Files
mp-units/example/glide_computer/include/geographic.h

174 lines
6.6 KiB
C
Raw Normal View History

// The MIT License (MIT)
//
// Copyright (c) 2018 Mateusz Pusz
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#pragma once
#include "ranged_representation.h"
#include <units/bits/fmt_hacks.h>
#include <units/generic/dimensionless.h>
#include <units/isq/si/length.h>
#include <units/quantity_kind.h>
#include <limits>
#include <ostream>
// IWYU pragma: begin_exports
#include <compare>
// IWYU pragma: end_exports
namespace geographic {
// TODO Change to `angle` dimension in degree unit when the work on magnitudes is done
template<typename T = double>
using latitude = units::dimensionless<units::one, ranged_representation<T, T(-90), T(90)>>;
template<typename T = double>
using longitude = units::dimensionless<units::one, ranged_representation<T, T(-180), T(180)>>;
template<class CharT, class Traits, typename T>
std::basic_ostream<CharT, Traits>& operator<<(std::basic_ostream<CharT, Traits>& os, const latitude<T>& lat)
{
if (lat.number() > 0)
return os << "N" << lat.number();
else
return os << "S" << -lat.number();
}
template<class CharT, class Traits, typename T>
std::basic_ostream<CharT, Traits>& operator<<(std::basic_ostream<CharT, Traits>& os, const longitude<T>& lon)
{
if (lon.number() > 0)
return os << "E" << lon.number();
else
return os << "W" << -lon.number();
}
inline namespace literals {
constexpr auto operator"" _N(long double v) { return latitude<long double>(latitude<long double>::rep(v)); }
constexpr auto operator"" _S(long double v) { return latitude<long double>(latitude<long double>::rep(v)); }
constexpr auto operator"" _E(long double v) { return longitude<long double>(longitude<long double>::rep(v)); }
constexpr auto operator"" _W(long double v) { return longitude<long double>(longitude<long double>::rep(v)); }
constexpr auto operator"" _N(unsigned long long v)
{
gsl_ExpectsAudit(std::in_range<std::int64_t>(v));
return latitude<std::int64_t>(latitude<std::int64_t>::rep(static_cast<std::int64_t>(v)));
}
constexpr auto operator"" _S(unsigned long long v)
{
gsl_ExpectsAudit(std::in_range<std::int64_t>(v));
return latitude<std::int64_t>(-latitude<std::int64_t>::rep(static_cast<std::int64_t>(v)));
}
constexpr auto operator"" _E(unsigned long long v)
{
gsl_ExpectsAudit(std::in_range<std::int64_t>(v));
return longitude<std::int64_t>(longitude<std::int64_t>::rep(static_cast<std::int64_t>(v)));
}
constexpr auto operator"" _W(unsigned long long v)
{
gsl_ExpectsAudit(std::in_range<std::int64_t>(v));
return longitude<std::int64_t>(-longitude<std::int64_t>::rep(static_cast<std::int64_t>(v)));
}
} // namespace literals
} // namespace geographic
template<typename T>
class std::numeric_limits<geographic::latitude<T>> : public numeric_limits<T> {
static constexpr auto min() noexcept { return geographic::latitude<T>(-90); }
static constexpr auto lowest() noexcept { return geographic::latitude<T>(-90); }
static constexpr auto max() noexcept { return geographic::latitude<T>(90); }
};
template<typename T>
class std::numeric_limits<geographic::longitude<T>> : public numeric_limits<T> {
static constexpr auto min() noexcept { return geographic::longitude<T>(-180); }
static constexpr auto lowest() noexcept { return geographic::longitude<T>(-180); }
static constexpr auto max() noexcept { return geographic::longitude<T>(180); }
};
template<typename T>
struct STD_FMT::formatter<geographic::latitude<T>> : formatter<T> {
template<typename FormatContext>
auto format(geographic::latitude<T> lat, FormatContext& ctx)
{
using rep = geographic::latitude<T>::rep;
STD_FMT::format_to(ctx.out(), "{}", lat > rep{0} ? 'N' : 'S');
return formatter<T>::format(lat > rep{0} ? lat.number() : -lat.number(), ctx);
}
};
template<typename T>
struct STD_FMT::formatter<geographic::longitude<T>> : formatter<T> {
template<typename FormatContext>
auto format(geographic::longitude<T> lon, FormatContext& ctx)
{
using rep = geographic::longitude<T>::rep;
STD_FMT::format_to(ctx.out(), "{}", lon > rep{0} ? 'E' : 'W');
return formatter<T>::format(lon > rep{0} ? lon.number() : -lon.number(), ctx);
}
};
namespace geographic {
struct horizontal_kind : units::kind<horizontal_kind, units::isq::si::dim_length> {};
using distance = units::quantity_kind<horizontal_kind, units::isq::si::kilometre>;
template<typename T>
struct position {
latitude<T> lat;
longitude<T> lon;
};
template<typename T>
distance spherical_distance(position<T> from, position<T> to)
{
using namespace units::isq::si;
constexpr length<kilometre> earth_radius(6371);
constexpr auto p = std::numbers::pi_v<T> / 180;
const auto lat1_rad = from.lat.number() * p;
const auto lon1_rad = from.lon.number() * p;
const auto lat2_rad = to.lat.number() * p;
const auto lon2_rad = to.lon.number() * p;
using std::sin, std::cos, std::asin, std::acos, std::sqrt;
// https://en.wikipedia.org/wiki/Great-circle_distance#Formulae
if constexpr (sizeof(T) >= 8) {
// spherical law of cosines
const auto central_angle =
acos(sin(lat1_rad) * sin(lat2_rad) + cos(lat1_rad) * cos(lat2_rad) * cos(lon2_rad - lon1_rad));
// const auto central_angle = 2 * asin(sqrt(0.5 - cos(lat2_rad - lat1_rad) / 2 + cos(lat1_rad) * cos(lat2_rad) * (1
// - cos(lon2_rad - lon1_rad)) / 2));
return distance(earth_radius * central_angle);
} else {
// the haversine formula
const auto sin_lat = sin((lat2_rad - lat1_rad) / 2);
const auto sin_lon = sin((lon2_rad - lon1_rad) / 2);
const auto central_angle = 2 * asin(sqrt(sin_lat * sin_lat + cos(lat1_rad) * cos(lat2_rad) * sin_lon * sin_lon));
return distance(earth_radius * central_angle);
}
}
} // namespace geographic