// The MIT License (MIT) // // Copyright (c) 2018 Mateusz Pusz // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #include #include #include #include #include #include #include #include #include #include namespace { using namespace units; using namespace units::si::unit_symbols; inline constexpr auto g = 1 * si::standard_gravity; inline constexpr auto air_density = 1.225 * isq::mass_density[kg / m3]; class Box { quantity base_; quantity height_; quantity density_ = air_density; public: constexpr Box(const quantity& length, const quantity& width, quantity height) : base_(length * width), height_(std::move(height)) { } [[nodiscard]] constexpr quantity_of auto filled_weight() const { const weak_quantity_of auto volume = base_ * height_; const weak_quantity_of auto mass = density_ * volume; return quantity_cast(mass * g); } [[nodiscard]] constexpr quantity fill_level(const quantity& measured_mass) const { return height_ * measured_mass * g / filled_weight(); } [[nodiscard]] constexpr quantity spare_capacity(const quantity& measured_mass) const { return (height_ - fill_level(measured_mass)) * base_; } constexpr void set_contents_density(const quantity& density_in) { assert(density_in > air_density); density_ = density_in; } }; } // namespace int main() { using namespace units::si; constexpr auto mm = isq::length[unit_symbols::mm]; // helper reference object const auto height = (200.0 * mm)[metre]; auto box = Box(1000.0 * mm, 500.0 * mm, height); box.set_contents_density(1000.0 * isq::mass_density[kg / m3]); const auto fill_time = 200.0 * isq::time[s]; // time since starting fill const auto measured_mass = 20.0 * isq::mass[kg]; // measured mass at fill_time const auto fill_level = box.fill_level(measured_mass); const auto spare_capacity = box.spare_capacity(measured_mass); const auto filled_weight = box.filled_weight(); const weak_quantity_of auto input_flow_rate = measured_mass / fill_time; const weak_quantity_of auto float_rise_rate = fill_level / fill_time; const quantity_of auto fill_time_left = (height / fill_level - 1) * fill_time; const auto fill_percent = (fill_level / height)[percent]; std::cout << "mp-units box example...\n"; std::cout << STD_FMT::format("fill height at {} = {} ({} full)\n", fill_time, fill_level, fill_percent); std::cout << STD_FMT::format("fill weight at {} = {} ({})\n", fill_time, filled_weight, filled_weight[N]); std::cout << STD_FMT::format("spare capacity at {} = {}\n", fill_time, spare_capacity); std::cout << STD_FMT::format("input flow rate after {} = {}\n", fill_time, input_flow_rate); std::cout << STD_FMT::format("float rise rate = {}\n", float_rise_rate); std::cout << STD_FMT::format("box full E.T.A. at current flow rate = {}\n", fill_time_left); }