add examples

This commit is contained in:
aleks
2023-12-10 15:18:39 +01:00
parent d3dddb0cbe
commit 581573f6d4
48 changed files with 3277 additions and 0 deletions

View File

@@ -0,0 +1,18 @@
tcp/mb_tcp_master:
disable_test:
- if: IDF_TARGET != "esp32"
reason: only manual test is performed
disable:
# TCP port is not supported for now
- if: CONFIG_NAME == "wifi" or CONFIG_NAME == "ethernet"
# - if: CONFIG_NAME == "wifi" and SOC_WIFI_SUPPORTED != 1
tcp/mb_tcp_slave:
disable_test:
- if: IDF_TARGET != "esp32"
reason: only manual test is performed
disable:
- if: CONFIG_NAME == "wifi" or CONFIG_NAME == "ethernet"
# - if: CONFIG_NAME == "wifi" and SOC_WIFI_SUPPORTED != 1

9
examples/README.md Normal file
View File

@@ -0,0 +1,9 @@
# Test implementation
This directory contains a set of ESP-IDF projects to be used as tests only, which aim to exercise various
configuration of components to check completely arbitrary functionality should it be building only, executing under
various conditions or combination with other components, including custom test frameworks.
The tests in this folder are not intended to demonstrate the ESP-IDF functionality in any way.
The examples can be found here: https://github.com/espressif/esp-idf/tree/master/examples/protocols/modbus

319
examples/conftest.py Normal file
View File

@@ -0,0 +1,319 @@
# SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
# SPDX-License-Identifier: Apache-2.0
# pylint: disable=W0621 # redefined-outer-name
import logging
import os
import sys
from datetime import datetime
from enum import Enum
from typing import Any, Callable, Dict, Match, Optional, TextIO, Tuple
import pexpect
import pytest
from _pytest.fixtures import FixtureRequest
from _pytest.monkeypatch import MonkeyPatch
from pytest_embedded.plugin import multi_dut_argument, multi_dut_fixture
from pytest_embedded_idf.app import IdfApp
from pytest_embedded_idf.dut import IdfDut
from pytest_embedded_idf.serial import IdfSerial
class Stages(Enum):
STACK_DEFAULT = 1
STACK_IPV4 = 2
STACK_IPV6 = 3
STACK_INIT = 4
STACK_CONNECT = 5
STACK_START = 6
STACK_PAR_OK = 7
STACK_PAR_FAIL = 8
STACK_DESTROY = 9
DEFAULT_SDKCONFIG = 'default'
ALLOWED_PERCENT_OF_FAILS = 10
class ModbusTestDut(IdfDut):
TEST_IP_PROMPT = r'Waiting IP([0-9]{1,2}) from stdin:\r\r\n'
TEST_IP_SET_CONFIRM = r'.*IP\([0-9]+\) = \[([0-9a-zA-Z\.\:]+)\] set from stdin.*'
TEST_IP_ADDRESS_REGEXP = r'.*example_[a-z]+: .* IPv4 [a-z]+:.* ([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}).*'
TEST_APP_NAME = r'I \([0-9]+\) cpu_start: Project name: ([_a-z]*)'
TEST_EXPECT_STR_TIMEOUT = 120
TEST_ACK_TIMEOUT = 60
TEST_MAX_CIDS = 8
app: IdfApp
serial: IdfSerial
def __init__(self, *args, **kwargs) -> None: # type: ignore
super().__init__(*args, **kwargs)
self.logger = logging.getLogger()
self.test_output: Optional[TextIO] = None
self.ip_address: Optional[str] = None
self.app_name: Optional[str] = None
self.param_fail_count = 0
self.param_ok_count = 0
self.test_stage = Stages.STACK_DEFAULT
self.dictionary = None
self.test_finish = False
self.test_status = False
def close(self) -> None:
super().close()
def dut_get_ip(self) -> Optional[str]:
if self.ip_address is None:
expect_address = self.expect(self.TEST_IP_ADDRESS_REGEXP, timeout=self.TEST_EXPECT_STR_TIMEOUT)
if isinstance(expect_address, Match):
self.ip_address = expect_address.group(1).decode('ascii')
return self.ip_address
def dut_get_name(self) -> Optional[str]:
if self.app_name is None:
expect_name = self.expect(self.TEST_APP_NAME, timeout=self.TEST_EXPECT_STR_TIMEOUT)
if isinstance(expect_name, Match):
self.app_name = expect_name.group(1).decode('ascii')
return self.app_name
def dut_send_ip(self, slave_ip: Optional[str]) -> Optional[int]:
''' The function sends the slave IP address defined as a parameter to master
'''
addr_num = 0
self.expect(self.TEST_IP_PROMPT, timeout=self.TEST_ACK_TIMEOUT)
if isinstance(slave_ip, str):
for addr_num in range(0, self.TEST_MAX_CIDS):
message = r'IP{}={}'.format(addr_num, slave_ip)
self.logger.info('{} sent to master'.format(message))
self.write(message)
return addr_num
def get_expect_proc(self) -> Optional[object]:
expect_proc: object = None
try:
expect_proc = self.__getattribute__('pexpect_proc')
except:
expect_proc = self.__getattribute__('_p')
finally:
if (expect_proc and callable(getattr(expect_proc, 'expect'))):
return expect_proc
else :
return None
def expect_any(self, *expect_items: Tuple[str, Callable], timeout: Optional[int]) -> None:
"""
expect_any(*expect_items, timeout=DEFAULT_TIMEOUT)
expect any of the patterns.
will call callback (if provided) if pattern match succeed and then return.
will pass match result to the callback.
:raise ExpectTimeout: failed to match any one of the expect items before timeout
:raise UnsupportedExpectItem: pattern in expect_item is not string or compiled RegEx
:arg expect_items: one or more expect items.
string, compiled RegEx pattern or (string or RegEx(string pattern), callback)
:keyword timeout: timeout for expect
:return: matched item
"""
def process_expected_item(item_raw: Tuple[str, Callable[..., Any]]) -> Dict[str, Any]:
# convert item raw data to standard dict
item = {
'pattern': item_raw[0] if isinstance(item_raw, tuple) else item_raw,
'callback': item_raw[1] if isinstance(item_raw, tuple) else None,
'index': -1,
'ret': None,
}
return item
expect_items_list = [process_expected_item(item) for item in expect_items]
expect_patterns = [item['pattern'] for item in expect_items_list if item['pattern'] is not None]
match_item = None
# Workaround: We need to use the original expect method of pexpect process which returns
# index of matched pattern instead of Match object returned by dut.expect()
expect_proc: Optional[object] = self.get_expect_proc()
if expect_proc is not None:
match_index = expect_proc.expect(expect_patterns, timeout)
if isinstance(match_index, int):
match_item = expect_items_list[match_index] # type: ignore
match_item['index'] = match_index # type: ignore , keep match index
if isinstance(expect_proc.match, Match) and len(expect_proc.match.groups()) > 0:
match_item['ret'] = expect_proc.match.groups()
if match_item['callback']:
match_item['callback'](match_item['ret']) # execution of callback function
else:
self.logger.error('%s: failed to parse output. Please check component versions.', self.app_name)
raise RuntimeError from None
def dut_test_start(self, dictionary: Dict, timeout_value=TEST_EXPECT_STR_TIMEOUT) -> None: # type: ignore
""" The method to initialize and handle test stages
"""
def handle_get_ip4(data: Optional[Any]) -> None:
""" Handle get_ip v4
"""
self.logger.info('%s[STACK_IPV4]: %s', self.app_name, str(data))
self.test_stage = Stages.STACK_IPV4
def handle_get_ip6(data: Optional[Any]) -> None:
""" Handle get_ip v6
"""
self.logger.info('%s[STACK_IPV6]: %s', self.app_name, str(data))
self.test_stage = Stages.STACK_IPV6
def handle_init(data: Optional[Any]) -> None:
""" Handle init
"""
self.logger.info('%s[STACK_INIT]: %s', self.app_name, str(data))
self.test_stage = Stages.STACK_INIT
def handle_connect(data: Optional[Any]) -> None:
""" Handle connect
"""
self.logger.info('%s[STACK_CONNECT]: %s', self.app_name, str(data))
self.test_stage = Stages.STACK_CONNECT
def handle_test_start(data: Optional[Any]) -> None:
""" Handle connect
"""
self.logger.info('%s[STACK_START]: %s', self.app_name, str(data))
self.test_stage = Stages.STACK_START
def handle_par_ok(data: Optional[Any]) -> None:
""" Handle parameter ok
"""
self.logger.info('%s[READ_PAR_OK]: %s', self.app_name, str(data))
if self.test_stage.value >= Stages.STACK_START.value:
self.param_ok_count += 1
self.test_stage = Stages.STACK_PAR_OK
def handle_par_fail(data: Optional[Any]) -> None:
""" Handle parameter fail
"""
self.logger.info('%s[READ_PAR_FAIL]: %s', self.app_name, str(data))
self.param_fail_count += 1
self.test_stage = Stages.STACK_PAR_FAIL
def handle_destroy(data: Optional[Any]) -> None:
""" Handle destroy
"""
self.logger.info('%s[%s]: %s', self.app_name, Stages.STACK_DESTROY.name, str(data))
self.test_stage = Stages.STACK_DESTROY
self.test_finish = True
while not self.test_finish:
try:
self.expect_any((dictionary[Stages.STACK_IPV4], handle_get_ip4),
(dictionary[Stages.STACK_IPV6], handle_get_ip6),
(dictionary[Stages.STACK_INIT], handle_init),
(dictionary[Stages.STACK_CONNECT], handle_connect),
(dictionary[Stages.STACK_START], handle_test_start),
(dictionary[Stages.STACK_PAR_OK], handle_par_ok),
(dictionary[Stages.STACK_PAR_FAIL], handle_par_fail),
(dictionary[Stages.STACK_DESTROY], handle_destroy),
timeout=timeout_value)
except pexpect.TIMEOUT:
self.logger.info('%s, expect timeout on stage %s (%s seconds)', self.app_name, self.test_stage.name, timeout_value)
self.test_finish = True
def dut_check_errors(self) -> None:
''' Verify allowed percentage of errors for the dut
'''
allowed_ok_percentage = ((self.param_ok_count / (self.param_ok_count + self.param_fail_count + 1)) * 100)
if self.param_ok_count and (allowed_ok_percentage > (100 - ALLOWED_PERCENT_OF_FAILS)):
self.logger.info('%s: ok_count: %d, fail count: %d', self.app_name, self.param_ok_count, self.param_fail_count)
else :
self.logger.error('%s: ok_count: %d, number of failed readings %d exceeds %d percent', self.app_name, self.param_ok_count, self.param_fail_count, ALLOWED_PERCENT_OF_FAILS)
raise RuntimeError from None
############
# Fixtures #
############
@pytest.fixture(scope='session', autouse=True)
def session_tempdir() -> str:
_tmpdir = os.path.join(
os.path.dirname(__file__),
'pytest_embedded_log',
datetime.now().strftime('%Y-%m-%d_%H-%M-%S'),
)
os.makedirs(_tmpdir, exist_ok=True)
return _tmpdir
@pytest.fixture(autouse=True)
@multi_dut_fixture
def junit_properties(
test_case_name: str, record_xml_attribute: Callable[[str, object], None]
) -> None:
"""
This fixture is autoused and will modify the junit report test case name to <target>.<config>.<case_name>
"""
record_xml_attribute('name', test_case_name)
@pytest.fixture(scope='module')
def monkeypatch_module(request: FixtureRequest) -> MonkeyPatch:
mp = MonkeyPatch()
request.addfinalizer(mp.undo)
return mp
@pytest.fixture(scope='module', autouse=True)
def replace_dut_class(monkeypatch_module: MonkeyPatch) -> None:
monkeypatch_module.setattr('pytest_embedded_idf.IdfDut', ModbusTestDut)
@pytest.fixture
@multi_dut_argument
def config(request: FixtureRequest) -> str:
return getattr(request, 'param', None) or DEFAULT_SDKCONFIG
@pytest.fixture
@multi_dut_fixture
def build_dir(app_path: str, target: Optional[str], config: Optional[str]) -> str:
"""
Check local build dir with the following priority:
1. build_<target>_<config>
2. build_<target>
3. build_<config>
4. build
Args:
app_path: app path
target: target
config: config
Returns:
valid build directory
"""
check_dirs = []
if target is not None and config is not None:
check_dirs.append(f'build_{target}_{config}')
if target is not None:
check_dirs.append(f'build_{target}')
if config is not None:
check_dirs.append(f'build_{config}')
check_dirs.append('build')
for check_dir in check_dirs:
binary_path = os.path.join(app_path, check_dir)
if os.path.isdir(binary_path):
logging.info(f'find valid binary path: {binary_path}')
return check_dir
logging.warning(
'checking binary path: %s... missing... try another place', binary_path
)
recommend_place = check_dirs[0]
logging.error(
f'no build dir valid. Please build the binary via "idf.py -B {recommend_place} build" and run pytest again'
)
sys.exit(1)

View File

@@ -0,0 +1,5 @@
# The following five lines of boilerplate have to be in your project's
# CMakeLists in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.5)
idf_component_register(SRCS "modbus_params.c"
INCLUDE_DIRS "include")

View File

@@ -0,0 +1,10 @@
# Modbus Example Common
This directory contains component that is common for Modbus master and slave examples. The component defines Modbus parameters that are shared between examples and provide code that you can copy and adapt into your own projects.
For more information please refer to Modbus example README.md files located in the folders:
* `examples/protocols/modbus/serial/mb_master` Modbus serial master implementation (RTU and ASCII)
* `examples/protocols/modbus/serial/mb_slave` Modbus serial slave implementation (RTU and ASCII)
* `examples/protocols/modbus/serial/mb_master` Modbus serial master implementation (RTU and ASCII)
* `examples/protocols/modbus/tcp/mb_tcp_slave` Modbus serial slave implementation (TCP)
* `examples/protocols/modbus/tcp/mb_tcp_master` Modbus serial master implementation (TCP)

View File

@@ -0,0 +1,5 @@
#
# Component Makefile
#
COMPONENT_ADD_INCLUDEDIRS := include
COMPONENT_SRCDIRS := .

View File

@@ -0,0 +1,81 @@
/*
* SPDX-FileCopyrightText: 2016-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/*=====================================================================================
* Description:
* The Modbus parameter structures used to define Modbus instances that
* can be addressed by Modbus protocol. Define these structures per your needs in
* your application. Below is just an example of possible parameters.
*====================================================================================*/
#ifndef _DEVICE_PARAMS
#define _DEVICE_PARAMS
#include <stdint.h>
// This file defines structure of modbus parameters which reflect correspond modbus address space
// for each modbus register type (coils, discreet inputs, holding registers, input registers)
#pragma pack(push, 1)
typedef struct
{
uint8_t discrete_input0:1;
uint8_t discrete_input1:1;
uint8_t discrete_input2:1;
uint8_t discrete_input3:1;
uint8_t discrete_input4:1;
uint8_t discrete_input5:1;
uint8_t discrete_input6:1;
uint8_t discrete_input7:1;
uint8_t discrete_input_port1;
uint8_t discrete_input_port2;
} discrete_reg_params_t;
#pragma pack(pop)
#pragma pack(push, 1)
typedef struct
{
uint8_t coils_port0;
uint8_t coils_port1;
uint8_t coils_port2;
} coil_reg_params_t;
#pragma pack(pop)
#pragma pack(push, 1)
typedef struct
{
float input_data0; // 0
float input_data1; // 2
float input_data2; // 4
float input_data3; // 6
uint16_t data[150]; // 8 + 150 = 158
float input_data4; // 158
float input_data5;
float input_data6;
float input_data7;
uint16_t data_block1[150];
} input_reg_params_t;
#pragma pack(pop)
#pragma pack(push, 1)
typedef struct
{
float holding_data0;
float holding_data1;
float holding_data2;
float holding_data3;
uint16_t test_regs[150];
float holding_data4;
float holding_data5;
float holding_data6;
float holding_data7;
} holding_reg_params_t;
#pragma pack(pop)
extern holding_reg_params_t holding_reg_params;
extern input_reg_params_t input_reg_params;
extern coil_reg_params_t coil_reg_params;
extern discrete_reg_params_t discrete_reg_params;
#endif // !defined(_DEVICE_PARAMS)

View File

@@ -0,0 +1,21 @@
/*
* SPDX-FileCopyrightText: 2016-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/*=====================================================================================
* Description:
* C file to define parameter storage instances
*====================================================================================*/
#include <stdint.h>
#include "modbus_params.h"
// Here are the user defined instances for device parameters packed by 1 byte
// These are keep the values that can be accessed from Modbus master
holding_reg_params_t holding_reg_params = { 0 };
input_reg_params_t input_reg_params = { 0 };
coil_reg_params_t coil_reg_params = { 0 };
discrete_reg_params_t discrete_reg_params = { 0 };

82
examples/serial/README.md Normal file
View File

@@ -0,0 +1,82 @@
# Modbus Master-Slave Example
## Overview
These two projects illustrate the communication between Modbus master and slave device in the segment.
Master initializes Modbus interface driver and then reads parameters from slave device in the segment.
After several successful read attempts slave sets the alarm relay (end of test condition).
Once master reads the alarm it stops communication and destroy driver.
The examples:
* `examples/protocols/modbus/serial/mb_master` - Modbus serial master ASCII/RTU
* `examples/protocols/modbus/serial/mb_slave` - Modbus serial slave ASCII/RTU
See README.md for each individual project for more information.
## How to use example
### Hardware Required
This example can be run on any commonly available ESP32 development board.
The master and slave boards should be connected to each other through the RS485 interface line driver.
See the connection schematic in README.md files of each example.
### Configure the project
This example test requires communication mode setting for master and slave be the same and slave address set to 1.
Please refer to README.md files of each example project for more information.
## About common_component in this example
The folder "mb_example_common" includes definitions of parameter structures for master and slave device (both projects share the same parameters).
However, currently it is for example purpose only and can be modified for particular application.
## Example Output
Example of Slave output:
```
I (343) SLAVE_TEST: Modbus slave stack initialized.
I (343) SLAVE_TEST: Start modbus test...
I (81463) SLAVE_TEST: HOLDING READ (81150420 us), ADDR:1, TYPE:2, INST_ADDR:0x3ffb2868, SIZE:6
I (82463) SLAVE_TEST: HOLDING READ (82150720 us), ADDR:1, TYPE:2, INST_ADDR:0x3ffb2868, SIZE:6
I (83573) SLAVE_TEST: HOLDING READ (83260630 us), ADDR:1, TYPE:2, INST_ADDR:0x3ffb2868, SIZE:6
I (84603) SLAVE_TEST: HOLDING READ (84290530 us), ADDR:1, TYPE:2, INST_ADDR:0x3ffb2868, SIZE:6
I (85703) SLAVE_TEST: HOLDING READ (85396692 us), ADDR:1, TYPE:2, INST_ADDR:0x3ffb2868, SIZE:6
```
Example of Modbus Master output:
```
I (399) MASTER_TEST: Modbus master stack initialized...
I (499) MASTER_TEST: Start modbus test...
I (549) MASTER_TEST: Characteristic #0 Data_channel_0 (Volts) value = 1.230000 (0x3f9d70a4) read successful.
I (629) MASTER_TEST: Characteristic #1 Humidity_1 (%rH) value = 12.100000 (0x4141999a) read successful.
I (709) MASTER_TEST: Characteristic #2 Temperature_1 (C) value = 3.560000 (0x4063d70a) read successful.
I (769) MASTER_TEST: Characteristic #3 Humidity_2 (%rH) value = 23.400000 (0x41bb3333) read successful.
I (829) MASTER_TEST: Characteristic #4 Temperature_2 (C) value = 5.890000 (0x40bc7ae1) read successful.
I (889) MASTER_TEST: Characteristic #5 Humidity_3 (%rH) value = 34.500000 (0x420a0000) read successful.
E (949) MB_CONTROLLER_MASTER: mbc_master_get_parameter(111): SERIAL master get parameter failure error=(0x108) (ESP_ERR_INVALID_RESPONSE).
E (949) MASTER_TEST: Characteristic #6 (RelayP1) read fail, err = 264 (ESP_ERR_INVALID_RESPONSE).
E (1029) MB_CONTROLLER_MASTER: mbc_master_get_parameter(111): SERIAL master get parameter failure error=(0x108) (ESP_ERR_INVALID_RESPONSE).
E (1029) MASTER_TEST: Characteristic #7 (RelayP2) read fail, err = 264 (ESP_ERR_INVALID_RESPONSE).
```
## Troubleshooting
If the examples do not work as expected and slave and master boards are not able to communicate correctly it is possible to find the reason for errors.
The most important errors are described in master example output and formatted as below:
```
E (1692332) MB_CONTROLLER_MASTER: mbc_master_get_parameter(111): SERIAL master get parameter failure error=(0x107) (ESP_ERR_TIMEOUT).
```
ESP_ERR_TIMEOUT (0x107) - Modbus slave device does not respond during configured timeout. Check the connection and ability for communication using uart_echo_rs485 example or increase
Kconfig value CONFIG_FMB_MASTER_TIMEOUT_MS_RESPOND (CONFIG_FMB_SERIAL_ASCII_TIMEOUT_RESPOND_MS).
ESP_ERR_NOT_SUPPORTED (0x106), ESP_ERR_INVALID_RESPONSE (0x108) - Modbus slave device does not support requested command or register and sent exeption response.
ESP_ERR_INVALID_STATE (0x103) - Modbus stack is not configured correctly or can't work correctly due to critical failure.

View File

@@ -0,0 +1,9 @@
# The following lines of boilerplate have to be in your project's CMakeLists
# in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.16)
# Exclude old component feemodbus which exists in old versions
set(EXCLUDE_COMPONENTS freemodbus)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(modbus_serial_master)

View File

@@ -0,0 +1,156 @@
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C6 | ESP32-H2 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- | -------- |
# Modbus Master Example
This example demonstrates using of FreeModbus stack port implementation for ESP32 as a master device.
This implementation is able to read/write values of slave devices connected into Modbus segment. All parameters to be accessed are defined in data dictionary of the modbus master example source file.
The values represented as characteristics with its name and characteristic CID which are linked into registers of slave devices connected into Modbus segment.
The example implements simple control algorithm and checks parameters from slave device and gets alarm (relay in the slave device) when value of holding_data0 parameter exceeded limit.
The instances for the modbus parameters are common for master and slave examples and located in `examples/protocols/modbus/mb_example_common` folder.
Example parameters definition:
--------------------------------------------------------------------------------------------------
| Slave Address | Characteristic ID | Characteristic name | Description |
|---------------------|----------------------|----------------------|----------------------------|
| MB_DEVICE_ADDR1 | CID_INP_DATA_0, | Data_channel_0 | Data channel 1 |
| MB_DEVICE_ADDR1 | CID_HOLD_DATA_0, | Humidity_1 | Humidity 1 |
| MB_DEVICE_ADDR1 | CID_INP_DATA_1 | Temperature_1 | Sensor temperature |
| MB_DEVICE_ADDR1 | CID_HOLD_DATA_1, | Humidity_2 | Humidity 2 |
| MB_DEVICE_ADDR1 | CID_INP_DATA_2 | Temperature_2 | Ambient temperature |
| MB_DEVICE_ADDR1 | CID_HOLD_DATA_2 | Humidity_3 | Humidity 3 |
| MB_DEVICE_ADDR1 | CID_RELAY_P1 | RelayP1 | Alarm Relay outputs on/off |
| MB_DEVICE_ADDR1 | CID_RELAY_P2 | RelayP2 | Alarm Relay outputs on/off |
--------------------------------------------------------------------------------------------------
Note: The Slave Address is the same for all parameters for example test but it can be changed in the ```Example Data (Object) Dictionary``` table of master example to address parameters from other slaves.
The Kconfig ```Modbus slave address``` - CONFIG_MB_SLAVE_ADDR parameter in slave example can be configured to create Modbus multi slave segment.
Simplified Modbus connection schematic for example test:
```
MB_DEVICE_ADDR1
------------- -------------
| | RS485 network | |
| Slave 1 |---<>--+---<>---| Master |
| | | |
------------- -------------
```
Modbus multi slave segment connection schematic:
```
MB_DEVICE_ADDR1
-------------
| |
| Slave 1 |---<>--+
| | |
------------- |
MB_DEVICE_ADDR2 |
------------- | -------------
| | | | |
| Slave 2 |---<>--+---<>---| Master |
| | | | |
------------- | -------------
MB_DEVICE_ADDR3 |
------------- RS485 network
| | |
| Slave 3 |---<>--+
| |
-------------
```
## Hardware required :
Option 1:
PC (Modbus Slave app) + USB Serial adapter connected to USB port + RS485 line drivers + ESP32 based board
Option 2:
Several ESP32 boards flashed with modbus_slave example software to represent slave device with specific slave address (See CONFIG_MB_SLAVE_ADDR). The slave addresses for each board have to be configured as defined in "connection schematic" above.
One ESP32 board flashed with modbus_master example. All the boards require connection of RS485 line drivers (see below).
The MAX485 line driver is used as an example below but other similar chips can be used as well.
RS485 example circuit schematic for connection of master and slave devices into segment:
```
VCC ---------------+ +--------------- VCC
| |
+-------x-------+ +-------x-------+
RXD <------| RO | DIFFERENTIAL | RO|-----> RXD
| B|---------------|B |
TXD ------>| DI MAX485 | \ / | MAX485 DI|<----- TXD
ESP32 BOARD | | RS-485 side | | External PC (emulator) with USB to serial or
RTS --+--->| DE | / \ | DE|---+ ESP32 BOARD (slave)
| | A|---------------|A | |
+----| /RE | PAIR | /RE|---+-- RTS
+-------x-------+ +-------x-------+
| |
--- ---
Modbus Master device Modbus Slave device
```
## How to setup and use an example:
### Configure the application
Start the command below to setup configuration:
```
idf.py menuconfig
```
Configure the UART pins used for modbus communication using and table below.
Define the communication mode parameter for master and slave in Kconfig - CONFIG_MB_COMM_MODE (must be the same for master and slave devices in one segment).
Configure the slave address for each slave in the Modbus segment (the CONFIG_MB_SLAVE_ADDR in Kconfig).
```
------------------------------------------------------------------------------------------------------------------------------
| UART Interface | #define | Default pins for | Default pins for | External RS485 Driver Pin |
| | | ESP32 (C6) | ESP32-S2 (S3, C3, C2, H2) | |
| ----------------------|--------------------|-----------------------|---------------------------|---------------------------|
| Transmit Data (TxD) | CONFIG_MB_UART_TXD | GPIO23 | GPIO9 | DI |
| Receive Data (RxD) | CONFIG_MB_UART_RXD | GPIO22 | GPIO8 | RO |
| Request To Send (RTS) | CONFIG_MB_UART_RTS | GPIO18 | GPIO10 | ~RE/DE |
| Ground | n/a | GND | GND | GND |
------------------------------------------------------------------------------------------------------------------------------
```
Note: Each target chip has different GPIO pins available for UART connection. Please refer to UART documentation for selected target for more information.
Connect a USB-to-RS485 adapter to a computer, then connect the adapter's A/B output lines with the corresponding A/B output lines of the RS485 line driver connected to the ESP32 chip (see figure above).
The communication parameters of Modbus stack allow to configure it appropriately but usually it is enough to use default settings.
See the help string of parameters for more information.
### Setup external Modbus slave devices or emulator
Option 1:
Configure the external Modbus master software according to port configuration parameters used in the example. The Modbus Slave application can be used with this example to emulate slave devices with its parameters. Use official documentation for software to setup emulation of slave devices.
Option 2:
Other option is to have the modbus_slave example application flashed into ESP32 based board and connect boards together as showed on the Modbus connection schematic above. See the Modbus slave API documentation to configure communication parameters and slave addresses as defined in "Example parameters definition" table above.
### Build and flash software of master device
Build the project and flash it to the board, then run monitor tool to view serial output:
```
idf.py -p PORT flash monitor
```
(To exit the serial monitor, type ``Ctrl-]``.)
See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.
## Example Output
Example output of the application:
```
I (9035) MASTER_TEST: Characteristic #0 Data_channel_0 (Volts) value = 1.120000 (0x3f8f5c29) read successful.
I (9045) MASTER_TEST: Characteristic #1 Humidity_1 (%rH) value = 5.539999 (0x40b147ac) read successful.
I (9045) MASTER_TEST: Characteristic #2 Temperature_1 (C) value = 2.340000 (0x4015c28f) read successful.
I (9055) MASTER_TEST: Characteristic #3 Humidity_2 (%rH) value = 2.560000 (0x4023d70a) read successful.
I (9065) MASTER_TEST: Characteristic #4 Temperature_2 (C) value = 3.560000 (0x4063d70a) read successful.
I (9075) MASTER_TEST: Characteristic #5 Humidity_3 (%rH) value = 3.780000 (0x4071eb85) read successful.
I (9085) MASTER_TEST: Characteristic #6 RelayP1 (on/off) value = OFF (0x55) read successful.
I (9095) MASTER_TEST: Characteristic #7 RelayP2 (on/off) value = OFF (0xaa) read successful.
I (9605) MASTER_TEST: Characteristic #0 Data_channel_0 (Volts) value = 1.120000 (0x3f8f5c29) read successful.
I (9615) MASTER_TEST: Characteristic #1 Humidity_1 (%rH) value = 5.739999 (0x40b7ae12) read successful.
I (9615) MASTER_TEST: Characteristic #2 Temperature_1 (C) value = 2.340000 (0x4015c28f) read successful.
I (9625) MASTER_TEST: Characteristic #3 Humidity_2 (%rH) value = 2.560000 (0x4023d70a) read successful.
I (9635) MASTER_TEST: Characteristic #4 Temperature_2 (C) value = 3.560000 (0x4063d70a) read successful.
I (9645) MASTER_TEST: Characteristic #5 Humidity_3 (%rH) value = 3.780000 (0x4071eb85) read successful.
I (9655) MASTER_TEST: Characteristic #6 RelayP1 (on/off) value = OFF (0x55) read successful.
I (9665) MASTER_TEST: Characteristic #7 RelayP2 (on/off) value = ON (0xff) read successful.
I (10175) MASTER_TEST: Alarm triggered by cid #7.
I (10175) MASTER_TEST: Destroy master...
```
The example reads the characteristics from slave device(s), while alarm is not triggered in the slave device (See the "Example parameters definition"). The output line describes Timestamp, Cid of characteristic, Characteristic name (Units), Characteristic value (Hex).

View File

@@ -0,0 +1,26 @@
INCLUDEDIRS := common/include
PRIV_INCLUDEDIRS := common port modbus modbus/ascii modbus/functions
PRIV_INCLUDEDIRS += modbus/rtu modbus/tcp modbus/include
PRIV_INCLUDEDIRS += serial_slave/port serial_slave/modbus_controller
PRIV_INCLUDEDIRS += serial_master/port serial_master/modbus_controller
PRIV_INCLUDEDIRS += tcp_slave/port tcp_slave/modbus_controller
PRIV_INCLUDEDIRS += tcp_master/port tcp_master/modbus_controller
SRCDIRS := common
SRCDIRS += modbus modbus/ascii modbus/functions modbus/rtu modbus/tcp
SRCDIRS += serial_slave/port serial_slave/modbus_controller
SRCDIRS += serial_master/port serial_master/modbus_controller
SRCDIRS += tcp_slave/port tcp_slave/modbus_controller
SRCDIRS += tcp_master/port tcp_master/modbus_controller
SRCDIRS += port
COMPONENT_PRIV_INCLUDEDIRS = $(addprefix freemodbus/, \
$(PRIV_INCLUDEDIRS) \
)
COMPONENT_SRCDIRS = $(addprefix freemodbus/, \
$(SRCDIRS) \
)
COMPONENT_ADD_INCLUDEDIRS = $(addprefix freemodbus/, \
$(INCLUDEDIRS) \
)

View File

@@ -0,0 +1,4 @@
set(PROJECT_NAME "modbus_serial_master")
idf_component_register(SRCS "serial_master.c"
INCLUDE_DIRS ".")

View File

@@ -0,0 +1,95 @@
menu "Modbus Example Configuration"
config MB_UART_PORT_ONE
bool
default y
depends on (ESP_CONSOLE_UART_NUM !=1) && (SOC_UART_NUM > 1)
config MB_UART_PORT_TWO
bool
default y
depends on (ESP_CONSOLE_UART_NUM !=2) && (SOC_UART_NUM > 2)
config MB_UART_PORT_NUM
int "UART port number"
range 0 2 if MB_UART_PORT_TWO
default 2 if MB_UART_PORT_TWO
range 0 1 if MB_UART_PORT_ONE
default 1 if MB_UART_PORT_ONE
help
UART communication port number for Modbus example.
config MB_UART_BAUD_RATE
int "UART communication speed"
range 1200 115200
default 115200
help
UART communication speed for Modbus example.
config MB_UART_RXD
int "UART RXD pin number"
range 0 34 if IDF_TARGET_ESP32
range 0 23 if IDF_TARGET_ESP32C6
default 22 if IDF_TARGET_ESP32 || IDF_TARGET_ESP32C6
range 0 46 if IDF_TARGET_ESP32S2
range 0 47 if IDF_TARGET_ESP32S3
range 0 19 if IDF_TARGET_ESP32C3
range 0 20 if IDF_TARGET_ESP32C2
range 0 27 if IDF_TARGET_ESP32H2
default 8 if IDF_TARGET_ESP32S2 || IDF_TARGET_ESP32S3
default 8 if IDF_TARGET_ESP32C3 || IDF_TARGET_ESP32C2 || IDF_TARGET_ESP32H2
help
GPIO number for UART RX pin. See UART documentation for more information
about available pin numbers for UART.
config MB_UART_TXD
int "UART TXD pin number"
range 0 34 if IDF_TARGET_ESP32
range 0 23 if IDF_TARGET_ESP32C6
default 23 if IDF_TARGET_ESP32 || IDF_TARGET_ESP32C6
range 0 46 if IDF_TARGET_ESP32S2
range 0 47 if IDF_TARGET_ESP32S3
range 0 19 if IDF_TARGET_ESP32C3
range 0 20 if IDF_TARGET_ESP32C2
range 0 27 if IDF_TARGET_ESP32H2
default 9 if IDF_TARGET_ESP32S2 || IDF_TARGET_ESP32S3
default 9 if IDF_TARGET_ESP32C3 || IDF_TARGET_ESP32C2 || IDF_TARGET_ESP32H2
help
GPIO number for UART TX pin. See UART documentation for more information
about available pin numbers for UART.
config MB_UART_RTS
int "UART RTS pin number"
range 0 34 if IDF_TARGET_ESP32
range 0 23 if IDF_TARGET_ESP32C6
default 18 if IDF_TARGET_ESP32 || IDF_TARGET_ESP32C6
range 0 46 if IDF_TARGET_ESP32S2
range 0 47 if IDF_TARGET_ESP32S3
range 0 19 if IDF_TARGET_ESP32C3
range 0 20 if IDF_TARGET_ESP32C2
range 0 27 if IDF_TARGET_ESP32H2
default 10 if IDF_TARGET_ESP32S2 || IDF_TARGET_ESP32S3
default 10 if IDF_TARGET_ESP32C3 || IDF_TARGET_ESP32C2 || IDF_TARGET_ESP32H2
help
GPIO number for UART RTS pin. This pin is connected to
~RE/DE pin of RS485 transceiver to switch direction.
See UART documentation for more information about available pin
numbers for UART.
choice MB_COMM_MODE
prompt "Modbus communication mode"
default MB_COMM_MODE_RTU if CONFIG_FMB_COMM_MODE_RTU_EN
help
Selection of Modbus communication mode option for Modbus.
config MB_COMM_MODE_RTU
bool "RTU mode"
depends on FMB_COMM_MODE_RTU_EN
config MB_COMM_MODE_ASCII
bool "ASCII mode"
depends on FMB_COMM_MODE_ASCII_EN
endchoice
endmenu

View File

@@ -0,0 +1,7 @@
dependencies:
idf: ">=4.1"
espressif/esp-modbus:
version: "^2.0"
override_path: "../../../../"
mb_example_common:
path: "../../../mb_example_common"

View File

@@ -0,0 +1,313 @@
/*
* SPDX-FileCopyrightText: 2016-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "string.h"
#include "esp_log.h"
#include "modbus_params.h" // for modbus parameters structures
#include "mbcontroller.h"
#include "sdkconfig.h"
#define MB_PORT_NUM (CONFIG_MB_UART_PORT_NUM) // Number of UART port used for Modbus connection
#define MB_DEV_SPEED (CONFIG_MB_UART_BAUD_RATE) // The communication speed of the UART
// Note: Some pins on target chip cannot be assigned for UART communication.
// See UART documentation for selected board and target to configure pins using Kconfig.
// The number of parameters that intended to be used in the particular control process
#define MASTER_MAX_CIDS num_device_parameters
// Number of reading of parameters from slave
#define MASTER_MAX_RETRY 30
// Timeout to update cid over Modbus
#define UPDATE_CIDS_TIMEOUT_MS (500)
#define UPDATE_CIDS_TIMEOUT_TICS (UPDATE_CIDS_TIMEOUT_MS / portTICK_PERIOD_MS)
// Timeout between polls
#define POLL_TIMEOUT_MS (1)
#define POLL_TIMEOUT_TICS (POLL_TIMEOUT_MS / portTICK_PERIOD_MS)
// The macro to get offset for parameter in the appropriate structure
#define HOLD_OFFSET(field) ((uint16_t)(offsetof(holding_reg_params_t, field) + 1))
#define INPUT_OFFSET(field) ((uint16_t)(offsetof(input_reg_params_t, field) + 1))
#define COIL_OFFSET(field) ((uint16_t)(offsetof(coil_reg_params_t, field) + 1))
// Discrete offset macro
#define DISCR_OFFSET(field) ((uint16_t)(offsetof(discrete_reg_params_t, field) + 1))
#define STR(fieldname) ((const char*)( fieldname ))
// Options can be used as bit masks or parameter limits
#define OPTS(min_val, max_val, step_val) { .opt1 = min_val, .opt2 = max_val, .opt3 = step_val }
static const char *TAG = "MASTER_TEST";
// Enumeration of modbus device addresses accessed by master device
enum {
MB_DEVICE_ADDR1 = 1 // Only one slave device used for the test (add other slave addresses here)
};
// Enumeration of all supported CIDs for device (used in parameter definition table)
enum {
CID_INP_DATA_0 = 0,
CID_HOLD_DATA_0,
CID_INP_DATA_1,
CID_HOLD_DATA_1,
CID_INP_DATA_2,
CID_HOLD_DATA_2,
CID_HOLD_TEST_REG,
CID_RELAY_P1,
CID_RELAY_P2,
CID_DISCR_P1,
CID_COUNT
};
// Example Data (Object) Dictionary for Modbus parameters:
// The CID field in the table must be unique.
// Modbus Slave Addr field defines slave address of the device with correspond parameter.
// Modbus Reg Type - Type of Modbus register area (Holding register, Input Register and such).
// Reg Start field defines the start Modbus register number and Reg Size defines the number of registers for the characteristic accordingly.
// The Instance Offset defines offset in the appropriate parameter structure that will be used as instance to save parameter value.
// Data Type, Data Size specify type of the characteristic and its data size.
// Parameter Options field specifies the options that can be used to process parameter value (limits or masks).
// Access Mode - can be used to implement custom options for processing of characteristic (Read/Write restrictions, factory mode values and etc).
const mb_parameter_descriptor_t device_parameters[] = {
// { CID, Param Name, Units, Modbus Slave Addr, Modbus Reg Type, Reg Start, Reg Size, Instance Offset, Data Type, Data Size, Parameter Options, Access Mode}
{ CID_INP_DATA_0, STR("Data_channel_0"), STR("Volts"), MB_DEVICE_ADDR1, MB_PARAM_INPUT, 0, 2,
INPUT_OFFSET(input_data0), PARAM_TYPE_FLOAT, 4, OPTS( -10, 10, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_HOLD_DATA_0, STR("Humidity_1"), STR("%rH"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, 0, 2,
HOLD_OFFSET(holding_data0), PARAM_TYPE_FLOAT, 4, OPTS( 0, 100, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_INP_DATA_1, STR("Temperature_1"), STR("C"), MB_DEVICE_ADDR1, MB_PARAM_INPUT, 2, 2,
INPUT_OFFSET(input_data1), PARAM_TYPE_FLOAT, 4, OPTS( -40, 100, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_HOLD_DATA_1, STR("Humidity_2"), STR("%rH"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, 2, 2,
HOLD_OFFSET(holding_data1), PARAM_TYPE_FLOAT, 4, OPTS( 0, 100, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_INP_DATA_2, STR("Temperature_2"), STR("C"), MB_DEVICE_ADDR1, MB_PARAM_INPUT, 4, 2,
INPUT_OFFSET(input_data2), PARAM_TYPE_FLOAT, 4, OPTS( -40, 100, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_HOLD_DATA_2, STR("Humidity_3"), STR("%rH"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, 4, 2,
HOLD_OFFSET(holding_data2), PARAM_TYPE_FLOAT, 4, OPTS( 0, 100, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_HOLD_TEST_REG, STR("Test_regs"), STR("__"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, 10, 58,
HOLD_OFFSET(test_regs), PARAM_TYPE_ASCII, 116, OPTS( 0, 100, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_RELAY_P1, STR("RelayP1"), STR("on/off"), MB_DEVICE_ADDR1, MB_PARAM_COIL, 2, 6,
COIL_OFFSET(coils_port0), PARAM_TYPE_U8, 1, OPTS( 0xAA, 0x15, 0 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_RELAY_P2, STR("RelayP2"), STR("on/off"), MB_DEVICE_ADDR1, MB_PARAM_COIL, 10, 6,
COIL_OFFSET(coils_port1), PARAM_TYPE_U8, 1, OPTS( 0x55, 0x2A, 0 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_DISCR_P1, STR("DiscreteInpP1"), STR("on/off"), MB_DEVICE_ADDR1, MB_PARAM_DISCRETE, 2, 7,
DISCR_OFFSET(discrete_input_port1), PARAM_TYPE_U8, 1, OPTS( 0xAA, 0x15, 0 ), PAR_PERMS_READ_WRITE_TRIGGER }
};
// Calculate number of parameters in the table
const uint16_t num_device_parameters = (sizeof(device_parameters)/sizeof(device_parameters[0]));
static void *master_handle = NULL;
// The function to get pointer to parameter storage (instance) according to parameter description table
static void *master_get_param_data(const mb_parameter_descriptor_t *param_descriptor)
{
assert(param_descriptor != NULL);
void* instance_ptr = NULL;
if (param_descriptor->param_offset != 0) {
switch(param_descriptor->mb_param_type)
{
case MB_PARAM_HOLDING:
instance_ptr = ((void*)&holding_reg_params + param_descriptor->param_offset - 1);
break;
case MB_PARAM_INPUT:
instance_ptr = ((void*)&input_reg_params + param_descriptor->param_offset - 1);
break;
case MB_PARAM_COIL:
instance_ptr = ((void*)&coil_reg_params + param_descriptor->param_offset - 1);
break;
case MB_PARAM_DISCRETE:
instance_ptr = ((void*)&discrete_reg_params + param_descriptor->param_offset - 1);
break;
default:
instance_ptr = NULL;
break;
}
} else {
ESP_LOGE(TAG, "Wrong parameter offset for CID #%u", (unsigned)param_descriptor->cid);
assert(instance_ptr != NULL);
}
return instance_ptr;
}
// User operation function to read slave values and check alarm
static void master_operation_func(void *arg)
{
esp_err_t err = ESP_OK;
float value = 0;
bool alarm_state = false;
const mb_parameter_descriptor_t* param_descriptor = NULL;
ESP_LOGI(TAG, "Start modbus test...");
for(uint16_t retry = 0; retry <= MASTER_MAX_RETRY && (!alarm_state); retry++) {
// Read all found characteristics from slave(s)
for (uint16_t cid = 0; (err != ESP_ERR_NOT_FOUND) && cid < MASTER_MAX_CIDS; cid++)
{
// Get data from parameters description table
// and use this information to fill the characteristics description table
// and having all required fields in just one table
err = mbc_master_get_cid_info(master_handle, cid, &param_descriptor);
if ((err != ESP_ERR_NOT_FOUND) && (param_descriptor != NULL)) {
void* temp_data_ptr = master_get_param_data(param_descriptor);
assert(temp_data_ptr);
uint8_t type = 0;
if ((param_descriptor->param_type == PARAM_TYPE_ASCII) &&
(param_descriptor->cid == CID_HOLD_TEST_REG)) {
// Check for long array of registers of type PARAM_TYPE_ASCII
err = mbc_master_get_parameter(master_handle, cid, (uint8_t*)temp_data_ptr, &type);
if (err == ESP_OK) {
ESP_LOGI(TAG, "Characteristic #%u %s (%s) value = (0x%" PRIx32 ") read successful.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
*(uint32_t*)temp_data_ptr);
// Initialize data of test array and write to slave
if (*(uint32_t*)temp_data_ptr != 0xAAAAAAAA) {
memset((void*)temp_data_ptr, 0xAA, param_descriptor->param_size);
*(uint32_t*)temp_data_ptr = 0xAAAAAAAA;
err = mbc_master_set_parameter(master_handle, cid, (uint8_t*)temp_data_ptr, &type);
if (err == ESP_OK) {
ESP_LOGI(TAG, "Characteristic #%u %s (%s) value = (0x%" PRIx32 "), write successful.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
*(uint32_t*)temp_data_ptr);
} else {
ESP_LOGE(TAG, "Characteristic #%u (%s) write fail, err = 0x%x (%s).",
param_descriptor->cid,
param_descriptor->param_key,
(int)err,
(char*)esp_err_to_name(err));
}
}
} else {
ESP_LOGE(TAG, "Characteristic #%u (%s) read fail, err = 0x%x (%s).",
param_descriptor->cid,
param_descriptor->param_key,
(int)err,
(char*)esp_err_to_name(err));
}
} else {
err = mbc_master_get_parameter(master_handle, cid, (uint8_t*)temp_data_ptr, &type);
if (err == ESP_OK) {
if ((param_descriptor->mb_param_type == MB_PARAM_HOLDING) ||
(param_descriptor->mb_param_type == MB_PARAM_INPUT)) {
value = *(float*)temp_data_ptr;
ESP_LOGI(TAG, "Characteristic #%u %s (%s) value = %f (0x%" PRIx32 ") read successful.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
value,
*(uint32_t*)temp_data_ptr);
if (((value > param_descriptor->param_opts.max) ||
(value < param_descriptor->param_opts.min))) {
alarm_state = true;
break;
}
} else {
uint8_t state = *(uint8_t*)temp_data_ptr;
const char* rw_str = (state & param_descriptor->param_opts.opt1) ? "ON" : "OFF";
if ((state & param_descriptor->param_opts.opt2) == param_descriptor->param_opts.opt2) {
ESP_LOGI(TAG, "Characteristic #%u %s (%s) value = %s (0x%" PRIx8 ") read successful.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
(const char*)rw_str,
*(uint8_t*)temp_data_ptr);
} else {
ESP_LOGE(TAG, "Characteristic #%u %s (%s) value = %s (0x%" PRIx8 "), unexpected value.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
(const char*)rw_str,
*(uint8_t*)temp_data_ptr);
alarm_state = true;
break;
}
if (state & param_descriptor->param_opts.opt1) {
alarm_state = true;
break;
}
}
} else {
ESP_LOGE(TAG, "Characteristic #%u (%s) read fail, err = 0x%x (%s).",
param_descriptor->cid,
param_descriptor->param_key,
(int)err,
(char*)esp_err_to_name(err));
}
}
vTaskDelay(POLL_TIMEOUT_TICS); // timeout between polls
}
}
vTaskDelay(UPDATE_CIDS_TIMEOUT_TICS);
}
if (alarm_state) {
ESP_LOGI(TAG, "Alarm triggered by cid #%u.", param_descriptor->cid);
} else {
ESP_LOGE(TAG, "Alarm is not triggered after %u retries.", MASTER_MAX_RETRY);
}
ESP_LOGI(TAG, "Destroy master...");
ESP_ERROR_CHECK(mbc_master_delete(master_handle));
}
// Modbus master initialization
static esp_err_t master_init(void)
{
// Initialize Modbus controller
mb_communication_info_t comm = {
.ser_opts.port = MB_PORT_NUM,
#if CONFIG_MB_COMM_MODE_ASCII
.ser_opts.mode = MB_ASCII,
#elif CONFIG_MB_COMM_MODE_RTU
.ser_opts.mode = MB_RTU,
#endif
.ser_opts.baudrate = MB_DEV_SPEED,
.ser_opts.parity = MB_PARITY_NONE,
.ser_opts.uid = 0,
.ser_opts.response_tout_ms = 1000,
.ser_opts.data_bits = UART_DATA_8_BITS,
.ser_opts.stop_bits = UART_STOP_BITS_1
};
esp_err_t err = mbc_master_create_serial(&comm, &master_handle);
MB_RETURN_ON_FALSE((master_handle != NULL), ESP_ERR_INVALID_STATE, TAG,
"mb controller initialization fail.");
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb controller initialization fail, returns(0x%x).", (int)err);
// Set UART pin numbers
err = uart_set_pin(MB_PORT_NUM, CONFIG_MB_UART_TXD, CONFIG_MB_UART_RXD,
CONFIG_MB_UART_RTS, UART_PIN_NO_CHANGE);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb serial set pin failure, uart_set_pin() returned (0x%x).", (int)err);
err = mbc_master_start(master_handle);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb controller start fail, returned (0x%x).", (int)err);
// Set driver mode to Half Duplex
err = uart_set_mode(MB_PORT_NUM, UART_MODE_RS485_HALF_DUPLEX);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb serial set mode failure, uart_set_mode() returned (0x%x).", (int)err);
vTaskDelay(5);
err = mbc_master_set_descriptor(master_handle, &device_parameters[0], num_device_parameters);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb controller set descriptor fail, returns(0x%x).", (int)err);
ESP_LOGI(TAG, "Modbus master stack initialized...");
return err;
}
void app_main(void)
{
// Initialization of device peripheral and objects
ESP_ERROR_CHECK(master_init());
vTaskDelay(10);
master_operation_func(NULL);
}

View File

@@ -0,0 +1,6 @@
CONFIG_MB_COMM_MODE_ASCII=y
CONFIG_MB_COMM_MODE_RTU=n
CONFIG_MB_UART_BAUD_RATE=115200
CONFIG_FMB_MASTER_DELAY_MS_CONVERT=200
CONFIG_FMB_MASTER_TIMEOUT_MS_RESPOND=400
CONFIG_FMB_TIMER_USE_ISR_DISPATCH_METHOD=y

View File

@@ -0,0 +1,6 @@
CONFIG_MB_COMM_MODE_ASCII=n
CONFIG_MB_COMM_MODE_RTU=y
CONFIG_MB_UART_BAUD_RATE=115200
CONFIG_FMB_MASTER_DELAY_MS_CONVERT=200
CONFIG_FMB_MASTER_TIMEOUT_MS_RESPOND=400
CONFIG_FMB_TIMER_USE_ISR_DISPATCH_METHOD=y

View File

@@ -0,0 +1,10 @@
# The following lines of boilerplate have to be in your project's CMakeLists
# in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.16)
# Exclude old component feemodbus which exists in old versions
set(EXCLUDE_COMPONENTS freemodbus)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(modbus_serial_slave)

View File

@@ -0,0 +1,97 @@
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C6 | ESP32-H2 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- | -------- |
# Modbus Slave Example
This example demonstrates using the port of the FreeModbus stack on an ESP32 target where the ESP32 target is operating as a network slave. The example allows an external Modbus host to read/write device parameters on the ESP32 target using the Modbus protocol. The parameters accessible through Modbus are located in `mb_example_common/modbus_params.h\c` source/header files that users can update to add/remove their own custom parameters.
These are represented in structures `holding_reg_params`, `input_reg_params`, `coil_reg_params`, `discrete_reg_params` for holding registers, input parameters, coils and discrete inputs accordingly. The app_main application demonstrates how to setup Modbus stack and use notifications about parameters change from host system.
The FreeModbus stack located in `components/freemodbus` folder and contains the `/port` folder where the stack's port to the ESP32 is situated. There are some parameters of the port that can be configured in KConfig file to start stack correctly (See description below for more information).
The slave example uses shared parameter structures defined in `examples/protocols/modbus/mb_example_common` folder.
## Hardware required :
Option 1:
PC + USB Serial adapter connected to USB port + RS485 line drivers + ESP32 based board.
The MAX485 line driver is used as an example below but other similar chips can be used as well.
Option 2:
The modbus_master example application configured as described in its README.md file and flashed into ESP32 based board.
Note: The ```Example Data (Object) Dictionary``` in the modbus_master example can be edited to address parameters from other slaves connected into Modbus segment.
RS485 example circuit schematic:
```
VCC ---------------+ +--------------- VCC
| |
+-------x-------+ +-------x-------+
RXD <------| RO | DIFFERENTIAL | RO|-----> RXD
| B|---------------|B |
TXD ------>| DI MAX485 | \ / | MAX485 DI|<----- TXD
ESP32 board | | RS-485 side | | Modbus master
RTS --+--->| DE | / \ | DE|---+
| | A|---------------|A | |
+----| /RE | PAIR | /RE|---+-- RTS
+-------x--------+ +-------x-------+
| |
--- ---
```
## How to setup and use an example:
### Configure the application
Start the command below to show the configuration menu:
```
idf.py menuconfig
```
Select Modbus Example Configuration menu item.
Configure the UART pins used for modbus communication using the command and table below.
```
------------------------------------------------------------------------------------------------------------------------------
| UART Interface | #define | Default pins for | Default pins for | External RS485 Driver Pin |
| | | ESP32 (C6) | ESP32-S2 (S3, C3, C2, H2) | |
| ----------------------|--------------------|-----------------------|---------------------------|---------------------------|
| Transmit Data (TxD) | CONFIG_MB_UART_TXD | GPIO23 | GPIO9 | DI |
| Receive Data (RxD) | CONFIG_MB_UART_RXD | GPIO22 | GPIO8 | RO |
| Request To Send (RTS) | CONFIG_MB_UART_RTS | GPIO18 | GPIO10 | ~RE/DE |
| Ground | n/a | GND | GND | GND |
------------------------------------------------------------------------------------------------------------------------------
```
Note: Each target chip has different GPIO pins available for UART connection. Please refer to UART documentation for selected target for more information.
Define the ```Modbus communiction mode``` for slave in Kconfig - CONFIG_MB_COMM_MODE (must be the same for master and slave application).
Set ```Modbus slave address``` for the example application (by default for example script is set to 1).
The communication parameters of freemodbus stack (Component config->Modbus configuration) allow to configure it appropriately but usually it is enough to use default settings.
See the help strings of parameters for more information.
### Setup external Modbus master software
Option 1:
Configure the external Modbus master software according to port configuration parameters used in application.
As an example the Modbus Poll application can be used with this example.
Option 2:
Setup ESP32 based board and set modbus_master example configuration as described in its README.md file.
Setup one or more slave boards with different slave addresses and connect them into the same Modbus segment (See configuration above).
Note: The ```Modbus communiction mode``` parameter must be the same for master and slave example application to be able to communicate with each other.
### Build and flash software
Build the project and flash it to the board, then run monitor tool to view serial output:
```
idf.py -p PORT flash monitor
```
(To exit the serial monitor, type ``Ctrl-]``.)
See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.
## Example Output
Example output of the application:
```
I (13941) SLAVE_TEST: INPUT READ (13651163 us), ADDR:1, TYPE:8, INST_ADDR:0x3ffb2fd0, SIZE:2
I (13951) SLAVE_TEST: HOLDING READ (13656431 us), ADDR:1, TYPE:2, INST_ADDR:0x3ffb2fe0, SIZE:2
I (13961) SLAVE_TEST: INPUT READ (13665877 us), ADDR:3, TYPE:8, INST_ADDR:0x3ffb2fd4, SIZE:2
I (13971) SLAVE_TEST: HOLDING READ (13676010 us), ADDR:3, TYPE:2, INST_ADDR:0x3ffb2fe4, SIZE:2
I (13981) SLAVE_TEST: INPUT READ (13686130 us), ADDR:5, TYPE:8, INST_ADDR:0x3ffb2fd8, SIZE:2
I (13991) SLAVE_TEST: HOLDING READ (13696267 us), ADDR:5, TYPE:2, INST_ADDR:0x3ffb2fe8, SIZE:2
I (14001) SLAVE_TEST: COILS READ (13706331 us), ADDR:0, TYPE:32, INST_ADDR:0x3ffb2fcc, SIZE:8
I (14001) SLAVE_TEST: Modbus controller destroyed.
```
The output lines describe type of operation, its timestamp, modbus address, access type, storage address in parameter structure and number of registers accordingly.

View File

@@ -0,0 +1,4 @@
set(PROJECT_NAME "modbus_serial_slave")
idf_component_register(SRCS "serial_slave.c"
INCLUDE_DIRS ".")

View File

@@ -0,0 +1,104 @@
menu "Modbus Example Configuration"
config MB_UART_PORT_ONE
bool
default y
depends on (ESP_CONSOLE_UART_NUM !=1) && (SOC_UART_NUM > 1)
config MB_UART_PORT_TWO
bool
default y
depends on (ESP_CONSOLE_UART_NUM !=2) && (SOC_UART_NUM > 2)
config MB_UART_PORT_NUM
int "UART port number"
range 0 2 if MB_UART_PORT_TWO
default 2 if MB_UART_PORT_TWO
range 0 1 if MB_UART_PORT_ONE
default 1 if MB_UART_PORT_ONE
help
UART communication port number for Modbus example.
config MB_UART_BAUD_RATE
int "UART communication speed"
range 1200 115200
default 115200
help
UART communication speed for Modbus example.
config MB_UART_RXD
int "UART RXD pin number"
range 0 34 if IDF_TARGET_ESP32
range 0 23 if IDF_TARGET_ESP32C6
default 22 if IDF_TARGET_ESP32 || IDF_TARGET_ESP32C6
range 0 46 if IDF_TARGET_ESP32S2
range 0 47 if IDF_TARGET_ESP32S3
range 0 19 if IDF_TARGET_ESP32C3
range 0 20 if IDF_TARGET_ESP32C2
range 0 27 if IDF_TARGET_ESP32H2
default 8 if IDF_TARGET_ESP32S2 || IDF_TARGET_ESP32S3
default 8 if IDF_TARGET_ESP32C3 || IDF_TARGET_ESP32C2 || IDF_TARGET_ESP32H2
help
GPIO number for UART RX pin. See UART documentation for more information
about available pin numbers for UART.
config MB_UART_TXD
int "UART TXD pin number"
range 0 34 if IDF_TARGET_ESP32
range 0 23 if IDF_TARGET_ESP32C6
default 23 if IDF_TARGET_ESP32 || IDF_TARGET_ESP32C6
range 0 46 if IDF_TARGET_ESP32S2
range 0 47 if IDF_TARGET_ESP32S3
range 0 19 if IDF_TARGET_ESP32C3
range 0 20 if IDF_TARGET_ESP32C2
range 0 27 if IDF_TARGET_ESP32H2
default 9 if IDF_TARGET_ESP32S2 || IDF_TARGET_ESP32S3
default 9 if IDF_TARGET_ESP32C3 || IDF_TARGET_ESP32C2 || IDF_TARGET_ESP32H2
help
GPIO number for UART TX pin. See UART documentation for more information
about available pin numbers for UART.
config MB_UART_RTS
int "UART RTS pin number"
range 0 34 if IDF_TARGET_ESP32
range 0 23 if IDF_TARGET_ESP32C6
default 18 if IDF_TARGET_ESP32 || IDF_TARGET_ESP32C6
range 0 46 if IDF_TARGET_ESP32S2
range 0 47 if IDF_TARGET_ESP32S3
range 0 19 if IDF_TARGET_ESP32C3
range 0 20 if IDF_TARGET_ESP32C2
range 0 27 if IDF_TARGET_ESP32H2
default 10 if IDF_TARGET_ESP32S2 || IDF_TARGET_ESP32S3
default 10 if IDF_TARGET_ESP32C3 || IDF_TARGET_ESP32C2 || IDF_TARGET_ESP32H2
help
GPIO number for UART RTS pin. This pin is connected to
~RE/DE pin of RS485 transceiver to switch direction.
See UART documentation for more information about available pin
numbers for UART.
choice MB_COMM_MODE
prompt "Modbus communication mode"
default MB_COMM_MODE_RTU if CONFIG_FMB_COMM_MODE_RTU_EN
help
Selection of Modbus communication mode option for Modbus.
config MB_COMM_MODE_RTU
bool "RTU mode"
depends on FMB_COMM_MODE_RTU_EN
config MB_COMM_MODE_ASCII
bool "ASCII mode"
depends on FMB_COMM_MODE_ASCII_EN
endchoice
config MB_SLAVE_ADDR
int "Modbus slave address"
range 1 127
default 1
help
This is the Modbus slave address in the network.
It is used to organize Modbus network with several slaves connected into the same segment.
endmenu

View File

@@ -0,0 +1,7 @@
dependencies:
idf: ">=4.1"
espressif/esp-modbus:
version: "^2.0"
override_path: "../../../../"
mb_example_common:
path: "../../../mb_example_common"

View File

@@ -0,0 +1,230 @@
/*
* SPDX-FileCopyrightText: 2016-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// FreeModbus Slave Example ESP32
#include <stdio.h>
#include <stdint.h>
#include "esp_err.h"
#include "mbcontroller.h" // for mbcontroller defines and api
#include "modbus_params.h" // for modbus parameters structures
#include "esp_log.h" // for log_write
#include "sdkconfig.h"
#define MB_PORT_NUM (CONFIG_MB_UART_PORT_NUM) // Number of UART port used for Modbus connection
#define MB_SLAVE_ADDR (CONFIG_MB_SLAVE_ADDR) // The address of device in Modbus network
#define MB_DEV_SPEED (CONFIG_MB_UART_BAUD_RATE) // The communication speed of the UART
// Note: Some pins on target chip cannot be assigned for UART communication.
// Please refer to documentation for selected board and target to configure pins using Kconfig.
// Defines below are used to define register start address for each type of Modbus registers
#define HOLD_OFFSET(field) ((uint16_t)(offsetof(holding_reg_params_t, field) >> 1))
#define INPUT_OFFSET(field) ((uint16_t)(offsetof(input_reg_params_t, field) >> 1))
#define MB_REG_DISCRETE_INPUT_START (0x0000)
#define MB_REG_COILS_START (0x0000)
#define MB_REG_INPUT_START_AREA0 (INPUT_OFFSET(input_data0)) // register offset input area 0
#define MB_REG_INPUT_START_AREA1 (INPUT_OFFSET(input_data4)) // register offset input area 1
#define MB_REG_HOLDING_START_AREA0 (HOLD_OFFSET(holding_data0))
#define MB_REG_HOLDING_START_AREA1 (HOLD_OFFSET(holding_data4))
#define MB_PAR_INFO_GET_TOUT (10) // Timeout for get parameter info
#define MB_CHAN_DATA_MAX_VAL (6)
#define MB_CHAN_DATA_OFFSET (0.2f)
#define MB_READ_MASK (MB_EVENT_INPUT_REG_RD \
| MB_EVENT_HOLDING_REG_RD \
| MB_EVENT_DISCRETE_RD \
| MB_EVENT_COILS_RD)
#define MB_WRITE_MASK (MB_EVENT_HOLDING_REG_WR \
| MB_EVENT_COILS_WR)
#define MB_READ_WRITE_MASK (MB_READ_MASK | MB_WRITE_MASK)
static const char *TAG = "SLAVE_TEST";
static void* mbc_slave_handle = NULL;
// Set register values into known state
static void setup_reg_data(void)
{
// Define initial state of parameters
discrete_reg_params.discrete_input0 = 1;
discrete_reg_params.discrete_input1 = 0;
discrete_reg_params.discrete_input2 = 1;
discrete_reg_params.discrete_input3 = 0;
discrete_reg_params.discrete_input4 = 1;
discrete_reg_params.discrete_input5 = 0;
discrete_reg_params.discrete_input6 = 1;
discrete_reg_params.discrete_input7 = 0;
holding_reg_params.holding_data0 = 1.34;
holding_reg_params.holding_data1 = 2.56;
holding_reg_params.holding_data2 = 3.78;
holding_reg_params.holding_data3 = 4.90;
holding_reg_params.holding_data4 = 5.67;
holding_reg_params.holding_data5 = 6.78;
holding_reg_params.holding_data6 = 7.79;
holding_reg_params.holding_data7 = 8.80;
coil_reg_params.coils_port0 = 0x55;
coil_reg_params.coils_port1 = 0xAA;
input_reg_params.input_data0 = 1.12;
input_reg_params.input_data1 = 2.34;
input_reg_params.input_data2 = 3.56;
input_reg_params.input_data3 = 4.78;
input_reg_params.input_data4 = 1.12;
input_reg_params.input_data5 = 2.34;
input_reg_params.input_data6 = 3.56;
input_reg_params.input_data7 = 4.78;
}
// An example application of Modbus slave. It is based on freemodbus stack.
// See deviceparams.h file for more information about assigned Modbus parameters.
// These parameters can be accessed from main application and also can be changed
// by external Modbus master host.
void app_main(void)
{
mb_param_info_t reg_info; // keeps the Modbus registers access information
mb_register_area_descriptor_t reg_area; // Modbus register area descriptor structure
// Set UART log level
esp_log_level_set(TAG, ESP_LOG_INFO);
// Initialize Modbus controller
mb_communication_info_t comm_config = {
.ser_opts.port = MB_PORT_NUM,
#if CONFIG_MB_COMM_MODE_ASCII
.ser_opts.mode = MB_ASCII,
#elif CONFIG_MB_COMM_MODE_RTU
.ser_opts.mode = MB_RTU,
#endif
.ser_opts.baudrate = MB_DEV_SPEED,
.ser_opts.parity = MB_PARITY_NONE,
.ser_opts.uid = MB_SLAVE_ADDR,
.ser_opts.data_bits = UART_DATA_8_BITS,
.ser_opts.stop_bits = UART_STOP_BITS_1
};
ESP_ERROR_CHECK(mbc_slave_create_serial(&comm_config, &mbc_slave_handle)); // Initialization of Modbus controller
// The code below initializes Modbus register area descriptors
// for Modbus Holding Registers, Input Registers, Coils and Discrete Inputs
// Initialization should be done for each supported Modbus register area according to register map.
// When external master trying to access the register in the area that is not initialized
// by mbc_slave_set_descriptor() API call then Modbus stack
// will send exception response for this register area.
reg_area.type = MB_PARAM_HOLDING; // Set type of register area
reg_area.start_offset = MB_REG_HOLDING_START_AREA0; // Offset of register area in Modbus protocol
reg_area.address = (void*)&holding_reg_params.holding_data0; // Set pointer to storage instance
// Set the size of register storage instance = 150 holding registers
reg_area.size = (size_t)(HOLD_OFFSET(holding_data4) - HOLD_OFFSET(test_regs));
ESP_ERROR_CHECK(mbc_slave_set_descriptor(mbc_slave_handle, reg_area));
reg_area.type = MB_PARAM_HOLDING; // Set type of register area
reg_area.start_offset = MB_REG_HOLDING_START_AREA1; // Offset of register area in Modbus protocol
reg_area.address = (void*)&holding_reg_params.holding_data4; // Set pointer to storage instance
reg_area.size = sizeof(float) << 2; // Set the size of register storage instance
ESP_ERROR_CHECK(mbc_slave_set_descriptor(mbc_slave_handle, reg_area));
// Initialization of Input Registers area
reg_area.type = MB_PARAM_INPUT;
reg_area.start_offset = MB_REG_INPUT_START_AREA0;
reg_area.address = (void*)&input_reg_params.input_data0;
reg_area.size = sizeof(float) << 2;
ESP_ERROR_CHECK(mbc_slave_set_descriptor(mbc_slave_handle, reg_area));
reg_area.type = MB_PARAM_INPUT;
reg_area.start_offset = MB_REG_INPUT_START_AREA1;
reg_area.address = (void*)&input_reg_params.input_data4;
reg_area.size = sizeof(float) << 2;
ESP_ERROR_CHECK(mbc_slave_set_descriptor(mbc_slave_handle, reg_area));
// Initialization of Coils register area
reg_area.type = MB_PARAM_COIL;
reg_area.start_offset = MB_REG_COILS_START;
reg_area.address = (void*)&coil_reg_params;
reg_area.size = sizeof(coil_reg_params);
ESP_ERROR_CHECK(mbc_slave_set_descriptor(mbc_slave_handle, reg_area));
// Initialization of Discrete Inputs register area
reg_area.type = MB_PARAM_DISCRETE;
reg_area.start_offset = MB_REG_DISCRETE_INPUT_START;
reg_area.address = (void*)&discrete_reg_params;
reg_area.size = sizeof(discrete_reg_params);
ESP_ERROR_CHECK(mbc_slave_set_descriptor(mbc_slave_handle, reg_area));
setup_reg_data(); // Set values into known state
// Starts of modbus controller and stack
ESP_ERROR_CHECK(mbc_slave_start(mbc_slave_handle));
// Set UART pin numbers
ESP_ERROR_CHECK(uart_set_pin(MB_PORT_NUM, CONFIG_MB_UART_TXD,
CONFIG_MB_UART_RXD, CONFIG_MB_UART_RTS,
UART_PIN_NO_CHANGE));
// Set UART driver mode to Half Duplex
ESP_ERROR_CHECK(uart_set_mode(MB_PORT_NUM, UART_MODE_RS485_HALF_DUPLEX));
ESP_LOGI(TAG, "Modbus slave stack initialized.");
ESP_LOGI(TAG, "Start modbus test...");
// The cycle below will be terminated when parameter holdingRegParams.dataChan0
// incremented each access cycle reaches the CHAN_DATA_MAX_VAL value.
for(;holding_reg_params.holding_data0 < MB_CHAN_DATA_MAX_VAL;) {
// Check for read/write events of Modbus master for certain events
(void)mbc_slave_check_event(mbc_slave_handle, MB_READ_WRITE_MASK);
// Get parameter information from parameter queue
ESP_ERROR_CHECK(mbc_slave_get_param_info(mbc_slave_handle, &reg_info, MB_PAR_INFO_GET_TOUT));
const char* rw_str = (reg_info.type & MB_READ_MASK) ? "READ" : "WRITE";
// Filter events and process them accordingly
if(reg_info.type & (MB_EVENT_HOLDING_REG_WR | MB_EVENT_HOLDING_REG_RD)) {
ESP_LOGI(TAG, "HOLDING %s (%" PRIu32 " us), ADDR:%u, TYPE:%u, INST_ADDR:0x%" PRIx32 ", SIZE:%u",
rw_str,
reg_info.time_stamp,
(unsigned)reg_info.mb_offset,
(unsigned)reg_info.type,
(uint32_t)reg_info.address,
(unsigned)reg_info.size);
if (reg_info.address == (uint8_t*)&holding_reg_params.holding_data0)
{
(void)mbc_slave_lock(slave_handle);
holding_reg_params.holding_data0 += MB_CHAN_DATA_OFFSET;
if (holding_reg_params.holding_data0 >= (MB_CHAN_DATA_MAX_VAL - MB_CHAN_DATA_OFFSET)) {
coil_reg_params.coils_port1 = 0xFF;
}
(void)mbc_slave_unlock(slave_handle);
}
} else if (reg_info.type & MB_EVENT_INPUT_REG_RD) {
ESP_LOGI(TAG, "INPUT READ (%" PRIu32 " us), ADDR:%u, TYPE:%u, INST_ADDR:0x%" PRIx32 ", SIZE:%u",
reg_info.time_stamp,
(unsigned)reg_info.mb_offset,
(unsigned)reg_info.type,
(uint32_t)reg_info.address,
(unsigned)reg_info.size);
} else if (reg_info.type & MB_EVENT_DISCRETE_RD) {
ESP_LOGI(TAG, "DISCRETE READ (%" PRIu32 " us): ADDR:%u, TYPE:%u, INST_ADDR:0x%" PRIx32 ", SIZE:%u",
reg_info.time_stamp,
(unsigned)reg_info.mb_offset,
(unsigned)reg_info.type,
(uint32_t)reg_info.address,
(unsigned)reg_info.size);
} else if (reg_info.type & (MB_EVENT_COILS_RD | MB_EVENT_COILS_WR)) {
ESP_LOGI(TAG, "COILS %s (%" PRIu32 " us), ADDR:%u, TYPE:%u, INST_ADDR:0x%" PRIx32 ", SIZE:%u",
rw_str,
reg_info.time_stamp,
(unsigned)reg_info.mb_offset,
(unsigned)reg_info.type,
(uint32_t)reg_info.address,
(unsigned)reg_info.size);
if (coil_reg_params.coils_port1 == 0xFF) break;
}
}
// Destroy of Modbus controller on alarm
ESP_LOGI(TAG,"Modbus controller destroyed.");
vTaskDelay(100);
ESP_ERROR_CHECK(mbc_slave_delete(mbc_slave_handle));
}

View File

@@ -0,0 +1,5 @@
CONFIG_MB_COMM_MODE_ASCII=y
CONFIG_MB_COMM_MODE_RTU=n
CONFIG_MB_SLAVE_ADDR=1
CONFIG_MB_UART_BAUD_RATE=115200
CONFIG_FMB_TIMER_USE_ISR_DISPATCH_METHOD=y

View File

@@ -0,0 +1,5 @@
CONFIG_MB_COMM_MODE_ASCII=n
CONFIG_MB_COMM_MODE_RTU=y
CONFIG_MB_SLAVE_ADDR=1
CONFIG_MB_UART_BAUD_RATE=115200
CONFIG_FMB_TIMER_USE_ISR_DISPATCH_METHOD=y

View File

@@ -0,0 +1,7 @@
#
# Modbus configuration
#
CONFIG_MB_COMM_MODE_ASCII=y
CONFIG_MB_SLAVE_ADDR=1
CONFIG_MB_UART_BAUD_RATE=115200
CONFIG_FMB_TIMER_USE_ISR_DISPATCH_METHOD=y

View File

@@ -0,0 +1,66 @@
# SPDX-FileCopyrightText: 2016-2023 Espressif Systems (Shanghai) CO LTD
# SPDX-License-Identifier: Apache-2.0
# This is the script to reproduce the issue when the expect() is called from
# main thread in Multi DUT case.
import logging
import os
from typing import Tuple
import pytest
from conftest import ModbusTestDut, Stages
pattern_dict_slave = {Stages.STACK_IPV4: (r'I \([0-9]+\) example_connect: - IPv4 address: ([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3})'),
Stages.STACK_IPV6: (r'I \([0-9]+\) example_connect: - IPv6 address: (([A-Fa-f0-9]{1,4}::?){1,7}[A-Fa-f0-9]{1,4})'),
Stages.STACK_INIT: (r'I \(([0-9]+)\) MB_TCP_SLAVE_PORT: (Protocol stack initialized).'),
Stages.STACK_CONNECT: (r'I\s\(([0-9]+)\) MB_TCP_SLAVE_PORT: Socket \(#[0-9]+\), accept client connection from address: '
r'([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3})'),
Stages.STACK_START: (r'I\s\(([0-9]+)\) SLAVE_TEST: (Start modbus test)'),
Stages.STACK_PAR_OK: (r'I\s\(([0-9]+)\) SLAVE_TEST: ([A-Z]+ [A-Z]+) \([a-zA-Z0-9_]+ us\),\s'
r'ADDR:([0-9]+), TYPE:[0-9]+, INST_ADDR:0x[a-zA-Z0-9]+, SIZE:[0-9]+'),
Stages.STACK_PAR_FAIL: (r'E \(([0-9]+)\) SLAVE_TEST: Response time exceeds configured [0-9]+ [ms], ignore packet'),
Stages.STACK_DESTROY: (r'I\s\(([0-9]+)\) SLAVE_TEST: (Modbus controller destroyed).')}
pattern_dict_master = {Stages.STACK_IPV4: (r'I \([0-9]+\) example_connect: - IPv4 address: ([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3})'),
Stages.STACK_IPV6: (r'I \([0-9]+\) example_connect: - IPv6 address: (([A-Fa-f0-9]{1,4}::?){1,7}[A-Fa-f0-9]{1,4})'),
Stages.STACK_INIT: (r'I \(([0-9]+)\) MASTER_TEST: (Modbus master stack initialized)'),
Stages.STACK_CONNECT: (r'I\s\(([0-9]+)\) MB_TCP_MASTER_PORT: (Connected [0-9]+ slaves), start polling'),
Stages.STACK_START: (r'I \(([0-9]+)\) MASTER_TEST: (Start modbus test)'),
Stages.STACK_PAR_OK: (r'I \(([0-9]+)\) MASTER_TEST: Characteristic #[0-9]+ ([a-zA-Z0-9_]+)'
r'\s\([a-zA-Z\_\%\/]+\) value =[a-zA-Z0-9\.\s]* \((0x[a-zA-Z0-9]+)\)[,\sa-z]+ successful'),
Stages.STACK_PAR_FAIL: (r'.*E \(([0-9]+)\) MASTER_TEST: Characteristic #[0-9]+\s\(([a-zA-Z0-9_]+)\)\s'
r'read fail, err = [0-9]+ \([_A-Z]+\)'),
Stages.STACK_DESTROY: (r'I \(([0-9]+)\) MASTER_TEST: (Destroy master)...')}
LOG_LEVEL = logging.DEBUG
LOGGER_NAME = 'modbus_test'
logger = logging.getLogger(LOGGER_NAME)
test_configs = [
'rtu',
'ascii'
]
@pytest.mark.esp32
@pytest.mark.multi_dut_modbus_serial
@pytest.mark.parametrize('config', test_configs, indirect=True)
@pytest.mark.parametrize(
'count, app_path', [
(2, f'{os.path.join(os.path.dirname(__file__), "mb_serial_master")}|{os.path.join(os.path.dirname(__file__), "mb_serial_slave")}')
],
indirect=True
)
def test_modbus_serial_communication(config: str, dut: Tuple[ModbusTestDut, ModbusTestDut]) -> None:
dut_slave = dut[1]
dut_master = dut[0]
logger.info('DUT: %s start.', dut_master.dut_get_name())
logger.info('DUT: %s start.', dut_slave.dut_get_name())
dut_slave.dut_test_start(dictionary=pattern_dict_slave)
dut_master.dut_test_start(dictionary=pattern_dict_master)
dut_slave.dut_check_errors()
dut_master.dut_check_errors()

58
examples/tcp/README.md Normal file
View File

@@ -0,0 +1,58 @@
# Modbus TCP Master-Slave Example
## Overview
These two projects illustrate the communication between Modbus master and slave device in the segment.
Master initializes Modbus interface driver and then reads parameters from slave device in the segment.
After several successful read attempts slave sets the alarm relay (end of test condition).
Once master reads the alarm it stops communication and destroy driver.
The examples:
* `examples/protocols/modbus/tcp/mb_tcp_master` - Modbus TCP master
* `examples/protocols/modbus/tcp/mb_tcp_slave` - Modbus TCP slave
See README.md for each individual project for more information.
## How to use example
### Hardware Required
This example can be run on any commonly available ESP32(-S2) development board.
The master and slave boards should be connected to the same network (see the README.md file in example folder) and slave address `CONFIG_MB_SLAVE_ADDR` be defined for slave board(s).
See the connection schematic in README.md files of each example.
### Configure the project
This example test requires communication mode setting for master and slave be the same and slave address set to 1.
Please refer to README.md files of each example project for more information. This example uses the default option `CONFIG_MB_SLAVE_IP_FROM_STDIN` to resolve slave IP address and supports IPv4 address type for communication in this case.
## About common_component in this example
The folder "mb_example_common" one level above includes definitions of parameter structures for master and slave device (both projects share the same parameters).
However, currently it is for example purpose only and can be modified for particular application.
## Example Output
Refer to README.md file in the appropriate example folder for more information about master and slave log output.
## Troubleshooting
If the examples do not work as expected and slave and master boards are not able to communicate correctly it is possible to find the reason for errors.
The most important errors are described in master example output and formatted as below:
```
E (1692332) MB_CONTROLLER_MASTER: mbc_master_get_parameter(111): SERIAL master get parameter failure error=(0x107) (ESP_ERR_TIMEOUT).
```
ESP_ERR_TIMEOUT (0x107) - Modbus slave device does not respond during configured timeout.
Check ability for communication pinging each slave configured in the master parameter description table or use command on your host machine to find modbus slave using mDNS (requires `CONFIG_MB_MDNS_IP_RESOLVER` option be enabled):
```>dns-sd -L mb_slave_tcp_XX _modbus._tcp .```
where XX is the short slave address (index) of the slave configured in the Kconfig of slave example.
Also it is possible to increase Kconfig value `CONFIG_FMB_MASTER_TIMEOUT_MS_RESPOND` to compensate network communication delays between master and slaves.
ESP_ERR_NOT_SUPPORTED (0x106), ESP_ERR_INVALID_RESPONSE (0x108) - Modbus slave device does not support requested command or register and sent exeption response.
ESP_ERR_INVALID_STATE (0x103) - Modbus stack is not configured correctly or can't work correctly due to critical failure.

View File

@@ -0,0 +1,8 @@
# The following lines of boilerplate have to be in your project's CMakeLists
# in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.16)
set(EXCLUDE_COMPONENTS freemodbus)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(modbus_tcp_master)

View File

@@ -0,0 +1,146 @@
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C6 | ESP32-H2 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- | -------- |
# Modbus TCP Master Example
This example demonstrates using of FreeModbus stack port implementation for ESP32 targets as a TCP master device.
This implementation is able to read/write values of slave devices connected into Modbus segment. All parameters to be accessed are defined in data dictionary of the modbus master example source file.
The values represented as characteristics with its name and characteristic CID which are linked into registers of slave devices connected into Modbus segment.
The example implements simple control algorithm and checks parameters from slave device and gets alarm (relay in the slave device) when value of parameter exceeded limit.
The instances for the modbus parameters are common for master and slave examples and located in `examples/protocols/modbus/mb_example_common` folder.
Example parameters definition:
--------------------------------------------------------------------------------------------------
| Slave Address | Characteristic ID | Characteristic name | Description |
|---------------------|----------------------|----------------------|----------------------------|
| MB_DEVICE_ADDR1 | CID_INP_DATA_0, | Data_channel_0 | Data channel 1 |
| MB_DEVICE_ADDR1 | CID_HOLD_DATA_0, | Humidity_1 | Humidity 1 |
| MB_DEVICE_ADDR1 | CID_INP_DATA_1 | Temperature_1 | Sensor temperature |
| MB_DEVICE_ADDR1 | CID_HOLD_DATA_1, | Humidity_2 | Humidity 2 |
| MB_DEVICE_ADDR1 | CID_INP_DATA_2 | Temperature_2 | Ambient temperature |
| MB_DEVICE_ADDR1 | CID_HOLD_DATA_2 | Humidity_3 | Humidity 3 |
| MB_DEVICE_ADDR1 | CID_RELAY_P1 | RelayP1 | Alarm Relay outputs on/off |
| MB_DEVICE_ADDR1 | CID_RELAY_P2 | RelayP2 | Alarm Relay outputs on/off |
--------------------------------------------------------------------------------------------------
Note: The Slave Address is the same for all parameters for example test but it can be changed in the `Example Data (Object) Dictionary` table of master example to address parameters from other slaves.
The Kconfig ```Modbus slave address``` - CONFIG_MB_SLAVE_ADDR parameter in slave example can be configured to create Modbus multi slave segment.
Simplified Modbus connection schematic for example test:
```
MB_DEVICE_ADDR1
------------- -------------
| | Network | |
| Slave 1 |---<>--+---<>---| Master |
| | | |
------------- -------------
```
Modbus multi slave segment connection schematic:
```
MB_DEVICE_ADDR1
-------------
| |
| Slave 1 |---<>--+
| | |
------------- |
MB_DEVICE_ADDR2 |
------------- | -------------
| | | | |
| Slave 2 |---<>--+---<>---| Master |
| | | | |
------------- | -------------
MB_DEVICE_ADDR3 |
------------- Network (Ethernet or WiFi connection)
| | |
| Slave 3 |---<>--+
| |
-------------
```
## Hardware required :
Option 1:
PC (Modbus TCP Slave application) + ESP32 based development board with modbus_tcp_slave example.
Option 2:
Several ESP32 based boards flashed with modbus_tcp_slave example software to represent slave devices. The IP slave addresses for each board have to be configured in `Modbus Example Configuration` menu according to the communication table of example.
One ESP32 based development board should be flashed with modbus_master example and connected to the same network. All the boards require configuration of network settings as described in `examples/common_components/protocol_examples_common`.
## How to setup and use an example:
### Configure the application
Start the command below to setup configuration:
```
idf.py menuconfig
```
The communication parameters of Modbus stack allow to configure it appropriately but usually it is enough to use default settings.
See the help string of parameters for more information.
There are three ways to configure how the master example will obtain slave IP addresses in the network:
* Enable CONFIG_MB_MDNS_IP_RESOLVER option allows to query for modbus services provided by Modbus slaves in the network and automatically configure IP table. This requires to activate the same option for each slave with unique modbus slave address configured in `Modbus Example Configuration` menu.
* Enable CONFIG_MB_SLAVE_IP_FROM_STDIN option to define IP addresses of slaves manually. In order to enter the IP addresses wait for the prompt and type the string with IP address following format. Prompt: "Waiting IPN from stdin:", then enter the IP address of the slave to connect: "IPN=192.168.1.21", where N = (configured slave address - 1).
* Configure slave addresses manually as below:
```
char* slave_ip_address_table[MB_DEVICE_COUNT] = {
"192.168.1.21", // Address corresponds to MB_DEVICE_ADDR1 and set to predefined value by user
"192.168.1.22", // Address corresponds to MB_DEVICE_ADDR2 of slave device in the Modbus data dictionary
NULL // Marker of end of list
};
```
### Setup external Modbus slave devices or emulator
Option 1:
Configure the external Modbus master software according to port configuration parameters used in the example. The Modbus Slave application can be used with this example to emulate slave devices with its parameters. Use official documentation for software to setup emulation of slave devices.
Option 2:
Other option is to have the modbus_slave example application flashed into ESP32 based board and connect boards together as showed on the Modbus connection schematic above. See the Modbus slave API documentation to configure communication parameters and slave addresses as defined in "Example parameters definition" table above.
### Build and flash software of master device
Build the project and flash it to the board, then run monitor tool to view serial output:
```
idf.py -p PORT flash monitor
```
(To exit the serial monitor, type ``Ctrl-]``.)
See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.
## Example Output
Example output of the application:
```
I (4644) esp_netif_handlers: example_connect: sta ip: 192.168.1.39, mask: 255.255.255.0, gw: 192.168.1.1
I (4644) example_connect: Got IPv4 event: Interface "example_connect: sta" address: 192.168.1.39
I (5644) example_connect: Got IPv6 event: Interface "example_connect: sta" address: fe80:0000:0000:0000:bedd:c2ff:fed1:b210, type: ESP_IP6_ADDR_IS_LINK_LOCAL
I (5644) example_connect: Connected to example_connect: sta
I (5654) example_connect: - IPv4 address: 192.168.1.39
I (5664) example_connect: - IPv6 address: fe80:0000:0000:0000:bedd:c2ff:fed1:b210, type: ESP_IP6_ADDR_IS_LINK_LOCAL
I (5674) uart: ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated
I (5684) MASTER_TEST: Leave IP(0) = [192.168.1.21] set by user.
I (5694) MASTER_TEST: IP(1) is not set in the table.
I (5694) MASTER_TEST: Configured 1 IP addresse(s).
I (5704) MASTER_TEST: Modbus master stack initialized...
I (5704) MB_TCP_MASTER_PORT: TCP master stack initialized.
I (5724) MB_TCP_MASTER_PORT: Host[IP]: "192.168.1.21"[192.168.1.21]
I (5724) MB_TCP_MASTER_PORT: Add slave IP: 192.168.1.21
I (5734) MB_TCP_MASTER_PORT: Connecting to slaves...
-.-.-.I (5844) MB_TCP_MASTER_PORT: Connected 1 slaves, start polling...
I (6004) MASTER_TEST: Start modbus test...
I (6044) MASTER_TEST: Characteristic #0 Data_channel_0 (Volts) value = 1.120000 (0x3f8f5c29) read successful.
I (6054) MASTER_TEST: Characteristic #1 Humidity_1 (%rH) value = 1.340000 (0x3fab851f) read successful.
I (6074) MASTER_TEST: Characteristic #2 Temperature_1 (C) value = 2.340000 (0x4015c28f) read successful.
I (6084) MASTER_TEST: Characteristic #3 Humidity_2 (%rH) value = 2.560000 (0x4023d70a) read successful.
I (6094) MASTER_TEST: Characteristic #4 Temperature_2 (C) value = 3.560000 (0x4063d70a) read successful.
I (6104) MASTER_TEST: Characteristic #5 Humidity_3 (%rH) value = 3.780000 (0x4071eb85) read successful.
I (6124) MASTER_TEST: Characteristic #6 RelayP1 (on/off) value = OFF (0x55) read successful.
I (6134) MASTER_TEST: Characteristic #7 RelayP2 (on/off) value = OFF (0xaa) read successful.
I (6854) MASTER_TEST: Characteristic #0 Data_channel_0 (Volts) value = 1.120000 (0x3f8f5c29) read successful.
I (7064) MASTER_TEST: Characteristic #1 Humidity_1 (%rH) value = 1.740000 (0x3fdeb852) read successful.
I (7264) MASTER_TEST: Characteristic #2 Temperature_1 (C) value = 2.340000 (0x4015c28f) read successful.
...
I (45974) MASTER_TEST: Characteristic #4 Temperature_2 (C) value = 3.560000 (0x4063d70a) read successful.
I (46174) MASTER_TEST: Characteristic #5 Humidity_3 (%rH) value = 3.780000 (0x4071eb85) read successful.
I (46384) MASTER_TEST: Characteristic #6 RelayP1 (on/off) value = OFF (0x55) read successful.
I (46584) MASTER_TEST: Characteristic #7 RelayP2 (on/off) value = ON (0xff) read successful.
I (47094) MASTER_TEST: Alarm triggered by cid #7.
I (47094) MASTER_TEST: Destroy master...
```
The example reads the characteristics from slave device(s), while alarm is not triggered in the slave device (See the "Example parameters definition"). The output line describes Timestamp, Cid of characteristic, Characteristic name (Units), Characteristic value (Hex data).

View File

@@ -0,0 +1,4 @@
set(PROJECT_NAME "modbus_tcp_master")
idf_component_register(SRCS "tcp_master.c"
INCLUDE_DIRS ".")

View File

@@ -0,0 +1,16 @@
menu "Modbus TCP Example Configuration"
choice MB_SLAVE_IP_RESOLVER
prompt "Select method to resolve slave IP addresses"
help
Select method which is used to resolve slave IP addresses
and configure Master TCP IP stack.
config MB_MDNS_IP_RESOLVER
bool "Resolve Modbus slave addresses using mDNS service."
config MB_SLAVE_IP_FROM_STDIN
bool "Configure Modbus slave addresses from stdin"
endchoice
endmenu

View File

@@ -0,0 +1,14 @@
dependencies:
idf:
version: ">=4.1.0"
espressif/esp-modbus:
version: "^2.0"
override_path: "../../../../"
espressif/mdns:
version: "^1.0.0"
rules:
- if: "idf_version >=5.0"
mb_example_common:
path: "../../../mb_example_common"
protocol_examples_common:
path: ${IDF_PATH}/examples/common_components/protocol_examples_common

View File

@@ -0,0 +1,540 @@
/*
* SPDX-FileCopyrightText: 2016-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// FreeModbus Master Example ESP32
#include <string.h>
#include <sys/queue.h>
#include "esp_log.h"
#include "esp_system.h"
#include "esp_wifi.h"
#include "esp_event.h"
#include "esp_log.h"
#include "nvs_flash.h"
#include "esp_netif.h"
#include "esp_mac.h"
#include "mdns.h"
#include "protocol_examples_common.h"
#include "modbus_params.h" // for modbus parameters structures
#include "mbcontroller.h"
#include "sdkconfig.h"
#define MB_TCP_PORT (CONFIG_FMB_TCP_PORT_DEFAULT) // TCP port used by example
// The number of parameters that intended to be used in the particular control process
#define MASTER_MAX_CIDS num_device_parameters
// Number of reading of parameters from slave
#define MASTER_MAX_RETRY (30)
// Timeout to update cid over Modbus
#define UPDATE_CIDS_TIMEOUT_MS (500)
#define UPDATE_CIDS_TIMEOUT_TICS (UPDATE_CIDS_TIMEOUT_MS / portTICK_PERIOD_MS)
// Timeout between polls
#define POLL_TIMEOUT_MS (1)
#define POLL_TIMEOUT_TICS (POLL_TIMEOUT_MS / portTICK_PERIOD_MS)
#define MB_MDNS_PORT (502)
// The macro to get offset for parameter in the appropriate structure
#define HOLD_OFFSET(field) ((uint16_t)(offsetof(holding_reg_params_t, field) + 1))
#define INPUT_OFFSET(field) ((uint16_t)(offsetof(input_reg_params_t, field) + 1))
#define COIL_OFFSET(field) ((uint16_t)(offsetof(coil_reg_params_t, field) + 1))
#define DISCR_OFFSET(field) ((uint16_t)(offsetof(discrete_reg_params_t, field) + 1))
#define STR(fieldname) ((const char*)( fieldname ))
// Options can be used as bit masks or parameter limits
#define OPTS(min_val, max_val, step_val) { .opt1 = min_val, .opt2 = max_val, .opt3 = step_val }
#define MB_ID_BYTE0(id) ((uint8_t)(id))
#define MB_ID_BYTE1(id) ((uint8_t)(((uint16_t)(id) >> 8) & 0xFF))
#define MB_ID_BYTE2(id) ((uint8_t)(((uint32_t)(id) >> 16) & 0xFF))
#define MB_ID_BYTE3(id) ((uint8_t)(((uint32_t)(id) >> 24) & 0xFF))
#define MB_ID2STR(id) MB_ID_BYTE0(id), MB_ID_BYTE1(id), MB_ID_BYTE2(id), MB_ID_BYTE3(id)
#if CONFIG_FMB_CONTROLLER_SLAVE_ID_SUPPORT
#define MB_DEVICE_ID (uint32_t)CONFIG_FMB_CONTROLLER_SLAVE_ID
#else
#define MB_DEVICE_ID (uint32_t)0x00112233
#endif
#define MB_MDNS_INSTANCE(pref) pref"mb_master_tcp"
static const char *TAG = "MASTER_TEST";
// Enumeration of modbus device addresses accessed by master device
// Each address in the table is a index of TCP slave ip address in mb_communication_info_t::tcp_ip_addr table
enum {
MB_DEVICE_ADDR1 = 1, // Slave UID = 1
MB_DEVICE_ADDR2 = 200,
MB_DEVICE_ADDR3 = 35
};
// Enumeration of all supported CIDs for device (used in parameter definition table)
enum {
CID_INP_DATA_0 = 0,
CID_HOLD_DATA_0,
CID_INP_DATA_1,
CID_HOLD_DATA_1,
CID_INP_DATA_2,
CID_HOLD_DATA_2,
CID_HOLD_TEST_REG,
CID_RELAY_P1,
CID_RELAY_P2,
CID_DISCR_P1,
CID_COUNT
};
// Example Data (Object) Dictionary for Modbus parameters:
// The CID field in the table must be unique.
// Modbus Slave Addr field defines slave address of the device with correspond parameter.
// Modbus Reg Type - Type of Modbus register area (Holding register, Input Register and such).
// Reg Start field defines the start Modbus register number and Reg Size defines the number of registers for the characteristic accordingly.
// The Instance Offset defines offset in the appropriate parameter structure that will be used as instance to save parameter value.
// Data Type, Data Size specify type of the characteristic and its data size.
// Parameter Options field specifies the options that can be used to process parameter value (limits or masks).
// Access Mode - can be used to implement custom options for processing of characteristic (Read/Write restrictions, factory mode values and etc).
const mb_parameter_descriptor_t device_parameters[] = {
// { CID, Param Name, Units, Modbus Slave Addr, Modbus Reg Type, Reg Start, Reg Size, Instance Offset, Data Type, Data Size, Parameter Options, Access Mode}
{ CID_INP_DATA_0, STR("Data_channel_0"), STR("Volts"), MB_DEVICE_ADDR1, MB_PARAM_INPUT, 4, 2,
INPUT_OFFSET(input_data0), PARAM_TYPE_FLOAT, 4, OPTS( -10, 1000, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_HOLD_DATA_0, STR("Humidity_1"), STR("%rH"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, 0, 2,
HOLD_OFFSET(holding_data0), PARAM_TYPE_FLOAT, 4, OPTS( 0, 1000, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_INP_DATA_1, STR("Temperature_1"), STR("C"), MB_DEVICE_ADDR1, MB_PARAM_INPUT, 2, 2,
INPUT_OFFSET(input_data1), PARAM_TYPE_FLOAT, 4, OPTS( -40, 1000, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_HOLD_DATA_1, STR("Humidity_2"), STR("%rH"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, 2, 2,
HOLD_OFFSET(holding_data1), PARAM_TYPE_FLOAT, 4, OPTS( 0, 1000, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_INP_DATA_2, STR("Temperature_2"), STR("C"), MB_DEVICE_ADDR1, MB_PARAM_INPUT, 4, 2,
INPUT_OFFSET(input_data2), PARAM_TYPE_FLOAT, 4, OPTS( -40, 1000, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_HOLD_DATA_2, STR("Humidity_3"), STR("%rH"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, 4, 2,
HOLD_OFFSET(holding_data2), PARAM_TYPE_FLOAT, 4, OPTS( 0, 1000, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_HOLD_TEST_REG, STR("Test_regs"), STR("__"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, 10, 30,
HOLD_OFFSET(test_regs), PARAM_TYPE_ASCII, 60, OPTS( 0, 1000, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_RELAY_P1, STR("RelayP1"), STR("on/off"), MB_DEVICE_ADDR1, MB_PARAM_COIL, 2, 6,
COIL_OFFSET(coils_port0), PARAM_TYPE_U8, 1, OPTS( 0xAA, 0x15, 0 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_RELAY_P2, STR("RelayP2"), STR("on/off"), MB_DEVICE_ADDR1, MB_PARAM_COIL, 10, 6,
COIL_OFFSET(coils_port1), PARAM_TYPE_U8, 1, OPTS( 0x55, 0x2A, 0 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_DISCR_P1, STR("DiscreteInpP1"), STR("on/off"), MB_DEVICE_ADDR1, MB_PARAM_DISCRETE, 2, 7,
DISCR_OFFSET(discrete_input_port1), PARAM_TYPE_U8, 1, OPTS( 0xAA, 0x15, 0 ), PAR_PERMS_READ_WRITE_TRIGGER }
};
// Calculate number of parameters in the table
const uint16_t num_device_parameters = (sizeof(device_parameters) / sizeof(device_parameters[0]));
static void* master_handle = NULL;
const size_t ip_table_sz;
#if CONFIG_MB_SLAVE_IP_FROM_STDIN
// This table represents slave IP addresses that correspond to the short address field of the slave in device_parameters structure
// Modbus TCP stack shall use these addresses to be able to connect and read parameters from slave
char* slave_ip_address_table[] = {
"FROM_STDIN", // Address corresponds to MB_DEVICE_ADDR1 and set to predefined value by user
//"FROM_STDIN", // Corresponds to characteristic MB_DEVICE_ADDR2
//"FROM_STDIN", // Corresponds to characteristic MB_DEVICE_ADDR3
NULL // End of table condition (must be included)
};
// Scan IP address according to IPV settings
char* master_scan_addr(int* index, char* buffer)
{
char* ip_str = NULL;
int a[8] = {0};
int buf_cnt = 0;
#if !CONFIG_EXAMPLE_CONNECT_IPV6
buf_cnt = sscanf(buffer, "IP%d="IPSTR, index, &a[0], &a[1], &a[2], &a[3]);
if (buf_cnt == 5) {
if (-1 == asprintf(&ip_str, IPSTR, a[0], a[1], a[2], a[3])) {
abort();
}
}
#else
buf_cnt = sscanf(buffer, "IP%d="IPV6STR, index, &a[0], &a[1], &a[2], &a[3], &a[4], &a[5], &a[6], &a[7]);
if (buf_cnt == 9) {
if (-1 == asprintf(&ip_str, IPV6STR, a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7])) {
abort();
}
}
#endif
return ip_str;
}
static int master_get_slave_ip_stdin(char** addr_table)
{
char buf[128];
int index;
char* ip_str = NULL;
int buf_cnt = 0;
int ip_cnt = 0;
if (!addr_table) {
return 0;
}
ESP_ERROR_CHECK(example_configure_stdin_stdout());
while(1) {
if (addr_table[ip_cnt] && strcmp(addr_table[ip_cnt], "FROM_STDIN") == 0) {
printf("Waiting IP%d from stdin:\r\n", ip_cnt);
while (fgets(buf, sizeof(buf), stdin) == NULL) {
fputs(buf, stdout);
}
buf_cnt = strlen(buf);
buf[buf_cnt - 1] = '\0';
fputc('\n', stdout);
ip_str = master_scan_addr(&index, buf);
if (ip_str != NULL) {
ESP_LOGI(TAG, "IP(%d) = [%s] set from stdin.", ip_cnt, ip_str);
if ((ip_cnt >= ip_table_sz) || (index != ip_cnt)) {
addr_table[ip_cnt] = NULL;
break;
}
addr_table[ip_cnt++] = ip_str;
} else {
// End of configuration
addr_table[ip_cnt++] = NULL;
break;
}
} else {
if (addr_table[ip_cnt]) {
ESP_LOGI(TAG, "Leave IP(%d) = [%s] set manually.", ip_cnt, addr_table[ip_cnt]);
ip_cnt++;
} else {
ESP_LOGI(TAG, "IP(%d) is not set in the table.", ip_cnt);
break;
}
}
}
return ip_cnt;
}
#elif CONFIG_MB_MDNS_IP_RESOLVER
char *slave_ip_address_table[] = {
"01;mb_slave_tcp_01;502", // Corresponds to characteristic MB_DEVICE_ADDR1 "mb_slave_tcp_01"
// "200;mb_slave_tcp_c8;1502", // Corresponds to characteristic MB_DEVICE_ADDR2 "mb_slave_tcp_C8"
// "35;mb_slave_tcp_23;1502",
NULL // End of table condition (must be included)
};
#endif
const size_t ip_table_sz = (size_t)(sizeof(slave_ip_address_table) / sizeof(slave_ip_address_table[0]));
static void master_destroy_slave_list(char** table, size_t ip_table_size)
{
for (int i = 0; ((i < ip_table_size) && table[i] != NULL); i++) {
if (table[i]) {
#if CONFIG_MB_SLAVE_IP_FROM_STDIN
free(table[i]);
table[i] = "FROM_STDIN";
#elif CONFIG_MB_MDNS_IP_RESOLVER
table[i] = NULL;
#endif
}
}
}
// The function to get pointer to parameter storage (instance) according to parameter description table
static void* master_get_param_data(const mb_parameter_descriptor_t* param_descriptor)
{
assert(param_descriptor != NULL);
void* instance_ptr = NULL;
if (param_descriptor->param_offset != 0) {
switch(param_descriptor->mb_param_type)
{
case MB_PARAM_HOLDING:
instance_ptr = ((void*)&holding_reg_params + param_descriptor->param_offset - 1);
break;
case MB_PARAM_INPUT:
instance_ptr = ((void*)&input_reg_params + param_descriptor->param_offset - 1);
break;
case MB_PARAM_COIL:
instance_ptr = ((void*)&coil_reg_params + param_descriptor->param_offset - 1);
break;
case MB_PARAM_DISCRETE:
instance_ptr = ((void*)&discrete_reg_params + param_descriptor->param_offset - 1);
break;
default:
instance_ptr = NULL;
break;
}
} else {
ESP_LOGE(TAG, "Wrong parameter offset for CID #%u", param_descriptor->cid);
assert(instance_ptr != NULL);
}
return instance_ptr;
}
// User operation function to read slave values and check alarm
static void master_operation_func(void *arg)
{
esp_err_t err = ESP_OK;
float value = 0;
bool alarm_state = false;
const mb_parameter_descriptor_t* param_descriptor = NULL;
ESP_LOGI(TAG, "Start modbus test...");
for(uint16_t retry = 0; retry <= MASTER_MAX_RETRY && (!alarm_state); retry++) {
// Read all found characteristics from slave(s)
for (uint16_t cid = 0; (err != ESP_ERR_NOT_FOUND) && cid < MASTER_MAX_CIDS; cid++)
{
// Get data from parameters description table
// and use this information to fill the characteristics description table
// and having all required fields in just one table
err = mbc_master_get_cid_info(master_handle, cid, &param_descriptor);
if ((err != ESP_ERR_NOT_FOUND) && (param_descriptor != NULL)) {
void* temp_data_ptr = master_get_param_data(param_descriptor);
assert(temp_data_ptr);
uint8_t type = 0;
if ((param_descriptor->param_type == PARAM_TYPE_ASCII) &&
(param_descriptor->cid == CID_HOLD_TEST_REG)) {
// Check for long array of registers of type PARAM_TYPE_ASCII
err = mbc_master_get_parameter(master_handle, cid, (uint8_t*)temp_data_ptr, &type);
if (err == ESP_OK) {
ESP_LOGI(TAG, "Characteristic #%u %s (%s) value = (0x%" PRIx32 ") read successful.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
*(uint32_t*)temp_data_ptr);
// Initialize data of test array and write to slave
if (*(uint32_t*)temp_data_ptr != 0xAAAAAAAA) {
memset((void*)temp_data_ptr, 0xAA, param_descriptor->param_size);
*(uint32_t*)temp_data_ptr = 0xAAAAAAAA;
err = mbc_master_set_parameter(master_handle, cid, (uint8_t*)temp_data_ptr, &type);
if (err == ESP_OK) {
ESP_LOGI(TAG, "Characteristic #%u %s (%s) value = (0x%" PRIx32 "), write successful.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
*(uint32_t*)temp_data_ptr);
} else {
ESP_LOGE(TAG, "Characteristic #%u (%s) write fail, err = 0x%x (%s).",
param_descriptor->cid,
param_descriptor->param_key,
(int)err,
(char*)esp_err_to_name(err));
}
}
} else {
ESP_LOGE(TAG, "Characteristic #%u (%s) read fail, err = 0x%x (%s).",
param_descriptor->cid,
param_descriptor->param_key,
(int)err,
(char*)esp_err_to_name(err));
}
} else {
err = mbc_master_get_parameter(master_handle, cid, (uint8_t*)temp_data_ptr, &type);
if (err == ESP_OK) {
if ((param_descriptor->mb_param_type == MB_PARAM_HOLDING) ||
(param_descriptor->mb_param_type == MB_PARAM_INPUT)) {
value = *(float*)temp_data_ptr;
ESP_LOGI(TAG, "Characteristic #%u %s (%s) value = %f (0x%" PRIx32 ") read successful.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
value,
*(uint32_t*)temp_data_ptr);
if (((value > param_descriptor->param_opts.max) ||
(value < param_descriptor->param_opts.min))) {
alarm_state = true;
break;
}
} else {
uint8_t state = *(uint8_t*)temp_data_ptr;
const char* rw_str = (state & param_descriptor->param_opts.opt1) ? "ON" : "OFF";
if ((state & param_descriptor->param_opts.opt2) == param_descriptor->param_opts.opt2) {
ESP_LOGI(TAG, "Characteristic #%u %s (%s) value = %s (0x%" PRIx8 ") read successful.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
rw_str,
*(uint8_t*)temp_data_ptr);
} else {
ESP_LOGE(TAG, "Characteristic #%u %s (%s) value = %s (0x%" PRIx8 "), unexpected value.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
rw_str,
*(uint8_t*)temp_data_ptr);
//alarm_state = true;
//break;
}
if (state & param_descriptor->param_opts.opt1) {
alarm_state = true;
break;
}
}
} else {
ESP_LOGE(TAG, "Characteristic #%u (%s) read fail, err = 0x%x (%s).",
param_descriptor->cid,
param_descriptor->param_key,
(int)err,
(char*)esp_err_to_name(err));
}
}
vTaskDelay(POLL_TIMEOUT_TICS); // timeout between polls
}
}
vTaskDelay(UPDATE_CIDS_TIMEOUT_TICS);
}
if (alarm_state) {
ESP_LOGI(TAG, "Alarm triggered by cid #%u.", param_descriptor->cid);
} else {
ESP_LOGE(TAG, "Alarm is not triggered after %u retries.",
MASTER_MAX_RETRY);
}
ESP_LOGI(TAG, "Destroy master...");
vTaskDelay(100);
}
static esp_err_t init_services(mb_tcp_addr_type_t ip_addr_type)
{
esp_err_t result = nvs_flash_init();
if (result == ESP_ERR_NVS_NO_FREE_PAGES || result == ESP_ERR_NVS_NEW_VERSION_FOUND) {
ESP_ERROR_CHECK(nvs_flash_erase());
result = nvs_flash_init();
}
MB_RETURN_ON_FALSE((result == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"nvs_flash_init fail, returns(0x%x).",
(int)result);
result = esp_netif_init();
MB_RETURN_ON_FALSE((result == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"esp_netif_init fail, returns(0x%x).",
(int)result);
result = esp_event_loop_create_default();
MB_RETURN_ON_FALSE((result == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"esp_event_loop_create_default fail, returns(0x%x).",
(int)result);
// This helper function configures Wi-Fi or Ethernet, as selected in menuconfig.
// Read "Establishing Wi-Fi or Ethernet Connection" section in
// examples/protocols/README.md for more information about this function.
result = example_connect();
MB_RETURN_ON_FALSE((result == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"example_connect fail, returns(0x%x).",
(int)result);
#if CONFIG_EXAMPLE_CONNECT_WIFI
result = esp_wifi_set_ps(WIFI_PS_NONE);
MB_RETURN_ON_FALSE((result == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"esp_wifi_set_ps fail, returns(0x%x).",
(int)result);
#endif
#if CONFIG_MB_SLAVE_IP_FROM_STDIN
int ip_cnt = master_get_slave_ip_stdin(slave_ip_address_table);
if (ip_cnt) {
ESP_LOGI(TAG, "Configured %d IP addresse(s).", ip_cnt);
} else {
ESP_LOGE(TAG, "Fail to get IP address from stdin. Continue.");
return ESP_ERR_NOT_FOUND;
}
#endif
return ESP_OK;
}
static esp_err_t destroy_services(void)
{
esp_err_t err = ESP_OK;
master_destroy_slave_list(slave_ip_address_table, ip_table_sz);
err = example_disconnect();
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"example_disconnect fail, returns(0x%x).",
(int)err);
err = esp_event_loop_delete_default();
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"esp_event_loop_delete_default fail, returns(0x%x).",
(int)err);
err = esp_netif_deinit();
MB_RETURN_ON_FALSE((err == ESP_OK || err == ESP_ERR_NOT_SUPPORTED), ESP_ERR_INVALID_STATE,
TAG,
"esp_netif_deinit fail, returns(0x%x).",
(int)err);
err = nvs_flash_deinit();
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"nvs_flash_deinit fail, returns(0x%x).",
(int)err);
return err;
}
// Modbus master initialization
static esp_err_t master_init(mb_communication_info_t *pcomm_info)
{
esp_err_t err = mbc_master_create_tcp(pcomm_info, &master_handle);
MB_RETURN_ON_FALSE((master_handle != NULL), ESP_ERR_INVALID_STATE,
TAG,
"mb controller initialization fail.");
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"mb controller initialization fail, returns(0x%x).",
(int)err);
err = mbc_master_set_descriptor(master_handle, &device_parameters[0], num_device_parameters);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"mb controller set descriptor fail, returns(0x%x).",
(int)err);
ESP_LOGI(TAG, "Modbus master stack initialized...");
err = mbc_master_start(master_handle);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"mb controller start fail, returns(0x%x).",
(int)err);
vTaskDelay(5);
return err;
}
static esp_err_t master_destroy(void)
{
esp_err_t err = mbc_master_delete(master_handle);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"mbc_master_destroy fail, returns(0x%x).",
(int)err);
ESP_LOGI(TAG, "Modbus master stack destroy...");
return err;
}
void app_main(void)
{
mb_tcp_addr_type_t ip_addr_type;
#if !CONFIG_EXAMPLE_CONNECT_IPV6
ip_addr_type = MB_IPV4;
#else
ip_addr_type = MB_IPV6;
#endif
ESP_ERROR_CHECK(init_services(ip_addr_type));
mb_communication_info_t tcp_master_config = {
.tcp_opts.port = MB_TCP_PORT,
.tcp_opts.mode = MB_TCP,
.tcp_opts.addr_type = ip_addr_type,
.tcp_opts.ip_addr_table = (void *)slave_ip_address_table,
.tcp_opts.uid = 0,
.tcp_opts.start_disconnected = false,
.tcp_opts.response_tout_ms = CONFIG_FMB_MASTER_TIMEOUT_MS_RESPOND,
};
ESP_ERROR_CHECK(master_init(&tcp_master_config));
master_operation_func(NULL);
ESP_ERROR_CHECK(master_destroy());
ESP_ERROR_CHECK(destroy_services());
}

View File

@@ -0,0 +1,32 @@
#
# Modbus configuration
#
CONFIG_FMB_COMM_MODE_TCP_EN=y
CONFIG_FMB_TCP_PORT_DEFAULT=502
CONFIG_FMB_TCP_CONNECTION_TOUT_SEC=20
CONFIG_FMB_PORT_TASK_STACK_SIZE=4096
CONFIG_FMB_PORT_TASK_PRIO=10
CONFIG_FMB_COMM_MODE_RTU_EN=n
CONFIG_FMB_COMM_MODE_ASCII_EN=n
CONFIG_FMB_MASTER_TIMEOUT_MS_RESPOND=3000
CONFIG_FMB_MASTER_DELAY_MS_CONVERT=300
CONFIG_FMB_TCP_UID_ENABLED=n
CONFIG_FMB_TIMER_USE_ISR_DISPATCH_METHOD=y
CONFIG_MB_MDNS_IP_RESOLVER=n
CONFIG_MB_SLAVE_IP_FROM_STDIN=y
CONFIG_LOG_DEFAULT_LEVEL_DEBUG=y
CONFIG_EXAMPLE_CONNECT_IPV6=n
CONFIG_EXAMPLE_CONNECT_WIFI=n
CONFIG_EXAMPLE_CONNECT_ETHERNET=y
CONFIG_EXAMPLE_USE_INTERNAL_ETHERNET=y
CONFIG_EXAMPLE_ETH_PHY_IP101=y
CONFIG_EXAMPLE_ETH_MDC_GPIO=23
CONFIG_EXAMPLE_ETH_MDIO_GPIO=18
CONFIG_EXAMPLE_ETH_PHY_RST_GPIO=5
CONFIG_EXAMPLE_ETH_PHY_ADDR=1
CONFIG_EXAMPLE_ETHERNET_EMAC_TASK_STACK_SIZE=4096
CONFIG_ETH_ENABLED=y
CONFIG_ETH_USE_ESP32_EMAC=y
CONFIG_ETH_PHY_INTERFACE_RMII=y
CONFIG_ETH_USE_SPI_ETHERNET=n

View File

@@ -0,0 +1,19 @@
CONFIG_FMB_COMM_MODE_TCP_EN=y
CONFIG_FMB_TCP_PORT_DEFAULT=502
CONFIG_FMB_TCP_CONNECTION_TOUT_SEC=20
CONFIG_FMB_PORT_TASK_STACK_SIZE=4096
CONFIG_FMB_PORT_TASK_PRIO=10
CONFIG_FMB_COMM_MODE_RTU_EN=n
CONFIG_FMB_COMM_MODE_ASCII_EN=n
CONFIG_FMB_MASTER_TIMEOUT_MS_RESPOND=3000
CONFIG_FMB_MASTER_DELAY_MS_CONVERT=300
CONFIG_LOG_DEFAULT_LEVEL_DEBUG=y
CONFIG_FMB_TCP_UID_ENABLED=n
CONFIG_MB_MDNS_IP_RESOLVER=n
CONFIG_MB_SLAVE_IP_FROM_STDIN=y
CONFIG_EXAMPLE_CONNECT_IPV6=n
CONFIG_FMB_TIMER_USE_ISR_DISPATCH_METHOD=y
CONFIG_EXAMPLE_CONNECT_ETHERNET=n
CONFIG_EXAMPLE_CONNECT_WIFI=y
CONFIG_EXAMPLE_WIFI_SSID="${CI_WIFI_SSID}"
CONFIG_EXAMPLE_WIFI_PASSWORD="${CI_WIFI_PASSW}"

View File

@@ -0,0 +1,22 @@
#
# Modbus configuration
#
CONFIG_FMB_COMM_MODE_TCP_EN=y
CONFIG_FMB_TCP_PORT_DEFAULT=502
CONFIG_FMB_TCP_CONNECTION_TOUT_SEC=20
CONFIG_FMB_PORT_TASK_STACK_SIZE=4096
CONFIG_FMB_PORT_TASK_PRIO=10
CONFIG_FMB_COMM_MODE_RTU_EN=n
CONFIG_FMB_COMM_MODE_ASCII_EN=n
CONFIG_FMB_MASTER_TIMEOUT_MS_RESPOND=2000
CONFIG_FMB_MASTER_DELAY_MS_CONVERT=300
CONFIG_FMB_TIMER_USE_ISR_DISPATCH_METHOD=y
CONFIG_MB_MDNS_IP_RESOLVER=n
CONFIG_FMB_TCP_UID_ENABLED=n
CONFIG_MB_SLAVE_IP_FROM_STDIN=y
CONFIG_EXAMPLE_CONNECT_IPV6=n
CONFIG_EXAMPLE_CONNECT_ETHERNET=n
CONFIG_EXAMPLE_CONNECT_WIFI=y
CONFIG_EXAMPLE_WIFI_SSID="${CI_WIFI_SSID}"
CONFIG_EXAMPLE_WIFI_PASSWORD="${CI_WIFI_PASSW}"

View File

@@ -0,0 +1,9 @@
# The following lines of boilerplate have to be in your project's CMakeLists
# in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.5)
# Exclude old component feemodbus which exists in old versions
set(EXCLUDE_COMPONENTS freemodbus)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(modbus_tcp_slave)

View File

@@ -0,0 +1,86 @@
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C6 | ESP32-H2 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- | -------- |
# Modbus Slave Example
This example demonstrates using of FreeModbus TCP slave stack port implementation for supported ESP32 target chips. The external Modbus host is able to read/write device parameters using Modbus protocol transport. The parameters accessible thorough Modbus are located in `mb_example_common/modbus_params.h\c` files and can be updated by user.
These are represented in structures holding_reg_params, input_reg_params, coil_reg_params, discrete_reg_params for holding registers, input parameters, coils and discrete inputs accordingly. The app_main application demonstrates how to setup Modbus stack and use notifications about parameters change from host system.
The FreeModbus stack located in `components/freemodbus` folder and contain `/port` folder inside which contains FreeModbus stack port for ESP32 target chips. There are some parameters that can be configured in KConfig file to start stack correctly (See description below for more information).
The slave example uses shared parameter structures defined in ```examples/protocols/modbus/mb_example_common``` folder.
## Hardware required :
Option 1:
The ESP32 based development board flashed with modbus_tcp_slave example + external Modbus master host software.
Option 2:
The modbus_tcp_master example application configured as described in its README.md file and flashed into ESP32 based board.
Note: The ```Example Data (Object) Dictionary``` in the modbus_tcp_master example can be edited to address parameters from other slaves connected into Modbus segment.
## How to setup and use an example:
### Configure the application
Start the command below to show the configuration menu:
```
idf.py menuconfig
```
To configure the example to use Wi-Fi or Ethernet connection, open the project configuration menu and navigate to "Example Connection Configuration" menu. Select either "Wi-Fi" or "Ethernet" in the "Connect using" choice.
Follow the instructions in `examples/common_components/protocol_examples_common` for further configuration.
The communication parameters of freemodbus stack (Component config->Modbus configuration) allow to configure it appropriately but usually it is enough to use default settings.
See the help strings of parameters for more information.
### Setup external Modbus master software
Option 1:
Configure the external Modbus master software according to port configuration parameters used in application.
As an example the Modbus Poll application can be used with this example.
Option 2:
Setup ESP32 based development board and set modbus_tcp_master example configuration as described in its README.md file.
Setup one or more slave boards and connect them into the same Modbus segment (See configuration above).
### Build and flash software
Build the project and flash it to the board, then run monitor tool to view serial output:
```
idf.py -p PORT flash monitor
```
(To exit the serial monitor, type ``Ctrl-]``.)
See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.
## Example Output
Example output of the application:
```
I (4235) esp_netif_handlers: example_connect: sta ip: 192.168.1.21, mask: 255.255.255.0, gw: 192.168.1.1
I (4235) example_connect: Got IPv4 event: Interface "example_connect: sta" address: 192.168.1.21
I (4465) example_connect: Got IPv6 event: Interface "example_connect: sta" address: fe80:0000:0000:0000:7edf:a1ff:fe00:4039, type: ESP_IP6_ADDR_IS_LINK_LOCAL
I (4465) example_connect: Connected to example_connect: sta
I (4475) example_connect: - IPv4 address: 192.168.1.21
I (4475) example_connect: - IPv6 address: fe80:0000:0000:0000:7edf:a1ff:fe00:4039, type: ESP_IP6_ADDR_IS_LINK_LOCAL
I (4495) MB_TCP_SLAVE_PORT: Socket (#54), listener on port: 502, errno=0
I (4495) MB_TCP_SLAVE_PORT: Protocol stack initialized.
I (4505) SLAVE_TEST: Modbus slave stack initialized.
I (4505) SLAVE_TEST: Start modbus test...
I (41035) MB_TCP_SLAVE_PORT: Socket (#55), accept client connection from address: 192.168.1.39
I (41225) SLAVE_TEST: INPUT READ (41704766 us), ADDR:1, TYPE:8, INST_ADDR:0x3ffcb878, SIZE:2
I (41235) SLAVE_TEST: HOLDING READ (41719746 us), ADDR:1, TYPE:2, INST_ADDR:0x3ffcb9b4, SIZE:2
I (41255) SLAVE_TEST: INPUT READ (41732965 us), ADDR:3, TYPE:8, INST_ADDR:0x3ffcb87c, SIZE:2
I (41265) SLAVE_TEST: HOLDING READ (41745923 us), ADDR:3, TYPE:2, INST_ADDR:0x3ffcb9b8, SIZE:2
I (41275) SLAVE_TEST: INPUT READ (41759563 us), ADDR:5, TYPE:8, INST_ADDR:0x3ffcb880, SIZE:2
I (41295) SLAVE_TEST: HOLDING READ (41772568 us), ADDR:5, TYPE:2, INST_ADDR:0x3ffcb9bc, SIZE:2
I (41305) SLAVE_TEST: COILS WRITE (41785889 us), ADDR:0, TYPE:16, INST_ADDR:0x3ffcb874, SIZE:8
I (41315) SLAVE_TEST: COILS WRITE (41799175 us), ADDR:8, TYPE:16, INST_ADDR:0x3ffcb875, SIZE:8
I (41945) SLAVE_TEST: INPUT READ (42421629 us), ADDR:1, TYPE:8, INST_ADDR:0x3ffcb878, SIZE:2
I (42145) SLAVE_TEST: HOLDING READ (42626497 us), ADDR:1, TYPE:2, INST_ADDR:0x3ffcb9b4, SIZE:2
I (42345) SLAVE_TEST: INPUT READ (42831315 us), ADDR:3, TYPE:8, INST_ADDR:0x3ffcb87c, SIZE:2
I (42555) SLAVE_TEST: HOLDING READ (43036111 us), ADDR:3, TYPE:2, INST_ADDR:0x3ffcb9b8, SIZE:2
I (42755) SLAVE_TEST: INPUT READ (43240950 us), ADDR:5, TYPE:8, INST_ADDR:0x3ffcb880, SIZE:2
I (42865) SLAVE_TEST: HOLDING READ (43343204 us), ADDR:5, TYPE:2, INST_ADDR:0x3ffcb9bc, SIZE:2
......
I (81265) SLAVE_TEST: HOLDING READ (81743698 us), ADDR:5, TYPE:2, INST_ADDR:0x3ffcb9bc, SIZE:2
I (81465) SLAVE_TEST: COILS WRITE (81948482 us), ADDR:0, TYPE:16, INST_ADDR:0x3ffcb874, SIZE:8
I (81465) SLAVE_TEST: Modbus controller destroyed.
```
The output lines describe type of operation, its timestamp, modbus address, access type, storage address in parameter structure and number of registers accordingly.

View File

@@ -0,0 +1,4 @@
set(PROJECT_NAME "modbus_tcp_slave")
idf_component_register(SRCS "tcp_slave.c"
INCLUDE_DIRS ".")

View File

@@ -0,0 +1,19 @@
menu "Modbus Example Configuration"
config MB_SLAVE_ADDR
int "Modbus slave address"
range 1 247 if !FMB_TCP_UID_ENABLED
range 0 247 if FMB_TCP_UID_ENABLED
default 1
help
This is the Modbus slave address in the network.
The address is used as an index to resolve slave ip address.
config MB_MDNS_IP_RESOLVER
bool "Resolve slave addresses using mDNS service"
default y
help
This option allows to use mDNS service to resolve IP addresses of the Modbus slaves.
If the option is disabled the ip addresses of slaves are defined in static table.
endmenu

View File

@@ -0,0 +1,13 @@
dependencies:
idf: ">=4.1"
espressif/esp-modbus:
version: "^2.0"
override_path: "../../../../"
espressif/mdns:
version: "^1.0.0"
rules:
- if: "idf_version >=5.0"
mb_example_common:
path: "../../../mb_example_common"
protocol_examples_common:
path: ${IDF_PATH}/examples/common_components/protocol_examples_common

View File

@@ -0,0 +1,438 @@
/*
* SPDX-FileCopyrightText: 2016-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// FreeModbus Slave Example ESP32
#include <stdio.h>
#include "esp_err.h"
#include "sdkconfig.h"
#include "esp_log.h"
#include "esp_system.h"
#include "esp_wifi.h"
#include "esp_event.h"
#include "esp_log.h"
#include "nvs_flash.h"
#include "mdns.h"
#include "esp_netif.h"
#if __has_include("esp_mac.h")
#include "esp_mac.h"
#endif
#include "protocol_examples_common.h"
#include "mbcontroller.h" // for mbcontroller defines and api
#include "modbus_params.h" // for modbus parameters structures
#define MB_TCP_PORT_NUMBER (CONFIG_FMB_TCP_PORT_DEFAULT)
#define MB_MDNS_PORT (502)
// Defines below are used to define register start address for each type of Modbus registers
#define HOLD_OFFSET(field) ((uint16_t)(offsetof(holding_reg_params_t, field) >> 1))
#define INPUT_OFFSET(field) ((uint16_t)(offsetof(input_reg_params_t, field) >> 1))
#define MB_REG_DISCRETE_INPUT_START (0x0000)
#define MB_REG_COILS_START (0x0000)
#define MB_REG_INPUT_START_AREA0 (INPUT_OFFSET(input_data0)) // register offset input area 0
#define MB_REG_INPUT_START_AREA1 (INPUT_OFFSET(input_data4)) // register offset input area 1
#define MB_REG_HOLDING_START_AREA0 (HOLD_OFFSET(holding_data0))
#define MB_REG_HOLDING_START_AREA1 (HOLD_OFFSET(holding_data4))
#define MB_PAR_INFO_GET_TOUT (10) // Timeout for get parameter info
#define MB_CHAN_DATA_MAX_VAL (10)
#define MB_CHAN_DATA_OFFSET (1.1f)
#define MB_READ_MASK (MB_EVENT_INPUT_REG_RD \
| MB_EVENT_HOLDING_REG_RD \
| MB_EVENT_DISCRETE_RD \
| MB_EVENT_COILS_RD)
#define MB_WRITE_MASK (MB_EVENT_HOLDING_REG_WR \
| MB_EVENT_COILS_WR)
#define MB_READ_WRITE_MASK (MB_READ_MASK | MB_WRITE_MASK)
#define MB_SLAVE_ADDR (CONFIG_MB_SLAVE_ADDR)
static const char *TAG = "SLAVE_TEST";
static void *slave_handle = NULL;
#if CONFIG_MB_MDNS_IP_RESOLVER
#define MB_ID_BYTE0(id) ((uint8_t)(id))
#define MB_ID_BYTE1(id) ((uint8_t)(((uint16_t)(id) >> 8) & 0xFF))
#define MB_ID_BYTE2(id) ((uint8_t)(((uint32_t)(id) >> 16) & 0xFF))
#define MB_ID_BYTE3(id) ((uint8_t)(((uint32_t)(id) >> 24) & 0xFF))
#define MB_ID2STR(id) MB_ID_BYTE0(id), MB_ID_BYTE1(id), MB_ID_BYTE2(id), MB_ID_BYTE3(id)
#if CONFIG_FMB_CONTROLLER_SLAVE_ID_SUPPORT
#define MB_DEVICE_ID (uint32_t)CONFIG_FMB_CONTROLLER_SLAVE_ID
#endif
#define MB_MDNS_INSTANCE(pref) pref"mb_slave_tcp"
// convert mac from binary format to string
static inline char* gen_mac_str(const uint8_t* mac, char* pref, char* mac_str)
{
sprintf(mac_str, "%s%02X%02X%02X%02X%02X%02X", pref, MAC2STR(mac));
return mac_str;
}
static inline char* gen_id_str(char* service_name, char* slave_id_str)
{
sprintf(slave_id_str, "%s%02X%02X%02X%02X", service_name, MB_ID2STR(MB_DEVICE_ID));
return slave_id_str;
}
static inline char* gen_host_name_str(char* service_name, char* name)
{
sprintf(name, "%s_%02X", service_name, MB_SLAVE_ADDR);
return name;
}
static void start_mdns_service(void)
{
char temp_str[32] = {0};
uint8_t sta_mac[6] = {0};
ESP_ERROR_CHECK(esp_read_mac(sta_mac, ESP_MAC_WIFI_STA));
char* hostname = gen_host_name_str(MB_MDNS_INSTANCE(""), temp_str);
//initialize mDNS
ESP_ERROR_CHECK(mdns_init());
//set mDNS hostname (required if you want to advertise services)
ESP_ERROR_CHECK(mdns_hostname_set(hostname));
ESP_LOGI(TAG, "mdns hostname set to: [%s]", hostname);
//set default mDNS instance name
ESP_ERROR_CHECK(mdns_instance_name_set(MB_MDNS_INSTANCE("esp32_")));
//structure with TXT records
mdns_txt_item_t serviceTxtData[] = {
{"board","esp32"}
};
//initialize service
ESP_ERROR_CHECK(mdns_service_add(hostname, "_modbus", "_tcp", MB_MDNS_PORT, serviceTxtData, 1));
//add mac key string text item
ESP_ERROR_CHECK(mdns_service_txt_item_set("_modbus", "_tcp", "mac", gen_mac_str(sta_mac, "\0", temp_str)));
//add slave id key txt item
ESP_ERROR_CHECK( mdns_service_txt_item_set("_modbus", "_tcp", "mb_id", gen_id_str("\0", temp_str)));
}
static void stop_mdns_service(void)
{
mdns_free();
}
#endif
// Set register values into known state
static void setup_reg_data(void)
{
// Define initial state of parameters
discrete_reg_params.discrete_input0 = 1;
discrete_reg_params.discrete_input1 = 0;
discrete_reg_params.discrete_input2 = 1;
discrete_reg_params.discrete_input3 = 0;
discrete_reg_params.discrete_input4 = 1;
discrete_reg_params.discrete_input5 = 0;
discrete_reg_params.discrete_input6 = 1;
discrete_reg_params.discrete_input7 = 0;
holding_reg_params.holding_data0 = 1.34;
holding_reg_params.holding_data1 = 2.56;
holding_reg_params.holding_data2 = 3.78;
holding_reg_params.holding_data3 = 4.90;
holding_reg_params.holding_data4 = 5.67;
holding_reg_params.holding_data5 = 6.78;
holding_reg_params.holding_data6 = 7.79;
holding_reg_params.holding_data7 = 8.80;
coil_reg_params.coils_port0 = 0x55;
coil_reg_params.coils_port1 = 0xAA;
input_reg_params.input_data0 = 1.12;
input_reg_params.input_data1 = 2.34;
input_reg_params.input_data2 = 3.56;
input_reg_params.input_data3 = 4.78;
input_reg_params.input_data4 = 1.12;
input_reg_params.input_data5 = 2.34;
input_reg_params.input_data6 = 3.56;
input_reg_params.input_data7 = 4.78;
}
static void slave_operation_func(void *arg)
{
mb_param_info_t reg_info; // keeps the Modbus registers access information
ESP_LOGI(TAG, "Modbus slave stack initialized.");
ESP_LOGI(TAG, "Start modbus test...");
// The cycle below will be terminated when parameter holding_data0
// incremented each access cycle reaches the CHAN_DATA_MAX_VAL value.
for(;holding_reg_params.holding_data0 < MB_CHAN_DATA_MAX_VAL;) {
// Check for read/write events of Modbus master for certain events
(void)mbc_slave_check_event(slave_handle, MB_READ_WRITE_MASK);
// Get parameter information from parameter queue
ESP_ERROR_CHECK(mbc_slave_get_param_info(slave_handle, &reg_info, MB_PAR_INFO_GET_TOUT));
const char* rw_str = (reg_info.type & MB_READ_MASK) ? "READ" : "WRITE";
// Filter events and process them accordingly
if(reg_info.type & (MB_EVENT_HOLDING_REG_WR | MB_EVENT_HOLDING_REG_RD)) {
ESP_LOGI(TAG, "HOLDING %s (%" PRIu32 " us), ADDR:%u, TYPE:%u, INST_ADDR:0x%" PRIx32 ", SIZE:%u",
rw_str,
reg_info.time_stamp,
(unsigned)reg_info.mb_offset,
(unsigned)reg_info.type,
(uint32_t)reg_info.address,
(unsigned)reg_info.size);
if (reg_info.address == (uint8_t*)&holding_reg_params.holding_data0)
{
(void)mbc_slave_unlock(slave_handle);
holding_reg_params.holding_data0 += MB_CHAN_DATA_OFFSET;
if (holding_reg_params.holding_data0 >= (MB_CHAN_DATA_MAX_VAL - MB_CHAN_DATA_OFFSET)) {
coil_reg_params.coils_port1 = 0xFF;
}
(void)mbc_slave_unlock(slave_handle);
}
} else if (reg_info.type & MB_EVENT_INPUT_REG_RD) {
ESP_LOGI(TAG, "INPUT READ (%" PRIu32 " us), ADDR:%u, TYPE:%u, INST_ADDR:0x%" PRIx32 ", SIZE:%u",
reg_info.time_stamp,
(unsigned)reg_info.mb_offset,
(unsigned)reg_info.type,
(uint32_t)reg_info.address,
(unsigned)reg_info.size);
} else if (reg_info.type & MB_EVENT_DISCRETE_RD) {
ESP_LOGI(TAG, "DISCRETE READ (%" PRIu32 " us): ADDR:%u, TYPE:%u, INST_ADDR:0x%" PRIx32 ", SIZE:%u",
reg_info.time_stamp,
(unsigned)reg_info.mb_offset,
(unsigned)reg_info.type,
(uint32_t)reg_info.address,
(unsigned)reg_info.size);
} else if (reg_info.type & (MB_EVENT_COILS_RD | MB_EVENT_COILS_WR)) {
ESP_LOGI(TAG, "COILS %s (%" PRIu32 " us), ADDR:%u, TYPE:%u, INST_ADDR:0x%" PRIx32 ", SIZE:%u",
rw_str,
reg_info.time_stamp,
(unsigned)reg_info.mb_offset,
(unsigned)reg_info.type,
(uint32_t)reg_info.address,
(unsigned)reg_info.size);
if (coil_reg_params.coils_port1 == 0xFF) break;
}
}
// Destroy of Modbus controller on alarm
ESP_LOGI(TAG,"Modbus controller destroyed.");
vTaskDelay(100);
}
static esp_err_t init_services(void)
{
esp_err_t result = nvs_flash_init();
if (result == ESP_ERR_NVS_NO_FREE_PAGES || result == ESP_ERR_NVS_NEW_VERSION_FOUND) {
ESP_ERROR_CHECK(nvs_flash_erase());
result = nvs_flash_init();
}
MB_RETURN_ON_FALSE((result == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"nvs_flash_init fail, returns(0x%x).",
(int)result);
result = esp_netif_init();
MB_RETURN_ON_FALSE((result == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"esp_netif_init fail, returns(0x%x).",
(int)result);
result = esp_event_loop_create_default();
MB_RETURN_ON_FALSE((result == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"esp_event_loop_create_default fail, returns(0x%x).",
(int)result);
#if CONFIG_MB_MDNS_IP_RESOLVER
// Start mdns service and register device
start_mdns_service();
#endif
// This helper function configures Wi-Fi or Ethernet, as selected in menuconfig.
// Read "Establishing Wi-Fi or Ethernet Connection" section in
// examples/protocols/README.md for more information about this function.
result = example_connect();
MB_RETURN_ON_FALSE((result == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"example_connect fail, returns(0x%x).",
(int)result);
#if CONFIG_EXAMPLE_CONNECT_WIFI
result = esp_wifi_set_ps(WIFI_PS_NONE);
MB_RETURN_ON_FALSE((result == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"esp_wifi_set_ps fail, returns(0x%x).",
(int)result);
#endif
return ESP_OK;
}
static esp_err_t destroy_services(void)
{
esp_err_t err = ESP_OK;
err = example_disconnect();
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"example_disconnect fail, returns(0x%x).",
(int)err);
err = esp_event_loop_delete_default();
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"esp_event_loop_delete_default fail, returns(0x%x).",
(int)err);
err = esp_netif_deinit();
MB_RETURN_ON_FALSE((err == ESP_OK || err == ESP_ERR_NOT_SUPPORTED), ESP_ERR_INVALID_STATE,
TAG,
"esp_netif_deinit fail, returns(0x%x).",
(int)err);
err = nvs_flash_deinit();
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"nvs_flash_deinit fail, returns(0x%x).",
(int)err);
#if CONFIG_MB_MDNS_IP_RESOLVER
stop_mdns_service();
#endif
return err;
}
// Modbus slave initialization
static esp_err_t slave_init(mb_communication_info_t *pcomm_info)
{
mb_register_area_descriptor_t reg_area; // Modbus register area descriptor structure
// Initialization of Modbus controller
esp_err_t err = mbc_slave_create_tcp(pcomm_info, &slave_handle);
MB_RETURN_ON_FALSE((err == ESP_OK && slave_handle != NULL), ESP_ERR_INVALID_STATE,
TAG,
"mb controller create fail.");
// The code below initializes Modbus register area descriptors
// for Modbus Holding Registers, Input Registers, Coils and Discrete Inputs
// Initialization should be done for each supported Modbus register area according to register map.
// When external master trying to access the register in the area that is not initialized
// by mbc_slave_set_descriptor() API call then Modbus stack
// will send exception response for this register area.
reg_area.type = MB_PARAM_HOLDING; // Set type of register area
reg_area.start_offset = MB_REG_HOLDING_START_AREA0; // Offset of register area in Modbus protocol
reg_area.address = (void*)&holding_reg_params.holding_data0; // Set pointer to storage instance
reg_area.size = (MB_REG_HOLDING_START_AREA1 - MB_REG_HOLDING_START_AREA0) << 1; // Set the size of register storage instance
err = mbc_slave_set_descriptor(slave_handle, reg_area);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"mbc_slave_set_descriptor fail, returns(0x%x).",
(int)err);
reg_area.type = MB_PARAM_HOLDING; // Set type of register area
reg_area.start_offset = MB_REG_HOLDING_START_AREA1; // Offset of register area in Modbus protocol
reg_area.address = (void*)&holding_reg_params.holding_data4; // Set pointer to storage instance
reg_area.size = sizeof(float) << 2; // Set the size of register storage instance
err = mbc_slave_set_descriptor(slave_handle, reg_area);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"mbc_slave_set_descriptor fail, returns(0x%x).",
(int)err);
// Initialization of Input Registers area
reg_area.type = MB_PARAM_INPUT;
reg_area.start_offset = MB_REG_INPUT_START_AREA0;
reg_area.address = (void*)&input_reg_params.input_data0;
reg_area.size = sizeof(float) << 2;
err = mbc_slave_set_descriptor(slave_handle, reg_area);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"mbc_slave_set_descriptor fail, returns(0x%x).",
(int)err);
reg_area.type = MB_PARAM_INPUT;
reg_area.start_offset = MB_REG_INPUT_START_AREA1;
reg_area.address = (void*)&input_reg_params.input_data4;
reg_area.size = sizeof(float) << 2;
err = mbc_slave_set_descriptor(slave_handle, reg_area);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"mbc_slave_set_descriptor fail, returns(0x%x).",
(int)err);
// Initialization of Coils register area
reg_area.type = MB_PARAM_COIL;
reg_area.start_offset = MB_REG_COILS_START;
reg_area.address = (void*)&coil_reg_params;
reg_area.size = sizeof(coil_reg_params);
err = mbc_slave_set_descriptor(slave_handle, reg_area);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"mbc_slave_set_descriptor fail, returns(0x%x).",
(int)err);
// Initialization of Discrete Inputs register area
reg_area.type = MB_PARAM_DISCRETE;
reg_area.start_offset = MB_REG_DISCRETE_INPUT_START;
reg_area.address = (void*)&discrete_reg_params;
reg_area.size = sizeof(discrete_reg_params);
err = mbc_slave_set_descriptor(slave_handle, reg_area);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"mbc_slave_set_descriptor fail, returns(0x%x).",
(int)err);
// Set values into known state
setup_reg_data();
// Starts of modbus controller and stack
err = mbc_slave_start(slave_handle);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"mbc_slave_start fail, returns(0x%x).",
(int)err);
vTaskDelay(5);
return err;
}
static esp_err_t slave_destroy(void)
{
esp_err_t err = mbc_slave_delete(slave_handle);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE,
TAG,
"mbc_slave_destroy fail, returns(0x%x).",
(int)err);
return err;
}
// An example application of Modbus slave. It is based on freemodbus stack.
// See deviceparams.h file for more information about assigned Modbus parameters.
// These parameters can be accessed from main application and also can be changed
// by external Modbus master host.
void app_main(void)
{
ESP_ERROR_CHECK(init_services());
// Set UART log level
esp_log_level_set(TAG, ESP_LOG_INFO);
mb_communication_info_t tcp_slave_config = {
.tcp_opts.port = MB_TCP_PORT_NUMBER,
.tcp_opts.mode = MB_TCP,
#if !CONFIG_EXAMPLE_CONNECT_IPV6
.tcp_opts.addr_type = MB_IPV4,
#else
.tcp_opts.addr_type = MB_IPV6,
#endif
.tcp_opts.ip_addr_table = NULL, // Bind to any address
.tcp_opts.ip_netif_ptr = (void*)get_example_netif(),
.tcp_opts.uid = MB_SLAVE_ADDR
};
ESP_ERROR_CHECK(slave_init(&tcp_slave_config));
// The Modbus slave logic is located in this function (user handling of Modbus)
slave_operation_func(NULL);
ESP_ERROR_CHECK(slave_destroy());
ESP_ERROR_CHECK(destroy_services());
}

View File

@@ -0,0 +1,32 @@
#
# Modbus configuration
#
CONFIG_FMB_COMM_MODE_TCP_EN=y
CONFIG_FMB_TCP_PORT_DEFAULT=502
CONFIG_FMB_TCP_CONNECTION_TOUT_SEC=20
CONFIG_FMB_PORT_TASK_STACK_SIZE=4096
CONFIG_FMB_PORT_TASK_PRIO=10
CONFIG_FMB_COMM_MODE_RTU_EN=n
CONFIG_FMB_COMM_MODE_ASCII_EN=n
CONFIG_FMB_MASTER_TIMEOUT_MS_RESPOND=3000
CONFIG_FMB_MASTER_DELAY_MS_CONVERT=300
CONFIG_FMB_TCP_UID_ENABLED=n
CONFIG_FMB_TIMER_USE_ISR_DISPATCH_METHOD=y
CONFIG_MB_MDNS_IP_RESOLVER=n
CONFIG_MB_SLAVE_ADDR=1
CONFIG_LOG_DEFAULT_LEVEL_DEBUG=y
CONFIG_EXAMPLE_CONNECT_IPV6=n
CONFIG_EXAMPLE_CONNECT_WIFI=n
CONFIG_EXAMPLE_CONNECT_ETHERNET=y
CONFIG_EXAMPLE_USE_INTERNAL_ETHERNET=y
CONFIG_EXAMPLE_ETH_PHY_IP101=y
CONFIG_EXAMPLE_ETH_MDC_GPIO=23
CONFIG_EXAMPLE_ETH_MDIO_GPIO=18
CONFIG_EXAMPLE_ETH_PHY_RST_GPIO=5
CONFIG_EXAMPLE_ETH_PHY_ADDR=1
CONFIG_EXAMPLE_ETHERNET_EMAC_TASK_STACK_SIZE=4096
CONFIG_ETH_ENABLED=y
CONFIG_ETH_USE_ESP32_EMAC=y
CONFIG_ETH_PHY_INTERFACE_RMII=y
CONFIG_ETH_USE_SPI_ETHERNET=n

View File

@@ -0,0 +1,19 @@
CONFIG_FMB_COMM_MODE_TCP_EN=y
CONFIG_FMB_TCP_PORT_DEFAULT=502
CONFIG_FMB_TCP_CONNECTION_TOUT_SEC=20
CONFIG_FMB_PORT_TASK_STACK_SIZE=4096
CONFIG_FMB_PORT_TASK_PRIO=10
CONFIG_FMB_COMM_MODE_RTU_EN=n
CONFIG_FMB_COMM_MODE_ASCII_EN=n
CONFIG_FMB_MASTER_TIMEOUT_MS_RESPOND=3000
CONFIG_FMB_MASTER_DELAY_MS_CONVERT=300
CONFIG_LOG_DEFAULT_LEVEL_DEBUG=y
CONFIG_FMB_TCP_UID_ENABLED=n
CONFIG_MB_MDNS_IP_RESOLVER=n
CONFIG_MB_SLAVE_ADDR=1
CONFIG_EXAMPLE_CONNECT_IPV6=n
CONFIG_FMB_TIMER_USE_ISR_DISPATCH_METHOD=y
CONFIG_EXAMPLE_CONNECT_ETHERNET=n
CONFIG_EXAMPLE_CONNECT_WIFI=y
CONFIG_EXAMPLE_WIFI_SSID="${CI_WIFI_SSID}"
CONFIG_EXAMPLE_WIFI_PASSWORD="${CI_WIFI_PASSW}"

View File

@@ -0,0 +1,22 @@
#
# Modbus configuration
#
CONFIG_FMB_COMM_MODE_TCP_EN=y
CONFIG_FMB_TCP_PORT_DEFAULT=502
CONFIG_FMB_TCP_CONNECTION_TOUT_SEC=20
CONFIG_FMB_PORT_TASK_STACK_SIZE=4096
CONFIG_FMB_PORT_TASK_PRIO=10
CONFIG_FMB_COMM_MODE_RTU_EN=n
CONFIG_FMB_COMM_MODE_ASCII_EN=n
CONFIG_FMB_MASTER_TIMEOUT_MS_RESPOND=2000
CONFIG_FMB_MASTER_DELAY_MS_CONVERT=300
CONFIG_MB_MDNS_IP_RESOLVER=n
CONFIG_FMB_TCP_UID_ENABLED=n
CONFIG_MB_SLAVE_ADDR=1
CONFIG_LOG_DEFAULT_LEVEL_DEBUG=y
CONFIG_EXAMPLE_CONNECT_IPV6=n
CONFIG_FMB_TIMER_USE_ISR_DISPATCH_METHOD=y
CONFIG_EXAMPLE_WIFI_SSID="${CI_WIFI_SSID}"
CONFIG_EXAMPLE_WIFI_PASSWORD="${CI_WIFI_PASSW}"
CONFIG_EXAMPLE_CONNECT_ETHERNET=n
CONFIG_EXAMPLE_CONNECT_WIFI=y

View File

@@ -0,0 +1,69 @@
# SPDX-FileCopyrightText: 2016-2023 Espressif Systems (Shanghai) CO LTD
# SPDX-License-Identifier: Apache-2.0
# This is the script to reproduce the issue when the expect() is called from
# main thread in Multi DUT case.
import logging
import os
from typing import Tuple
import pytest
from conftest import ModbusTestDut, Stages
pattern_dict_slave = {Stages.STACK_IPV4: (r'I \([0-9]+\) example_connect: - IPv4 address: ([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3})'),
Stages.STACK_IPV6: (r'I \([0-9]+\) example_connect: - IPv6 address: (([A-Fa-f0-9]{1,4}::?){1,7}[A-Fa-f0-9]{1,4})'),
Stages.STACK_INIT: (r'I \(([0-9]+)\) MB_TCP_SLAVE_PORT: (Protocol stack initialized).'),
Stages.STACK_CONNECT: (r'I\s\(([0-9]+)\) MB_TCP_SLAVE_PORT: Socket \(#[0-9]+\), accept client connection from address: '
r'([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3})'),
Stages.STACK_START: (r'I\s\(([0-9]+)\) SLAVE_TEST: (Start modbus test)'),
Stages.STACK_PAR_OK: (r'I\s\(([0-9]+)\) SLAVE_TEST: ([A-Z]+ [A-Z]+) \([a-zA-Z0-9_]+ us\),\s'
r'ADDR:([0-9]+), TYPE:[0-9]+, INST_ADDR:0x[a-zA-Z0-9]+, SIZE:[0-9]+'),
Stages.STACK_PAR_FAIL: (r'E \(([0-9]+)\) SLAVE_TEST: Response time exceeds configured [0-9]+ [ms], ignore packet'),
Stages.STACK_DESTROY: (r'I\s\(([0-9]+)\) SLAVE_TEST: (Modbus controller destroyed).')}
pattern_dict_master = {Stages.STACK_IPV4: (r'I \([0-9]+\) example_connect: - IPv4 address: ([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3})'),
Stages.STACK_IPV6: (r'I \([0-9]+\) example_connect: - IPv6 address: (([A-Fa-f0-9]{1,4}::?){1,7}[A-Fa-f0-9]{1,4})'),
Stages.STACK_INIT: (r'I \(([0-9]+)\) MASTER_TEST: (Modbus master stack initialized)'),
Stages.STACK_CONNECT: (r'I\s\(([0-9]+)\) MB_TCP_MASTER_PORT: (Connected [0-9]+ slaves), start polling'),
Stages.STACK_START: (r'I \(([0-9]+)\) MASTER_TEST: (Start modbus test)'),
Stages.STACK_PAR_OK: (r'I \(([0-9]+)\) MASTER_TEST: Characteristic #[0-9]+ ([a-zA-Z0-9_]+)'
r'\s\([a-zA-Z\_\%\/]+\) value =[a-zA-Z0-9\.\s]* \((0x[a-zA-Z0-9]+)\)[,\sa-z]+ successful'),
Stages.STACK_PAR_FAIL: (r'.*E \(([0-9]+)\) MASTER_TEST: Characteristic #[0-9]+\s\(([a-zA-Z0-9_]+)\)\s'
r'read fail, err = [x0-9]+ \([_A-Z]+\)'),
Stages.STACK_DESTROY: (r'I \(([0-9]+)\) MASTER_TEST: (Destroy master)...')}
LOG_LEVEL = logging.DEBUG
LOGGER_NAME = 'modbus_test'
logger = logging.getLogger(LOGGER_NAME)
test_configs = [
'wifi',
'ethernet'
]
@pytest.mark.esp32
@pytest.mark.multi_dut_modbus_tcp
@pytest.mark.parametrize('config', test_configs, indirect=True)
@pytest.mark.parametrize(
'count, app_path', [
(2, f'{os.path.join(os.path.dirname(__file__), "mb_tcp_master")}|{os.path.join(os.path.dirname(__file__), "mb_tcp_slave")}')
],
indirect=True
)
def test_modbus_tcp_communication(dut: Tuple[ModbusTestDut, ModbusTestDut]) -> None:
dut_slave = dut[1]
dut_master = dut[0]
logger.info('DUT: %s start.', dut_master.dut_get_name())
logger.info('DUT: %s start.', dut_slave.dut_get_name())
dut_slave_ip_address = dut_slave.dut_get_ip()
dut_master.dut_send_ip(dut_slave_ip_address)
dut_slave.dut_test_start(dictionary=pattern_dict_slave)
dut_master.dut_test_start(dictionary=pattern_dict_master)
dut_slave.dut_check_errors()
dut_master.dut_check_errors()