// The MIT License (MIT) // // Copyright (c) 2018 Mateusz Pusz // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #include "geographic.h" #include #include namespace { using namespace units::isq::si::references; inline constexpr auto earth_radius = 6371 * km; } // namespace namespace geographic { distance spherical_distance(position from, position to) { using rep = std::common_type_t; constexpr auto p = std::numbers::pi_v / 180; const auto lat1 = from.lat.value() * p; const auto lon1 = from.lon.value() * p; const auto lat2 = to.lat.value() * p; const auto lon2 = to.lon.value() * p; using std::sin, std::cos, std::asin, std::sqrt; // https://en.wikipedia.org/wiki/Great-circle_distance#Formulae if constexpr (sizeof(rep) >= 8) { // spherical law of cosines const auto central_angle = acos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon2 - lon1)); // const auto central_angle = 2 * asin(sqrt(0.5 - cos(lat2 - lat1) / 2 + cos(lat1) * cos(lat2) * (1 - cos(lon2 - lon1)) / 2)); return distance(earth_radius * central_angle); } else { // the haversine formula const auto sin_lat = sin(lat2 - lat1) / 2; const auto sin_lon = sin(lon2 - lon1) / 2; const auto central_angle = 2 * asin(sqrt(sin_lat * sin_lat + cos(lat1) * cos(lat2) * sin_lon * sin_lon)); return distance(earth_radius * central_angle); } } } // namespace geographic