Files
qt-creator/src/libs/utils/algorithm.h

586 lines
16 KiB
C
Raw Normal View History

/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of Qt Creator.
**
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 3 as published by the Free Software
** Foundation with exceptions as appearing in the file LICENSE.GPL3-EXCEPT
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-3.0.html.
**
****************************************************************************/
#pragma once
#include "predicates.h"
#include <qcompilerdetection.h> // for Q_REQUIRED_RESULT
#include <algorithm>
#include <tuple>
#include <QObject>
#include <QStringList>
#include <memory>
namespace Utils
{
//////////////////
// anyOf
/////////////////
template<typename T, typename F>
bool anyOf(const T &container, F predicate)
{
return std::any_of(std::begin(container), std::end(container), predicate);
}
// anyOf taking a member function pointer
template<typename T, typename R, typename S>
bool anyOf(const T &container, R (S::*predicate)() const)
{
return std::any_of(std::begin(container), std::end(container), std::mem_fn(predicate));
}
// anyOf taking a member pointer
template<typename T, typename R, typename S>
bool anyOf(const T &container, R S::*member)
{
return std::any_of(std::begin(container), std::end(container), std::mem_fn(member));
}
//////////////////
// count
/////////////////
template<typename T, typename F>
int count(const T &container, F predicate)
{
return std::count_if(std::begin(container), std::end(container), predicate);
}
//////////////////
// allOf
/////////////////
template<typename T, typename F>
bool allOf(const T &container, F predicate)
{
return std::all_of(std::begin(container), std::end(container), predicate);
}
//////////////////
// erase
/////////////////
template<typename T, typename F>
void erase(T &container, F predicate)
{
container.erase(std::remove_if(std::begin(container), std::end(container), predicate),
std::end(container));
}
//////////////////
// contains
/////////////////
template<typename T, typename F>
bool contains(const T &container, F function)
{
return anyOf(container, function);
}
// Contains for normal pointers in std::vector<std::unique_ptr>
template<template<typename, typename...> class C, typename T, typename... Args>
bool contains(const C<T, Args...> &container, typename T::element_type *other)
{
return anyOf(container, [other](const typename C<T, Args...>::value_type &value) { return value.get() == other; });
}
template<typename T, typename R, typename S>
bool contains(const T &container, R (S::*function)() const)
{
return anyOf(container, function);
}
template<template<typename, typename...> class C, typename T, typename R, typename S, typename... Args>
bool contains(const C<T, Args...> &container, R (S::*function)() const)
{
return anyOf(container, function);
}
//////////////////
// findOr
/////////////////
// Containers containing std::unique_ptr:
template<template<typename, typename...> class C,
typename T, typename D,
typename F,
typename... Args>
Q_REQUIRED_RESULT
T *findOr(const C<std::unique_ptr<T, D>, Args...> &container, T *other, F function)
{
auto end = std::end(container);
auto it = std::find_if(std::begin(container), end, function);
return (it == end) ? other : it->get();
}
template<template<typename, typename...> class C,
typename T, typename D,
typename R, typename S,
typename... Args>
Q_REQUIRED_RESULT
T *findOr(const C<std::unique_ptr<T, D>, Args...> &container, T *other, R (S::*function)() const)
{
return findOr(container, other, std::mem_fn(function));
}
template<template<typename, typename...> class C, typename... Args,
typename T, typename D,
typename R, typename S>
Q_REQUIRED_RESULT
T *findOr(const C<std::unique_ptr<T, D>, Args...> &container, T *other, R S::*member)
{
return findOr(container, other, std::mem_fn(member));
}
template<typename C, typename F>
Q_REQUIRED_RESULT
typename C::value_type findOr(const C &container, typename C::value_type other, F function)
{
typename C::const_iterator begin = std::begin(container);
typename C::const_iterator end = std::end(container);
typename C::const_iterator it = std::find_if(begin, end, function);
return it == end ? other : *it;
}
template<typename T, typename R, typename S>
Q_REQUIRED_RESULT
typename T::value_type findOr(const T &container, typename T::value_type other, R (S::*function)() const)
{
return findOr(container, other, std::mem_fn(function));
}
template<typename T, typename R, typename S>
Q_REQUIRED_RESULT
typename T::value_type findOr(const T &container, typename T::value_type other, R S::*member)
{
return findOr(container, other, std::mem_fn(member));
}
//////////////////
// findOrDefault
//////////////////
// Containers containing std::unique_ptr:
template<template<typename, typename...> class C,
typename T, typename D,
typename F,
typename... Args>
Q_REQUIRED_RESULT
T *findOrDefault(const C<std::unique_ptr<T, D>, Args...> &container, F function)
{
return findOr(container, static_cast<T*>(nullptr), function);
}
template<template<typename, typename...> class C,
typename T, typename D,
typename R, typename S,
typename... Args>
Q_REQUIRED_RESULT
T *findOrDefault(const C<std::unique_ptr<T, D>, Args...> &container, R (S::*function)() const)
{
return findOr(container, static_cast<T*>(nullptr), std::mem_fn(function));
}
template<template<typename, typename...> class C,
typename T, typename D,
typename R, typename S,
typename... Args>
Q_REQUIRED_RESULT
T *findOrDefault(const C<std::unique_ptr<T, D>, Args...> &container, R S::*member)
{
return findOr(container, static_cast<T*>(nullptr), std::mem_fn(member));
}
// Default implementation:
template<typename C, typename F>
Q_REQUIRED_RESULT
typename C::value_type findOrDefault(const C &container, F function)
{
return findOr(container, typename C::value_type(), function);
}
template<typename C, typename R, typename S>
Q_REQUIRED_RESULT
typename C::value_type findOrDefault(const C &container, R (S::*function)() const)
{
return findOr(container, typename C::value_type(), std::mem_fn(function));
}
template<typename C, typename R, typename S>
Q_REQUIRED_RESULT
typename C::value_type findOrDefault(const C &container, R S::*member)
{
return findOr(container, typename C::value_type(), std::mem_fn(member));
}
//////////////////
// index of:
//////////////////
template<typename C, typename F>
Q_REQUIRED_RESULT
int indexOf(const C& container, F function)
{
typename C::const_iterator begin = std::begin(container);
typename C::const_iterator end = std::end(container);
typename C::const_iterator it = std::find_if(begin, end, function);
return it == end ? -1 : std::distance(begin, it);
}
//////////////////
// max element
//////////////////
template<typename T>
typename T::value_type maxElementOr(const T &container, typename T::value_type other)
{
typename T::const_iterator begin = std::begin(container);
typename T::const_iterator end = std::end(container);
typename T::const_iterator it = std::max_element(begin, end);
if (it == end)
return other;
return *it;
}
//////////////////
// transform
/////////////////
namespace {
/////////////////
// helper code for transform to use back_inserter and thus push_back for everything
// and insert for QSet<>
//
// QSetInsertIterator, straight from the standard for insert_iterator
// just without the additional parameter to insert
template <class Container>
class QSetInsertIterator :
public std::iterator<std::output_iterator_tag,void,void,void,void>
{
protected:
Container *container;
public:
typedef Container container_type;
explicit QSetInsertIterator (Container &x)
: container(&x) {}
QSetInsertIterator<Container> &operator=(const typename Container::value_type &value)
{ container->insert(value); return *this; }
QSetInsertIterator<Container> &operator= (typename Container::value_type &&value)
{ container->insert(std::move(value)); return *this; }
QSetInsertIterator<Container >&operator*()
{ return *this; }
QSetInsertIterator<Container> &operator++()
{ return *this; }
QSetInsertIterator<Container> operator++(int)
{ return *this; }
};
// inserter helper function, returns a std::back_inserter for most containers
// and is overloaded for QSet<> to return a QSetInsertIterator
template<typename C>
inline std::back_insert_iterator<C>
inserter(C &container)
{
return std::back_inserter(container);
}
template<typename X>
inline QSetInsertIterator<QSet<X>>
inserter(QSet<X> &container)
{
return QSetInsertIterator<QSet<X>>(container);
}
} // anonymous
// --------------------------------------------------------------------
// Different containers for input and output:
// --------------------------------------------------------------------
// different container types for input and output, e.g. transforming a QList into a QSet
// function:
template<template<typename, typename...> class C, // result container type
template<typename...> class SC, // input container type
typename F, // function type
typename... SCArgs, // Arguments to SC
typename Value = typename SC<SCArgs...>::value_type,
typename ResultContainer = C<std::decay_t<std::result_of_t<F(Value)>>>>
Q_REQUIRED_RESULT
decltype(auto) transform(const SC<SCArgs...> &container, F function)
{
ResultContainer result;
result.reserve(container.size());
std::transform(std::begin(container), std::end(container), inserter(result), function);
return result;
}
// member function:
template<template<typename...> class C, // result container type
template<typename...> class SC, // input container type
typename R,
typename S,
typename... SCArgs> // Arguments to SC
Q_REQUIRED_RESULT
decltype(auto) transform(const SC<SCArgs...> &container, R (S::*p)() const)
{
return transform<C, SC>(container, std::mem_fn(p));
}
// members:
template<template<typename...> class C, // result container
template<typename...> class SC, // input container
typename R,
typename S,
typename... SCArgs> // Arguments to SC
Q_REQUIRED_RESULT
decltype(auto) transform(const SC<SCArgs...> &container, R S::*p)
{
return transform<C, SC>(container, std::mem_fn(p));
}
// different container types for input and output, e.g. transforming a QList into a QSet
// function:
template<template<typename...> class C, // container type
typename F, // function type
typename... CArgs> // Arguments to SC
Q_REQUIRED_RESULT
decltype(auto) transform(const C<CArgs...> &container, F function)
{
return transform<C, C>(container, function);
}
// member function:
template<template<typename...> class C, // container type
typename R,
typename S,
typename... CArgs> // Arguments to SC
Q_REQUIRED_RESULT
decltype(auto) transform(const C<CArgs...> &container, R (S::*p)() const)
{
return transform<C, C>(container, std::mem_fn(p));
}
// members:
template<template<typename...> class C, // container
typename R,
typename S,
typename... CArgs> // Arguments to SC
Q_REQUIRED_RESULT
decltype(auto) transform(const C<CArgs...> &container, R S::*p)
{
return transform<C, C>(container, std::mem_fn(p));
}
// Specialization for QStringList:
template<template<typename...> class C = QList, // result container
typename F> // Arguments to C
Q_REQUIRED_RESULT
decltype(auto) transform(const QStringList &container, F function)
{
return transform<C, QList>(static_cast<QList<QString>>(container), function);
}
// member function:
template<template<typename...> class C = QList, // result container type
typename R,
typename S>
Q_REQUIRED_RESULT
decltype(auto) transform(const QStringList &container, R (S::*p)() const)
{
return transform<C, QList>(static_cast<QList<QString>>(container), std::mem_fn(p));
}
// members:
template<template<typename...> class C = QList, // result container
typename R,
typename S>
Q_REQUIRED_RESULT
decltype(auto) transform(const QStringList &container, R S::*p)
{
return transform<C, QList>(static_cast<QList<QString>>(container), std::mem_fn(p));
}
//////////////////
// filtered
/////////////////
template<typename C, typename F>
Q_REQUIRED_RESULT
C filtered(const C &container, F predicate)
{
C out;
std::copy_if(std::begin(container), std::end(container),
inserter(out), predicate);
return out;
}
template<typename C, typename R, typename S>
Q_REQUIRED_RESULT
C filtered(const C &container, R (S::*predicate)() const)
{
C out;
std::copy_if(std::begin(container), std::end(container),
inserter(out), std::mem_fn(predicate));
return out;
}
//////////////////
// partition
/////////////////
// Recommended usage:
// C hit;
// C miss;
// std::tie(hit, miss) = Utils::partition(container, predicate);
template<typename C, typename F>
Q_REQUIRED_RESULT
std::tuple<C, C> partition(const C &container, F predicate)
{
C hit;
C miss;
auto hitIns = inserter(hit);
auto missIns = inserter(miss);
for (auto i : container) {
if (predicate(i))
hitIns = i;
else
missIns = i;
}
return std::make_tuple(hit, miss);
}
template<typename C, typename R, typename S>
Q_REQUIRED_RESULT
std::tuple<C, C> partition(const C &container, R (S::*predicate)() const)
{
return partition(container, std::mem_fn(predicate));
}
//////////////////
// filteredUnique
/////////////////
template<typename C>
Q_REQUIRED_RESULT
C filteredUnique(const C &container)
{
C result;
auto ins = inserter(result);
QSet<typename C::value_type> seen;
int setSize = 0;
auto endIt = std::end(container);
for (auto it = std::begin(container); it != endIt; ++it) {
seen.insert(*it);
if (setSize == seen.size()) // unchanged size => was already seen
continue;
++setSize;
ins = *it;
}
return result;
}
//////////////////
// qobject_container_cast
/////////////////
template <class T, template<typename> class Container, typename Base>
Container<T> qobject_container_cast(const Container<Base> &container)
{
Container<T> result;
auto ins = inserter(result);
for (Base val : container) {
if (T target = qobject_cast<T>(val))
ins = target;
}
return result;
}
//////////////////
// sort
/////////////////
template <typename Container>
inline void sort(Container &container)
{
std::sort(std::begin(container), std::end(container));
}
template <typename Container, typename Predicate>
inline void sort(Container &container, Predicate p)
{
std::sort(std::begin(container), std::end(container), p);
}
// pointer to member
template <typename Container, typename R, typename S>
inline void sort(Container &container, R S::*member)
{
auto f = std::mem_fn(member);
using const_ref = typename Container::const_reference;
std::sort(std::begin(container), std::end(container),
[&f](const_ref a, const_ref b) {
return f(a) < f(b);
});
}
// pointer to member function
template <typename Container, typename R, typename S>
inline void sort(Container &container, R (S::*function)() const)
{
auto f = std::mem_fn(function);
using const_ref = typename Container::const_reference;
std::sort(std::begin(container), std::end(container),
[&f](const_ref a, const_ref b) {
return f(a) < f(b);
});
}
//////////////////
// reverseForeach
/////////////////
template <typename Container, typename Op>
inline void reverseForeach(const Container &c, const Op &operation)
{
auto rend = c.rend();
for (auto it = c.rbegin(); it != rend; ++it)
operation(*it);
}
}