// The MIT License (MIT) // // Copyright (c) 2018 Mateusz Pusz // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #include #include #include #include #include #include #include #include #include #include // IWYU pragma: keep #include #include #include #include #include namespace { using namespace units::isq; using namespace si::references; inline constexpr Acceleration auto g = si::si2019::standard_gravity<>; inline constexpr Density auto air_density = 1.225 * (kg / m3); class Box { si::area base_; si::length height_; si::density density_ = air_density; public: constexpr Box(const si::length& length, const si::length& width, si::length height) : base_(length * width), height_(std::move(height)) {} [[nodiscard]] constexpr si::force filled_weight() const { const Volume auto volume = base_ * height_; const Mass auto mass = density_ * volume; return mass * g; } [[nodiscard]] constexpr si::length fill_level(const si::mass& measured_mass) const { return height_ * measured_mass * g / filled_weight(); } [[nodiscard]] constexpr si::volume spare_capacity(const si::mass& measured_mass) const { return (height_ - fill_level(measured_mass)) * base_; } constexpr void set_contents_density(const si::density& density_in) { assert(density_in > air_density); density_ = density_in; } }; } // namespace int main() { using namespace units; const si::length height = 200.0 * mm; auto box = Box(1000.0 * mm, 500.0 * mm, height); box.set_contents_density(1000.0 * (kg / m3)); const auto fill_time = 200.0 * s; // time since starting fill const auto measured_mass = 20.0 * kg; // measured mass at fill_time const Length auto fill_level = box.fill_level(measured_mass); const Dimensionless auto fill_percent = quantity_cast(fill_level / height); const Volume auto spare_capacity = box.spare_capacity(measured_mass); const auto input_flow_rate = measured_mass / fill_time; // unknown dimension const Speed auto float_rise_rate = fill_level / fill_time; const Time auto fill_time_left = (height / fill_level - 1) * fill_time; std::cout << "mp-units box example...\n"; std::cout << fmt::format("fill height at {} = {} ({} full)\n", fill_time, fill_level, fill_percent); std::cout << fmt::format("spare_capacity at {} = {}\n", fill_time, spare_capacity); std::cout << fmt::format("input flow rate after {} = {}\n", fill_time, input_flow_rate); std::cout << fmt::format("float rise rate = {}\n", float_rise_rate); std::cout << fmt::format("box full E.T.A. at current flow rate = {}\n", fill_time_left); }