// The MIT License (MIT) // // Copyright (c) 2018 Mateusz Pusz // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #include #include #include #include #include #include #ifdef MP_UNITS_MODULES import mp_units; #else #include #include #include #include #endif // allows standard gravity (acceleration) and weight (force) to be expressed with scalar representation // types instead of requiring the usage of Linear Algebra library for this simple example template requires mp_units::is_scalar inline constexpr bool mp_units::is_vector = true; namespace { using namespace mp_units; using namespace mp_units::si::unit_symbols; // add a custom quantity type of kind isq::length QUANTITY_SPEC(horizontal_length, isq::length); // add a custom derived quantity type of kind isq::area // with a constrained quantity equation QUANTITY_SPEC(horizontal_area, isq::area, horizontal_length* isq::width); inline constexpr auto g = 1 * si::standard_gravity; inline constexpr auto air_density = isq::mass_density(1.225 * kg / m3); class StorageTank { quantity base_; quantity height_; quantity density_ = air_density; public: constexpr StorageTank(const quantity& base, const quantity& height) : base_(base), height_(height) { } constexpr void set_contents_density(const quantity& density) { assert(density > air_density); density_ = density; } [[nodiscard]] constexpr QuantityOf auto filled_weight() const { const auto volume = isq::volume(base_ * height_); // TODO check if we can remove that cast const QuantityOf auto mass = density_ * volume; return isq::weight(mass * g); } [[nodiscard]] constexpr quantity fill_level(const quantity& measured_mass) const { return height_ * measured_mass * g / filled_weight(); } [[nodiscard]] constexpr quantity spare_capacity(const quantity& measured_mass) const { return (height_ - fill_level(measured_mass)) * base_; } }; class CylindricalStorageTank : public StorageTank { public: constexpr CylindricalStorageTank(const quantity& radius, const quantity& height) : StorageTank(quantity_cast(std::numbers::pi * pow<2>(radius)), height) { } }; class RectangularStorageTank : public StorageTank { public: constexpr RectangularStorageTank(const quantity& length, const quantity& width, const quantity& height) : StorageTank(length * width, height) { } }; } // namespace int main() { const quantity height = isq::height(200 * mm); auto tank = RectangularStorageTank(horizontal_length(1'000 * mm), isq::width(500 * mm), height); tank.set_contents_density(1'000 * kg / m3); const auto duration = std::chrono::seconds{200}; const quantity fill_time = value_cast(quantity{duration}); // time since starting fill const quantity measured_mass = 20. * kg; // measured mass at fill_time const quantity fill_level = tank.fill_level(measured_mass); const quantity spare_capacity = tank.spare_capacity(measured_mass); const quantity filled_weight = tank.filled_weight(); const QuantityOf auto input_flow_rate = measured_mass / fill_time; const QuantityOf auto float_rise_rate = fill_level / fill_time; const QuantityOf auto fill_time_left = (height / fill_level - 1 * one) * fill_time; const quantity fill_ratio = fill_level / height; std::cout << MP_UNITS_STD_FMT::format("fill height at {} = {} ({} full)\n", fill_time, fill_level, fill_ratio.in(percent)); std::cout << MP_UNITS_STD_FMT::format("fill weight at {} = {} ({})\n", fill_time, filled_weight, filled_weight.in(N)); std::cout << MP_UNITS_STD_FMT::format("spare capacity at {} = {}\n", fill_time, spare_capacity); std::cout << MP_UNITS_STD_FMT::format("input flow rate = {}\n", input_flow_rate); std::cout << MP_UNITS_STD_FMT::format("float rise rate = {}\n", float_rise_rate); std::cout << MP_UNITS_STD_FMT::format("tank full E.T.A. at current flow rate = {}\n", fill_time_left.in(s)); }