// The MIT License (MIT) // // Copyright (c) 2018 Mateusz Pusz // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #include "units/math.h" #include "units/physical/si/area.h" #include "units/physical/si/frequency.h" #include "units/physical/si/velocity.h" #include #include using namespace units; namespace { template class my_value { T value_{}; public: my_value() = default; constexpr my_value(T v) : value_(std::move(v)) {} // constexpr my_value& operator+=(my_value other) { value_ += other.value_; return *this; } // constexpr my_value& operator-=(my_value other) { value_ -= other.value_; return *this; } // constexpr my_value& operator*=(my_value other) { value_ *= other.value_; return *this; } // constexpr my_value& operator/=(my_value other) { value_ /= other.value_; return *this; } [[nodiscard]] constexpr my_value operator-() const { return my_value(-value_); } [[nodiscard]] friend constexpr my_value operator+(my_value lhs, my_value rhs) { return my_value(lhs.value_ + rhs.value_); } [[nodiscard]] friend constexpr my_value operator-(my_value lhs, my_value rhs) { return my_value(lhs.value_ - rhs.value_); } [[nodiscard]] friend constexpr my_value operator*(my_value lhs, my_value rhs) { return my_value(lhs.value_ * rhs.value_); } [[nodiscard]] friend constexpr my_value operator/(my_value lhs, my_value rhs) { return my_value(lhs.value_ / rhs.value_); } [[nodiscard]] friend constexpr bool operator==(my_value lhs, my_value rhs) { return lhs.value_ == rhs.value_; } [[nodiscard]] friend constexpr bool operator!=(my_value lhs, my_value rhs) { return !(lhs == rhs); } [[nodiscard]] friend constexpr bool operator<(my_value lhs, my_value rhs) { return lhs.value_ < rhs.value_; } [[nodiscard]] friend constexpr bool operator>(my_value lhs, my_value rhs) { return rhs < lhs; } [[nodiscard]] friend constexpr bool operator<=(my_value lhs, my_value rhs) { return !(rhs < lhs); } [[nodiscard]] friend constexpr bool operator>=(my_value lhs, my_value rhs) { return !(lhs < rhs); } constexpr operator const T&() const& { return value_; } }; } // namespace namespace units { template inline constexpr bool treat_as_floating_point> = std::is_floating_point_v; template struct quantity_values> { static constexpr my_value zero() { return my_value(0); } static constexpr my_value max() { return std::numeric_limits::max(); } static constexpr my_value min() { return std::numeric_limits::lowest(); } }; } // namespace units namespace std { template struct common_type, my_value> : std::type_identity>> {}; template struct common_type, U> : common_type {}; template struct common_type> : common_type {}; } // namespace std namespace { static_assert(units::Scalar>); static_assert(std::convertible_to, float>); static_assert(std::convertible_to>); using namespace units; using namespace units::si; // class invariants // constexpr quantity error(0); // should not compile (unit of a different dimension) // constexpr quantity> error(0); // should not compile (quantity used as Rep) // constexpr quantity error(0); // should not compile (reordered arguments) // constexpr quantity, metre>, int> error(0); // should not compile (negative unit ratio) // member types static_assert(std::is_same_v::rep, int>); static_assert(std::is_same_v::rep, double>); static_assert(std::is_same_v::unit, metre>); static_assert(std::is_same_v::unit, kilometre>); // constructors using my_int = my_value; using my_double = my_value; static_assert(length().count() == 0); constexpr length km{1000}; static_assert(km.count() == 1000); static_assert(length(km).count() == km.count()); static_assert(length(1).count() == 1); static_assert(length(my_value(1)).count() == 1); static_assert(length(1).count() == my_int{1}); // static_assert(length(1.0).count() == 1); // should not compile (truncating conversion) // static_assert(length(my_value(1.0)).count() == 1); // should not compile (truncating conversion) // static_assert(length(1.0).count() == my_int{1}); // should not compile (truncating conversion) static_assert(length(1.0).count() == 1.0); static_assert(length(my_value(1.0)).count() == 1.0); static_assert(length(1).count() == 1.0); static_assert(length(my_value(1)).count() == 1.0); static_assert(length(3.14).count() == 3.14); static_assert(length(1.0).count() == my_double{1.0}); static_assert(length(1).count() == my_double{1.0}); static_assert(length(3.14).count() == my_double{3.14}); static_assert(length(km).count() == 1000); // static_assert(length(length(3.14)).count() == 3); // should not compile (truncating conversion) static_assert(length(quantity_cast>(3.14q_m)).count() == 3); // static_assert(length(length(1000.0)).count() == 1000); // should not compile (truncating conversion) // static_assert(length(1000.0q_m).count() == my_int{1000}); // should not compile (truncating conversion) static_assert(length(1000.0q_m).count() == 1000.0); static_assert(length(length(1000.0)).count() == 1000.0); static_assert(length(1000.0q_m).count() == my_double{1000.0}); static_assert(length(km).count() == 1000.0); static_assert(length(km).count() == my_double{1000.0}); static_assert(length(1q_km).count() == 1000); // static_assert(length(1q_s).count() == 1); // should not compile (different dimensions) //static_assert(length(1010q_m).count() == 1); // should not compile (truncating conversion) static_assert(length(quantity_cast>(1010q_m)).count() == 1); static_assert(length(quantity_cast>(1010q_m)).count() == 1000); // assignment operator static_assert([]() { length l1(1), l2(2); return l2 = l1; }().count() == 1); // static member functions static_assert(length::zero().count() == 0); static_assert(length::min().count() == std::numeric_limits::lowest()); static_assert(length::max().count() == std::numeric_limits::max()); static_assert(length::zero().count() == 0.0); static_assert(length::min().count() == std::numeric_limits::lowest()); static_assert(length::max().count() == std::numeric_limits::max()); static_assert(length::zero().count() == my_int{0}); static_assert(length::min().count() == my_int{std::numeric_limits::lowest()}); static_assert(length::max().count() == my_int{std::numeric_limits::max()}); static_assert(length::zero().count() == my_double{0.0}); static_assert(length::min().count() == my_double{std::numeric_limits::lowest()}); static_assert(length::max().count() == my_double{std::numeric_limits::max()}); // unary member operators static_assert((+km).count() == 1000); static_assert((-km).count() == -1000); static_assert((+(-km)).count() == -1000); static_assert((-(-km)).count() == 1000); // binary member operators static_assert([](auto v) { auto vv = v++; return std::make_pair(v, vv); }(km) == std::make_pair(length(1001), length(1000))); static_assert([](auto v) { auto vv = ++v; return std::make_pair(v, vv); }(km) == std::make_pair(length(1001), length(1001))); static_assert([](auto v) { auto vv = v--; return std::make_pair(v, vv); }(km) == std::make_pair(length(999), length(1000))); static_assert([](auto v) { auto vv = --v; return std::make_pair(v, vv); }(km) == std::make_pair(length(999), length(999))); // compound assignment static_assert((1q_m += 1q_m).count() == 2); static_assert((2q_m -= 1q_m).count() == 1); static_assert((1q_m *= 2).count() == 2); static_assert((2q_m /= 2).count() == 1); static_assert((7q_m %= 2).count() == 1); static_assert((7q_m %= 2q_m).count() == 1); // static_assert((7.m %= 2.).count() == 1); // should not compile (operation not allowed for floating-point types) // static_assert((7.m %= 2).count() == 1); // should not compile (operation not allowed for floating-point types) // static_assert((7q_m %= 2.).count() == 1); // should not compile (operation not allowed for floating-point types) static_assert((7q_m %= 2q_m).count() == 1); // static_assert((7.m %= 2.m).count() == 1); // should not compile (operation not allowed for floating-point types) // static_assert((7.m %= 2q_m).count() == 1); // should not compile (operation not allowed for floating-point types) // static_assert((7q_m %= 2.m).count() == 1); // should not compile (operation not allowed for floating-point types) // non-member arithmetic operators static_assert(std::is_same_v() + length()), length>); static_assert(std::is_same_v() + length()), length>); static_assert( std::is_same_v() + length()), length>); static_assert(std::is_same_v() - length()), length>); static_assert( std::is_same_v() - length()), length>); static_assert(std::is_same_v() * 1.0), length>); static_assert(std::is_same_v()), length>); static_assert( std::is_same_v() * si::time()), length>); static_assert( std::is_same_v() * si::time()), length, metre>, int>>); static_assert(std::is_same_v() * si::time()), quantity, units::exp>, scaled_unit, unknown_unit>>>); static_assert(std::is_same_v()), frequency>); static_assert(std::is_same_v()), frequency, hertz>, int>>); static_assert(std::is_same_v()), si::time>); static_assert(std::is_same_v()), quantity>, scaled_unit, unknown_unit>>>); static_assert(std::is_same_v() / 1.0), length>); static_assert(std::is_same_v() / length()), double>); static_assert(std::is_same_v() / length()), double>); static_assert( std::is_same_v() / si::time()), velocity>); static_assert( std::is_same_v() / si::time()), velocity, metre_per_second>>>); static_assert(std::is_same_v() / length()), quantity, units::exp>, scaled_unit, unknown_unit>>>); static_assert(std::is_same_v() % short(1)), length>); static_assert(std::is_same_v() % length(1)), length>); static_assert((1q_m + km).count() == 1001); static_assert((1q_m + 1q_km).count() == 1001); static_assert((km - 1q_m).count() == 999); static_assert((1q_km - 1q_m).count() == 999); static_assert((2q_m * 2).count() == 4); static_assert((3 * 3q_m).count() == 9); static_assert((4q_m / 2).count() == 2); static_assert(4q_m / 2q_m == 2); static_assert(4q_km / 2000q_m == 2); static_assert((7q_m % 2).count() == 1); static_assert((7q_m % 2q_m).count() == 1); static_assert((7q_km % 2000q_m).count() == 1000); static_assert((10q_km2 * 10q_km2) / 50q_km2 == 2q_km2); // comparators static_assert(2q_m + 1q_m == 3q_m); static_assert(!(2q_m + 2q_m == 3q_m)); static_assert(2q_m + 2q_m != 3q_m); static_assert(!(2q_m + 2q_m != 4q_m)); static_assert(2q_m > 1q_m); static_assert(!(1q_m > 1q_m)); static_assert(1q_m < 2q_m); static_assert(!(2q_m < 2q_m)); static_assert(2q_m >= 1q_m); static_assert(2q_m >= 2q_m); static_assert(!(2q_m >= 3q_m)); static_assert(1q_m <= 2q_m); static_assert(2q_m <= 2q_m); static_assert(!(3q_m <= 2q_m)); static_assert(3q_m == 3.0q_m); static_assert(3q_m != 3.14q_m); static_assert(2q_m > 1.0q_m); static_assert(1.0q_m < 2q_m); static_assert(2.0q_m >= 1q_m); static_assert(1q_m <= 2.0q_m); static_assert(1000q_m == 1q_km); static_assert(1001q_m != 1q_km); static_assert(1001q_m > 1q_km); static_assert(999q_m < 1q_km); static_assert(1000q_m >= 1q_km); static_assert(1000q_m <= 1q_km); // is_quantity static_assert(Quantity>); // common_quantity static_assert(std::is_same_v, length>, length>); static_assert( std::is_same_v, length>, length>); static_assert(std::is_same_v, length>, length>); // quantity_cast static_assert(std::is_same_v, metre>>(2q_km))::unit, metre>); static_assert(quantity_cast>(2q_km).count() == 2000); static_assert(quantity_cast>(2000q_m).count() == 2); static_assert(quantity_cast>(1.23q_m).count() == 1); static_assert(quantity_cast(2q_km).count() == 2000); static_assert(quantity_cast(2000q_m).count() == 2); static_assert(quantity_cast(1.23q_m).count() == 1); // time // static_assert(1q_s == 1q_m); // should not compile (different dimensions) static_assert(1q_h == 3600q_s); // length static_assert(1q_km == 1000q_m); static_assert(1q_km + 1q_m == 1001q_m); static_assert(10q_km / 5q_km == 2); static_assert(10q_km / 2 == 5q_km); // velocity static_assert(10q_m / 5q_s == 2q_mps); static_assert(10 / 5q_s * 1q_m == 2q_mps); static_assert(1q_km / 1q_s == 1000q_mps); static_assert(2q_kmph * 2q_h == 4q_km); static_assert(2q_km / 2q_kmph == 1q_h); static_assert(std::is_same_v(2q_m)), decltype(4q_m2)>); } // namespace