// The MIT License (MIT) // // Copyright (c) 2018 Mateusz Pusz // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #include #include #include #include #include #include #include #include #include #include // IWYU pragma: keep #include #include #include #include #include namespace { using namespace units::aliases::isq::si; inline constexpr auto g = units::isq::si::si2019::standard_gravity<>; inline constexpr auto air_density = kg_per_m3<>(1.225); class Box { area::m2<> base_; length::m<> height_; density::kg_per_m3<> density_ = air_density; public: constexpr Box(const length::m<>& length, const length::m<>& width, length::m<> height): base_(length * width), height_(std::move(height)) {} [[nodiscard]] constexpr force::N<> filled_weight() const { const volume::m3<> volume = base_ * height_; const mass::kg<> mass = density_ * volume; return mass * g; } [[nodiscard]] constexpr length::m<> fill_level(const mass::kg<>& measured_mass) const { return height_ * measured_mass * g / filled_weight(); } [[nodiscard]] constexpr volume::m3<> spare_capacity(const mass::kg<>& measured_mass) const { return (height_ - fill_level(measured_mass)) * base_; } constexpr void set_contents_density(const density::kg_per_m3<>& density_in) { assert(density_in > air_density); density_ = density_in; } }; } // namespace int main() { using namespace units; using namespace units::isq; const length::m<> height(mm<>(200.0)); auto box = Box(mm<>(1000.0), mm<>(500.0), height); box.set_contents_density(kg_per_m3<>(1000.0)); const auto fill_time = s<>(200.0); // time since starting fill const auto measured_mass = kg<>(20.0); // measured mass at fill_time const Length auto fill_level = box.fill_level(measured_mass); const Dimensionless auto fill_percent = quantity_cast(fill_level / height); const Volume auto spare_capacity = box.spare_capacity(measured_mass); const auto input_flow_rate = measured_mass / fill_time; // unknown dimension const Speed auto float_rise_rate = fill_level / fill_time; const Time auto fill_time_left = (height / fill_level - 1) * fill_time; std::cout << "mp-units box example...\n"; std::cout << fmt::format("fill height at {} = {} ({} full)\n", fill_time, fill_level, fill_percent); std::cout << fmt::format("spare_capacity at {} = {}\n", fill_time, spare_capacity); std::cout << fmt::format("input flow rate after {} = {}\n", fill_time, input_flow_rate); std::cout << fmt::format("float rise rate = {}\n", float_rise_rate); std::cout << fmt::format("box full E.T.A. at current flow rate = {}\n", fill_time_left); }