refactor: box_example modernized

This commit is contained in:
Mateusz Pusz
2021-02-16 16:21:05 +01:00
parent c641f1873f
commit 8476517185

View File

@@ -1,83 +1,87 @@
#include <units/physical/si/derived/acceleration.h>
#include <units/physical/si/constants.h> #include <units/physical/si/constants.h>
#include <units/physical/si/derived/area.h>
#include <units/physical/si/derived/speed.h>
#include <units/physical/si/derived/density.h> #include <units/physical/si/derived/density.h>
#include <units/physical/si/derived/force.h> #include <units/physical/si/derived/force.h>
#include <units/physical/si/base/length.h>
#include <units/physical/si/base/mass.h> #include <units/physical/si/base/mass.h>
#include <units/physical/si/base/time.h> #include <units/physical/si/base/time.h>
#include <units/physical/si/derived/volume.h> #include <units/physical/si/derived/volume.h>
#include <units/format.h> #include <units/format.h>
#include <units/quantity_io.h>
#include <cassert> #include <cassert>
#include <iostream>
namespace { namespace {
using namespace units::physical; using namespace units::physical;
using namespace units::physical::si::literals;
using m = si::metre; using m = si::metre;
using m2 = si::square_metre;
using m3 = si::cubic_metre;
using kg = si::kilogram; using kg = si::kilogram;
using N = si::newton; using N = si::newton;
using m3 = si::cubic_metre;
using kgpm3 = si::kilogram_per_metre_cub; using kgpm3 = si::kilogram_per_metre_cub;
inline constexpr auto g = si::si2019::standard_gravity<>; inline constexpr auto g = si::si2019::standard_gravity<>;
inline constexpr si::density<kgpm3> air_density(1.225);
} // namespace
struct Box { class Box {
static constexpr auto air_density = 1.225_q_kg_per_m3; si::area<m2> base_;
si::length<m> height_;
si::density<kgpm3> density_ = air_density;
public:
constexpr Box(const si::length<m>& length, const si::length<m>& width, si::length<m> height) : base_(length * width), height_(std::move(height)) {}
si::length<m> length; [[nodiscard]] constexpr si::force<N> filled_weight() const
si::length<m> width;
si::length<m> height;
struct contents {
si::density<kgpm3> density = air_density;
} contents;
constexpr Box(const si::length<m>& l, const si::length<m>& w, const si::length<m>& h) : length{l}, width{w}, height{h} {}
constexpr si::force<N> filled_weight() const
{ {
const si::volume<m3> volume = length * width * height; const si::volume<m3> volume = base_ * height_;
const si::mass<kg> mass = contents.density * volume; const si::mass<kg> mass = density_ * volume;
return mass * g; return mass * g;
} }
constexpr si::length<m> fill_level(const si::mass<kg>& measured_mass) const [[nodiscard]] constexpr si::length<m> fill_level(const si::mass<kg>& measured_mass) const
{ {
return height * (measured_mass * g) / filled_weight(); return height_ * measured_mass * g / filled_weight();
} }
constexpr si::volume<m3> spare_capacity(const si::mass<kg>& measured_mass) const [[nodiscard]] constexpr si::volume<m3> spare_capacity(const si::mass<kg>& measured_mass) const
{ {
return (height - fill_level(measured_mass)) * width * length; return (height_ - fill_level(measured_mass)) * base_;
} }
constexpr void set_contents_density(const si::density<kgpm3>& density_in) constexpr void set_contents_density(const si::density<kgpm3>& density_in)
{ {
assert(density_in > air_density); assert(density_in > air_density);
contents.density = density_in; density_ = density_in;
} }
}; };
#include <iostream> } // namespace
int main() int main()
{ {
auto box = Box(1000.0_q_mm, 500.0_q_mm, 200.0_q_mm); using namespace units;
using namespace si::literals;
const si::length<m> height(200.0_q_mm);
auto box = Box(1000.0_q_mm, 500.0_q_mm, height);
box.set_contents_density(1000.0_q_kg_per_m3); box.set_contents_density(1000.0_q_kg_per_m3);
const auto fill_time = 200.0_q_s; // time since starting fill const auto fill_time = 200.0_q_s; // time since starting fill
const auto measured_mass = 20.0_q_kg; // measured mass at fill_time const auto measured_mass = 20.0_q_kg; // measured mass at fill_time
const Length auto fill_level = box.fill_level(measured_mass);
const Dimensionless auto fill_percent = quantity_cast<percent>(fill_level / height);
const Volume auto spare_capacity = box.spare_capacity(measured_mass);
const auto input_flow_rate = measured_mass / fill_time; // unknown dimension
const Speed auto float_rise_rate = fill_level / fill_time;
const Time auto fill_time_left = (height / fill_level - 1) * fill_time;
std::cout << "mp-units box example...\n"; std::cout << "mp-units box example...\n";
std::cout << "fill height at " << fill_time << " = " << box.fill_level(measured_mass) << " (" std::cout << fmt::format("fill height at {} = {} ({} full)\n", fill_time, fill_level, fill_percent);
<< (box.fill_level(measured_mass) / box.height) * 100 << "% full)\n"; std::cout << fmt::format("spare_capacity at {} = {}\n", fill_time, spare_capacity);
std::cout << "spare_capacity at " << fill_time << " = " << box.spare_capacity(measured_mass) << '\n'; std::cout << fmt::format("input flow rate after {} = {}\n", fill_time, input_flow_rate);
std::cout << "input flow rate after " << fill_time << " = " << measured_mass / fill_time << '\n'; std::cout << fmt::format("float rise rate = {}\n", float_rise_rate);
std::cout << "float rise rate = " << box.fill_level(measured_mass) / fill_time << '\n'; std::cout << fmt::format("box full E.T.A. at current flow rate = {}\n", fill_time_left);
const auto fill_time_left = (box.height / box.fill_level(measured_mass) - 1) * fill_time;
std::cout << "box full E.T.A. at current flow rate = " << fill_time_left << '\n';
} }