2020-06-27 19:15:46 +02:00
|
|
|
// The MIT License (MIT)
|
|
|
|
//
|
|
|
|
// Copyright (c) 2018 Mateusz Pusz
|
|
|
|
//
|
|
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
|
|
// in the Software without restriction, including without limitation the rights
|
|
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
|
|
// furnished to do so, subject to the following conditions:
|
|
|
|
//
|
|
|
|
// The above copyright notice and this permission notice shall be included in all
|
|
|
|
// copies or substantial portions of the Software.
|
|
|
|
//
|
|
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
|
// SOFTWARE.
|
|
|
|
|
2021-03-30 13:21:05 +02:00
|
|
|
#include <units/ratio.h>
|
2020-06-27 19:15:46 +02:00
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
using namespace units;
|
|
|
|
|
|
|
|
static_assert(ratio(2, 4) == ratio(1, 2));
|
|
|
|
|
|
|
|
// basic exponents tests
|
|
|
|
static_assert(ratio(2, 40, 1) == ratio(1, 20, 1));
|
|
|
|
static_assert(ratio(20, 4, -1) == ratio(10, 2, -1));
|
|
|
|
static_assert(ratio(200, 5) == ratio(20'000, 50, -1));
|
|
|
|
|
|
|
|
static_assert(ratio(1) * ratio(3, 8) == ratio(3, 8));
|
|
|
|
static_assert(ratio(3, 8) * ratio(1) == ratio(3, 8));
|
|
|
|
static_assert(ratio(4) * ratio(1, 8) == ratio(1, 2));
|
|
|
|
static_assert(ratio(4) * ratio(1, 2) == ratio(2));
|
|
|
|
static_assert(ratio(1, 8) * ratio(2) == ratio(1, 4));
|
|
|
|
static_assert(ratio(1, 2) * ratio(8) == ratio(4));
|
|
|
|
|
2021-12-29 07:51:16 -05:00
|
|
|
// ratio negation
|
|
|
|
static_assert(-ratio(3, 8) == ratio(-3, 8));
|
|
|
|
|
|
|
|
// ratio addition
|
|
|
|
static_assert(ratio(1, 2) + ratio(1, 3) == ratio(5, 6));
|
2022-04-02 21:36:42 +02:00
|
|
|
static_assert(ratio(1, 3, 2) + ratio(11, 6) == ratio(211, 6)); // 100/3 + 11/6
|
2021-12-29 07:51:16 -05:00
|
|
|
|
2020-06-27 19:15:46 +02:00
|
|
|
// multiply with exponents
|
|
|
|
static_assert(ratio(1, 8, 2) * ratio(2, 1, 4) == ratio(1, 4, 6));
|
|
|
|
static_assert(ratio(1, 2, -4) * ratio(8, 1, 3) == ratio(4, 1, -1));
|
|
|
|
|
|
|
|
static_assert(ratio(4) / ratio(2) == ratio(2));
|
|
|
|
static_assert(ratio(2) / ratio(8) == ratio(1, 4));
|
|
|
|
static_assert(ratio(1, 8) / ratio(2) == ratio(1, 16));
|
|
|
|
static_assert(ratio(6) / ratio(3) == ratio(2));
|
|
|
|
|
|
|
|
// divide with exponents
|
|
|
|
static_assert(ratio(1, 8, -6) / ratio(2, 1, -8) == ratio(1, 16, 2));
|
|
|
|
static_assert(ratio(6, 1, 4) / ratio(3) == ratio(2, 1, 4));
|
|
|
|
|
|
|
|
static_assert(pow<0>(ratio(2)) == ratio(1));
|
|
|
|
static_assert(pow<1>(ratio(2)) == ratio(2));
|
|
|
|
static_assert(pow<2>(ratio(2)) == ratio(4));
|
|
|
|
static_assert(pow<3>(ratio(2)) == ratio(8));
|
|
|
|
static_assert(pow<0>(ratio(1, 2)) == ratio(1));
|
|
|
|
static_assert(pow<1>(ratio(1, 2)) == ratio(1, 2));
|
|
|
|
static_assert(pow<2>(ratio(1, 2)) == ratio(1, 4));
|
|
|
|
static_assert(pow<3>(ratio(1, 2)) == ratio(1, 8));
|
|
|
|
|
|
|
|
// pow with exponents
|
2020-10-17 20:50:58 +01:00
|
|
|
static_assert(pow<2>(ratio(1, 2, 3)) == ratio(1, 4, 6));
|
|
|
|
static_assert(pow<4, 2>(ratio(1, 2, 3)) == ratio(1, 4, 6));
|
2020-06-27 19:15:46 +02:00
|
|
|
static_assert(pow<3>(ratio(1, 2, -6)) == ratio(1, 8, -18));
|
|
|
|
|
|
|
|
static_assert(sqrt(ratio(9)) == ratio(3));
|
2020-10-17 20:50:58 +01:00
|
|
|
static_assert(cbrt(ratio(27)) == ratio(3));
|
2020-06-27 19:15:46 +02:00
|
|
|
static_assert(sqrt(ratio(4)) == ratio(2));
|
2020-10-17 20:50:58 +01:00
|
|
|
static_assert(cbrt(ratio(8)) == ratio(2));
|
2020-06-27 19:15:46 +02:00
|
|
|
static_assert(sqrt(ratio(1)) == ratio(1));
|
2020-10-17 20:50:58 +01:00
|
|
|
static_assert(cbrt(ratio(1)) == ratio(1));
|
2020-06-27 19:15:46 +02:00
|
|
|
static_assert(sqrt(ratio(0)) == ratio(0));
|
2020-10-17 20:50:58 +01:00
|
|
|
static_assert(cbrt(ratio(0)) == ratio(0));
|
2020-06-27 19:15:46 +02:00
|
|
|
static_assert(sqrt(ratio(1, 4)) == ratio(1, 2));
|
2020-10-17 20:50:58 +01:00
|
|
|
static_assert(cbrt(ratio(1, 8)) == ratio(1, 2));
|
2020-06-27 19:15:46 +02:00
|
|
|
|
|
|
|
// sqrt with exponents
|
|
|
|
static_assert(sqrt(ratio(9, 1, 2)) == ratio(3, 1, 1));
|
2020-10-17 20:50:58 +01:00
|
|
|
static_assert(cbrt(ratio(27, 1, 3)) == ratio(3, 1, 1));
|
|
|
|
static_assert(cbrt(ratio(27, 1, 2)) == ratio(13, 1, 0));
|
2020-06-27 19:15:46 +02:00
|
|
|
|
|
|
|
// common_ratio
|
|
|
|
static_assert(common_ratio(ratio(1), ratio(1000)) == ratio(1));
|
|
|
|
static_assert(common_ratio(ratio(1000), ratio(1)) == ratio(1));
|
|
|
|
static_assert(common_ratio(ratio(1), ratio(1, 1000)) == ratio(1, 1000));
|
|
|
|
static_assert(common_ratio(ratio(1, 1000), ratio(1)) == ratio(1, 1000));
|
|
|
|
static_assert(common_ratio(ratio(100, 1), ratio(10, 1)) == ratio(10, 1));
|
|
|
|
static_assert(common_ratio(ratio(100, 1), ratio(1, 10)) == ratio(1, 10));
|
|
|
|
|
|
|
|
// common ratio with exponents
|
|
|
|
static_assert(common_ratio(ratio(1), ratio(1, 1, 3)) == ratio(1));
|
|
|
|
static_assert(common_ratio(ratio(10, 1, -1), ratio(1, 1, -3)) == ratio(1, 1, -3));
|
|
|
|
|
Support seamless interop between `ratio` and rational `Magnitude`
We provide two new functions, `numerator(m)` and `denominator(m)`, for a
Magnitude `m`. They fulfill the following conditions:
1. `numerator(m)` and `denominator(m)` are always integer Magnitudes.
2. If `m` is rational, then `m == numerator(m) / denominator(m)`.
If `m` is _not_ rational, then the numerator and denominator are not
especially meaningful (there is no uniquely defined "leftover irrational
part"). However, we choose a convention that matches how humans would
write a mixed number. For example, sqrt(27/16) would have a numerator
of 3, denominator of 4, and a "leftover part" of sqrt(3), matching the
"human" way of writing this as [(3 * sqrt(3)) / 4]. This has no use
yet, but it may later be useful in printing the Magnitude of an
anonymous Unit for end users.
To further reduce friction for the upcoming migration, we provide an
implicit conversion from a Magnitude to a `ratio`. We restrict this
operation to rational Magnitudes, and guard this with a `static_assert`.
2022-02-21 01:44:26 +00:00
|
|
|
// numerator and denominator
|
|
|
|
static_assert(numerator(ratio(3, 4)) == 3);
|
|
|
|
static_assert(numerator(ratio(3, 7, 2)) == 300);
|
|
|
|
static_assert(denominator(ratio(3, 4)) == 4);
|
|
|
|
static_assert(denominator(ratio(3, 7, -2)) == 700);
|
|
|
|
|
2020-06-27 19:15:46 +02:00
|
|
|
} // namespace
|