Merge pull request #462 from david-cermak/feat/eppp_link

New component ESP-PPP-Link
This commit is contained in:
david-cermak
2024-02-23 12:22:43 +01:00
committed by GitHub
38 changed files with 2354 additions and 2 deletions

28
.github/workflows/eppp__build.yml vendored Normal file
View File

@@ -0,0 +1,28 @@
name: "eppp_link: build-tests"
on:
push:
branches:
- master
pull_request:
types: [opened, synchronize, reopened, labeled]
jobs:
build_eppp:
if: contains(github.event.pull_request.labels.*.name, 'eppp') || github.event_name == 'push'
name: Build
strategy:
matrix:
idf_ver: ["latest"]
test: [ { app: host, path: "examples/host" }, { app: slave, path: "examples/slave" }, { app: test_app, path: "test/test_app" }]
runs-on: ubuntu-20.04
container: espressif/idf:${{ matrix.idf_ver }}
steps:
- name: Checkout esp-protocols
uses: actions/checkout@v3
- name: Build ${{ matrix.test.app }} with IDF-${{ matrix.idf_ver }}
shell: bash
run: |
${IDF_PATH}/install.sh --enable-pytest
. ${IDF_PATH}/export.sh
python ./ci/build_apps.py ./components/eppp_link/${{matrix.test.path}} -vv --preserve-all

View File

@@ -92,6 +92,7 @@ jobs:
components/esp_modem;
components/esp_mqtt_cxx;
components/esp_websocket_client;
components/eppp_link;
components/mdns;
components/console_simple_init;
components/console_cmd_ping;

View File

@@ -61,8 +61,8 @@ repos:
- repo: local
hooks:
- id: commit message scopes
name: "commit message must be scoped with: mdns, modem, websocket, asio, mqtt_cxx, console, common"
entry: '\A(?!(feat|fix|ci|bump|test|docs)\((mdns|modem|common|console|websocket|asio|mqtt_cxx|examples)\)\:)'
name: "commit message must be scoped with: mdns, modem, websocket, asio, mqtt_cxx, console, common, eppp"
entry: '\A(?!(feat|fix|ci|bump|test|docs)\((mdns|modem|common|console|websocket|asio|mqtt_cxx|examples|eppp)\)\:)'
language: pygrep
args: [--multiline]
stages: [commit-msg]

View File

@@ -49,3 +49,7 @@ Please refer to instructions in [ESP-IDF](https://github.com/espressif/esp-idf)
### console_cmd_wifi
* Brief introduction [README](components/console_cmd_wifi/README.md)
### ESP PPP Link (eppp)
* Brief introduction [README](components/eppp_link/README.md)

View File

@@ -0,0 +1,8 @@
---
commitizen:
bump_message: 'bump(eppp): $current_version -> $new_version'
pre_bump_hooks: python ../../ci/changelog.py eppp_link
tag_format: eppp-v$version
version: 0.0.1
version_files:
- idf_component.yml

View File

@@ -0,0 +1,10 @@
# Changelog
## [0.0.1](https://github.com/espressif/esp-protocols/commits/eppp-v0.0.1)
### Features
- Added CI job to build examples and tests ([8686977](https://github.com/espressif/esp-protocols/commit/8686977))
- Added support for SPI transport ([18f8452](https://github.com/espressif/esp-protocols/commit/18f8452))
- Added support for UART transport ([ad27414](https://github.com/espressif/esp-protocols/commit/ad27414))
- Introduced ESP-PPP-Link component ([a761039](https://github.com/espressif/esp-protocols/commit/a761039))

View File

@@ -0,0 +1,3 @@
idf_component_register(SRCS "eppp_link.c"
INCLUDE_DIRS "include"
PRIV_REQUIRES esp_netif esp_driver_spi esp_driver_gpio esp_timer driver)

View File

@@ -0,0 +1,35 @@
menu "eppp_link"
choice EPPP_LINK_DEVICE
prompt "Choose PPP device"
default EPPP_LINK_DEVICE_UART
help
Select which peripheral to use for PPP link
config EPPP_LINK_DEVICE_UART
bool "UART"
help
Use UART.
config EPPP_LINK_DEVICE_SPI
bool "SPI"
help
Use SPI.
endchoice
config EPPP_LINK_CONN_MAX_RETRY
int "Maximum retry"
default 6
help
Set the Maximum retry to infinitely avoid reconnecting
This is used only with the simplified API (eppp_connect()
and eppp_listen())
config EPPP_LINK_PACKET_QUEUE_SIZE
int "Packet queue size"
default 64
help
Size of the Tx packet queue.
You can decrease the number for slower bit rates.
endmenu

View File

@@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@@ -0,0 +1,52 @@
# ESP PPP Link component (eppp_link)
The component provides a general purpose connectivity engine between two microcontrollers, one acting as PPP server (slave), the other one as PPP client (host).
This component could be used for extending network using physical serial connection. Applications could vary from providing PRC engine for multiprocessor solutions to serial connection to POSIX machine. This uses a standard PPP protocol to negotiate IP addresses and networking, so standard PPP toolset could be used, e.g. a `pppd` service on linux. Typical application is a WiFi connectivity provider for chips that do not have WiFi
## Typical application
Using this component we can construct a WiFi connectivity gateway on PPP channel. The below diagram depicts an application where
PPP server is running on a WiFi capable chip with NAPT module translating packets between WiFi and PPPoS interface.
We usually call this node a SLAVE microcontroller. The "HOST" microcontroller runs PPP client and connects only to the serial line,
brings in the WiFi connectivity from the "SLAVE" microcontroller.
```
SLAVE micro HOST micro
\|/ +----------------+ +----------------+
| | | serial line | |
+---+ WiFi NAT PPPoS |======== UART / SPI =======| PPPoS client |
| (server)| | |
+----------------+ +----------------+
```
## API
### Client
* `eppp_connect()` -- Simplified API. Provides the initialization, starts the task and blocks until we're connected
### Server
* `eppp_listen()` -- Simplified API. Provides the initialization, starts the task and blocks until the client connects
### Manual actions
* `eppp_init()` -- Initializes one endpoint (client/server).
* `eppp_deinit()` -- Destroys the endpoint
* `eppp_netif_start()` -- Starts the network, could be called after startup or whenever a connection is lost
* `eppp_netif_stop()` -- Stops the network
* `eppp_perform()` -- Perform one iteration of the PPP task (need to be called regularly in task-less configuration)
## Throughput
Tested with WiFi-NAPT example, no IRAM optimizations
### UART @ 3Mbauds
* TCP - 2Mbits/s
* UDP - 2Mbits/s
### SPI @ 20MHz
* TCP - 6Mbits/s
* UDP - 10Mbits/s

View File

@@ -0,0 +1,820 @@
/*
* SPDX-FileCopyrightText: 2019-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <string.h>
#include <stdint.h>
#include "sdkconfig.h"
#include "esp_log.h"
#include "esp_netif.h"
#include "esp_check.h"
#include "esp_event.h"
#include "esp_netif_ppp.h"
#include "eppp_link.h"
#if CONFIG_EPPP_LINK_DEVICE_SPI
#include "driver/spi_master.h"
#include "driver/spi_slave.h"
#include "driver/gpio.h"
#include "esp_timer.h"
#include "esp_rom_crc.h"
#elif CONFIG_EPPP_LINK_DEVICE_UART
#include "driver/uart.h"
#endif
static const int GOT_IPV4 = BIT0;
static const int CONNECTION_FAILED = BIT1;
#define CONNECT_BITS (GOT_IPV4|CONNECTION_FAILED)
static EventGroupHandle_t s_event_group = NULL;
static const char *TAG = "eppp_link";
static int s_retry_num = 0;
static int s_eppp_netif_count = 0; // used as a suffix for the netif key
struct packet {
size_t len;
uint8_t *data;
};
#if CONFIG_EPPP_LINK_DEVICE_SPI
#define MAX_PAYLOAD 1500
#define MIN_TRIGGER_US 20
#define SPI_HEADER_MAGIC 0x1234
static void timer_callback(void *arg);
struct header {
uint16_t magic;
uint16_t size;
uint16_t next_size;
uint16_t check;
} __attribute__((packed));
enum blocked_status {
NONE,
MASTER_BLOCKED,
MASTER_WANTS_READ,
SLAVE_BLOCKED,
SLAVE_WANTS_WRITE,
};
#endif // CONFIG_EPPP_LINK_DEVICE_SPI
struct eppp_handle {
#if CONFIG_EPPP_LINK_DEVICE_SPI
QueueHandle_t out_queue;
QueueHandle_t ready_semaphore;
spi_device_handle_t spi_device;
spi_host_device_t spi_host;
int gpio_intr;
uint16_t next_size;
uint16_t transaction_size;
struct packet outbound;
enum blocked_status blocked;
uint32_t slave_last_edge;
esp_timer_handle_t timer;
#elif CONFIG_EPPP_LINK_DEVICE_UART
QueueHandle_t uart_event_queue;
uart_port_t uart_port;
#endif
esp_netif_t *netif;
eppp_type_t role;
bool stop;
bool exited;
bool netif_stop;
};
static esp_err_t transmit(void *h, void *buffer, size_t len)
{
struct eppp_handle *handle = h;
#if CONFIG_EPPP_LINK_DEVICE_SPI
struct packet buf = { };
uint8_t *current_buffer = buffer;
size_t remaining = len;
do { // TODO(IDF-9194): Refactor this loop to allocate only once and perform
// fragmentation after receiving from the queue (applicable only if MTU > MAX_PAYLOAD)
size_t batch = remaining > MAX_PAYLOAD ? MAX_PAYLOAD : remaining;
buf.data = malloc(batch);
if (buf.data == NULL) {
ESP_LOGE(TAG, "Failed to allocate packet");
return ESP_ERR_NO_MEM;
}
buf.len = batch;
remaining -= batch;
memcpy(buf.data, current_buffer, batch);
current_buffer += batch;
BaseType_t ret = xQueueSend(handle->out_queue, &buf, 0);
if (ret != pdTRUE) {
ESP_LOGE(TAG, "Failed to queue packet to slave!");
return ESP_ERR_NO_MEM;
}
} while (remaining > 0);
if (handle->role == EPPP_SERVER && handle->blocked == SLAVE_BLOCKED) {
uint32_t now = esp_timer_get_time();
uint32_t diff = now - handle->slave_last_edge;
if (diff < MIN_TRIGGER_US) {
esp_rom_delay_us(MIN_TRIGGER_US - diff);
}
gpio_set_level(handle->gpio_intr, 0);
}
#elif CONFIG_EPPP_LINK_DEVICE_UART
ESP_LOG_BUFFER_HEXDUMP("ppp_uart_send", buffer, len, ESP_LOG_VERBOSE);
uart_write_bytes(handle->uart_port, buffer, len);
#endif
return ESP_OK;
}
static void netif_deinit(esp_netif_t *netif)
{
if (netif == NULL) {
return;
}
struct eppp_handle *h = esp_netif_get_io_driver(netif);
if (h == NULL) {
return;
}
#if CONFIG_EPPP_LINK_DEVICE_SPI
struct packet buf = { };
while (xQueueReceive(h->out_queue, &buf, 0) == pdTRUE) {
if (buf.len > 0) {
free(buf.data);
}
}
vQueueDelete(h->out_queue);
if (h->role == EPPP_CLIENT) {
vSemaphoreDelete(h->ready_semaphore);
}
#endif
free(h);
esp_netif_destroy(netif);
if (s_eppp_netif_count > 0) {
s_eppp_netif_count--;
}
}
static esp_netif_t *netif_init(eppp_type_t role)
{
if (s_eppp_netif_count > 9) { // Limit to max 10 netifs, since we use "EPPPx" as the unique key (where x is 0-9)
ESP_LOGE(TAG, "Cannot create more than 10 instances");
return NULL;
}
// Create the object first
struct eppp_handle *h = calloc(1, sizeof(struct eppp_handle));
if (!h) {
ESP_LOGE(TAG, "Failed to allocate eppp_handle");
return NULL;
}
h->role = role;
#if CONFIG_EPPP_LINK_DEVICE_SPI
h->out_queue = xQueueCreate(CONFIG_EPPP_LINK_PACKET_QUEUE_SIZE, sizeof(struct packet));
if (!h->out_queue) {
ESP_LOGE(TAG, "Failed to create the packet queue");
free(h);
return NULL;
}
if (role == EPPP_CLIENT) {
h->ready_semaphore = xSemaphoreCreateBinary();
if (!h->ready_semaphore) {
ESP_LOGE(TAG, "Failed to create the packet queue");
vQueueDelete(h->out_queue);
free(h);
return NULL;
}
}
h->transaction_size = 0;
h->outbound.data = NULL;
h->outbound.len = 0;
if (role == EPPP_SERVER) {
esp_timer_create_args_t args = {
.callback = &timer_callback,
.arg = h,
.name = "timer"
};
if (esp_timer_create(&args, &h->timer) != ESP_OK) {
ESP_LOGE(TAG, "Failed to create the packet queue");
vQueueDelete(h->out_queue);
vSemaphoreDelete(h->ready_semaphore);
free(h);
return NULL;
}
}
#endif
esp_netif_driver_ifconfig_t driver_cfg = {
.handle = h,
.transmit = transmit,
};
const esp_netif_driver_ifconfig_t *ppp_driver_cfg = &driver_cfg;
esp_netif_inherent_config_t base_netif_cfg = ESP_NETIF_INHERENT_DEFAULT_PPP();
char if_key[] = "EPPP0"; // netif key needs to be unique
if_key[sizeof(if_key) - 2 /* 2 = two chars before the terminator */ ] += s_eppp_netif_count++;
base_netif_cfg.if_key = if_key;
if (role == EPPP_CLIENT) {
base_netif_cfg.if_desc = "pppos_client";
} else {
base_netif_cfg.if_desc = "pppos_server";
}
esp_netif_config_t netif_ppp_config = { .base = &base_netif_cfg,
.driver = ppp_driver_cfg,
.stack = ESP_NETIF_NETSTACK_DEFAULT_PPP
};
esp_netif_t *netif = esp_netif_new(&netif_ppp_config);
if (!netif) {
ESP_LOGE(TAG, "Failed to create esp_netif");
#if CONFIG_EPPP_LINK_DEVICE_SPI
vQueueDelete(h->out_queue);
if (h->ready_semaphore) {
vSemaphoreDelete(h->ready_semaphore);
}
#endif
free(h);
return NULL;
}
return netif;
}
esp_err_t eppp_netif_stop(esp_netif_t *netif, int stop_timeout_ms)
{
esp_netif_action_disconnected(netif, 0, 0, 0);
esp_netif_action_stop(netif, 0, 0, 0);
struct eppp_handle *h = esp_netif_get_io_driver(netif);
for (int wait = 0; wait < 100; wait++) {
vTaskDelay(pdMS_TO_TICKS(stop_timeout_ms) / 100);
if (h->netif_stop) {
break;
}
}
if (!h->netif_stop) {
return ESP_FAIL;
}
return ESP_OK;
}
esp_err_t eppp_netif_start(esp_netif_t *netif)
{
esp_netif_action_start(netif, 0, 0, 0);
esp_netif_action_connected(netif, 0, 0, 0);
return ESP_OK;
}
static int get_netif_num(esp_netif_t *netif)
{
if (netif == NULL) {
return -1;
}
const char *ifkey = esp_netif_get_ifkey(netif);
if (strstr(ifkey, "EPPP") == NULL) {
return -1; // not our netif
}
int netif_cnt = ifkey[4] - '0';
if (netif_cnt < 0 || netif_cnt > 9) {
ESP_LOGE(TAG, "Unexpected netif key %s", ifkey);
return -1;
}
return netif_cnt;
}
static void on_ppp_event(void *arg, esp_event_base_t base, int32_t event_id, void *data)
{
esp_netif_t **netif = data;
ESP_LOGD(TAG, "PPP status event: %" PRId32, event_id);
if (base == NETIF_PPP_STATUS && event_id == NETIF_PPP_ERRORUSER) {
ESP_LOGI(TAG, "Disconnected %d", get_netif_num(*netif));
struct eppp_handle *h = esp_netif_get_io_driver(*netif);
h->netif_stop = true;
}
}
static void on_ip_event(void *arg, esp_event_base_t base, int32_t event_id, void *data)
{
ip_event_got_ip_t *event = (ip_event_got_ip_t *)data;
esp_netif_t *netif = event->esp_netif;
int netif_cnt = get_netif_num(netif);
if (netif_cnt < 0) {
return;
}
if (event_id == IP_EVENT_PPP_GOT_IP) {
ESP_LOGI(TAG, "Got IPv4 event: Interface \"%s(%s)\" address: " IPSTR, esp_netif_get_desc(netif),
esp_netif_get_ifkey(netif), IP2STR(&event->ip_info.ip));
xEventGroupSetBits(s_event_group, GOT_IPV4 << (netif_cnt * 2));
} else if (event_id == IP_EVENT_PPP_LOST_IP) {
ESP_LOGI(TAG, "Disconnected");
s_retry_num++;
if (s_retry_num > CONFIG_EPPP_LINK_CONN_MAX_RETRY) {
ESP_LOGE(TAG, "PPP Connection failed %d times, stop reconnecting.", s_retry_num);
xEventGroupSetBits(s_event_group, CONNECTION_FAILED << (netif_cnt * 2));
} else {
ESP_LOGI(TAG, "PPP Connection failed %d times, try to reconnect.", s_retry_num);
eppp_netif_start(netif);
}
}
}
#if CONFIG_EPPP_LINK_DEVICE_SPI
#define SPI_ALIGN(size) (((size) + 3U) & ~(3U))
#define TRANSFER_SIZE SPI_ALIGN((MAX_PAYLOAD + 6))
#define NEXT_TRANSACTION_SIZE(a,b) (((a)>(b))?(a):(b)) /* next transaction: whichever is bigger */
static void IRAM_ATTR timer_callback(void *arg)
{
struct eppp_handle *h = arg;
if (h->blocked == SLAVE_WANTS_WRITE) {
gpio_set_level(h->gpio_intr, 0);
}
}
static void IRAM_ATTR gpio_isr_handler(void *arg)
{
static uint32_t s_last_time;
uint32_t now = esp_timer_get_time();
uint32_t diff = now - s_last_time;
if (diff < MIN_TRIGGER_US) { // debounce
return;
}
s_last_time = now;
struct eppp_handle *h = arg;
BaseType_t yield = false;
// Positive edge means SPI slave prepared the data
if (gpio_get_level(h->gpio_intr) == 1) {
xSemaphoreGiveFromISR(h->ready_semaphore, &yield);
if (yield) {
portYIELD_FROM_ISR();
}
return;
}
// Negative edge (when master blocked) means that slave wants to transmit
if (h->blocked == MASTER_BLOCKED) {
struct packet buf = { .data = NULL, .len = -1 };
xQueueSendFromISR(h->out_queue, &buf, &yield);
if (yield) {
portYIELD_FROM_ISR();
}
}
}
static esp_err_t deinit_master(esp_netif_t *netif)
{
struct eppp_handle *h = esp_netif_get_io_driver(netif);
ESP_RETURN_ON_ERROR(spi_bus_remove_device(h->spi_device), TAG, "Failed to remove SPI bus");
ESP_RETURN_ON_ERROR(spi_bus_free(h->spi_host), TAG, "Failed to free SPI bus");
return ESP_OK;
}
static esp_err_t init_master(struct eppp_config_spi_s *config, esp_netif_t *netif)
{
struct eppp_handle *h = esp_netif_get_io_driver(netif);
h->spi_host = config->host;
h->gpio_intr = config->intr;
spi_bus_config_t bus_cfg = {};
bus_cfg.mosi_io_num = config->mosi;
bus_cfg.miso_io_num = config->miso;
bus_cfg.sclk_io_num = config->sclk;
bus_cfg.quadwp_io_num = -1;
bus_cfg.quadhd_io_num = -1;
bus_cfg.max_transfer_sz = TRANSFER_SIZE;
bus_cfg.flags = 0;
bus_cfg.intr_flags = 0;
// TODO: Init and deinit SPI bus separately (per Kconfig?)
if (spi_bus_initialize(config->host, &bus_cfg, SPI_DMA_CH_AUTO) != ESP_OK) {
return ESP_FAIL;
}
spi_device_interface_config_t dev_cfg = {};
dev_cfg.clock_speed_hz = config->freq;
dev_cfg.mode = 0;
dev_cfg.spics_io_num = config->cs;
dev_cfg.cs_ena_pretrans = config->cs_ena_pretrans;
dev_cfg.cs_ena_posttrans = config->cs_ena_posttrans;
dev_cfg.duty_cycle_pos = 128;
dev_cfg.input_delay_ns = config->input_delay_ns;
dev_cfg.pre_cb = NULL;
dev_cfg.post_cb = NULL;
dev_cfg.queue_size = 3;
if (spi_bus_add_device(config->host, &dev_cfg, &h->spi_device) != ESP_OK) {
return ESP_FAIL;
}
//GPIO config for the handshake line.
gpio_config_t io_conf = {
.intr_type = GPIO_INTR_ANYEDGE,
.mode = GPIO_MODE_INPUT,
.pull_up_en = 1,
.pin_bit_mask = BIT64(config->intr),
};
gpio_config(&io_conf);
gpio_install_isr_service(0);
gpio_set_intr_type(config->intr, GPIO_INTR_ANYEDGE);
gpio_isr_handler_add(config->intr, gpio_isr_handler, esp_netif_get_io_driver(netif));
return ESP_OK;
}
static void post_setup(spi_slave_transaction_t *trans)
{
struct eppp_handle *h = trans->user;
h->slave_last_edge = esp_timer_get_time();
gpio_set_level(h->gpio_intr, 1);
if (h->transaction_size == 0) { // If no transaction planned:
if (h->outbound.len == 0) { // we're blocked if we don't have any data
h->blocked = SLAVE_BLOCKED;
} else {
h->blocked = SLAVE_WANTS_WRITE; // we notify the master that we want to write
esp_timer_start_once(h->timer, MIN_TRIGGER_US);
}
}
}
static void post_trans(spi_slave_transaction_t *trans)
{
struct eppp_handle *h = trans->user;
h->blocked = NONE;
gpio_set_level(h->gpio_intr, 0);
}
static esp_err_t deinit_slave(esp_netif_t *netif)
{
struct eppp_handle *h = esp_netif_get_io_driver(netif);
ESP_RETURN_ON_ERROR(spi_slave_free(h->spi_host), TAG, "Failed to free SPI slave host");
ESP_RETURN_ON_ERROR(spi_bus_remove_device(h->spi_device), TAG, "Failed to remove SPI device");
ESP_RETURN_ON_ERROR(spi_bus_free(h->spi_host), TAG, "Failed to free SPI bus");
return ESP_OK;
}
static esp_err_t init_slave(struct eppp_config_spi_s *config, esp_netif_t *netif)
{
struct eppp_handle *h = esp_netif_get_io_driver(netif);
h->spi_host = config->host;
h->gpio_intr = config->intr;
spi_bus_config_t bus_cfg = {};
bus_cfg.mosi_io_num = config->mosi;
bus_cfg.miso_io_num = config->miso;
bus_cfg.sclk_io_num = config->sclk;
bus_cfg.quadwp_io_num = -1;
bus_cfg.quadhd_io_num = -1;
bus_cfg.flags = 0;
bus_cfg.intr_flags = 0;
//Configuration for the SPI slave interface
spi_slave_interface_config_t slvcfg = {
.mode = 0,
.spics_io_num = config->cs,
.queue_size = 3,
.flags = 0,
.post_setup_cb = post_setup,
.post_trans_cb = post_trans,
};
//Configuration for the handshake line
gpio_config_t io_conf = {
.intr_type = GPIO_INTR_DISABLE,
.mode = GPIO_MODE_OUTPUT,
.pin_bit_mask = BIT64(config->intr),
};
gpio_config(&io_conf);
gpio_set_pull_mode(config->mosi, GPIO_PULLUP_ONLY);
gpio_set_pull_mode(config->sclk, GPIO_PULLUP_ONLY);
gpio_set_pull_mode(config->cs, GPIO_PULLUP_ONLY);
//Initialize SPI slave interface
if (spi_slave_initialize(config->host, &bus_cfg, &slvcfg, SPI_DMA_CH_AUTO) != ESP_OK) {
return ESP_FAIL;
}
return ESP_OK;
}
typedef esp_err_t (*perform_transaction_t)(struct eppp_handle *h, size_t len, const void *tx_buffer, void *rx_buffer);
static esp_err_t perform_transaction_master(struct eppp_handle *h, size_t len, const void *tx_buffer, void *rx_buffer)
{
spi_transaction_t t = {};
t.length = len * 8;
t.tx_buffer = tx_buffer;
t.rx_buffer = rx_buffer;
return spi_device_transmit(h->spi_device, &t);
}
static esp_err_t perform_transaction_slave(struct eppp_handle *h, size_t len, const void *tx_buffer, void *rx_buffer)
{
spi_slave_transaction_t t = {};
t.user = h;
t.length = len * 8;
t.tx_buffer = tx_buffer;
t.rx_buffer = rx_buffer;
return spi_slave_transmit(h->spi_host, &t, portMAX_DELAY);
}
esp_err_t eppp_perform(esp_netif_t *netif)
{
static WORD_ALIGNED_ATTR uint8_t out_buf[TRANSFER_SIZE] = {};
static WORD_ALIGNED_ATTR uint8_t in_buf[TRANSFER_SIZE] = {};
struct eppp_handle *h = esp_netif_get_io_driver(netif);
// Perform transaction for master and slave
const perform_transaction_t perform_transaction = h->role == EPPP_CLIENT ? perform_transaction_master : perform_transaction_slave;
if (h->stop) {
return ESP_ERR_TIMEOUT;
}
BaseType_t tx_queue_stat;
bool allow_test_tx = false;
uint16_t next_tx_size = 0;
if (h->role == EPPP_CLIENT) {
// SPI MASTER only code
if (xSemaphoreTake(h->ready_semaphore, pdMS_TO_TICKS(1000)) != pdTRUE) {
// slave might not be ready, but maybe we just missed an interrupt
allow_test_tx = true;
}
if (h->outbound.len == 0 && h->transaction_size == 0 && h->blocked == NONE) {
h->blocked = MASTER_BLOCKED;
xQueueReceive(h->out_queue, &h->outbound, portMAX_DELAY);
h->blocked = NONE;
if (h->outbound.len == -1) {
h->outbound.len = 0;
h->blocked = MASTER_WANTS_READ;
}
} else if (h->blocked == MASTER_WANTS_READ) {
h->blocked = NONE;
}
}
struct header *head = (void *)out_buf;
if (h->outbound.len <= h->transaction_size && allow_test_tx == false) {
// sending outbound
head->size = h->outbound.len;
if (h->outbound.len > 0) {
memcpy(out_buf + sizeof(struct header), h->outbound.data, h->outbound.len);
free(h->outbound.data);
ESP_LOG_BUFFER_HEXDUMP(TAG, out_buf + sizeof(struct header), head->size, ESP_LOG_VERBOSE);
h->outbound.data = NULL;
h->outbound.len = 0;
}
do {
tx_queue_stat = xQueueReceive(h->out_queue, &h->outbound, 0);
} while (tx_queue_stat == pdTRUE && h->outbound.len == -1);
if (h->outbound.len == -1) { // used as a signal only, no actual data
h->outbound.len = 0;
}
} else {
// outbound is bigger, need to transmit in another transaction (keep this empty)
head->size = 0;
}
next_tx_size = head->next_size = h->outbound.len;
head->magic = SPI_HEADER_MAGIC;
head->check = esp_rom_crc16_le(0, out_buf, sizeof(struct header) - sizeof(uint16_t));
esp_err_t ret = perform_transaction(h, sizeof(struct header) + h->transaction_size, out_buf, in_buf);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "spi_device_transmit failed");
h->transaction_size = 0; // need to start with HEADER only transaction
return ESP_FAIL;
}
head = (void *)in_buf;
uint16_t check = esp_rom_crc16_le(0, in_buf, sizeof(struct header) - sizeof(uint16_t));
if (check != head->check || head->magic != SPI_HEADER_MAGIC) {
h->transaction_size = 0; // need to start with HEADER only transaction
if (allow_test_tx) {
return ESP_OK;
}
ESP_LOGE(TAG, "Wrong checksum or magic");
return ESP_FAIL;
}
if (head->size > 0) {
ESP_LOG_BUFFER_HEXDUMP(TAG, in_buf + sizeof(struct header), head->size, ESP_LOG_VERBOSE);
esp_netif_receive(netif, in_buf + sizeof(struct header), head->size, NULL);
}
h->transaction_size = NEXT_TRANSACTION_SIZE(next_tx_size, head->next_size);
return ESP_OK;
}
#elif CONFIG_EPPP_LINK_DEVICE_UART
#define BUF_SIZE (1024)
static esp_err_t init_uart(struct eppp_handle *h, eppp_config_t *config)
{
h->uart_port = config->uart.port;
uart_config_t uart_config = {};
uart_config.baud_rate = config->uart.baud;
uart_config.data_bits = UART_DATA_8_BITS;
uart_config.parity = UART_PARITY_DISABLE;
uart_config.stop_bits = UART_STOP_BITS_1;
uart_config.flow_ctrl = UART_HW_FLOWCTRL_DISABLE;
uart_config.source_clk = UART_SCLK_DEFAULT;
ESP_RETURN_ON_ERROR(uart_driver_install(h->uart_port, config->uart.rx_buffer_size, 0, config->uart.queue_size, &h->uart_event_queue, 0), TAG, "Failed to install UART");
ESP_RETURN_ON_ERROR(uart_param_config(h->uart_port, &uart_config), TAG, "Failed to set params");
ESP_RETURN_ON_ERROR(uart_set_pin(h->uart_port, config->uart.tx_io, config->uart.rx_io, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE), TAG, "Failed to set UART pins");
ESP_RETURN_ON_ERROR(uart_set_rx_timeout(h->uart_port, 1), TAG, "Failed to set UART Rx timeout");
return ESP_OK;
}
static void deinit_uart(struct eppp_handle *h)
{
uart_driver_delete(h->uart_port);
}
esp_err_t eppp_perform(esp_netif_t *netif)
{
static uint8_t buffer[BUF_SIZE] = {};
struct eppp_handle *h = esp_netif_get_io_driver(netif);
uart_event_t event = {};
if (h->stop) {
return ESP_ERR_TIMEOUT;
}
if (xQueueReceive(h->uart_event_queue, &event, pdMS_TO_TICKS(100)) != pdTRUE) {
return ESP_OK;
}
if (event.type == UART_DATA) {
size_t len;
uart_get_buffered_data_len(h->uart_port, &len);
if (len) {
len = uart_read_bytes(h->uart_port, buffer, BUF_SIZE, 0);
ESP_LOG_BUFFER_HEXDUMP("ppp_uart_recv", buffer, len, ESP_LOG_VERBOSE);
esp_netif_receive(netif, buffer, len, NULL);
}
} else {
ESP_LOGW(TAG, "Received UART event: %d", event.type);
}
return ESP_OK;
}
#endif // CONFIG_EPPP_LINK_DEVICE_SPI / UART
static void ppp_task(void *args)
{
esp_netif_t *netif = args;
while (eppp_perform(netif) != ESP_ERR_TIMEOUT) {}
struct eppp_handle *h = esp_netif_get_io_driver(netif);
h->exited = true;
vTaskDelete(NULL);
}
static bool have_some_eppp_netif(esp_netif_t *netif, void *ctx)
{
return get_netif_num(netif) > 0;
}
static void remove_handlers(void)
{
esp_netif_t *netif = esp_netif_find_if(have_some_eppp_netif, NULL);
if (netif == NULL) {
// if EPPP netif in the system, we cleanup the statics
vEventGroupDelete(s_event_group);
s_event_group = NULL;
esp_event_handler_unregister(IP_EVENT, ESP_EVENT_ANY_ID, on_ip_event);
esp_event_handler_unregister(NETIF_PPP_STATUS, ESP_EVENT_ANY_ID, on_ppp_event);
}
}
void eppp_deinit(esp_netif_t *netif)
{
if (netif == NULL) {
return;
}
#if CONFIG_EPPP_LINK_DEVICE_SPI
struct eppp_handle *h = esp_netif_get_io_driver(netif);
if (h->role == EPPP_CLIENT) {
deinit_master(netif);
} else {
deinit_slave(netif);
}
#elif CONFIG_EPPP_LINK_DEVICE_UART
deinit_uart(esp_netif_get_io_driver(netif));
#endif
netif_deinit(netif);
}
esp_netif_t *eppp_init(eppp_type_t role, eppp_config_t *config)
{
esp_netif_t *netif = netif_init(role);
if (!netif) {
ESP_LOGE(TAG, "Failed to initialize PPP netif");
remove_handlers();
return NULL;
}
esp_netif_ppp_config_t netif_params;
ESP_ERROR_CHECK(esp_netif_ppp_get_params(netif, &netif_params));
netif_params.ppp_our_ip4_addr = config->ppp.our_ip4_addr;
netif_params.ppp_their_ip4_addr = config->ppp.their_ip4_addr;
netif_params.ppp_error_event_enabled = true;
ESP_ERROR_CHECK(esp_netif_ppp_set_params(netif, &netif_params));
#if CONFIG_EPPP_LINK_DEVICE_SPI
if (role == EPPP_CLIENT) {
init_master(&config->spi, netif);
} else {
init_slave(&config->spi, netif);
}
#elif CONFIG_EPPP_LINK_DEVICE_UART
init_uart(esp_netif_get_io_driver(netif), config);
#endif
return netif;
}
esp_netif_t *eppp_open(eppp_type_t role, eppp_config_t *config, int connect_timeout_ms)
{
#if CONFIG_EPPP_LINK_DEVICE_UART
if (config->transport != EPPP_TRANSPORT_UART) {
ESP_LOGE(TAG, "Invalid transport: UART device must be enabled in Kconfig");
return NULL;
}
#endif
#if CONFIG_EPPP_LINK_DEVICE_SPI
if (config->transport != EPPP_TRANSPORT_SPI) {
ESP_LOGE(TAG, "Invalid transport: SPI device must be enabled in Kconfig");
return NULL;
}
#endif
if (config->task.run_task == false) {
ESP_LOGE(TAG, "task.run_task == false is invalid in this API. Please use eppp_init()");
return NULL;
}
if (s_event_group == NULL) {
s_event_group = xEventGroupCreate();
if (esp_event_handler_register(IP_EVENT, ESP_EVENT_ANY_ID, on_ip_event, NULL) != ESP_OK) {
ESP_LOGE(TAG, "Failed to register IP event handler");
remove_handlers();
return NULL;
}
if (esp_event_handler_register(NETIF_PPP_STATUS, ESP_EVENT_ANY_ID, on_ppp_event, NULL) != ESP_OK) {
ESP_LOGE(TAG, "Failed to register PPP status handler");
remove_handlers();
return NULL;
}
}
esp_netif_t *netif = eppp_init(role, config);
if (!netif) {
remove_handlers();
return NULL;
}
eppp_netif_start(netif);
if (xTaskCreate(ppp_task, "ppp connect", config->task.stack_size, netif, config->task.priority, NULL) != pdTRUE) {
ESP_LOGE(TAG, "Failed to create a ppp connection task");
eppp_deinit(netif);
return NULL;
}
int netif_cnt = get_netif_num(netif);
if (netif_cnt < 0) {
eppp_close(netif);
return NULL;
}
ESP_LOGI(TAG, "Waiting for IP address %d", netif_cnt);
EventBits_t bits = xEventGroupWaitBits(s_event_group, CONNECT_BITS << (netif_cnt * 2), pdFALSE, pdFALSE, pdMS_TO_TICKS(connect_timeout_ms));
if (bits & (CONNECTION_FAILED << (netif_cnt * 2))) {
ESP_LOGE(TAG, "Connection failed!");
eppp_close(netif);
return NULL;
}
ESP_LOGI(TAG, "Connected! %d", netif_cnt);
return netif;
}
esp_netif_t *eppp_connect(eppp_config_t *config)
{
return eppp_open(EPPP_CLIENT, config, portMAX_DELAY);
}
esp_netif_t *eppp_listen(eppp_config_t *config)
{
return eppp_open(EPPP_SERVER, config, portMAX_DELAY);
}
void eppp_close(esp_netif_t *netif)
{
struct eppp_handle *h = esp_netif_get_io_driver(netif);
if (eppp_netif_stop(netif, 60000) != ESP_OK) {
ESP_LOGE(TAG, "Network didn't exit cleanly");
}
h->stop = true;
for (int wait = 0; wait < 100; wait++) {
vTaskDelay(pdMS_TO_TICKS(10));
if (h->exited) {
break;
}
}
if (!h->exited) {
ESP_LOGE(TAG, "Cannot stop ppp_task");
}
eppp_deinit(netif);
remove_handlers();
}

View File

@@ -0,0 +1,8 @@
# The following four lines of boilerplate have to be in your project's CMakeLists
# in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.16)
set(EXTRA_COMPONENT_DIRS $ENV{IDF_PATH}/examples/common_components/iperf)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(pppos_host)

View File

@@ -0,0 +1,9 @@
# Client side demo of ESP-PPP-Link
This is a basic demo of using esp-mqtt library, but connects to the internet using a PPPoS client. To run this example, you would need a PPP server that provides connectivity to the MQTT broker used in this example (by default a public broker accessible on the internet).
If configured, this example could also run a ping session and an iperf console.
The PPP server could be a Linux computer with `pppd` service or an ESP32 acting like a connection gateway with PPPoS server (see the "slave" project).

View File

@@ -0,0 +1,2 @@
idf_component_register(SRCS app_main.c register_iperf.c
INCLUDE_DIRS ".")

View File

@@ -0,0 +1,53 @@
menu "Example Configuration"
config EXAMPLE_GLOBAL_DNS
hex "Set global DNS server"
range 0 0xFFFFFFFF
default 0x08080808
help
Global DNS server address.
config EXAMPLE_MQTT
bool "Run mqtt example"
default y
help
Run MQTT client after startup.
config EXAMPLE_BROKER_URL
string "Broker URL"
depends on EXAMPLE_MQTT
default "mqtt://mqtt.eclipseprojects.io"
help
URL of the broker to connect to.
config EXAMPLE_IPERF
bool "Run iperf"
default y
help
Init and run iperf console.
config EXAMPLE_UART_TX_PIN
int "TXD Pin Number"
depends on EPPP_LINK_DEVICE_UART
default 10
range 0 31
help
Pin number of UART TX.
config EXAMPLE_UART_RX_PIN
int "RXD Pin Number"
depends on EPPP_LINK_DEVICE_UART
default 11
range 0 31
help
Pin number of UART RX.
config EXAMPLE_UART_BAUDRATE
int "Baudrate"
depends on EPPP_LINK_DEVICE_UART
default 2000000
range 0 4000000
help
Baudrate used by the PPP over UART
endmenu

View File

@@ -0,0 +1,149 @@
/*
* SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
#include <stdio.h>
#include <stdint.h>
#include <stddef.h>
#include <string.h>
#include "esp_system.h"
#include "nvs_flash.h"
#include "esp_event.h"
#include "esp_netif.h"
#include "eppp_link.h"
#include "esp_log.h"
#include "mqtt_client.h"
#include "console_ping.h"
void register_iperf(void);
static const char *TAG = "eppp_host_example";
#if CONFIG_EXAMPLE_MQTT
static void mqtt_event_handler(void *args, esp_event_base_t base, int32_t event_id, void *event_data)
{
ESP_LOGD(TAG, "Event dispatched from event loop base=%s, event_id=%" PRIi32 "", base, event_id);
esp_mqtt_event_handle_t event = event_data;
esp_mqtt_client_handle_t client = event->client;
int msg_id;
switch ((esp_mqtt_event_id_t)event_id) {
case MQTT_EVENT_CONNECTED:
ESP_LOGI(TAG, "MQTT_EVENT_CONNECTED");
msg_id = esp_mqtt_client_publish(client, "/topic/qos1", "data_3", 0, 1, 0);
ESP_LOGI(TAG, "sent publish successful, msg_id=%d", msg_id);
msg_id = esp_mqtt_client_subscribe(client, "/topic/qos0", 0);
ESP_LOGI(TAG, "sent subscribe successful, msg_id=%d", msg_id);
msg_id = esp_mqtt_client_subscribe(client, "/topic/qos1", 1);
ESP_LOGI(TAG, "sent subscribe successful, msg_id=%d", msg_id);
msg_id = esp_mqtt_client_unsubscribe(client, "/topic/qos1");
ESP_LOGI(TAG, "sent unsubscribe successful, msg_id=%d", msg_id);
break;
case MQTT_EVENT_DISCONNECTED:
ESP_LOGI(TAG, "MQTT_EVENT_DISCONNECTED");
break;
case MQTT_EVENT_SUBSCRIBED:
ESP_LOGI(TAG, "MQTT_EVENT_SUBSCRIBED, msg_id=%d", event->msg_id);
msg_id = esp_mqtt_client_publish(client, "/topic/qos0", "data", 0, 0, 0);
ESP_LOGI(TAG, "sent publish successful, msg_id=%d", msg_id);
break;
case MQTT_EVENT_UNSUBSCRIBED:
ESP_LOGI(TAG, "MQTT_EVENT_UNSUBSCRIBED, msg_id=%d", event->msg_id);
break;
case MQTT_EVENT_PUBLISHED:
ESP_LOGI(TAG, "MQTT_EVENT_PUBLISHED, msg_id=%d", event->msg_id);
break;
case MQTT_EVENT_DATA:
ESP_LOGI(TAG, "MQTT_EVENT_DATA");
printf("TOPIC=%.*s\r\n", event->topic_len, event->topic);
printf("DATA=%.*s\r\n", event->data_len, event->data);
break;
case MQTT_EVENT_ERROR:
ESP_LOGI(TAG, "MQTT_EVENT_ERROR");
if (event->error_handle->error_type == MQTT_ERROR_TYPE_TCP_TRANSPORT) {
ESP_LOGI(TAG, "Last errno string (%s)", strerror(event->error_handle->esp_transport_sock_errno));
}
break;
default:
ESP_LOGI(TAG, "Other event id:%d", event->event_id);
break;
}
}
static void mqtt_app_start(void)
{
esp_mqtt_client_config_t mqtt_cfg = {
.broker.address.uri = "mqtt://mqtt.eclipseprojects.io",
};
esp_mqtt_client_handle_t client = esp_mqtt_client_init(&mqtt_cfg);
/* The last argument may be used to pass data to the event handler, in this example mqtt_event_handler */
esp_mqtt_client_register_event(client, ESP_EVENT_ANY_ID, mqtt_event_handler, NULL);
esp_mqtt_client_start(client);
}
#endif // MQTT
void app_main(void)
{
ESP_LOGI(TAG, "[APP] Startup..");
ESP_LOGI(TAG, "[APP] Free memory: %" PRIu32 " bytes", esp_get_free_heap_size());
ESP_LOGI(TAG, "[APP] IDF version: %s", esp_get_idf_version());
ESP_ERROR_CHECK(nvs_flash_init());
ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default());
/* Sets up the default EPPP-connection
*/
eppp_config_t config = EPPP_DEFAULT_CLIENT_CONFIG();
#if CONFIG_EPPP_LINK_DEVICE_SPI
config.transport = EPPP_TRANSPORT_SPI;
#else
config.transport = EPPP_TRANSPORT_UART;
config.uart.tx_io = CONFIG_EXAMPLE_UART_TX_PIN;
config.uart.rx_io = CONFIG_EXAMPLE_UART_RX_PIN;
config.uart.baud = CONFIG_EXAMPLE_UART_BAUDRATE;
#endif
esp_netif_t *eppp_netif = eppp_connect(&config);
if (eppp_netif == NULL) {
ESP_LOGE(TAG, "Failed to connect");
return ;
}
// Setup global DNS
esp_netif_dns_info_t dns;
dns.ip.u_addr.ip4.addr = esp_netif_htonl(CONFIG_EXAMPLE_GLOBAL_DNS);
dns.ip.type = ESP_IPADDR_TYPE_V4;
ESP_ERROR_CHECK(esp_netif_set_dns_info(eppp_netif, ESP_NETIF_DNS_MAIN, &dns));
// Initialize console REPL
ESP_ERROR_CHECK(console_cmd_init());
#if CONFIG_EXAMPLE_IPERF
register_iperf();
printf("\n =======================================================\n");
printf(" | Steps to Test EPPP-host bandwidth |\n");
printf(" | |\n");
printf(" | 1. Wait for the ESP32 to get an IP |\n");
printf(" | 2. Server: 'iperf -u -s -i 3' (on host) |\n");
printf(" | 3. Client: 'iperf -u -c SERVER_IP -t 60 -i 3' |\n");
printf(" | |\n");
printf(" =======================================================\n\n");
#endif // CONFIG_EXAMPLE_IPERF
// Register the ping command
ESP_ERROR_CHECK(console_cmd_ping_register());
// start console REPL
ESP_ERROR_CHECK(console_cmd_start());
#if CONFIG_EXAMPLE_MQTT
mqtt_app_start();
#endif
}

View File

@@ -0,0 +1,6 @@
dependencies:
espressif/eppp_link:
version: "*"
override_path: "../../.."
console_cmd_ping:
version: "*"

View File

@@ -0,0 +1,179 @@
/*
* SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "freertos/FreeRTOS.h"
#include "freertos/event_groups.h"
#include "sys/socket.h" // for INADDR_ANY
#include "esp_netif.h"
#include "esp_log.h"
#include "esp_system.h"
#include "esp_event.h"
#include "esp_log.h"
#include "esp_netif.h"
#include "esp_netif_ppp.h"
#include "freertos/FreeRTOS.h"
#include "freertos/event_groups.h"
#include "esp_console.h"
#include "esp_event.h"
#include "esp_bit_defs.h"
#include "argtable3/argtable3.h"
#include "iperf.h"
#include "sdkconfig.h"
/* "iperf" command */
static struct {
struct arg_str *ip;
struct arg_lit *server;
struct arg_lit *udp;
struct arg_lit *version;
struct arg_int *port;
struct arg_int *length;
struct arg_int *interval;
struct arg_int *time;
struct arg_int *bw_limit;
struct arg_lit *abort;
struct arg_end *end;
} iperf_args;
static int ppp_cmd_iperf(int argc, char **argv)
{
int nerrors = arg_parse(argc, argv, (void **)&iperf_args);
// ethernet iperf only support IPV4 address
iperf_cfg_t cfg = {.type = IPERF_IP_TYPE_IPV4};
if (nerrors != 0) {
arg_print_errors(stderr, iperf_args.end, argv[0]);
return 0;
}
/* iperf -a */
if (iperf_args.abort->count != 0) {
iperf_stop();
return 0;
}
if (((iperf_args.ip->count == 0) && (iperf_args.server->count == 0)) ||
((iperf_args.ip->count != 0) && (iperf_args.server->count != 0))) {
ESP_LOGE(__func__, "Wrong mode! ESP32 should run in client or server mode");
return 0;
}
/* iperf -s */
if (iperf_args.ip->count == 0) {
cfg.flag |= IPERF_FLAG_SERVER;
}
/* iperf -c SERVER_ADDRESS */
else {
cfg.destination_ip4 = esp_ip4addr_aton(iperf_args.ip->sval[0]);
cfg.flag |= IPERF_FLAG_CLIENT;
}
if (iperf_args.length->count == 0) {
cfg.len_send_buf = 0;
} else {
cfg.len_send_buf = iperf_args.length->ival[0];
}
cfg.source_ip4 = INADDR_ANY;
/* iperf -u */
if (iperf_args.udp->count == 0) {
cfg.flag |= IPERF_FLAG_TCP;
} else {
cfg.flag |= IPERF_FLAG_UDP;
}
/* iperf -p */
if (iperf_args.port->count == 0) {
cfg.sport = IPERF_DEFAULT_PORT;
cfg.dport = IPERF_DEFAULT_PORT;
} else {
if (cfg.flag & IPERF_FLAG_SERVER) {
cfg.sport = iperf_args.port->ival[0];
cfg.dport = IPERF_DEFAULT_PORT;
} else {
cfg.sport = IPERF_DEFAULT_PORT;
cfg.dport = iperf_args.port->ival[0];
}
}
/* iperf -i */
if (iperf_args.interval->count == 0) {
cfg.interval = IPERF_DEFAULT_INTERVAL;
} else {
cfg.interval = iperf_args.interval->ival[0];
if (cfg.interval <= 0) {
cfg.interval = IPERF_DEFAULT_INTERVAL;
}
}
/* iperf -t */
if (iperf_args.time->count == 0) {
cfg.time = IPERF_DEFAULT_TIME;
} else {
cfg.time = iperf_args.time->ival[0];
if (cfg.time <= cfg.interval) {
cfg.time = cfg.interval;
}
}
/* iperf -b */
if (iperf_args.bw_limit->count == 0) {
cfg.bw_lim = IPERF_DEFAULT_NO_BW_LIMIT;
} else {
cfg.bw_lim = iperf_args.bw_limit->ival[0];
if (cfg.bw_lim <= 0) {
cfg.bw_lim = IPERF_DEFAULT_NO_BW_LIMIT;
}
}
printf("mode=%s-%s sip=" IPSTR ":%" PRIu16 ", dip=%" PRIu32 ".%" PRIu32 ".%" PRIu32 ".%" PRIu32 ":%" PRIu16 ", interval=%" PRIu32 ", time=%" PRIu32 "\r\n",
cfg.flag & IPERF_FLAG_TCP ? "tcp" : "udp",
cfg.flag & IPERF_FLAG_SERVER ? "server" : "client",
(uint16_t) cfg.source_ip4 & 0xFF,
(uint16_t) (cfg.source_ip4 >> 8) & 0xFF,
(uint16_t) (cfg.source_ip4 >> 16) & 0xFF,
(uint16_t) (cfg.source_ip4 >> 24) & 0xFF,
cfg.sport,
cfg.destination_ip4 & 0xFF, (cfg.destination_ip4 >> 8) & 0xFF,
(cfg.destination_ip4 >> 16) & 0xFF, (cfg.destination_ip4 >> 24) & 0xFF, cfg.dport,
cfg.interval, cfg.time);
iperf_start(&cfg);
return 0;
}
void register_iperf(void)
{
iperf_args.ip = arg_str0("c", "client", "<ip>",
"run in client mode, connecting to <host>");
iperf_args.server = arg_lit0("s", "server", "run in server mode");
iperf_args.udp = arg_lit0("u", "udp", "use UDP rather than TCP");
iperf_args.version = arg_lit0("V", "ipv6_domain", "use IPV6 address rather than IPV4");
iperf_args.port = arg_int0("p", "port", "<port>",
"server port to listen on/connect to");
iperf_args.length = arg_int0("l", "len", "<length>", "set read/write buffer size");
iperf_args.interval = arg_int0("i", "interval", "<interval>",
"seconds between periodic bandwidth reports");
iperf_args.time = arg_int0("t", "time", "<time>", "time in seconds to transmit for (default 10 secs)");
iperf_args.bw_limit = arg_int0("b", "bandwidth", "<bandwidth>", "bandwidth to send at in Mbits/sec");
iperf_args.abort = arg_lit0("a", "abort", "abort running iperf");
iperf_args.end = arg_end(1);
const esp_console_cmd_t iperf_cmd = {
.command = "iperf",
.help = "iperf command",
.hint = NULL,
.func = &ppp_cmd_iperf,
.argtable = &iperf_args
};
ESP_ERROR_CHECK(esp_console_cmd_register(&iperf_cmd));
}

View File

@@ -0,0 +1 @@
CONFIG_EPPP_LINK_DEVICE_SPI=y

View File

@@ -0,0 +1 @@
CONFIG_EPPP_LINK_DEVICE_UART=y

View File

@@ -0,0 +1,4 @@
CONFIG_LWIP_PPP_SUPPORT=y
CONFIG_LWIP_PPP_SERVER_SUPPORT=y
CONFIG_LWIP_PPP_VJ_HEADER_COMPRESSION=n
CONFIG_LWIP_PPP_DEBUG_ON=y

View File

@@ -0,0 +1,6 @@
# The following five lines of boilerplate have to be in your project's
# CMakeLists in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.16)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(pppos_slave)

View File

@@ -0,0 +1,7 @@
# Wi-Fi station to PPPoS server
This example demonstrate using NAPT to bring connectivity from WiFi station to PPPoS server.
This example expect a PPPoS client to connect to the server and use the connectivity.
The client could be a Linux computer with `pppd` service or another microcontroller with PPP client (or another ESP32 with not WiFi interface)

View File

@@ -0,0 +1,2 @@
idf_component_register(SRCS "eppp_slave.c"
INCLUDE_DIRS ".")

View File

@@ -0,0 +1,45 @@
menu "Example Configuration"
config ESP_WIFI_SSID
string "WiFi SSID"
default "myssid"
help
SSID (network name) for the example to connect to.
config ESP_WIFI_PASSWORD
string "WiFi Password"
default "mypassword"
help
WiFi password (WPA or WPA2) for the example to use.
config ESP_MAXIMUM_RETRY
int "Maximum retry"
default 5
help
Set the Maximum retry to avoid station reconnecting to the AP unlimited when the AP is really inexistent.
config EXAMPLE_UART_TX_PIN
int "TXD Pin Number"
depends on EPPP_LINK_DEVICE_UART
default 11
range 0 31
help
Pin number of UART TX.
config EXAMPLE_UART_RX_PIN
int "RXD Pin Number"
depends on EPPP_LINK_DEVICE_UART
default 10
range 0 31
help
Pin number of UART RX.
config EXAMPLE_UART_BAUDRATE
int "Baudrate"
depends on EPPP_LINK_DEVICE_UART
default 2000000
range 0 4000000
help
Baudrate used by the PPP over UART
endmenu

View File

@@ -0,0 +1,147 @@
/*
* SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/event_groups.h"
#include "esp_system.h"
#include "esp_wifi.h"
#include "esp_event.h"
#include "esp_log.h"
#include "nvs_flash.h"
#include "eppp_link.h"
static const char *TAG = "eppp_slave";
#if CONFIG_SOC_WIFI_SUPPORTED
/* FreeRTOS event group to signal when we are connected*/
static EventGroupHandle_t s_wifi_event_group;
/* The event group allows multiple bits for each event, but we only care about two events:
* - we are connected to the AP with an IP
* - we failed to connect after the maximum amount of retries */
#define WIFI_CONNECTED_BIT BIT0
#define WIFI_FAIL_BIT BIT1
static int s_retry_num = 0;
static void event_handler(void *arg, esp_event_base_t event_base, int32_t event_id, void *event_data)
{
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
esp_wifi_connect();
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
if (s_retry_num < CONFIG_ESP_MAXIMUM_RETRY) {
esp_wifi_connect();
s_retry_num++;
ESP_LOGI(TAG, "retry to connect to the AP");
} else {
xEventGroupSetBits(s_wifi_event_group, WIFI_FAIL_BIT);
}
ESP_LOGI(TAG, "connect to the AP fail");
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ip_event_got_ip_t *event = (ip_event_got_ip_t *) event_data;
ESP_LOGI(TAG, "got ip:" IPSTR, IP2STR(&event->ip_info.ip));
s_retry_num = 0;
xEventGroupSetBits(s_wifi_event_group, WIFI_CONNECTED_BIT);
}
}
void init_network_interface(void)
{
s_wifi_event_group = xEventGroupCreate();
ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default());
esp_netif_create_default_wifi_sta();
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
esp_event_handler_instance_t instance_any_id;
esp_event_handler_instance_t instance_got_ip;
ESP_ERROR_CHECK(esp_event_handler_instance_register(WIFI_EVENT,
ESP_EVENT_ANY_ID,
&event_handler,
NULL,
&instance_any_id));
ESP_ERROR_CHECK(esp_event_handler_instance_register(IP_EVENT,
IP_EVENT_STA_GOT_IP,
&event_handler,
NULL,
&instance_got_ip));
wifi_config_t wifi_config = {
.sta = {
.ssid = CONFIG_ESP_WIFI_SSID,
.password = CONFIG_ESP_WIFI_PASSWORD,
},
};
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA) );
ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_STA, &wifi_config) );
ESP_ERROR_CHECK(esp_wifi_start() );
ESP_LOGI(TAG, "wifi_init_sta finished.");
/* Waiting until either the connection is established (WIFI_CONNECTED_BIT) or connection failed for the maximum
* number of re-tries (WIFI_FAIL_BIT). The bits are set by event_handler() (see above) */
EventBits_t bits = xEventGroupWaitBits(s_wifi_event_group,
WIFI_CONNECTED_BIT | WIFI_FAIL_BIT,
pdFALSE,
pdFALSE,
portMAX_DELAY);
/* xEventGroupWaitBits() returns the bits before the call returned, hence we can test which event actually
* happened. */
if (bits & WIFI_CONNECTED_BIT) {
ESP_LOGI(TAG, "connected to ap SSID:%s password:%s",
CONFIG_ESP_WIFI_SSID, CONFIG_ESP_WIFI_PASSWORD);
} else if (bits & WIFI_FAIL_BIT) {
ESP_LOGI(TAG, "Failed to connect to SSID:%s, password:%s",
CONFIG_ESP_WIFI_SSID, CONFIG_ESP_WIFI_PASSWORD);
} else {
ESP_LOGE(TAG, "UNEXPECTED EVENT");
}
}
#else
void init_network_interface(void)
{
// placeholder to initialize any other network interface if WiFi is not available
}
#endif // SoC WiFi capable chip
void app_main(void)
{
//Initialize NVS
esp_err_t ret = nvs_flash_init();
if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
ESP_ERROR_CHECK(nvs_flash_erase());
ret = nvs_flash_init();
}
ESP_ERROR_CHECK(ret);
init_network_interface(); // WiFi station if withing SoC capabilities (otherwise a placeholder)
eppp_config_t config = EPPP_DEFAULT_SERVER_CONFIG();
#if CONFIG_EPPP_LINK_DEVICE_SPI
config.transport = EPPP_TRANSPORT_SPI;
#else
config.transport = EPPP_TRANSPORT_UART;
config.uart.tx_io = CONFIG_EXAMPLE_UART_TX_PIN;
config.uart.rx_io = CONFIG_EXAMPLE_UART_RX_PIN;
config.uart.baud = CONFIG_EXAMPLE_UART_BAUDRATE;
#endif
esp_netif_t *eppp_netif = eppp_listen(&config);
if (eppp_netif == NULL) {
ESP_LOGE(TAG, "Failed to setup connection");
return ;
}
ESP_ERROR_CHECK(esp_netif_napt_enable(eppp_netif));
}

View File

@@ -0,0 +1,4 @@
dependencies:
espressif/eppp_link:
version: "*"
override_path: "../../.."

View File

@@ -0,0 +1 @@
CONFIG_EPPP_LINK_DEVICE_SPI=y

View File

@@ -0,0 +1 @@
CONFIG_EPPP_LINK_DEVICE_UART=y

View File

@@ -0,0 +1,6 @@
CONFIG_LWIP_IP_FORWARD=y
CONFIG_LWIP_IPV4_NAPT=y
CONFIG_LWIP_TCPIP_TASK_STACK_SIZE=4096
CONFIG_LWIP_PPP_SUPPORT=y
CONFIG_LWIP_PPP_SERVER_SUPPORT=y
CONFIG_LWIP_PPP_VJ_HEADER_COMPRESSION=n

View File

@@ -0,0 +1,6 @@
version: 0.0.1
url: https://github.com/espressif/esp-protocols/tree/master/components/eppp_link
description: The component provides a general purpose PPP connectivity, typically used as WiFi-PPP router
dependencies:
idf:
version: '>=5.2'

View File

@@ -0,0 +1,111 @@
/*
* SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#define EPPP_DEFAULT_SERVER_IP() ESP_IP4TOADDR(192, 168, 11, 1)
#define EPPP_DEFAULT_CLIENT_IP() ESP_IP4TOADDR(192, 168, 11, 2)
#define EPPP_DEFAULT_CONFIG(our_ip, their_ip) { \
.transport = EPPP_TRANSPORT_UART, \
.spi = { \
.host = 1, \
.mosi = 11, \
.miso = 13, \
.sclk = 12, \
.cs = 10, \
.intr = 2, \
.freq = 16*1000*1000, \
.input_delay_ns = 0, \
.cs_ena_pretrans = 0, \
.cs_ena_posttrans = 0, \
}, \
.uart = { \
.port = 1, \
.baud = 921600, \
.tx_io = 25, \
.rx_io = 26, \
.queue_size = 16, \
.rx_buffer_size = 1024, \
}, \
. task = { \
.run_task = true, \
.stack_size = 4096, \
.priority = 8, \
}, \
. ppp = { \
.our_ip4_addr.addr = our_ip, \
.their_ip4_addr.addr = their_ip, \
} \
}
#define EPPP_DEFAULT_SERVER_CONFIG() EPPP_DEFAULT_CONFIG(EPPP_DEFAULT_SERVER_IP(), EPPP_DEFAULT_CLIENT_IP())
#define EPPP_DEFAULT_CLIENT_CONFIG() EPPP_DEFAULT_CONFIG(EPPP_DEFAULT_CLIENT_IP(), EPPP_DEFAULT_SERVER_IP())
typedef enum eppp_type {
EPPP_SERVER,
EPPP_CLIENT,
} eppp_type_t;
typedef enum eppp_transport {
EPPP_TRANSPORT_UART,
EPPP_TRANSPORT_SPI,
} eppp_transport_t;
typedef struct eppp_config_t {
eppp_transport_t transport;
struct eppp_config_spi_s {
int host;
int mosi;
int miso;
int sclk;
int cs;
int intr;
int freq;
int input_delay_ns;
int cs_ena_pretrans;
int cs_ena_posttrans;
} spi;
struct eppp_config_uart_s {
int port;
int baud;
int tx_io;
int rx_io;
int queue_size;
int rx_buffer_size;
} uart;
struct eppp_config_task_s {
bool run_task;
int stack_size;
int priority;
} task;
struct eppp_config_pppos_s {
esp_ip4_addr_t our_ip4_addr;
esp_ip4_addr_t their_ip4_addr;
} ppp;
} eppp_config_t;
esp_netif_t *eppp_connect(eppp_config_t *config);
esp_netif_t *eppp_listen(eppp_config_t *config);
void eppp_close(esp_netif_t *netif);
esp_netif_t *eppp_init(eppp_type_t role, eppp_config_t *config);
void eppp_deinit(esp_netif_t *netif);
esp_netif_t *eppp_open(eppp_type_t role, eppp_config_t *config, int connect_timeout_ms);
esp_err_t eppp_netif_stop(esp_netif_t *netif, int stop_timeout_ms);
esp_err_t eppp_netif_start(esp_netif_t *netif);
esp_err_t eppp_perform(esp_netif_t *netif);

View File

@@ -0,0 +1,7 @@
# The following four lines of boilerplate have to be in your project's CMakeLists
# in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.16)
set(EXTRA_COMPONENT_DIRS $ENV{IDF_PATH}/tools/unit-test-app/components)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(test_app)

View File

@@ -0,0 +1,73 @@
# Test application running both server and client on the same device
Need to connect client's Tx to server's Rx and vice versa:
GPIO25 - GPIO4
GPIO26 - GPIO5
We wait for the connection and then we start pinging the client's address on server's netif.
## Example of output:
```
I (393) eppp_test_app: [APP] Startup..
I (393) eppp_test_app: [APP] Free memory: 296332 bytes
I (393) eppp_test_app: [APP] IDF version: v5.3-dev-1154-gf14d9e7431-dirty
I (423) uart: ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated
I (423) uart: queue free spaces: 16
I (433) eppp_link: Waiting for IP address
I (433) uart: ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated
I (443) uart: queue free spaces: 16
I (443) eppp_link: Waiting for IP address
I (6473) esp-netif_lwip-ppp: Connected
I (6513) eppp_link: Got IPv4 event: Interface "pppos_client" address: 192.168.11.2
I (6523) esp-netif_lwip-ppp: Connected
I (6513) eppp_link: Connected!
I (6523) eppp_link: Got IPv4 event: Interface "pppos_server" address: 192.168.11.1
I (6553) main_task: Returned from app_main()
64bytes from 192.168.11.2 icmp_seq=1 ttl=255 time=18 ms
64bytes from 192.168.11.2 icmp_seq=2 ttl=255 time=19 ms
64bytes from 192.168.11.2 icmp_seq=3 ttl=255 time=19 ms
64bytes from 192.168.11.2 icmp_seq=4 ttl=255 time=20 ms
64bytes from 192.168.11.2 icmp_seq=5 ttl=255 time=19 ms
64bytes from 192.168.11.2 icmp_seq=6 ttl=255 time=19 ms
64bytes from 192.168.11.2 icmp_seq=7 ttl=255 time=19 ms
From 192.168.11.2 icmp_seq=8 timeout // <-- Disconnected Tx-Rx wires
From 192.168.11.2 icmp_seq=9 timeout
```
## Test cases
This test app exercises these methods of setting up server-client connection:
* simple blocking API (eppp_listen() <--> eppp_connect()): Uses network events internally and waits for connection
* simplified non-blocking API (eppp_open(EPPP_SERVER, ...) <--> eppp_open(EPPP_SERVER, ...) ): Uses events internally, optionally waits for connecting
* manual API (eppp_init(), eppp_netif_start(), eppp_perform()): User to manually drive Rx task
- Note that the ping test for this test case takes longer, since we call perform for both server and client from one task, for example:
```
TEST(eppp_test, open_close_taskless)I (28562) uart: ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated
I (28572) uart: ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated
Note: esp_netif_init() has been called. Until next reset, TCP/IP task will periodicially allocate memory and consume CPU time.
I (28602) uart: ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated
I (28612) uart: queue free spaces: 16
I (28612) uart: ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated
I (28622) uart: queue free spaces: 16
I (28642) esp-netif_lwip-ppp: Connected
I (28642) esp-netif_lwip-ppp: Connected
I (28642) test: Got IPv4 event: Interface "pppos_server(EPPP0)" address: 192.168.11.1
I (28642) esp-netif_lwip-ppp: Connected
I (28652) test: Got IPv4 event: Interface "pppos_client(EPPP1)" address: 192.168.11.2
I (28662) esp-netif_lwip-ppp: Connected
64bytes from 192.168.11.2 icmp_seq=1 ttl=255 time=93 ms
64bytes from 192.168.11.2 icmp_seq=2 ttl=255 time=98 ms
64bytes from 192.168.11.2 icmp_seq=3 ttl=255 time=99 ms
64bytes from 192.168.11.2 icmp_seq=4 ttl=255 time=99 ms
64bytes from 192.168.11.2 icmp_seq=5 ttl=255 time=99 ms
5 packets transmitted, 5 received, time 488ms
I (29162) esp-netif_lwip-ppp: User interrupt
I (29162) test: Disconnected interface "pppos_client(EPPP1)"
I (29172) esp-netif_lwip-ppp: User interrupt
I (29172) test: Disconnected interface "pppos_server(EPPP0)"
MALLOC_CAP_8BIT usage: Free memory delta: 0 Leak threshold: -64
MALLOC_CAP_32BIT usage: Free memory delta: 0 Leak threshold: -64
PASS
```

View File

@@ -0,0 +1,4 @@
idf_component_register(SRCS app_main.c
INCLUDE_DIRS "."
REQUIRES test_utils
PRIV_REQUIRES unity nvs_flash esp_netif driver esp_event)

View File

@@ -0,0 +1,344 @@
/*
* SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
#include <stdio.h>
#include <stdint.h>
#include <stddef.h>
#include "esp_system.h"
#include "esp_event.h"
#include "esp_netif.h"
#include "esp_netif_ppp.h"
#include "eppp_link.h"
#include "lwip/sockets.h"
#include "esp_log.h"
#include "ping/ping_sock.h"
#include "driver/uart.h"
#include "test_utils.h"
#include "unity.h"
#include "test_utils.h"
#include "unity_fixture.h"
#include "memory_checks.h"
#include "lwip/sys.h"
#define CLIENT_INFO_CONNECTED BIT0
#define CLIENT_INFO_DISCONNECT BIT1
#define CLIENT_INFO_CLOSED BIT2
#define PING_SUCCEEDED BIT3
#define PING_FAILED BIT4
#define STOP_WORKER_TASK BIT5
#define WORKER_TASK_STOPPED BIT6
TEST_GROUP(eppp_test);
TEST_SETUP(eppp_test)
{
// Perform some open/close operations to disregard lazy init one-time allocations
// LWIP: core protection mutex
sys_arch_protect();
sys_arch_unprotect(0);
// UART: install and delete both drivers to disregard potential leak in allocated interrupt slot
TEST_ESP_OK(uart_driver_install(UART_NUM_1, 256, 0, 0, NULL, 0));
TEST_ESP_OK(uart_driver_delete(UART_NUM_1));
TEST_ESP_OK(uart_driver_install(UART_NUM_2, 256, 0, 0, NULL, 0));
TEST_ESP_OK(uart_driver_delete(UART_NUM_2));
// PING: used for timestamps
struct timeval time;
gettimeofday(&time, NULL);
test_utils_record_free_mem();
TEST_ESP_OK(test_utils_set_leak_level(0, ESP_LEAK_TYPE_CRITICAL, ESP_COMP_LEAK_GENERAL));
}
TEST_TEAR_DOWN(eppp_test)
{
test_utils_finish_and_evaluate_leaks(32, 64);
}
static void test_on_ping_end(esp_ping_handle_t hdl, void *args)
{
EventGroupHandle_t event = args;
uint32_t transmitted;
uint32_t received;
uint32_t total_time_ms;
esp_ping_get_profile(hdl, ESP_PING_PROF_REQUEST, &transmitted, sizeof(transmitted));
esp_ping_get_profile(hdl, ESP_PING_PROF_REPLY, &received, sizeof(received));
esp_ping_get_profile(hdl, ESP_PING_PROF_DURATION, &total_time_ms, sizeof(total_time_ms));
printf("%" PRId32 " packets transmitted, %" PRId32 " received, time %" PRId32 "ms\n", transmitted, received, total_time_ms);
if (transmitted == received) {
xEventGroupSetBits(event, PING_SUCCEEDED);
} else {
xEventGroupSetBits(event, PING_FAILED);
}
}
static void test_on_ping_success(esp_ping_handle_t hdl, void *args)
{
uint8_t ttl;
uint16_t seqno;
uint32_t elapsed_time, recv_len;
ip_addr_t target_addr;
esp_ping_get_profile(hdl, ESP_PING_PROF_SEQNO, &seqno, sizeof(seqno));
esp_ping_get_profile(hdl, ESP_PING_PROF_TTL, &ttl, sizeof(ttl));
esp_ping_get_profile(hdl, ESP_PING_PROF_IPADDR, &target_addr, sizeof(target_addr));
esp_ping_get_profile(hdl, ESP_PING_PROF_SIZE, &recv_len, sizeof(recv_len));
esp_ping_get_profile(hdl, ESP_PING_PROF_TIMEGAP, &elapsed_time, sizeof(elapsed_time));
printf("%" PRId32 "bytes from %s icmp_seq=%d ttl=%d time=%" PRId32 " ms\n",
recv_len, inet_ntoa(target_addr.u_addr.ip4), seqno, ttl, elapsed_time);
}
struct client_info {
esp_netif_t *netif;
EventGroupHandle_t event;
};
static void open_client_task(void *ctx)
{
struct client_info *info = ctx;
eppp_config_t config = EPPP_DEFAULT_CLIENT_CONFIG();
config.uart.port = UART_NUM_2;
config.uart.tx_io = 4;
config.uart.rx_io = 5;
info->netif = eppp_connect(&config);
xEventGroupSetBits(info->event, CLIENT_INFO_CONNECTED);
// wait for disconnection trigger
EventBits_t bits = xEventGroupWaitBits(info->event, CLIENT_INFO_DISCONNECT, pdFALSE, pdFALSE, pdMS_TO_TICKS(50000));
TEST_ASSERT_EQUAL(bits & CLIENT_INFO_DISCONNECT, CLIENT_INFO_DISCONNECT);
eppp_close(info->netif);
xEventGroupSetBits(info->event, CLIENT_INFO_CLOSED);
vTaskDelete(NULL);
}
TEST(eppp_test, init_deinit)
{
// Init and deinit server size
eppp_config_t config = EPPP_DEFAULT_CONFIG(0, 0);
esp_netif_t *netif = eppp_init(EPPP_SERVER, &config);
TEST_ASSERT_NOT_NULL(netif);
eppp_deinit(netif);
netif = NULL;
// Init and deinit client size
netif = eppp_init(EPPP_CLIENT, &config);
TEST_ASSERT_NOT_NULL(netif);
eppp_deinit(netif);
}
static EventBits_t ping_test(uint32_t addr, esp_netif_t *netif, EventGroupHandle_t event)
{
ip_addr_t target_addr = { .type = IPADDR_TYPE_V4, .u_addr.ip4.addr = addr };
esp_ping_config_t ping_config = ESP_PING_DEFAULT_CONFIG();
ping_config.interval_ms = 100;
ping_config.target_addr = target_addr;
ping_config.interface = esp_netif_get_netif_impl_index(netif);
esp_ping_callbacks_t cbs = { .cb_args = event, .on_ping_end = test_on_ping_end, .on_ping_success = test_on_ping_success };
esp_ping_handle_t ping;
esp_ping_new_session(&ping_config, &cbs, &ping);
esp_ping_start(ping);
// Wait for the client thread closure and delete locally created objects
EventBits_t bits = xEventGroupWaitBits(event, PING_SUCCEEDED | PING_FAILED, pdFALSE, pdFALSE, pdMS_TO_TICKS(50000));
TEST_ASSERT_EQUAL(bits & (PING_SUCCEEDED | PING_FAILED), PING_SUCCEEDED);
esp_ping_stop(ping);
esp_ping_delete_session(ping);
return bits;
}
TEST(eppp_test, open_close)
{
test_case_uses_tcpip();
eppp_config_t config = EPPP_DEFAULT_SERVER_CONFIG();
struct client_info client = { .netif = NULL, .event = xEventGroupCreate()};
TEST_ESP_OK(esp_event_loop_create_default());
TEST_ASSERT_NOT_NULL(client.event);
// Need to connect the client in a separate thread, as the simplified API blocks until connection
xTaskCreate(open_client_task, "client_task", 4096, &client, 5, NULL);
// Now start the server
esp_netif_t *eppp_server = eppp_listen(&config);
// Wait for the client to connect
EventBits_t bits = xEventGroupWaitBits(client.event, CLIENT_INFO_CONNECTED, pdFALSE, pdFALSE, pdMS_TO_TICKS(50000));
TEST_ASSERT_EQUAL(bits & CLIENT_INFO_CONNECTED, CLIENT_INFO_CONNECTED);
// Check that both server and client are valid netif pointers
TEST_ASSERT_NOT_NULL(eppp_server);
TEST_ASSERT_NOT_NULL(client.netif);
// Now that we're connected, let's try to ping clients address
bits = ping_test(config.ppp.their_ip4_addr.addr, eppp_server, client.event);
TEST_ASSERT_EQUAL(bits & (PING_SUCCEEDED | PING_FAILED), PING_SUCCEEDED);
// Trigger client disconnection and close the server
xEventGroupSetBits(client.event, CLIENT_INFO_DISCONNECT);
eppp_close(eppp_server);
// Wait for the client thread closure and delete locally created objects
bits = xEventGroupWaitBits(client.event, CLIENT_INFO_CLOSED, pdFALSE, pdFALSE, pdMS_TO_TICKS(50000));
TEST_ASSERT_EQUAL(bits & CLIENT_INFO_CLOSED, CLIENT_INFO_CLOSED);
TEST_ESP_OK(esp_event_loop_delete_default());
vEventGroupDelete(client.event);
// wait for the lwip sockets to close cleanly
vTaskDelay(pdMS_TO_TICKS(1000));
}
static void on_event(void *arg, esp_event_base_t base, int32_t event_id, void *data)
{
EventGroupHandle_t event = arg;
if (base == IP_EVENT && event_id == IP_EVENT_PPP_GOT_IP) {
ip_event_got_ip_t *e = (ip_event_got_ip_t *)data;
esp_netif_t *netif = e->esp_netif;
ESP_LOGI("test", "Got IPv4 event: Interface \"%s(%s)\" address: " IPSTR, esp_netif_get_desc(netif),
esp_netif_get_ifkey(netif), IP2STR(&e->ip_info.ip));
if (strcmp("pppos_server", esp_netif_get_desc(netif)) == 0) {
xEventGroupSetBits(event, 1 << EPPP_SERVER);
} else if (strcmp("pppos_client", esp_netif_get_desc(netif)) == 0) {
xEventGroupSetBits(event, 1 << EPPP_CLIENT);
}
} else if (base == NETIF_PPP_STATUS && event_id == NETIF_PPP_ERRORUSER) {
esp_netif_t **netif = data;
ESP_LOGI("test", "Disconnected interface \"%s(%s)\"", esp_netif_get_desc(*netif), esp_netif_get_ifkey(*netif));
if (strcmp("pppos_server", esp_netif_get_desc(*netif)) == 0) {
xEventGroupSetBits(event, 1 << EPPP_SERVER);
} else if (strcmp("pppos_client", esp_netif_get_desc(*netif)) == 0) {
xEventGroupSetBits(event, 1 << EPPP_CLIENT);
}
}
}
TEST(eppp_test, open_close_nonblocking)
{
test_case_uses_tcpip();
EventGroupHandle_t event = xEventGroupCreate();
eppp_config_t server_config = EPPP_DEFAULT_SERVER_CONFIG();
TEST_ESP_OK(esp_event_loop_create_default());
// Open the server size
TEST_ESP_OK(esp_event_handler_register(IP_EVENT, ESP_EVENT_ANY_ID, on_event, event));
esp_netif_t *eppp_server = eppp_open(EPPP_SERVER, &server_config, 0);
TEST_ASSERT_NOT_NULL(eppp_server);
// Open the client size
eppp_config_t client_config = EPPP_DEFAULT_SERVER_CONFIG();
client_config.uart.port = UART_NUM_2;
client_config.uart.tx_io = 4;
client_config.uart.rx_io = 5;
esp_netif_t *eppp_client = eppp_open(EPPP_CLIENT, &client_config, 0);
TEST_ASSERT_NOT_NULL(eppp_client);
const EventBits_t wait_bits = (1 << EPPP_SERVER) | (1 << EPPP_CLIENT);
EventBits_t bits = xEventGroupWaitBits(event, wait_bits, pdTRUE, pdTRUE, pdMS_TO_TICKS(50000));
TEST_ASSERT_EQUAL(bits & wait_bits, wait_bits);
// Now that we're connected, let's try to ping clients address
bits = ping_test(server_config.ppp.their_ip4_addr.addr, eppp_server, event);
TEST_ASSERT_EQUAL(bits & (PING_SUCCEEDED | PING_FAILED), PING_SUCCEEDED);
// stop network for both client and server
eppp_netif_stop(eppp_client, 0); // ignore result, since we're not waiting for clean close
eppp_close(eppp_server);
eppp_close(eppp_client); // finish client close
TEST_ESP_OK(esp_event_loop_delete_default());
vEventGroupDelete(event);
// wait for the lwip sockets to close cleanly
vTaskDelay(pdMS_TO_TICKS(1000));
}
struct worker {
esp_netif_t *eppp_server;
esp_netif_t *eppp_client;
EventGroupHandle_t event;
};
static void worker_task(void *ctx)
{
struct worker *info = ctx;
while (1) {
eppp_perform(info->eppp_server);
eppp_perform(info->eppp_client);
if (xEventGroupGetBits(info->event) & STOP_WORKER_TASK) {
break;
}
}
xEventGroupSetBits(info->event, WORKER_TASK_STOPPED);
vTaskDelete(NULL);
}
TEST(eppp_test, open_close_taskless)
{
test_case_uses_tcpip();
struct worker info = { .event = xEventGroupCreate() };
TEST_ESP_OK(esp_event_loop_create_default());
TEST_ESP_OK(esp_event_handler_register(IP_EVENT, ESP_EVENT_ANY_ID, on_event, info.event));
TEST_ESP_OK(esp_event_handler_register(NETIF_PPP_STATUS, ESP_EVENT_ANY_ID, on_event, info.event));
// Create server
eppp_config_t server_config = EPPP_DEFAULT_SERVER_CONFIG();
info.eppp_server = eppp_init(EPPP_SERVER, &server_config);
TEST_ASSERT_NOT_NULL(info.eppp_server);
// Create client
eppp_config_t client_config = EPPP_DEFAULT_CLIENT_CONFIG();
client_config.uart.port = UART_NUM_2;
client_config.uart.tx_io = 4;
client_config.uart.rx_io = 5;
info.eppp_client = eppp_init(EPPP_CLIENT, &client_config);
TEST_ASSERT_NOT_NULL(info.eppp_client);
// Start workers
xTaskCreate(worker_task, "worker", 4096, &info, 5, NULL);
// Start network
TEST_ESP_OK(eppp_netif_start(info.eppp_server));
TEST_ESP_OK(eppp_netif_start(info.eppp_client));
const EventBits_t wait_bits = (1 << EPPP_SERVER) | (1 << EPPP_CLIENT);
EventBits_t bits = xEventGroupWaitBits(info.event, wait_bits, pdTRUE, pdTRUE, pdMS_TO_TICKS(50000));
TEST_ASSERT_EQUAL(bits & wait_bits, wait_bits);
xEventGroupClearBits(info.event, wait_bits);
// Now that we're connected, let's try to ping clients address
bits = ping_test(server_config.ppp.their_ip4_addr.addr, info.eppp_server, info.event);
TEST_ASSERT_EQUAL(bits & (PING_SUCCEEDED | PING_FAILED), PING_SUCCEEDED);
// stop network for both client and server, we won't wait for completion so expecting ESP_FAIL
TEST_ASSERT_EQUAL(eppp_netif_stop(info.eppp_client, 0), ESP_FAIL);
TEST_ASSERT_EQUAL(eppp_netif_stop(info.eppp_server, 0), ESP_FAIL);
// and wait for completion
bits = xEventGroupWaitBits(info.event, wait_bits, pdTRUE, pdTRUE, pdMS_TO_TICKS(50000));
TEST_ASSERT_EQUAL(bits & wait_bits, wait_bits);
// now stop the worker
xEventGroupSetBits(info.event, STOP_WORKER_TASK);
bits = xEventGroupWaitBits(info.event, WORKER_TASK_STOPPED, pdTRUE, pdTRUE, pdMS_TO_TICKS(50000));
TEST_ASSERT_EQUAL(bits & WORKER_TASK_STOPPED, WORKER_TASK_STOPPED);
// and destroy objects
eppp_deinit(info.eppp_server);
eppp_deinit(info.eppp_client);
TEST_ESP_OK(esp_event_loop_delete_default());
vEventGroupDelete(info.event);
// wait for the lwip sockets to close cleanly
vTaskDelay(pdMS_TO_TICKS(1000));
}
TEST_GROUP_RUNNER(eppp_test)
{
RUN_TEST_CASE(eppp_test, init_deinit)
RUN_TEST_CASE(eppp_test, open_close)
RUN_TEST_CASE(eppp_test, open_close_nonblocking)
RUN_TEST_CASE(eppp_test, open_close_taskless)
}
void app_main(void)
{
UNITY_MAIN(eppp_test);
}

View File

@@ -0,0 +1,4 @@
dependencies:
espressif/eppp_link:
version: "*"
override_path: "../../.."

View File

@@ -0,0 +1,9 @@
CONFIG_IDF_TARGET="esp32"
CONFIG_UART_ISR_IN_IRAM=y
CONFIG_ESP_NETIF_IP_LOST_TIMER_INTERVAL=0
CONFIG_FREERTOS_UNICORE=y
CONFIG_LWIP_PPP_SUPPORT=y
CONFIG_LWIP_PPP_SERVER_SUPPORT=y
CONFIG_LWIP_PPP_VJ_HEADER_COMPRESSION=n
CONFIG_LWIP_PPP_DEBUG_ON=y
CONFIG_UNITY_ENABLE_FIXTURE=y