Files
mp-units/example/glide_computer_example.cpp

187 lines
6.1 KiB
C++

// The MIT License (MIT)
//
// Copyright (c) 2018 Mateusz Pusz
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include "glide_computer.h"
#include <units/chrono.h>
#include <array>
#include <iostream>
namespace {
using namespace glide_computer;
auto get_gliders()
{
using namespace si::references;
UNITS_DIAGNOSTIC_PUSH
UNITS_DIAGNOSTIC_IGNORE_MISSING_BRACES
static const std::array gliders = {
glider{"SZD-30 Pirat", {velocity(83 * (km / h)), rate_of_climb(-0.7389 * (m / s))}},
glider{"SZD-51 Junior", {velocity(80 * (km / h)), rate_of_climb(-0.6349 * (m / s))}},
glider{"SZD-48 Jantar Std 3", {velocity(110 * (km / h)), rate_of_climb(-0.77355 * (m / s))}},
glider{"SZD-56 Diana", {velocity(110 * (km / h)), rate_of_climb(-0.63657 * (m / s))}}};
UNITS_DIAGNOSTIC_POP
return gliders;
}
auto get_weather_conditions()
{
using namespace si::references;
static const std::array weather_conditions = {
std::pair("Good", weather{height(1900 * m), rate_of_climb(4.3 * (m / s))}),
std::pair("Medium", weather{height(1550 * m), rate_of_climb(2.8 * (m / s))}),
std::pair("Bad", weather{height(850 * m), rate_of_climb(1.8 * (m / s))})};
return weather_conditions;
}
auto get_waypoints()
{
using namespace geographic::literals;
using namespace units::isq::si::international::references;
static const std::array waypoints = {
waypoint{"EPPR", {54.24772_N, 18.6745_E}, altitude(16 * ft)}, // N54°14'51.8" E18°40'28.2"
waypoint{"EPGI", {53.52442_N, 18.84947_E}, altitude(115 * ft)} // N53°31'27.9" E18°50'58.1"
};
return waypoints;
}
template<std::ranges::forward_range R>
requires std::same_as<std::ranges::range_value_t<R>, glider>
void print(const R& gliders)
{
std::cout << "Gliders:\n";
std::cout << "========\n";
for (const auto& g : gliders) {
std::cout << "- Name: " << g.name << "\n";
std::cout << "- Polar:\n";
for (const auto& p : g.polar)
fmt::print(" * {:%.4Q %q} @ {:%.1Q %q} -> {:%.1Q %q}\n", p.climb, p.v, quantity_cast<one>(glide_ratio(g.polar[0])));
std::cout << "\n";
}
}
template<std::ranges::forward_range R>
requires std::same_as<std::ranges::range_value_t<R>, std::pair<const char*, weather>>
void print(const R& conditions)
{
std::cout << "Weather:\n";
std::cout << "========\n";
for (const auto& c : conditions) {
std::cout << "- " << c.first << "\n";
const auto& w = c.second;
std::cout << " * Cloud base: " << fmt::format("{:%.0Q %q}", w.cloud_base) << " AGL\n";
std::cout << " * Thermals strength: " << fmt::format("{:%.1Q %q}", w.thermal_strength) << "\n";
std::cout << "\n";
}
}
template<std::ranges::forward_range R>
requires std::same_as<std::ranges::range_value_t<R>, waypoint>
void print(const R& waypoints)
{
std::cout << "Waypoints:\n";
std::cout << "==========\n";
for (const auto& w : waypoints)
std::cout << fmt::format("- {}: {} {}, {:%.1Q %q}\n", w.name, w.pos.lat, w.pos.lon, w.alt);
std::cout << "\n";
}
void print(const task& t)
{
std::cout << "Task:\n";
std::cout << "=====\n";
std::cout << "- Start: " << t.get_start().name << "\n";
std::cout << "- Finish: " << t.get_finish().name << "\n";
std::cout << "- Length: " << fmt::format("{:%.1Q %q}", t.get_length()) << "\n";
std::cout << "- Legs: " << "\n";
for (const auto& l : t.get_legs())
std::cout << fmt::format(" * {} -> {} ({:%.1Q %q})\n", l.begin().name, l.end().name, l.get_length());
std::cout << "\n";
}
void print(const safety& s)
{
std::cout << "Safety:\n";
std::cout << "=======\n";
std::cout << "- Min AGL separation: " << fmt::format("{:%.0Q %q}", s.min_agl_height) << "\n";
std::cout << "\n";
}
void print(const aircraft_tow& tow)
{
std::cout << "Tow:\n";
std::cout << "====\n";
std::cout << "- Type: aircraft\n";
std::cout << "- Height: " << fmt::format("{:%.0Q %q}", tow.height_agl) << "\n";
std::cout << "- Performance: " << fmt::format("{:%.1Q %q}", tow.performance) << "\n";
std::cout << "\n";
}
void example()
{
using namespace si::references;
const safety sfty = {height(300 * m)};
const auto gliders = get_gliders();
const auto waypoints = get_waypoints();
const auto weather_conditions = get_weather_conditions();
const task t = {waypoints[0], waypoints[1], waypoints[0]};
const aircraft_tow tow = {height(400 * m), rate_of_climb(1.6 * (m / s))};
// TODO use C++20 date library when available
// set `start_time` to 11:00 am today
const timestamp start_time(std::chrono::system_clock::now());
print(sfty);
print(gliders);
print(waypoints);
print(weather_conditions);
print(t);
print(tow);
for (const auto& g : gliders) {
for (const auto& c : weather_conditions) {
std::string txt = "Scenario: Glider = " + g.name + ", Weather = " + c.first;
std::cout << txt << "\n";
fmt::print("{0:=^{1}}\n\n", "", txt.size());
estimate(start_time, g, c.second, t, sfty, tow);
std::cout << "\n\n";
}
}
}
} // namespace
int main()
{
try {
example();
} catch (const std::exception& ex) {
std::cerr << "Unhandled std exception caught: " << ex.what() << '\n';
} catch (...) {
std::cerr << "Unhandled unknown exception caught\n";
}
}