/// // optional - An implementation of std::optional with extensions // Written in 2017 by Simon Brand (@TartanLlama) // // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to the // public domain worldwide. This software is distributed without any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. If not, see // . /// #ifndef TL_OPTIONAL_HPP #define TL_OPTIONAL_HPP #include #include #include #include #include #if (defined(_MSC_VER) && _MSC_VER == 1900) #define TL_OPTIONAL_MSVC2015 #endif #if (defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ <= 9) #define TL_OPTIONAL_GCC49 #endif #if (defined(__GNUC__) && __GNUC__ == 5 && __GNUC_MINOR__ <= 4) #define TL_OPTIONAL_GCC54 #endif #if (defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ <= 9) #define TL_OPTIONAL_NO_CONSTRR #endif #if __cplusplus > 201103L #define TL_OPTIONAL_CXX14 #endif #if (__cplusplus == 201103L || defined(TL_OPTIONAL_MSVC2015) || \ defined(TL_OPTIONAL_GCC49)) && \ !defined(TL_OPTIONAL_GCC50) /// \exclude #define TL_OPTIONAL_11_CONSTEXPR #else /// \exclude #define TL_OPTIONAL_11_CONSTEXPR constexpr #endif namespace tl { /// \brief Used to represent an optional with no data; essentially a bool class monostate {}; /// \brief A tag type to tell optional to construct its value in-place struct in_place_t { explicit in_place_t() = default; }; /// \brief A tag to tell optional to construct its value in-place static constexpr in_place_t in_place{}; template class optional; /// \exclude namespace detail { // C++14-style aliases for brevity template using remove_const_t = typename std::remove_const::type; template using remove_reference_t = typename std::remove_reference::type; template using decay_t = typename std::decay::type; template using enable_if_t = typename std::enable_if::type; template using conditional_t = typename std::conditional::type; // std::conjunction from C++17 template struct conjunction : std::true_type {}; template struct conjunction : B {}; template struct conjunction : std::conditional, B>::type {}; // std::void_t from C++17 template struct voider { using type = void; }; template using void_t = typename voider::type; // Trait for checking if a type is a tl::optional template struct is_optional_impl : std::false_type {}; template struct is_optional_impl> : std::true_type {}; template using is_optional = is_optional_impl>; // std::invoke from C++17 // https://stackoverflow.com/questions/38288042/c11-14-invoke-workaround template >{}>, int = 0> constexpr auto invoke(Fn &&f, Args &&... args) noexcept( noexcept(std::mem_fn(f)(std::forward(args)...))) -> decltype(std::mem_fn(f)(std::forward(args)...)) { return std::mem_fn(f)(std::forward(args)...); } template >{}>> constexpr auto invoke(Fn &&f, Args &&... args) noexcept( noexcept(std::forward(f)(std::forward(args)...))) -> decltype(std::forward(f)(std::forward(args)...)) { return std::forward(f)(std::forward(args)...); } // std::invoke_result from C++17 template struct invoke_result_impl; template struct invoke_result_impl< F, decltype(invoke(std::declval(), std::declval()...), void()), Us...> { using type = decltype(invoke(std::declval(), std::declval()...)); }; template using invoke_result = invoke_result_impl; template using invoke_result_t = typename invoke_result::type; // Change void to tl::monostate template using fixup_void = conditional_t::value, monostate, U>; template > using get_map_return = optional>>; // Check if invoking F for some Us returns void template struct returns_void_impl; template struct returns_void_impl>, U...> : std::is_void> {}; template using returns_void = returns_void_impl; template using enable_if_ret_void = enable_if_t::value>; template using disable_if_ret_void = enable_if_t::value>; template using enable_forward_value = detail::enable_if_t::value && !std::is_same, in_place_t>::value && !std::is_same, detail::decay_t>::value>; template using enable_from_other = detail::enable_if_t< std::is_constructible::value && !std::is_constructible &>::value && !std::is_constructible &&>::value && !std::is_constructible &>::value && !std::is_constructible &&>::value && !std::is_convertible &, T>::value && !std::is_convertible &&, T>::value && !std::is_convertible &, T>::value && !std::is_convertible &&, T>::value>; template using enable_assign_forward = detail::enable_if_t< !std::is_same, detail::decay_t>::value && !detail::conjunction, std::is_same>>::value && std::is_constructible::value && std::is_assignable::value>; template using enable_assign_from_other = detail::enable_if_t< std::is_constructible::value && std::is_assignable::value && !std::is_constructible &>::value && !std::is_constructible &&>::value && !std::is_constructible &>::value && !std::is_constructible &&>::value && !std::is_convertible &, T>::value && !std::is_convertible &&, T>::value && !std::is_convertible &, T>::value && !std::is_convertible &&, T>::value && !std::is_assignable &>::value && !std::is_assignable &&>::value && !std::is_assignable &>::value && !std::is_assignable &&>::value>; #ifdef _MSC_VER // TODO make a version which works with MSVC template struct is_swappable : std::true_type {}; template struct is_nothrow_swappable : std::true_type {}; #else // https://stackoverflow.com/questions/26744589/what-is-a-proper-way-to-implement-is-swappable-to-test-for-the-swappable-concept namespace swap_adl_tests { // if swap ADL finds this then it would call std::swap otherwise (same // signature) struct tag {}; template tag swap(T &, T &); template tag swap(T (&a)[N], T (&b)[N]); // helper functions to test if an unqualified swap is possible, and if it // becomes std::swap template std::false_type can_swap(...) noexcept(false); template (), std::declval()))> std::true_type can_swap(int) noexcept(noexcept(swap(std::declval(), std::declval()))); template std::false_type uses_std(...); template std::is_same(), std::declval())), tag> uses_std(int); template struct is_std_swap_noexcept : std::integral_constant::value && std::is_nothrow_move_assignable::value> {}; template struct is_std_swap_noexcept : is_std_swap_noexcept {}; template struct is_adl_swap_noexcept : std::integral_constant(0))> {}; } // namespace swap_adl_tests template struct is_swappable : std::integral_constant< bool, decltype(detail::swap_adl_tests::can_swap(0))::value && (!decltype(detail::swap_adl_tests::uses_std(0))::value || (std::is_move_assignable::value && std::is_move_constructible::value))> {}; template struct is_swappable : std::integral_constant< bool, decltype(detail::swap_adl_tests::can_swap(0))::value && (!decltype( detail::swap_adl_tests::uses_std(0))::value || is_swappable::value)> {}; template struct is_nothrow_swappable : std::integral_constant< bool, is_swappable::value && ((decltype(detail::swap_adl_tests::uses_std(0))::value &&detail::swap_adl_tests::is_std_swap_noexcept::value) || (!decltype(detail::swap_adl_tests::uses_std(0))::value && detail::swap_adl_tests::is_adl_swap_noexcept::value))> { }; #endif template ::value> struct optional_storage_base { TL_OPTIONAL_11_CONSTEXPR optional_storage_base() noexcept : m_dummy(), m_has_value(false) {} template TL_OPTIONAL_11_CONSTEXPR optional_storage_base(in_place_t, U &&... u) noexcept : m_value(std::forward(u)...), m_has_value(true) {} ~optional_storage_base() { if (m_has_value) { m_value.~T(); m_has_value = false; } } struct dummy {}; union { dummy m_dummy; T m_value; }; bool m_has_value; }; template struct optional_storage_base { TL_OPTIONAL_11_CONSTEXPR optional_storage_base() noexcept : m_dummy(), m_has_value(false) {} template TL_OPTIONAL_11_CONSTEXPR optional_storage_base(in_place_t, U &&... u) noexcept : m_value(std::forward(u)...), m_has_value(true) {} ~optional_storage_base() = default; struct dummy {}; union { dummy m_dummy; T m_value; }; bool m_has_value = false; }; } // namespace detail /// \brief A tag type to represent an empty optional struct nullopt_t { struct do_not_use {}; constexpr explicit nullopt_t(do_not_use, do_not_use) noexcept {} }; /// \brief Represents an empty optional /// \synopsis static constexpr nullopt_t nullopt; /// /// *Examples*: /// ``` /// tl::optional a = tl::nullopt; /// void foo (tl::optional); /// foo(tl::nullopt); //pass an empty optional /// ``` static constexpr nullopt_t nullopt{nullopt_t::do_not_use{}, nullopt_t::do_not_use{}}; class bad_optional_access : public std::exception { public: bad_optional_access() = default; const char *what() const noexcept { return "Optional has no value"; } }; /// An optional object is an object that contains the storage for another object /// and manages the lifetime of this contained object, if any. The contained /// object may be initialized after the optional object has been initialized, /// and may be destroyed before the optional object has been destroyed. The /// initialization state of the contained object is tracked by the optional /// object. template class optional : private detail::optional_storage_base { using base = detail::optional_storage_base; public: // The different versions for C++14 and 11 are needed because deduced return // types are not SFINAE-safe. C.f. // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0826r0.html #ifdef TL_OPTIONAL_CXX14 /// \group and_then /// Carries out some operation which returns an optional on the stored object /// if there is one. \requires `std::invoke(std::forward(f), value())` /// returns a `std::optional` for some `U`. \returns Let `U` be the result /// of `std::invoke(std::forward(f), value())`. Returns a /// `std::optional`. The return value is empty if `*this` is empty, /// otherwise the return value of `std::invoke(std::forward(f), value())` /// is returned. \group and_then \synopsis template \nconstexpr auto /// and_then(F &&f) &; template TL_OPTIONAL_11_CONSTEXPR auto and_then(F &&f) & { using result = detail::invoke_result_t; static_assert(detail::is_optional::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward(f), **this) : result(nullopt); } /// \group and_then /// \synopsis template \nconstexpr auto and_then(F &&f) &&; template TL_OPTIONAL_11_CONSTEXPR auto and_then(F &&f) && { using result = detail::invoke_result_t; static_assert(detail::is_optional::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward(f), std::move(**this)) : result(nullopt); } /// \group and_then /// \synopsis template \nconstexpr auto and_then(F &&f) const &; template constexpr auto and_then(F &&f) const & { using result = detail::invoke_result_t; static_assert(detail::is_optional::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward(f), **this) : result(nullopt); } #ifndef TL_OPTIONAL_NO_CONSTRR /// \group and_then /// \synopsis template \nconstexpr auto and_then(F &&f) const &&; template constexpr auto and_then(F &&f) const && { using result = detail::invoke_result_t; static_assert(detail::is_optional::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward(f), std::move(**this)) : result(nullopt); } #endif #else /// \group and_then /// Carries out some operation which returns an optional on the stored object /// if there is one. \requires `std::invoke(std::forward(f), value())` /// returns a `std::optional` for some `U`. \returns Let `U` be the result /// of `std::invoke(std::forward(f), value())`. Returns a /// `std::optional`. The return value is empty if `*this` is empty, /// otherwise the return value of `std::invoke(std::forward(f), value())` /// is returned. \group and_then \synopsis template \nconstexpr auto /// and_then(F &&f) &; template TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t and_then(F &&f) & { using result = detail::invoke_result_t; static_assert(detail::is_optional::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward(f), **this) : result(nullopt); } /// \group and_then /// \synopsis template \nconstexpr auto and_then(F &&f) &&; template TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t and_then(F &&f) && { using result = detail::invoke_result_t; static_assert(detail::is_optional::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward(f), std::move(**this)) : result(nullopt); } /// \group and_then /// \synopsis template \nconstexpr auto and_then(F &&f) const &; template constexpr detail::invoke_result_t and_then(F &&f) const & { using result = detail::invoke_result_t; static_assert(detail::is_optional::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward(f), **this) : result(nullopt); } #ifndef TL_OPTIONAL_NO_CONSTRR /// \group and_then /// \synopsis template \nconstexpr auto and_then(F &&f) const &&; template constexpr detail::invoke_result_t and_then(F &&f) const && { using result = detail::invoke_result_t; static_assert(detail::is_optional::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward(f), std::move(**this)) : result(nullopt); } #endif #endif #ifdef TL_OPTIONAL_CXX14 /// \brief Carries out some operation on the stored object if there is one. /// \returns Let `U` be the result of `std::invoke(std::forward(f), /// value())`. Returns a `std::optional`. The return value is empty if /// `*this` is empty, otherwise an `optional` is constructed from the /// return value of `std::invoke(std::forward(f), value())` and is /// returned. \group map \synopsis template auto map(F &&f) &; template TL_OPTIONAL_11_CONSTEXPR auto map(F &&f) & { return map_impl(*this, std::forward(f)); } template TL_OPTIONAL_11_CONSTEXPR auto map(F &&f) && { return map_impl(std::move(*this), std::forward(f)); } template constexpr auto map(F &&f) const & { return map_impl(*this, std::forward(f)); } template constexpr auto map(F &&f) const && { return map_impl(std::move(*this), std::forward(f)); } #else /// \brief Carries out some operation on the stored object if there is one. /// \returns Let `U` be the result of `std::invoke(std::forward(f), /// value())`. Returns a `std::optional`. The return value is empty if /// `*this` is empty, otherwise an `optional` is constructed from the /// return value of `std::invoke(std::forward(f), value())` and is /// returned. \group map \synopsis template auto map(F &&f) &; template TL_OPTIONAL_11_CONSTEXPR decltype(map_impl(std::declval(), std::declval())) map(F &&f) & { return map_impl(*this, std::forward(f)); } template TL_OPTIONAL_11_CONSTEXPR decltype(map_impl(std::declval(), std::declval())) map(F &&f) && { return map_impl(std::move(*this), std::forward(f)); } template constexpr decltype(map_impl(std::declval(), std::declval())) map(F &&f) const & { return map_impl(*this, std::forward(f)); } #ifndef TL_OPTIONAL_NO_CONSTRR template constexpr decltype(map_impl(std::declval(), std::declval())) map(F &&f) const && { return map_impl(std::move(*this), std::forward(f)); } #endif #endif /// \brief Calls `f` if the optional is empty /// \requires `std::invoke_result_t` must be void or convertible to /// `optional`. \effects If `*this` has a value, returns `*this`. /// Otherwise, if `f` returns `void`, calls `std::forward(f)` and returns /// `std::nullopt`. Otherwise, returns `std::forward(f)()`. \group or_else /// \synopsis template optional or_else (F &&f) &; template * = nullptr> optional TL_OPTIONAL_11_CONSTEXPR or_else(F &&f) & { if (has_value()) return *this; std::forward(f)(); return nullopt; } /// \exclude template * = nullptr> optional TL_OPTIONAL_11_CONSTEXPR or_else(F &&f) & { return has_value() ? *this : std::forward(f)(); } /// \group or_else /// \synopsis template optional or_else (F &&f) &&; template * = nullptr> optional or_else(F &&f) && { if (has_value()) return std::move(*this); std::forward(f)(); return nullopt; } /// \exclude template * = nullptr> optional TL_OPTIONAL_11_CONSTEXPR or_else(F &&f) && { return has_value() ? std::move(*this) : std::forward(f)(); } /// \group or_else /// \synopsis template optional or_else (F &&f) const &; template * = nullptr> optional or_else(F &&f) const & { if (has_value()) return *this; std::forward(f)(); return nullopt; } /// \exclude template * = nullptr> optional TL_OPTIONAL_11_CONSTEXPR or_else(F &&f) const & { return has_value() ? *this : std::forward(f)(); } #ifndef TL_OPTIONAL_NO_CONSTRR /// \exclude template * = nullptr> optional or_else(F &&f) const && { if (has_value()) return std::move(*this); std::forward(f)(); return nullopt; } /// \exclude template * = nullptr> optional or_else(F &&f) const && { return has_value() ? std::move(*this) : std::forward(f)(); } #endif /// \brief Maps the stored value with `f` if there is one, otherwise returns /// `u` \details If there is a value stored, then `f` is called with `**this` /// and the value is returned. Otherwise `u` is returned. \group map_or template U map_or(F &&f, U &&u) & { return has_value() ? detail::invoke(std::forward(f), **this) : std::forward(u); } /// \group map_or template U map_or(F &&f, U &&u) && { return has_value() ? detail::invoke(std::forward(f), std::move(**this)) : std::forward(u); } /// \group map_or template U map_or(F &&f, U &&u) const & { return has_value() ? detail::invoke(std::forward(f), **this) : std::forward(u); } #ifndef TL_OPTIONAL_NO_CONSTRR /// \group map_or template U map_or(F &&f, U &&u) const && { return has_value() ? detail::invoke(std::forward(f), std::move(**this)) : std::forward(u); } #endif /// \brief Maps the stored value with `f` if there is one, otherwise calls `u` /// and returns the result. \details If there is a value stored, then `f` is /// called with `**this` and the value is returned. Otherwise /// `std::forward(u)()` is returned. \group map_or_else \synopsis template /// \nauto map_or_else(F &&f, U &&u) &; template detail::invoke_result_t map_or_else(F &&f, U &&u) & { return has_value() ? detail::invoke(std::forward(f), **this) : std::forward(u)(); } /// \group map_or_else /// \synopsis template \nauto map_or_else(F &&f, U &&u) &&; template detail::invoke_result_t map_or_else(F &&f, U &&u) && { return has_value() ? detail::invoke(std::forward(f), std::move(**this)) : std::forward(u)(); } /// \group map_or_else /// \synopsis template \nauto map_or_else(F &&f, U &&u) /// const &; template detail::invoke_result_t map_or_else(F &&f, U &&u) const & { return has_value() ? detail::invoke(std::forward(f), **this) : std::forward(u)(); } #ifndef TL_OPTIONAL_NO_CONSTRR /// \group map_or_else /// \synopsis template \nauto map_or_else(F &&f, U &&u) /// const &&; template detail::invoke_result_t map_or_else(F &&f, U &&u) const && { return has_value() ? detail::invoke(std::forward(f), std::move(**this)) : std::forward(u)(); } #endif /// \returns `u` if `*this` has a value, otherwise an empty optional. template constexpr optional::type> conjunction(U &&u) const { using result = optional>; return has_value() ? result{u} : result{nullopt}; } /// \returns `rhs` if `*this` is empty, otherwise the current value. /// \group disjunction TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional &rhs) & { return has_value() ? *this : rhs; } /// \group disjunction constexpr optional disjunction(const optional &rhs) const & { return has_value() ? *this : rhs; } /// \group disjunction TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional &rhs) && { return has_value() ? std::move(*this) : rhs; } #ifndef TL_OPTIONAL_NO_CONSTRR /// \group disjunction constexpr optional disjunction(const optional &rhs) const && { return has_value() ? std::move(*this) : rhs; } #endif /// \group disjunction TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional &&rhs) & { return has_value() ? *this : std::move(rhs); } /// \group disjunction constexpr optional disjunction(optional &&rhs) const & { return has_value() ? *this : std::move(rhs); } /// \group disjunction TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional &&rhs) && { return has_value() ? std::move(*this) : std::move(rhs); } #ifndef TL_OPTIONAL_NO_CONSTRR /// \group disjunction constexpr optional disjunction(optional &&rhs) const && { return has_value() ? std::move(*this) : std::move(rhs); } #endif /// Takes the value out of the optional, leaving it empty /// \group take optional take() & { optional ret = *this; reset(); return ret; } /// \group take optional take() const & { optional ret = *this; reset(); return ret; } /// \group take optional take() && { optional ret = std::move(*this); reset(); return ret; } #ifndef TL_OPTIONAL_NO_CONSTRR /// \group take optional take() const && { optional ret = std::move(*this); reset(); return ret; } #endif using value_type = T; /// Constructs an optional that does not contain a value. /// \group ctor_empty constexpr optional() noexcept = default; /// \group ctor_empty constexpr optional(nullopt_t) noexcept {} /// Copy constructor /// /// If `rhs` contains a value, the stored value is direct-initialized with it. /// Otherwise, the constructed optional is empty. TL_OPTIONAL_11_CONSTEXPR optional(const optional &rhs) { if (rhs.has_value()) { this->m_has_value = true; new (std::addressof(this->m_value)) T(*rhs); } } // TODO conditionally disable /// Move constructor /// /// If `rhs` contains a value, the stored value is direct-initialized with it. /// Otherwise, the constructed optional is empty. TL_OPTIONAL_11_CONSTEXPR optional(optional &&rhs) noexcept( std::is_nothrow_move_constructible::value) { if (rhs.has_value()) { this->m_has_value = true; new (std::addressof(this->m_value)) T(std::move(*rhs)); } } /// Constructs the stored value in-place using the given arguments. /// \group in_place /// \synopsis template constexpr explicit optional(in_place_t, /// Args&&... args); template constexpr explicit optional( detail::enable_if_t::value, in_place_t>, Args &&... args) : base(in_place, std::forward(args)...) {} /// \group in_place /// \synopsis template \nconstexpr explicit /// optional(in_place_t, std::initializer_list&, Args&&... args); template TL_OPTIONAL_11_CONSTEXPR explicit optional( detail::enable_if_t &, Args &&...>::value, in_place_t>, std::initializer_list il, Args &&... args) { this->m_has_value = true; new (std::addressof(this->m_value)) T(il, std::forward(args)...); } /// Constructs the stored value with `u`. /// \synopsis template constexpr optional(U &&u); template < class U = T, detail::enable_if_t::value> * = nullptr, detail::enable_forward_value * = nullptr> constexpr optional(U &&u) : base(in_place, std::forward(u)) {} /// \exclude template < class U = T, detail::enable_if_t::value> * = nullptr, detail::enable_forward_value * = nullptr> constexpr explicit optional(U &&u) : base(in_place, std::forward(u)) {} /// Converting copy constructor. /// \synopsis template optional(const optional &rhs); template < class U, detail::enable_from_other * = nullptr, detail::enable_if_t::value> * = nullptr> optional(const optional &rhs) { this->m_has_value = true; new (std::addressof(this->m_value)) T(*rhs); } /// \exclude template * = nullptr, detail::enable_if_t::value> * = nullptr> explicit optional(const optional &rhs) { this->m_has_value = true; new (std::addressof(this->m_value)) T(*rhs); } /// Converting move constructor. /// \synopsis template optional(optional &&rhs); template < class U, detail::enable_from_other * = nullptr, detail::enable_if_t::value> * = nullptr> optional(optional &&rhs) { this->m_has_value = true; new (std::addressof(this->m_value)) T(std::move(*rhs)); } /// \exclude template < class U, detail::enable_from_other * = nullptr, detail::enable_if_t::value> * = nullptr> explicit optional(optional &&rhs) { this->m_has_value = true; new (std::addressof(this->m_value)) T(std::move(*rhs)); } /// Destroys the stored value if there is one. ~optional() = default; /// Assignment to empty. /// /// Destroys the current value if there is one. optional &operator=(nullopt_t) noexcept { if (has_value()) { this->m_value.~T(); this->m_has_value = false; } return *this; } // TODO conditionally delete, check exception guarantee /// Copy assignment. /// /// Copies the value from `rhs` if there is one. Otherwise resets the stored /// value in `*this`. optional &operator=(const optional &rhs) { if (has_value()) { if (rhs.has_value()) { this->m_value = rhs.m_value; } else { this->m_value.~T(); this->m_has_value = false; } } if (rhs.has_value()) { new (std::addressof(this->m_value)) T(rhs.m_value); this->m_has_value = true; } return *this; } // TODO conditionally delete, check exception guarantee /// Move assignment. /// /// Moves the value from `rhs` if there is one. Otherwise resets the stored /// value in `*this`. optional &operator=(optional &&rhs) noexcept( std::is_nothrow_move_assignable::value &&std::is_nothrow_move_constructible::value) { if (has_value()) { if (rhs.has_value()) { this->m_value = std::move(rhs.m_value); } else { this->m_value.~T(); this->m_has_value = false; } } if (rhs.has_value()) { new (std::addressof(this->m_value)) T(std::move(rhs.m_value)); this->m_has_value = true; } return *this; } // TODO conditionally delete, check exception guarantee /// Assigns the stored value from `u`, destroying the old value if there was /// one. \synopsis optional &operator=(U &&u); template * = nullptr> optional &operator=(U &&u) { if (has_value()) { this->m_value = std::forward(u); } else { new (std::addressof(this->m_value)) T(std::forward(u)); this->m_has_value = true; } return *this; } // TODO check exception guarantee /// Converting copy assignment operator. /// /// Copies the value from `rhs` if there is one. Otherwise resets the stored /// value in `*this`. \synopsis optional &operator=(const optional & rhs); template * = nullptr> optional &operator=(const optional &rhs) { if (has_value()) { if (rhs.has_value()) { this->m_value = *rhs; } else { this->m_value.~T(); this->m_has_value = false; } } if (rhs.has_value()) { new (std::addressof(this->m_value)) T(*rhs); this->m_has_value = true; } return *this; } // TODO check exception guarantee /// Converting move assignment operator. /// /// Moves the value from `rhs` if there is one. Otherwise resets the stored /// value in `*this`. \synopsis optional &operator=(optional && rhs); template * = nullptr> optional &operator=(optional &&rhs) { if (has_value()) { if (rhs.has_value()) { this->m_value = std::move(*rhs); } else { this->m_value.~T(); this->m_has_value = false; } } if (rhs.has_value()) { new (std::addressof(this->m_value)) T(std::move(*rhs)); this->m_has_value = true; } return *this; } /// Constructs the value in-place, destroying the current one if there is one. /// \group emplace template T &emplace(Args &&... args) { static_assert(std::is_constructible::value, "T must be constructible with Args"); *this = nullopt; new (std::addressof(this->m_value)) T(std::forward(args)...); } /// \group emplace /// \synopsis template \nT& /// emplace(std::initializer_list il, Args &&... args); template detail::enable_if_t< std::is_constructible &, Args &&...>::value, T &> emplace(std::initializer_list il, Args &&... args) { *this = nullopt; new (std::addressof(this->m_value)) T(il, std::forward(args)...); } /// Swaps this optional with the other. /// /// If neither optionals have a value, nothing happens. /// If both have a value, the values are swapped. /// If one has a value, it is moved to the other and the movee is left /// valueless. void swap(optional &rhs) noexcept(std::is_nothrow_move_constructible::value &&detail::is_nothrow_swappable::value) { if (has_value()) { if (rhs.has_value()) { using std::swap; swap(**this, *rhs); } else { new (&rhs.m_value) T(std::move(this->m_value)); this->m_value.T::~T(); } } else if (rhs.has_value()) { new (std::addressof(this->m_value)) T(std::move(rhs.m_value)); rhs.m_value.T::~T(); } } /// \returns a pointer to the stored value /// \requires a value is stored /// \group pointer /// \synopsis constexpr const T *operator->() const; constexpr const T *operator->() const { return std::addressof(this->m_value); } /// \group pointer /// \synopsis constexpr T *operator->(); TL_OPTIONAL_11_CONSTEXPR T *operator->() { return std::addressof(this->m_value); } /// \returns the stored value /// \requires a value is stored /// \group deref /// \synopsis constexpr T &operator*(); TL_OPTIONAL_11_CONSTEXPR T &operator*() & { return this->m_value; } /// \group deref /// \synopsis constexpr const T &operator*() const; constexpr const T &operator*() const & { return this->m_value; } /// \exclude TL_OPTIONAL_11_CONSTEXPR T &&operator*() && { return std::move(this->m_value); } #ifndef TL_OPTIONAL_NO_CONSTRR /// \exclude constexpr const T &&operator*() const && { return std::move(this->m_value); } #endif /// \returns whether or not the optional has a value /// \group has_value constexpr bool has_value() const noexcept { return this->m_has_value; } /// \group has_value constexpr explicit operator bool() const noexcept { return this->m_has_value; } /// \returns the contained value if there is one, otherwise throws /// [bad_optional_access] \group value \synopsis constexpr T &value(); TL_OPTIONAL_11_CONSTEXPR T &value() & { if (has_value()) return this->m_value; throw bad_optional_access(); } /// \group value /// \synopsis constexpr const T &value() const; TL_OPTIONAL_11_CONSTEXPR const T &value() const & { if (has_value()) return this->m_value; throw bad_optional_access(); } /// \exclude TL_OPTIONAL_11_CONSTEXPR T &&value() && { if (has_value()) return std::move(this->m_value); throw bad_optional_access(); } #ifndef TL_OPTIONAL_NO_CONSTRR /// \exclude constexpr const T &&value() const && { if (has_value()) return std::move(this->m_value); throw bad_optional_access(); } #endif /// \returns the stored value if there is one, otherwise returns `u` /// \group value_or template constexpr T value_or(U &&u) const & { static_assert(std::is_copy_constructible::value && std::is_convertible::value, "T must be copy constructible and convertible from U"); return has_value() ? **this : static_cast(std::forward(u)); } /// \group value_or template constexpr T value_or(U &&u) && { static_assert(std::is_move_constructible::value && std::is_convertible::value, "T must be move constructible and convertible from U"); return has_value() ? **this : static_cast(std::forward(u)); } /// Destroys the stored value if one exists, making the optional empty void reset() noexcept { if (has_value()) { this->m_value.~T(); this->m_has_value = false; } } }; /// \group relop /// \brief Compares two optional objects /// \details If both optionals contain a value, they are compared with `T`s /// relational operators. Otherwise `lhs` and `rhs` are equal only if they are /// both empty, and `lhs` is less than `rhs` only if `rhs` is empty and `lhs` is /// not. template inline constexpr bool operator==(const optional &lhs, const optional &rhs) { return lhs.has_value() == rhs.has_value() && (!lhs.has_value() || *lhs == *rhs); } /// \group relop template inline constexpr bool operator!=(const optional &lhs, const optional &rhs) { return lhs.has_value() != rhs.has_value() || (lhs.has_value() && *lhs != *rhs); } /// \group relop template inline constexpr bool operator<(const optional &lhs, const optional &rhs) { return rhs.has_value() && (!lhs.has_value() || *lhs < *rhs); } /// \group relop template inline constexpr bool operator>(const optional &lhs, const optional &rhs) { return lhs.has_value() && (!rhs.has_value() || *lhs > *rhs); } /// \group relop template inline constexpr bool operator<=(const optional &lhs, const optional &rhs) { return !lhs.has_value() || (rhs.has_value() && *lhs <= *rhs); } /// \group relop template inline constexpr bool operator>=(const optional &lhs, const optional &rhs) { return !rhs.has_value() || (lhs.has_value() && *lhs >= *rhs); } /// \group relop_nullopt /// \brief Compares an optional to a `nullopt` /// \details Equivalent to comparing the optional to an empty optional template inline constexpr bool operator==(const optional &lhs, nullopt_t) noexcept { return !lhs.has_value(); } /// \group relop_nullopt template inline constexpr bool operator==(nullopt_t, const optional &rhs) noexcept { return !rhs.has_value(); } /// \group relop_nullopt template inline constexpr bool operator!=(const optional &lhs, nullopt_t) noexcept { return lhs.has_value(); } /// \group relop_nullopt template inline constexpr bool operator!=(nullopt_t, const optional &rhs) noexcept { return rhs.has_value(); } /// \group relop_nullopt template inline constexpr bool operator<(const optional &, nullopt_t) noexcept { return false; } /// \group relop_nullopt template inline constexpr bool operator<(nullopt_t, const optional &rhs) noexcept { return rhs.has_value(); } /// \group relop_nullopt template inline constexpr bool operator<=(const optional &lhs, nullopt_t) noexcept { return !lhs.has_value(); } /// \group relop_nullopt template inline constexpr bool operator<=(nullopt_t, const optional &) noexcept { return true; } /// \group relop_nullopt template inline constexpr bool operator>(const optional &lhs, nullopt_t) noexcept { return lhs.has_value(); } /// \group relop_nullopt template inline constexpr bool operator>(nullopt_t, const optional &) noexcept { return false; } /// \group relop_nullopt template inline constexpr bool operator>=(const optional &, nullopt_t) noexcept { return true; } /// \group relop_nullopt template inline constexpr bool operator>=(nullopt_t, const optional &rhs) noexcept { return !rhs.has_value(); } /// \group relop_t /// \brief Compares the optional with a value. /// \details If the optional has a value, it is compared with the other value /// using `T`s relational operators. Otherwise, the optional is considered less /// than the value. template inline constexpr bool operator==(const optional &lhs, const U &rhs) { return lhs.has_value() ? *lhs == rhs : false; } /// \group relop_t template inline constexpr bool operator==(const U &lhs, const optional &rhs) { return rhs.has_value() ? lhs == *rhs : false; } /// \group relop_t template inline constexpr bool operator!=(const optional &lhs, const U &rhs) { return lhs.has_value() ? *lhs != rhs : true; } /// \group relop_t template inline constexpr bool operator!=(const U &lhs, const optional &rhs) { return rhs.has_value() ? lhs != *rhs : true; } /// \group relop_t template inline constexpr bool operator<(const optional &lhs, const U &rhs) { return lhs.has_value() ? *lhs < rhs : true; } /// \group relop_t template inline constexpr bool operator<(const U &lhs, const optional &rhs) { return rhs.has_value() ? lhs < *rhs : false; } /// \group relop_t template inline constexpr bool operator<=(const optional &lhs, const U &rhs) { return lhs.has_value() ? *lhs <= rhs : true; } /// \group relop_t template inline constexpr bool operator<=(const U &lhs, const optional &rhs) { return rhs.has_value() ? lhs <= *rhs : false; } /// \group relop_t template inline constexpr bool operator>(const optional &lhs, const U &rhs) { return lhs.has_value() ? *lhs > rhs : false; } /// \group relop_t template inline constexpr bool operator>(const U &lhs, const optional &rhs) { return rhs.has_value() ? lhs > *rhs : true; } /// \group relop_t template inline constexpr bool operator>=(const optional &lhs, const U &rhs) { return lhs.has_value() ? *lhs >= rhs : false; } /// \group relop_t template inline constexpr bool operator>=(const U &lhs, const optional &rhs) { return rhs.has_value() ? lhs >= *rhs : true; } /// \synopsis template \nvoid swap(optional &lhs, optional &rhs); template ::value> * = nullptr, detail::enable_if_t::value> * = nullptr> void swap(optional &lhs, optional &rhs) noexcept(noexcept(lhs.swap(rhs))) { return lhs.swap(rhs); } template inline constexpr optional> make_optional(T &&v) { return optional>(std::forward(v)); } template inline constexpr optional make_optional(Args &&... args) { return optional(in_place, std::forward(args)...); } template inline constexpr optional make_optional(std::initializer_list il, Args &&... args) { return optional(in_place, il, std::forward(args)...); } #if __cplusplus >= 201703L template optional(T)->optional; #endif /// \exclude namespace detail { #ifdef TL_OPTIONAL_CX14 template (), *std::declval())), detail::enable_if_t::value> * = nullptr> constexpr auto map_impl(Opt &&opt, F &&f) { return opt.has_value() ? detail::invoke(std::forward(f), *std::forward(opt)) : optional(nullopt); } template (), *std::declval())), detail::enable_if_t::value> * = nullptr> auto map_impl(Opt &&opt, F &&f) { if (opt.has_value()) { detail::invoke(std::forward(f), *std::forward(opt)); return monostate{}; } return optional(nullopt); } #else template (), *std::declval())), detail::enable_if_t::value> * = nullptr> constexpr auto map_impl(Opt &&opt, F &&f) -> optional { return opt.has_value() ? detail::invoke(std::forward(f), *std::forward(opt)) : optional(nullopt); } template (), *std::declval())), detail::enable_if_t::value> * = nullptr> auto map_impl(Opt &&opt, F &&f) -> optional { if (opt.has_value()) { detail::invoke(std::forward(f), *std::forward(opt)); return monostate{}; } return nullopt; } #endif } // namespace detail } // namespace tl namespace std { // TODO SFINAE template struct hash> { ::std::size_t operator()(const tl::optional &o) const { if (!o.has_value()) return 0; return std::hash>()(*o); } }; } // namespace std #endif