// The MIT License (MIT) // // Copyright (c) 2018 Mateusz Pusz // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #include "units/quantity_point.h" #include "test_tools.h" #include "units/chrono.h" #include "units/math.h" #include "units/isq/si/area.h" #include "units/isq/si/speed.h" #include "units/isq/si/volume.h" #include "units/isq/si/us/length.h" #include namespace { using namespace units; using namespace isq::si; using namespace references; using namespace std::chrono_literals; using sys_seconds = std::chrono::time_point; // class invariants template concept invalid_types = requires { requires !requires { typename quantity_point; }; // unit of a different dimension requires !requires { typename quantity_point>; }; // quantity used as Rep // quantity point used as Rep requires !requires { typename quantity_point>; }; requires !requires { typename quantity; }; // reordered arguments }; static_assert(invalid_types); // member types static_assert(is_same_v::rep, int>); static_assert(is_same_v::rep, double>); static_assert(is_same_v::unit, metre>); static_assert(is_same_v::unit, kilometre>); static_assert(is_same_v::dimension, dim_length>); static_assert(is_same_v::quantity_type, quantity>); // constructors static_assert(quantity_point(1).relative() == quantity(1)); static_assert(!std::is_convertible_v>); static_assert(quantity_point(42s).relative() == 42 * s); static_assert(quantity_point(sys_seconds{42s}).relative() == 42 * s); static_assert(!std::is_convertible_v>); static_assert(!std::is_convertible_v>); static_assert(quantity_point().relative() == 0_q_m); constexpr quantity_point km{1000_q_m}; static_assert(km.relative() == 1000_q_m); static_assert(quantity_point(km).relative() == km.relative()); static_assert(quantity_point(1_q_m).relative() == 1_q_m); static_assert(!std::is_constructible_v, double>); // truncating conversion static_assert(quantity_point(1.0_q_m).relative() == 1.0_q_m); static_assert(quantity_point(1_q_m).relative() == 1_q_m); static_assert(quantity_point(3.14_q_m).relative() == 3.14_q_m); static_assert(quantity_point(km).relative() == 1000_q_m); static_assert(!std::is_constructible_v, quantity_point>); // truncating conversion static_assert(quantity_point(quantity_point(1000.0_q_m)).relative() == 1000.0_q_m); static_assert(quantity_point(km).relative() == 1000.0_q_m); static_assert(quantity_point(quantity_point(1_q_km)).relative() == 1000_q_m); static_assert(!std::is_constructible_v, quantity_point>); // different dimensions static_assert(!std::is_constructible_v, quantity_point>); // truncating conversion // assignment operator static_assert([]() { quantity_point l1(1_q_m), l2{}; return l2 = l1; }().relative() == 1_q_m); // static member functions static_assert(quantity_point::min().relative().number() == std::numeric_limits::lowest()); static_assert(quantity_point::max().relative().number() == std::numeric_limits::max()); static_assert(quantity_point::min().relative().number() == std::numeric_limits::lowest()); static_assert(quantity_point::max().relative().number() == std::numeric_limits::max()); // unary member operators static_assert([](auto v) { auto vv = v++; return std::pair(v, vv); }(km) == std::pair(quantity_point(1001_q_m), quantity_point(1000_q_m))); static_assert([](auto v) { auto vv = ++v; return std::pair(v, vv); }(km) == std::pair(quantity_point(1001_q_m), quantity_point(1001_q_m))); static_assert([](auto v) { auto vv = v--; return std::pair(v, vv); }(km) == std::pair(quantity_point(999_q_m), quantity_point(1000_q_m))); static_assert([](auto v) { auto vv = --v; return std::pair(v, vv); }(km) == std::pair(quantity_point(999_q_m), quantity_point(999_q_m))); // compound assignment static_assert((quantity_point(1_q_m) += 1_q_m).relative().number() == 2); static_assert((quantity_point(2_q_m) -= 1_q_m).relative().number() == 1); // non-member arithmetic operators static_assert(compare() + length()), quantity_point>); static_assert(compare() + quantity_point()), quantity_point>); static_assert(compare() + length()), quantity_point>); static_assert(compare() + quantity_point()), quantity_point>); static_assert(compare() - length()), quantity_point>); static_assert(compare() - length()), quantity_point>); static_assert( compare() - quantity_point()), length>); static_assert( compare() - quantity_point()), length>); static_assert((1_q_m + km).relative().number() == 1001); static_assert((quantity_point(1_q_m) + 1_q_km).relative().number() == 1001); static_assert((km - 1_q_m).relative().number() == 999); static_assert((quantity_point(1_q_km) - quantity_point(1_q_m)).number() == 999); // comparators static_assert(quantity_point(2_q_m) + 1_q_m == quantity_point(3_q_m)); static_assert(!(2_q_m + quantity_point(2_q_m) == quantity_point(3_q_m))); static_assert(quantity_point(2_q_m) + 2_q_m != quantity_point(3_q_m)); static_assert(!(2_q_m + quantity_point(2_q_m) != quantity_point(4_q_m))); static_assert(quantity_point(2_q_m) > quantity_point(1_q_m)); static_assert(!(quantity_point(1_q_m) > quantity_point(1_q_m))); static_assert(quantity_point(1_q_m) < quantity_point(2_q_m)); static_assert(!(quantity_point(2_q_m) < quantity_point(2_q_m))); static_assert(quantity_point(2_q_m) >= quantity_point(1_q_m)); static_assert(quantity_point(2_q_m) >= quantity_point(2_q_m)); static_assert(!(quantity_point(2_q_m) >= quantity_point(3_q_m))); static_assert(quantity_point(1_q_m) <= quantity_point(2_q_m)); static_assert(quantity_point(2_q_m) <= quantity_point(2_q_m)); static_assert(!(quantity_point(3_q_m) <= quantity_point(2_q_m))); static_assert(quantity_point(3_q_m) == quantity_point(3.0_q_m)); static_assert(quantity_point(3_q_m) != quantity_point(3.14_q_m)); static_assert(quantity_point(2_q_m) > quantity_point(1.0_q_m)); static_assert(quantity_point(1.0_q_m) < quantity_point(2_q_m)); static_assert(quantity_point(2.0_q_m) >= quantity_point(1_q_m)); static_assert(quantity_point(1_q_m) <= quantity_point(2.0_q_m)); static_assert(quantity_point(1000_q_m) == quantity_point(1_q_km)); static_assert(quantity_point(1001_q_m) != quantity_point(1_q_km)); static_assert(quantity_point(1001_q_m) > quantity_point(1_q_km)); static_assert(quantity_point(999_q_m) < quantity_point(1_q_km)); static_assert(quantity_point(1000_q_m) >= quantity_point(1_q_km)); static_assert(quantity_point(1000_q_m) <= quantity_point(1_q_km)); // alias units static_assert(quantity_point(2_q_l) + 2_q_ml == quantity_point(2002_q_ml)); static_assert(2_q_l + quantity_point(2_q_ml) == quantity_point(2002_q_cm3)); static_assert(quantity_point(2_q_l) + 2_q_cm3 == quantity_point(2002_q_ml)); static_assert(2_q_dm3 + quantity_point(2_q_cm3) == quantity_point(2002_q_ml)); // is_quantity_point static_assert(QuantityPoint>); // common_quantity_point static_assert(compare< common_quantity_point, quantity_point>, quantity_point>); static_assert(compare, quantity_point>, quantity_point>); static_assert(compare, quantity_point>, quantity_point>); // common_type using namespace units::isq::si::us::literals; static_assert(std::equality_comparable); static_assert(std::equality_comparable_with); static_assert(quantity_point(0_q_m) == quantity_point(0_q_ft_us)); static_assert(std::equality_comparable_with); // quantity_cast static_assert(quantity_point_cast>(quantity_point(2_q_km)).relative().number() == 2000); static_assert( quantity_point_cast>(quantity_point(2000_q_m)).relative().number() == 2); static_assert(quantity_point_cast>(quantity_point(1.23_q_m)).relative().number() == 1); static_assert(quantity_point_cast>(quantity_point(2_q_km)).relative().number() == 2000); static_assert(quantity_point_cast>(quantity_point(2000_q_m)).relative().number() == 2); static_assert(quantity_point_cast>(quantity_point(1.23_q_m)).relative().number() == 1); static_assert(quantity_point_cast(quantity_point(2_q_km)).relative().number() == 2000); static_assert(quantity_point_cast(quantity_point(2000_q_m)).relative().number() == 2); static_assert(quantity_point_cast(quantity_point(1.23_q_m)).relative().number() == 1); static_assert(quantity_point_cast(quantity_point(2000.0_q_m / 3600.0_q_s)).relative().number() == 2); // time static_assert(quantity_point{1_q_h} == quantity_point{3600_q_s}); template concept no_crossdimensional_equality = !requires { quantity_point(1_q_s) == quantity_point(length(1)); }; static_assert(no_crossdimensional_equality); // length static_assert(quantity_point(1_q_km) != quantity_point(1_q_m)); static_assert(quantity_point(1_q_km) == quantity_point(1000_q_m)); static_assert(quantity_point(1_q_km) + 1_q_m == quantity_point(1001_q_m)); static_assert(1_q_km + quantity_point(1_q_m) == quantity_point(1001_q_m)); template concept dimensional_analysis = requires(T t) { pow<2>(t); }; static_assert(!dimensional_analysis>); } // namespace