docs: "Text Output" chapter added

This commit is contained in:
Mateusz Pusz
2023-07-24 17:36:49 +02:00
parent 6bf55ff6cb
commit 615c35f5b6

View File

@@ -0,0 +1,295 @@
# Text Output
Besides providing dimensional analysis and units conversions, the library also tries hard to print
any quantity in the most user-friendly way.
!!! note
The library provides no text output for quantity points, as printing just a number and a unit
is not enough to adequately describe a quantity point. Often an additional postfix is required.
For example, the text output of `42 m` may mean many things and can also be confused with
an output of a regular quantity. On the other hand, printing `42 m AMSL` for altitudes above
mean sea level is a much better solution, but the library does not have enough information
to print it that way.
## Output Streams
!!! tip
The output streaming support is opt-in and can be enabled by including the `<mp-units/ostream.h>`
header file.
The easiest way to print a quantity is to provide its object to the output stream:
```cpp
using namespace mp_units;
using namespace mp_units::si::unit_symbols;
using namespace mp_units::international::unit_symbols;
const QuantityOf<isq::speed> auto v1 = avg_speed(220. * km, 2 * h);
const QuantityOf<isq::speed> auto v2 = avg_speed(140. * mi, 2 * h);
std::cout << v1 << '\n'; // 110 km/h
std::cout << v2 << '\n'; // 70 mi/h
```
The text output will always print the [value of a quantity](../../../appendix/glossary/#quantity-value)
typically followed by a space and then the symbol of a [unit](../../../appendix/glossary/#unit)
associated with this quantity.
!!! note
Remember that when we deal with a quantity of an "unknown" `auto` type, it is a good practice
to always [convert the unit to the expected one](../value_conversions/#value-conversions)
before passing it to the text output:
```cpp
std::cout << v1[km / h] << '\n'; // 110 km/h
std::cout << value_cast<m / s>(v1) << '\n'; // 30.5556 m/s
```
### Output stream formatting
Only basic formatting can be applied for output streams. It includes control over width, fill,
and alignment:
```cpp
std::cout << "|" << std::setw(10) << 123 * m << "|\n"; // | 123 m|
std::cout << "|" << std::setw(10) << std::left << 123 * m << "|\n"; // |123 m |
std::cout << "|" << std::setw(10) << std::setfill('*') << 123 * m << "|\n"; // |123 m*****|
```
## `std::format`
!!! tip
The text formatting facility support is opt-in and can be enabled by including the
`<mp-units/format.h>` header file.
The **mp-units** library provides custom formatters for `std::format` facility which allows
fine-grained control over what and how it is being printed in the text output.
### Grammar
```text
units-format-spec ::= [fill-and-align] [width] [units-specs]
units-specs ::= conversion-spec
units-specs conversion-spec
units-specs literal-char
literal-char ::= any character other than '{' or '}'
conversion-spec ::= '%' units-type
units-type ::= [units-rep-modifier] 'Q'
[units-unit-modifier] 'q'
units-rep-modifier ::= [sign] [#] [precision] [L] [units-rep-type]
units-rep-type ::= one of "aAbBdeEfFgGoxX"
units-unit-modifier ::= [units-text-encoding, units-unit-symbol-denominator, units-unit-symbol-separator]
units-text-encoding ::= one of "UA"
units-unit-symbol-solidus ::= one of "oan"
units-unit-symbol-separator ::= one of "sd"
```
In the above grammar:
- `fill-and-align`, `width`, `sign`, `#`, `precision`, and `L` tokens, as well as the individual
tokens of `units-rep-type` are defined in the [format.string.std](https://wg21.link/format.string.std)
chapter of the C++ standard specification,
- tokens `Q` and `q` of `units-type` are described in the [time.format](https://wg21.link/time.format)
chapter of the C++ standard specification,
- `units-text-encoding` tokens specify the unit text encoding:
- `U` (default) uses the **Unicode** symbols defined by the [SI](../../../appendix/glossary/#si)
specification (i.e. ``, `µs`)
- `A` token forces non-standard **ASCII**-only output (i.e. `m^3`, `us`)
- `units-unit-symbol-solidus` tokens specify how the division of units should look like:
- `o` (default) outputs `/` only when there is only **one** unit in the denominator, otherwise negative
exponents are printed (i.e. `m/s`, `kg m⁻¹ s⁻¹`)
- `a` **always** uses solidus (i.e. `m/s`, `kg/(m s)`)
- `n` **never** prints solidus, which means that negative exponents are always used (i.e. `m s⁻¹`,
`kg m⁻¹ s⁻¹`)
- `units-unit-symbol-separator` tokens specify how multiplied unit symbols should be separated:
- `s` (default) uses **space** as a separator (i.e. `kg m²/s²`)
- `d` uses half-high **dot** (``) as a separator (i.e. `kg⋅m²/s²`)
### Default formatting
To format `quantity` values the formatting facility uses `units-format-spec`. If it is left empty,
the default formatting of `{:%Q %q}` is applied. The same default formatting is also applied
to the output streams. This is why the following code lines produce the same output:
```cpp
std::cout << "Distance: " << 123 * km << "\n";
std::cout << std::format("Distance: {}\n", 123 * km);
std::cout << std::format("Distance: {:%Q %q}\n", 123 * km);
```
### Controlling width, fill, and alignment
To control width, fill, and alignment, the C++ standard grammar tokens `fill-and-align` and `width`
are being used, and they treat a quantity value and symbol as a contiguous text:
```cpp
std::println("|{:0}|", 123 * m); // |123 m|
std::println("|{:10}|", 123 * m); // | 123 m|
std::println("|{:<10}|", 123 * m); // |123 m |
std::println("|{:>10}|", 123 * m); // | 123 m|
std::println("|{:^10}|", 123 * m); // | 123 m |
std::println("|{:*<10}|", 123 * m); // |123 m*****|
std::println("|{:*>10}|", 123 * m); // |*****123 m|
std::println("|{:*^10}|", 123 * m); // |**123 m***|
```
!!! note
[`std::println` is a C++23 facility](https://en.cppreference.com/w/cpp/io/print). In case you
do not have access to C++23, you can obtain the same output with:
```cpp
std::cout << std::format("<format-string>\n", <format-args>);
```
### Quantity value, symbol, or both?
The user can easily decide to either print a whole quantity (value and symbol) or only its parts.
Also, a custom style of quantity formatting might be applied:
```cpp
std::println("{:%Q}", 123 * km); // 123
std::println("{:%q}", 123 * km); // km
std::println("{:%Q%q}", 123 * km); // 123km
```
### Quantity value formatting
`sign` token allows us to specify how the value's sign is being printed:
```cpp
std::println("{0:%Q %q},{0:%+Q %q},{0:%-Q %q},{0:% Q %q}", 1 * m); // 1 m,+1 m,1 m, 1 m
std::println("{0:%Q %q},{0:%+Q %q},{0:%-Q %q},{0:% Q %q}", -1 * m); // -1 m,-1 m,-1 m,-1 m
```
where:
- `+` indicates that a sign should be used for both non-negative and negative numbers,
- `-` indicates that a sign should be used for negative numbers and negative zero only
(this is the default behavior),
- `<space>` indicates that a leading space should be used for non-negative numbers other
than negative zero, and a minus sign for negative numbers and negative zero.
`precision` token is allowed only for floating-point representation types:
```cpp
std::println("{:%.0Q %q}", 1.2345 * m); // 1 m
std::println("{:%.1Q %q}", 1.2345 * m); // 1.2 m
std::println("{:%.2Q %q}", 1.2345 * m); // 1.23 m
```
`units-rep-type` specifies how a value of the representation type is being printed.
For integral types:
```cpp
std::println("{:%bQ %q}", 42 * m); // 101010 m
std::println("{:%BQ %q}", 42 * m); // 101010 m
std::println("{:%dQ %q}", 42 * m); // 42 m
std::println("{:%oQ %q}", 42 * m); // 52 m
std::println("{:%xQ %q}", 42 * m); // 2a m
std::println("{:%XQ %q}", 42 * m); // 2A m
```
The above can be printed in an alternate version thanks to the `#` token:
```cpp
std::println("{:%#bQ %q}", 42 * m); // 0b101010 m
std::println("{:%#BQ %q}", 42 * m); // 0B101010 m
std::println("{:%#oQ %q}", 42 * m); // 052 m
std::println("{:%#xQ %q}", 42 * m); // 0x2a m
std::println("{:%#XQ %q}", 42 * m); // 0X2A m
```
For floating-point values, the `units-rep-type` token works as follows:
```cpp
std::println("{:%aQ %q}", 1.2345678 * m); // 0x1.3c0ca2a5b1d5dp+0 m
std::println("{:%.3aQ %q}", 1.2345678 * m); // 0x1.3c1p+0 m
std::println("{:%AQ %q}", 1.2345678 * m); // 0X1.3C0CA2A5B1D5DP+0 m
std::println("{:%.3AQ %q}", 1.2345678 * m); // 0X1.3C1P+0 m
std::println("{:%eQ %q}", 1.2345678 * m); // 1.234568e+00 m
std::println("{:%.3eQ %q}", 1.2345678 * m); // 1.235e+00 m
std::println("{:%EQ %q}", 1.2345678 * m); // 1.234568E+00 m
std::println("{:%.3EQ %q}", 1.2345678 * m); // 1.235E+00 m
std::println("{:%gQ %q}", 1.2345678 * m); // 1.23457 m
std::println("{:%gQ %q}", 1.2345678e8 * m); // 1.23457e+08 m
std::println("{:%.3gQ %q}", 1.2345678 * m); // 1.23 m
std::println("{:%.3gQ %q}", 1.2345678e8 * m); // 1.23e+08 m
std::println("{:%GQ %q}", 1.2345678 * m); // 1.23457 m
std::println("{:%GQ %q}", 1.2345678e8 * m); // 1.23457E+08 m
std::println("{:%.3GQ %q}", 1.2345678 * m); // 1.23 m
std::println("{:%.3GQ %q}", 1.2345678e8 * m); // 1.23E+08 m
```
### Unit symbol formatting
Unit symbols of some quantities are specified to use Unicode signs by the
[SI](../../../appendix/glossary/#si) (i.e. `Ω` symbol for the resistance quantity). The **mp-units**
library follows this by default. From the engineering point of view, sometimes Unicode text might
not be the best solution as terminals of many (especially embedded) devices are ASCII-only.
In such a case, the unit symbol can be forced to be printed using ASCII-only characters thanks to
`units-text-encoding` token:
```cpp
std::println("{}", 10 * si::ohm); // 10 Ω
std::println("{:%Q %Aq}", 10 * si::ohm); // 10 ohm
std::println("{}", 125 * us); // 125 µs
std::println("{:%Q %Aq}", 125 * us); // 125 us
std::println("{}", 9.8 * (m / s2)); // 9.8 m/s²
std::println("{:%Q %Aq}", 9.8 * (m / s2)); // 9.8 m/s^2
```
Additionally, both [ISQ](../../../appendix/glossary/#isq) and [SI](../../../appendix/glossary/#si)
leave some freedom on how to print unit symbols. This is why two additional tokens were introduced.
`units-unit-symbol-solidus` specifies how the division of units should look like. By default,
`/` will be used only when the denominator contains only one unit. However, with the `a` or `n`
options, we can force the facility to print the `/` character always (even when there are more units
in the denominator), or never in which case a parenthesis will be added to enclose all denominator
units.
```cpp
std::println("{:%Q %q}", 1 * (m / s)); // 1 m/s
std::println("{:%Q %q}", 1 * (kg / m / s2)); // 1 kg m⁻¹ s⁻²
std::println("{:%Q %aq}", 1 * (m / s)); // 1 m/s
std::println("{:%Q %aq}", 1 * (kg / m / s2)); // 1 kg/(m s²)
std::println("{:%Q %nq}", 1 * (m / s)); // 1 m s⁻¹
std::println("{:%Q %nq}", 1 * (kg / m / s2)); // 1 kg m⁻¹ s⁻²
```
Also, there are a few options to separate the units being multiplied:
!!! quote "ISO 80000-1"
When symbols for quantities are combined in a product of two or more quantities, this combination
is indicated in one of the following ways: `ab`, `a b`, `a · b`, `a × b`
_NOTE 1_ In some fields, e.g., vector algebra, distinction is made between `a ∙ b` and `a × b`.
As of today, the **mp-units** library provides the support for `a b` and `a · b` only. Additionally,
we decided that the extraneous space in the latter case makes the result too verbose, so we decided
to just use the `·` symbol as a separator.
!!! note
Please let us know in case you require more formatting options here.
The `units-unit-symbol-separator` token allows us to obtain the following outputs:
```cpp
std::println("{:%Q %q}", 1 * (kg * m2 / s2)); // 1 kg m²/s²
std::println("{:%Q %dq}", 1 * (kg * m2 / s2)); // 1 kg⋅m²/s²
```