAX_BLOCKS_NUM; i++) {
 | 
						|
        s_trace_buf.trax.blocks[i].start = (uint8_t *)s_trax_blocks[i];
 | 
						|
        s_trace_buf.trax.blocks[i].sz = ESP_APPTRACE_TRAX_BLOCK_SIZE;
 | 
						|
        s_trace_buf.trax.state.markers[i] = 0;
 | 
						|
    }
 | 
						|
    s_trace_buf.trax.state.in_block = ESP_APPTRACE_TRAX_INBLOCK_START;
 | 
						|
 | 
						|
    DPORT_WRITE_PERI_REG(DPORT_PRO_TRACEMEM_ENA_REG, DPORT_PRO_TRACEMEM_ENA_M);
 | 
						|
#if CONFIG_FREERTOS_UNICORE == 0
 | 
						|
    DPORT_WRITE_PERI_REG(DPORT_APP_TRACEMEM_ENA_REG, DPORT_APP_TRACEMEM_ENA_M);
 | 
						|
#endif
 | 
						|
    // Expose block 1 to host, block 0 is current trace input buffer
 | 
						|
    DPORT_WRITE_PERI_REG(DPORT_TRACEMEM_MUX_MODE_REG, TRACEMEM_MUX_BLK1_ONLY);
 | 
						|
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
esp_err_t esp_apptrace_init()
 | 
						|
{
 | 
						|
    int res;
 | 
						|
 | 
						|
    if (!s_trace_buf.inited) {
 | 
						|
        res = esp_apptrace_log_init();
 | 
						|
        if (res != ESP_OK) {
 | 
						|
            ets_printf("%s: Failed to init log lock (%d)!", TAG, res);
 | 
						|
            return res;
 | 
						|
        }
 | 
						|
        //memset(&s_trace_buf, 0, sizeof(s_trace_buf));
 | 
						|
        res = esp_apptrace_lock_init(&s_trace_buf.lock);
 | 
						|
        if (res != ESP_OK) {
 | 
						|
            ESP_APPTRACE_LOGE("Failed to init log lock (%d)!", res);
 | 
						|
            esp_apptrace_log_cleanup();
 | 
						|
            return res;
 | 
						|
        }
 | 
						|
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
 | 
						|
        res = esp_apptrace_trax_dest_init();
 | 
						|
        if (res != ESP_OK) {
 | 
						|
            ESP_APPTRACE_LOGE("Failed to init TRAX dest data (%d)!", res);
 | 
						|
            esp_apptrace_lock_cleanup();
 | 
						|
            esp_apptrace_log_cleanup();
 | 
						|
            return res;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
 | 
						|
    // init TRAX on this CPU
 | 
						|
    esp_apptrace_trax_init();
 | 
						|
#endif
 | 
						|
 | 
						|
    s_trace_buf.inited |= 1 << xPortGetCoreID(); // global and this CPU-specific data are inited
 | 
						|
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t esp_apptrace_write(esp_apptrace_dest_t dest, void *data, size_t size, uint32_t user_tmo)
 | 
						|
{
 | 
						|
    uint8_t *ptr = NULL;
 | 
						|
    uint32_t tmo = user_tmo;
 | 
						|
    //TODO: use ptr to HW transport iface struct
 | 
						|
    uint8_t *(*apptrace_get_buffer)(size_t, uint32_t *);
 | 
						|
    esp_err_t (*apptrace_put_buffer)(uint8_t *, uint32_t *);
 | 
						|
 | 
						|
    if (dest == ESP_APPTRACE_DEST_TRAX) {
 | 
						|
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
 | 
						|
        apptrace_get_buffer = esp_apptrace_trax_get_buffer;
 | 
						|
        apptrace_put_buffer = esp_apptrace_trax_put_buffer;
 | 
						|
#else
 | 
						|
        ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
 | 
						|
        return ESP_ERR_NOT_SUPPORTED;
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
        ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
 | 
						|
        return ESP_ERR_NOT_SUPPORTED;
 | 
						|
    }
 | 
						|
 | 
						|
    ptr = apptrace_get_buffer(size, &tmo);
 | 
						|
    if (ptr == NULL) {
 | 
						|
        //ESP_APPTRACE_LOGE("Failed to get buffer!");
 | 
						|
        return ESP_ERR_NO_MEM;
 | 
						|
    }
 | 
						|
 | 
						|
    // actually can be suspended here by higher prio tasks/ISRs
 | 
						|
    //TODO: use own memcpy with dead trace calls kick-off algo, and tmo expiration check
 | 
						|
    memcpy(ptr, data, size);
 | 
						|
 | 
						|
    // now indicate that this buffer is ready to be sent off to host
 | 
						|
    return apptrace_put_buffer(ptr, &tmo);
 | 
						|
}
 | 
						|
 | 
						|
int esp_apptrace_vprintf_to(esp_apptrace_dest_t dest, uint32_t user_tmo, const char *fmt, va_list ap)
 | 
						|
{
 | 
						|
    uint16_t nargs = 0;
 | 
						|
    uint8_t *pout, *p = (uint8_t *)fmt;
 | 
						|
    uint32_t tmo = user_tmo;
 | 
						|
    //TODO: use ptr to HW transport iface struct
 | 
						|
    uint8_t *(*apptrace_get_buffer)(size_t, uint32_t *);
 | 
						|
    esp_err_t (*apptrace_put_buffer)(uint8_t *, uint32_t *);
 | 
						|
 | 
						|
    if (dest == ESP_APPTRACE_DEST_TRAX) {
 | 
						|
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
 | 
						|
        apptrace_get_buffer = esp_apptrace_trax_get_buffer;
 | 
						|
        apptrace_put_buffer = esp_apptrace_trax_put_buffer;
 | 
						|
#else
 | 
						|
        ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
 | 
						|
        return ESP_ERR_NOT_SUPPORTED;
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
        ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
 | 
						|
        return ESP_ERR_NOT_SUPPORTED;
 | 
						|
    }
 | 
						|
 | 
						|
    // ESP_APPTRACE_LOGI("fmt %x", fmt);
 | 
						|
    while ((p = (uint8_t *)strchr((char *)p, '%')) && nargs < ESP_APPTRACE_MAX_VPRINTF_ARGS) {
 | 
						|
        p++;
 | 
						|
        if (*p != '%' && *p != 0) {
 | 
						|
            nargs++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    // ESP_APPTRACE_LOGI("nargs = %d", nargs);
 | 
						|
    if (p) {
 | 
						|
        ESP_APPTRACE_LOGE("Failed to store all printf args!");
 | 
						|
    }
 | 
						|
 | 
						|
    pout = apptrace_get_buffer(1 + sizeof(char *) + nargs * sizeof(uint32_t), &tmo);
 | 
						|
    if (pout == NULL) {
 | 
						|
        ESP_APPTRACE_LOGE("Failed to get buffer!");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    p = pout;
 | 
						|
    *pout = nargs;
 | 
						|
    pout++;
 | 
						|
    *(const char **)pout = fmt;
 | 
						|
    pout += sizeof(char *);
 | 
						|
    while (nargs-- > 0) {
 | 
						|
        uint32_t arg = va_arg(ap, uint32_t);
 | 
						|
        *(uint32_t *)pout = arg;
 | 
						|
        pout += sizeof(uint32_t);
 | 
						|
        // ESP_APPTRACE_LOGI("arg %x", arg);
 | 
						|
    }
 | 
						|
 | 
						|
    int ret = apptrace_put_buffer(p, &tmo);
 | 
						|
    if (ret != ESP_OK) {
 | 
						|
        ESP_APPTRACE_LOGE("Failed to put printf buf (%d)!", ret);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    return (pout - p);
 | 
						|
}
 | 
						|
 | 
						|
int esp_apptrace_vprintf(const char *fmt, va_list ap)
 | 
						|
{
 | 
						|
    return esp_apptrace_vprintf_to(ESP_APPTRACE_DEST_TRAX, /*ESP_APPTRACE_TMO_INFINITE*/0, fmt, ap);
 | 
						|
}
 | 
						|
 | 
						|
uint8_t *esp_apptrace_buffer_get(esp_apptrace_dest_t dest, size_t size, uint32_t user_tmo)
 | 
						|
{
 | 
						|
    uint32_t tmo = user_tmo;
 | 
						|
    //TODO: use ptr to HW transport iface struct
 | 
						|
    uint8_t *(*apptrace_get_buffer)(size_t, uint32_t *);
 | 
						|
 | 
						|
    if (dest == ESP_APPTRACE_DEST_TRAX) {
 | 
						|
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
 | 
						|
        apptrace_get_buffer = esp_apptrace_trax_get_buffer;
 | 
						|
#else
 | 
						|
        ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
 | 
						|
        return NULL;
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
        ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    return apptrace_get_buffer(size, &tmo);
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t esp_apptrace_buffer_put(esp_apptrace_dest_t dest, uint8_t *ptr, uint32_t user_tmo)
 | 
						|
{
 | 
						|
    uint32_t tmo = user_tmo;
 | 
						|
    //TODO: use ptr to HW transport iface struct
 | 
						|
    esp_err_t (*apptrace_put_buffer)(uint8_t *, uint32_t *);
 | 
						|
 | 
						|
    if (dest == ESP_APPTRACE_DEST_TRAX) {
 | 
						|
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
 | 
						|
        apptrace_put_buffer = esp_apptrace_trax_put_buffer;
 | 
						|
#else
 | 
						|
        ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
 | 
						|
        return ESP_ERR_NOT_SUPPORTED;
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
        ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
 | 
						|
        return ESP_ERR_NOT_SUPPORTED;
 | 
						|
    }
 | 
						|
 | 
						|
    return apptrace_put_buffer(ptr, &tmo);
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t esp_apptrace_flush_nolock(esp_apptrace_dest_t dest, uint32_t min_sz, uint32_t tmo)
 | 
						|
{
 | 
						|
    //TODO: use ptr to HW transport iface struct
 | 
						|
    esp_err_t (*apptrace_flush)(uint32_t, uint32_t);
 | 
						|
 | 
						|
    if (dest == ESP_APPTRACE_DEST_TRAX) {
 | 
						|
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
 | 
						|
        apptrace_flush = esp_apptrace_trax_flush;
 | 
						|
#else
 | 
						|
        ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
 | 
						|
        return ESP_ERR_NOT_SUPPORTED;
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
        ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
 | 
						|
        return ESP_ERR_NOT_SUPPORTED;
 | 
						|
    }
 | 
						|
 | 
						|
    return apptrace_flush(min_sz, tmo);
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t esp_apptrace_flush(esp_apptrace_dest_t dest, uint32_t tmo)
 | 
						|
{
 | 
						|
    int res;
 | 
						|
 | 
						|
    res = esp_apptrace_lock(&tmo);
 | 
						|
    if (res != ESP_OK) {
 | 
						|
        ESP_APPTRACE_LOGE("Failed to lock apptrace data (%d)!", res);
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    res = esp_apptrace_flush_nolock(dest, 0, tmo);
 | 
						|
    if (res != ESP_OK) {
 | 
						|
        ESP_APPTRACE_LOGE("Failed to fluch apptrace data (%d)!", res);
 | 
						|
    }
 | 
						|
 | 
						|
    if (esp_apptrace_unlock() != ESP_OK) {
 | 
						|
        ESP_APPTRACE_LOGE("Failed to unlock apptrace data (%d)!", res);
 | 
						|
    }
 | 
						|
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
#if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
 | 
						|
void esp_apptrace_print_stats()
 | 
						|
{
 | 
						|
    uint32_t i;
 | 
						|
    uint32_t tmo = ESP_APPTRACE_TMO_INFINITE;
 | 
						|
 | 
						|
    esp_apptrace_lock(&tmo);
 | 
						|
 | 
						|
    for (i = s_trace_buf.state.stats.wr.hist_rd; (i < s_trace_buf.state.stats.wr.hist_wr) && (i < ESP_APPTRACE_BUF_HISTORY_DEPTH); i++) {
 | 
						|
        esp_trace_buffer_wr_hitem_t *hi = (esp_trace_buffer_wr_hitem_t *)&s_trace_buf.state.stats.wr.hist[i];
 | 
						|
        ESP_APPTRACE_LOGO("hist[%u] = {%x, %x}", i, hi->hnd, hi->ts);
 | 
						|
    }
 | 
						|
    if (i == ESP_APPTRACE_BUF_HISTORY_DEPTH) {
 | 
						|
        for (i = 0; i < s_trace_buf.state.stats.wr.hist_wr; i++) {
 | 
						|
            esp_trace_buffer_wr_hitem_t *hi = (esp_trace_buffer_wr_hitem_t *)&s_trace_buf.state.stats.wr.hist[i];
 | 
						|
            ESP_APPTRACE_LOGO("hist[%u] = {%x, %x}", i, hi->hnd, hi->ts);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    esp_apptrace_unlock();
 | 
						|
}
 | 
						|
#endif
 | 
						|
#endif
 |