Files
wolfssl/wolfcrypt/src/dsa.c

929 lines
24 KiB
C
Raw Normal View History

2014-12-17 14:37:13 -07:00
/* dsa.c
*
* Copyright (C) 2006-2019 wolfSSL Inc.
2014-12-17 14:37:13 -07:00
*
2016-03-17 16:02:13 -06:00
* This file is part of wolfSSL.
2014-12-17 14:37:13 -07:00
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
2016-03-17 16:02:13 -06:00
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
2014-12-17 14:37:13 -07:00
*/
2016-03-17 16:02:13 -06:00
2014-12-17 14:37:13 -07:00
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
2014-12-31 17:01:27 -07:00
#include <wolfssl/wolfcrypt/settings.h>
2014-12-17 14:37:13 -07:00
#ifndef NO_DSA
2014-12-31 17:01:27 -07:00
#include <wolfssl/wolfcrypt/random.h>
#include <wolfssl/wolfcrypt/integer.h>
2014-12-31 17:01:27 -07:00
#include <wolfssl/wolfcrypt/error-crypt.h>
#include <wolfssl/wolfcrypt/logging.h>
#include <wolfssl/wolfcrypt/sha.h>
#include <wolfssl/wolfcrypt/dsa.h>
2014-12-17 14:37:13 -07:00
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
2014-12-17 14:37:13 -07:00
enum {
DSA_HALF_SIZE = 20, /* r and s size */
DSA_SIG_SIZE = 40 /* signature size */
};
int wc_InitDsaKey(DsaKey* key)
2014-12-17 14:37:13 -07:00
{
if (key == NULL)
return BAD_FUNC_ARG;
2014-12-17 14:37:13 -07:00
key->type = -1; /* haven't decided yet */
key->heap = NULL;
2014-12-17 14:37:13 -07:00
return mp_init_multi(
/* public alloc parts */
&key->p,
&key->q,
&key->g,
&key->y,
/* private alloc parts */
&key->x,
NULL
);
2014-12-17 14:37:13 -07:00
}
int wc_InitDsaKey_h(DsaKey* key, void* h)
{
int ret = wc_InitDsaKey(key);
if (ret == 0)
key->heap = h;
return ret;
}
2014-12-17 14:37:13 -07:00
void wc_FreeDsaKey(DsaKey* key)
{
if (key == NULL)
return;
2014-12-17 14:37:13 -07:00
if (key->type == DSA_PRIVATE)
mp_forcezero(&key->x);
mp_clear(&key->x);
2014-12-17 14:37:13 -07:00
mp_clear(&key->y);
mp_clear(&key->g);
mp_clear(&key->q);
mp_clear(&key->p);
}
2018-01-04 10:11:23 -07:00
/* validate that (L,N) match allowed sizes from FIPS 186-4, Section 4.2.
* modLen - represents L, the size of p (prime modulus) in bits
* divLen - represents N, the size of q (prime divisor) in bits
2018-01-04 10:11:23 -07:00
* return 0 on success, -1 on error */
static int CheckDsaLN(int modLen, int divLen)
2018-01-04 10:11:23 -07:00
{
int ret = -1;
switch (modLen) {
2018-01-04 10:11:23 -07:00
case 1024:
if (divLen == 160)
2018-01-04 10:11:23 -07:00
ret = 0;
break;
case 2048:
if (divLen == 224 || divLen == 256)
2018-01-04 10:11:23 -07:00
ret = 0;
break;
case 3072:
if (divLen == 256)
2018-01-04 10:11:23 -07:00
ret = 0;
break;
default:
break;
}
return ret;
}
#ifdef WOLFSSL_KEY_GEN
2018-01-04 10:11:23 -07:00
/* Create DSA key pair (&dsa->x, &dsa->y)
*
* Based on NIST FIPS 186-4,
* "B.1.1 Key Pair Generation Using Extra Random Bits"
*
* rng - pointer to initialized WC_RNG structure
* dsa - pointer to initialized DsaKey structure, will hold generated key
*
* return 0 on success, negative on error */
int wc_MakeDsaKey(WC_RNG *rng, DsaKey *dsa)
{
2018-01-04 10:11:23 -07:00
byte* cBuf;
int qSz, pSz, cSz, err;
mp_int tmpQ;
if (rng == NULL || dsa == NULL)
return BAD_FUNC_ARG;
2018-01-04 10:11:23 -07:00
qSz = mp_unsigned_bin_size(&dsa->q);
pSz = mp_unsigned_bin_size(&dsa->p);
/* verify (L,N) pair bit lengths */
if (CheckDsaLN(pSz * WOLFSSL_BIT_SIZE, qSz * WOLFSSL_BIT_SIZE) != 0)
return BAD_FUNC_ARG;
2018-01-04 10:11:23 -07:00
/* generate extra 64 bits so that bias from mod function is negligible */
cSz = qSz + (64 / WOLFSSL_BIT_SIZE);
2018-01-04 10:11:23 -07:00
cBuf = (byte*)XMALLOC(cSz, dsa->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (cBuf == NULL) {
return MEMORY_E;
2018-01-04 10:11:23 -07:00
}
2018-01-04 10:11:23 -07:00
if ((err = mp_init_multi(&dsa->x, &dsa->y, &tmpQ, NULL, NULL, NULL))
!= MP_OKAY) {
XFREE(cBuf, dsa->heap, DYNAMIC_TYPE_TMP_BUFFER);
return err;
}
do {
2018-01-04 10:11:23 -07:00
/* generate N+64 bits (c) from RBG into &dsa->x, making sure positive.
* Hash_DRBG uses SHA-256 which matches maximum
* requested_security_strength of (L,N) */
err = wc_RNG_GenerateBlock(rng, cBuf, cSz);
if (err != MP_OKAY) {
mp_clear(&dsa->x);
2018-01-04 10:11:23 -07:00
mp_clear(&dsa->y);
mp_clear(&tmpQ);
XFREE(cBuf, dsa->heap, DYNAMIC_TYPE_TMP_BUFFER);
return err;
}
2018-01-04 10:11:23 -07:00
err = mp_read_unsigned_bin(&dsa->x, cBuf, cSz);
if (err != MP_OKAY) {
mp_clear(&dsa->x);
2018-01-04 10:11:23 -07:00
mp_clear(&dsa->y);
mp_clear(&tmpQ);
XFREE(cBuf, dsa->heap, DYNAMIC_TYPE_TMP_BUFFER);
return err;
}
} while (mp_cmp_d(&dsa->x, 1) != MP_GT);
2018-01-04 10:11:23 -07:00
XFREE(cBuf, dsa->heap, DYNAMIC_TYPE_TMP_BUFFER);
2018-01-04 10:11:23 -07:00
/* tmpQ = q - 1 */
if (err == MP_OKAY)
err = mp_copy(&dsa->q, &tmpQ);
if (err == MP_OKAY)
err = mp_sub_d(&tmpQ, 1, &tmpQ);
/* x = c mod (q-1), &dsa->x holds c */
if (err == MP_OKAY)
err = mp_mod(&dsa->x, &tmpQ, &dsa->x);
/* x = c mod (q-1) + 1 */
if (err == MP_OKAY)
err = mp_add_d(&dsa->x, 1, &dsa->x);
/* public key : y = g^x mod p */
2018-01-04 10:11:23 -07:00
if (err == MP_OKAY)
err = mp_exptmod_ex(&dsa->g, &dsa->x, dsa->q.used, &dsa->p, &dsa->y);
2018-01-04 10:11:23 -07:00
if (err == MP_OKAY)
dsa->type = DSA_PRIVATE;
if (err != MP_OKAY) {
mp_clear(&dsa->x);
mp_clear(&dsa->y);
}
2018-01-04 10:11:23 -07:00
mp_clear(&tmpQ);
2018-01-04 10:11:23 -07:00
return err;
}
/* modulus_size in bits */
int wc_MakeDsaParameters(WC_RNG *rng, int modulus_size, DsaKey *dsa)
{
mp_int tmp, tmp2;
int err, msize, qsize,
loop_check_prime = 0,
check_prime = MP_NO;
unsigned char *buf;
if (rng == NULL || dsa == NULL)
return BAD_FUNC_ARG;
/* set group size in bytes from modulus size
* FIPS 186-4 defines valid values (1024, 160) (2048, 256) (3072, 256)
*/
switch (modulus_size) {
case 1024:
qsize = 20;
break;
case 2048:
case 3072:
qsize = 32;
break;
default:
return BAD_FUNC_ARG;
}
/* modulus size in bytes */
msize = modulus_size / WOLFSSL_BIT_SIZE;
/* allocate ram */
buf = (unsigned char *)XMALLOC(msize - qsize,
dsa->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (buf == NULL) {
return MEMORY_E;
}
/* make a random string that will be multplied against q */
err = wc_RNG_GenerateBlock(rng, buf, msize - qsize);
if (err != MP_OKAY) {
XFREE(buf, dsa->heap, DYNAMIC_TYPE_TMP_BUFFER);
return err;
}
/* force magnitude */
buf[0] |= 0xC0;
/* force even */
buf[msize - qsize - 1] &= ~1;
if (mp_init_multi(&tmp2, &dsa->p, &dsa->q, 0, 0, 0) != MP_OKAY) {
mp_clear(&dsa->q);
XFREE(buf, dsa->heap, DYNAMIC_TYPE_TMP_BUFFER);
return MP_INIT_E;
}
err = mp_read_unsigned_bin(&tmp2, buf, msize - qsize);
if (err != MP_OKAY) {
mp_clear(&dsa->q);
mp_clear(&dsa->p);
mp_clear(&tmp2);
XFREE(buf, dsa->heap, DYNAMIC_TYPE_TMP_BUFFER);
return err;
}
XFREE(buf, dsa->heap, DYNAMIC_TYPE_TMP_BUFFER);
/* make our prime q */
err = mp_rand_prime(&dsa->q, qsize, rng, NULL);
if (err != MP_OKAY) {
mp_clear(&dsa->q);
mp_clear(&dsa->p);
mp_clear(&tmp2);
return err;
}
/* p = random * q */
err = mp_mul(&dsa->q, &tmp2, &dsa->p);
if (err != MP_OKAY) {
mp_clear(&dsa->q);
mp_clear(&dsa->p);
mp_clear(&tmp2);
return err;
}
/* p = random * q + 1, so q is a prime divisor of p-1 */
err = mp_add_d(&dsa->p, 1, &dsa->p);
if (err != MP_OKAY) {
mp_clear(&dsa->q);
mp_clear(&dsa->p);
mp_clear(&tmp2);
return err;
}
if (mp_init(&tmp) != MP_OKAY) {
mp_clear(&dsa->q);
mp_clear(&dsa->p);
mp_clear(&tmp2);
return MP_INIT_E;
}
/* tmp = 2q */
err = mp_add(&dsa->q, &dsa->q, &tmp);
if (err != MP_OKAY) {
mp_clear(&dsa->q);
mp_clear(&dsa->p);
mp_clear(&tmp);
mp_clear(&tmp2);
return err;
}
/* loop until p is prime */
while (check_prime == MP_NO) {
err = mp_prime_is_prime_ex(&dsa->p, 8, &check_prime, rng);
if (err != MP_OKAY) {
mp_clear(&dsa->q);
mp_clear(&dsa->p);
mp_clear(&tmp);
mp_clear(&tmp2);
return err;
}
if (check_prime != MP_YES) {
/* p += 2q */
err = mp_add(&tmp, &dsa->p, &dsa->p);
if (err != MP_OKAY) {
mp_clear(&dsa->q);
mp_clear(&dsa->p);
mp_clear(&tmp);
mp_clear(&tmp2);
return err;
}
loop_check_prime++;
}
}
/* tmp2 += (2*loop_check_prime)
* to have p = (q * tmp2) + 1 prime
*/
if (loop_check_prime) {
err = mp_add_d(&tmp2, 2*loop_check_prime, &tmp2);
if (err != MP_OKAY) {
mp_clear(&dsa->q);
mp_clear(&dsa->p);
mp_clear(&tmp);
mp_clear(&tmp2);
return err;
}
}
if (mp_init(&dsa->g) != MP_OKAY) {
mp_clear(&dsa->q);
mp_clear(&dsa->p);
mp_clear(&tmp);
mp_clear(&tmp2);
return MP_INIT_E;
}
/* find a value g for which g^tmp2 != 1 */
if (mp_set(&dsa->g, 1) != MP_OKAY) {
mp_clear(&dsa->q);
mp_clear(&dsa->p);
mp_clear(&tmp);
mp_clear(&tmp2);
return MP_INIT_E;
}
do {
err = mp_add_d(&dsa->g, 1, &dsa->g);
if (err != MP_OKAY) {
mp_clear(&dsa->q);
mp_clear(&dsa->p);
mp_clear(&dsa->g);
mp_clear(&tmp);
mp_clear(&tmp2);
return err;
}
err = mp_exptmod(&dsa->g, &tmp2, &dsa->p, &tmp);
if (err != MP_OKAY) {
mp_clear(&dsa->q);
mp_clear(&dsa->p);
mp_clear(&dsa->g);
mp_clear(&tmp);
mp_clear(&tmp2);
return err;
}
} while (mp_cmp_d(&tmp, 1) == MP_EQ);
/* at this point tmp generates a group of order q mod p */
mp_exch(&tmp, &dsa->g);
mp_clear(&tmp);
mp_clear(&tmp2);
return MP_OKAY;
}
#endif /* WOLFSSL_KEY_GEN */
2014-12-17 14:37:13 -07:00
static int _DsaImportParamsRaw(DsaKey* dsa, const char* p, const char* q,
const char* g, int trusted, WC_RNG* rng)
{
int err;
word32 pSz, qSz;
if (dsa == NULL || p == NULL || q == NULL || g == NULL)
return BAD_FUNC_ARG;
/* read p */
err = mp_read_radix(&dsa->p, p, MP_RADIX_HEX);
if (err == MP_OKAY && !trusted) {
int isPrime = 1;
if (rng == NULL)
err = mp_prime_is_prime(&dsa->p, 8, &isPrime);
else
err = mp_prime_is_prime_ex(&dsa->p, 8, &isPrime, rng);
if (err == MP_OKAY) {
if (!isPrime)
err = DH_CHECK_PUB_E;
}
}
/* read q */
if (err == MP_OKAY)
err = mp_read_radix(&dsa->q, q, MP_RADIX_HEX);
/* read g */
if (err == MP_OKAY)
err = mp_read_radix(&dsa->g, g, MP_RADIX_HEX);
/* verify (L,N) pair bit lengths */
pSz = mp_unsigned_bin_size(&dsa->p);
qSz = mp_unsigned_bin_size(&dsa->q);
if (CheckDsaLN(pSz * WOLFSSL_BIT_SIZE, qSz * WOLFSSL_BIT_SIZE) != 0) {
WOLFSSL_MSG("Invalid DSA p or q parameter size");
err = BAD_FUNC_ARG;
}
if (err != MP_OKAY) {
mp_clear(&dsa->p);
mp_clear(&dsa->q);
mp_clear(&dsa->g);
}
return err;
}
/* Import raw DSA parameters into DsaKey structure for use with wc_MakeDsaKey(),
* input parameters (p,q,g) should be represented as ASCII hex values.
*
* dsa - pointer to initialized DsaKey structure
* p - DSA (p) parameter, ASCII hex string
* pSz - length of p
* q - DSA (q) parameter, ASCII hex string
* qSz - length of q
* g - DSA (g) parameter, ASCII hex string
* gSz - length of g
*
* returns 0 on success, negative upon failure
*/
int wc_DsaImportParamsRaw(DsaKey* dsa, const char* p, const char* q,
const char* g)
{
return _DsaImportParamsRaw(dsa, p, q, g, 1, NULL);
}
/* Import raw DSA parameters into DsaKey structure for use with wc_MakeDsaKey(),
* input parameters (p,q,g) should be represented as ASCII hex values. Check
* that the p value is probably prime.
*
* dsa - pointer to initialized DsaKey structure
* p - DSA (p) parameter, ASCII hex string
* pSz - length of p
* q - DSA (q) parameter, ASCII hex string
* qSz - length of q
* g - DSA (g) parameter, ASCII hex string
* gSz - length of g
* trusted - trust that p is OK
* rng - random number generator for the prime test
*
* returns 0 on success, negative upon failure
*/
int wc_DsaImportParamsRawCheck(DsaKey* dsa, const char* p, const char* q,
const char* g, int trusted, WC_RNG* rng)
{
return _DsaImportParamsRaw(dsa, p, q, g, trusted, rng);
}
/* Export raw DSA parameters from DsaKey structure
*
* dsa - pointer to initialized DsaKey structure
* p - output location for DSA (p) parameter
* pSz - [IN/OUT] size of output buffer for p, size of p
* q - output location for DSA (q) parameter
* qSz - [IN/OUT] size of output buffer for q, size of q
* g - output location for DSA (g) parameter
* gSz - [IN/OUT] size of output buffer for g, size of g
*
* If p, q, and g pointers are all passed in as NULL, the function
* will set pSz, qSz, and gSz to the required output buffer sizes for p,
* q, and g. In this case, the function will return LENGTH_ONLY_E.
*
* returns 0 on success, negative upon failure
*/
int wc_DsaExportParamsRaw(DsaKey* dsa, byte* p, word32* pSz,
byte* q, word32* qSz, byte* g, word32* gSz)
{
int err;
word32 pLen, qLen, gLen;
if (dsa == NULL || pSz == NULL || qSz == NULL || gSz == NULL)
return BAD_FUNC_ARG;
/* get required output buffer sizes */
pLen = mp_unsigned_bin_size(&dsa->p);
qLen = mp_unsigned_bin_size(&dsa->q);
gLen = mp_unsigned_bin_size(&dsa->g);
/* return buffer sizes and LENGTH_ONLY_E if buffers are NULL */
if (p == NULL && q == NULL && g == NULL) {
*pSz = pLen;
*qSz = qLen;
*gSz = gLen;
return LENGTH_ONLY_E;
}
if (p == NULL || q == NULL || g == NULL)
return BAD_FUNC_ARG;
/* export p */
if (*pSz < pLen) {
WOLFSSL_MSG("Output buffer for DSA p parameter too small, "
"required size placed into pSz");
*pSz = pLen;
return BUFFER_E;
}
*pSz = pLen;
err = mp_to_unsigned_bin(&dsa->p, p);
/* export q */
if (err == MP_OKAY) {
if (*qSz < qLen) {
WOLFSSL_MSG("Output buffer for DSA q parameter too small, "
"required size placed into qSz");
*qSz = qLen;
return BUFFER_E;
}
*qSz = qLen;
err = mp_to_unsigned_bin(&dsa->q, q);
}
/* export g */
if (err == MP_OKAY) {
if (*gSz < gLen) {
WOLFSSL_MSG("Output buffer for DSA g parameter too small, "
"required size placed into gSz");
*gSz = gLen;
return BUFFER_E;
}
*gSz = gLen;
err = mp_to_unsigned_bin(&dsa->g, g);
}
return err;
}
/* Export raw DSA key (x, y) from DsaKey structure
*
* dsa - pointer to initialized DsaKey structure
* x - output location for private key
* xSz - [IN/OUT] size of output buffer for x, size of x
* y - output location for public key
* ySz - [IN/OUT] size of output buffer for y, size of y
*
* If x and y pointers are all passed in as NULL, the function
* will set xSz and ySz to the required output buffer sizes for x
* and y. In this case, the function will return LENGTH_ONLY_E.
*
* returns 0 on success, negative upon failure
*/
int wc_DsaExportKeyRaw(DsaKey* dsa, byte* x, word32* xSz, byte* y, word32* ySz)
{
int err;
word32 xLen, yLen;
if (dsa == NULL || xSz == NULL || ySz == NULL)
return BAD_FUNC_ARG;
/* get required output buffer sizes */
xLen = mp_unsigned_bin_size(&dsa->x);
yLen = mp_unsigned_bin_size(&dsa->y);
/* return buffer sizes and LENGTH_ONLY_E if buffers are NULL */
if (x == NULL && y == NULL) {
*xSz = xLen;
*ySz = yLen;
return LENGTH_ONLY_E;
}
if (x == NULL || y == NULL)
return BAD_FUNC_ARG;
/* export x */
if (*xSz < xLen) {
WOLFSSL_MSG("Output buffer for DSA private key (x) too small, "
"required size placed into xSz");
*xSz = xLen;
return BUFFER_E;
}
*xSz = xLen;
err = mp_to_unsigned_bin(&dsa->x, x);
/* export y */
if (err == MP_OKAY) {
if (*ySz < yLen) {
WOLFSSL_MSG("Output buffer to DSA public key (y) too small, "
"required size placed into ySz");
*ySz = yLen;
return BUFFER_E;
}
*ySz = yLen;
err = mp_to_unsigned_bin(&dsa->y, y);
}
return err;
}
int wc_DsaSign(const byte* digest, byte* out, DsaKey* key, WC_RNG* rng)
2014-12-17 14:37:13 -07:00
{
mp_int k, kInv, r, s, H;
2019-11-28 11:06:27 +10:00
#ifndef WOLFSSL_MP_INVMOD_CONSTANT_TIME
mp_int b;
#endif
mp_int* qMinus1;
int ret = 0, sz;
byte buffer[DSA_HALF_SIZE];
byte* tmp; /* initial output pointer */
2017-06-13 09:33:42 -06:00
if (digest == NULL || out == NULL || key == NULL || rng == NULL) {
return BAD_FUNC_ARG;
}
tmp = out;
2014-12-17 14:37:13 -07:00
sz = min((int)sizeof(buffer), mp_unsigned_bin_size(&key->q));
2019-11-28 11:06:27 +10:00
#ifdef WOLFSSL_MP_INVMOD_CONSTANT_TIME
2014-12-17 14:37:13 -07:00
if (mp_init_multi(&k, &kInv, &r, &s, &H, 0) != MP_OKAY)
2019-11-28 11:06:27 +10:00
#else
if (mp_init_multi(&k, &kInv, &r, &s, &H, &b) != MP_OKAY)
#endif
{
2014-12-17 14:37:13 -07:00
return MP_INIT_E;
2019-11-28 11:06:27 +10:00
}
qMinus1 = &kInv;
2014-12-17 14:37:13 -07:00
/* NIST FIPS 186-4: B.2.2
* Per-Message Secret Number Generation by Testing Candidates
* Generate k in range [1, q-1].
* Check that k is less than q-1: range [0, q-2].
* Add 1 to k: range [1, q-1].
*/
if (mp_sub_d(&key->q, 1, qMinus1))
ret = MP_SUB_E;
if (ret == 0) {
do {
/* Step 4: generate k */
ret = wc_RNG_GenerateBlock(rng, buffer, sz);
/* Step 5 */
if (ret == 0 && mp_read_unsigned_bin(&k, buffer, sz) != MP_OKAY)
ret = MP_READ_E;
/* k is a random numnber and it should be less than q-1
* if k greater than repeat
*/
/* Step 6 */
} while (ret == 0 && mp_cmp(&k, qMinus1) != MP_LT);
}
/* Step 7 */
if (ret == 0 && mp_add_d(&k, 1, &k) != MP_OKAY)
ret = MP_MOD_E;
2014-12-17 14:37:13 -07:00
2019-11-28 11:06:27 +10:00
#ifdef WOLFSSL_MP_INVMOD_CONSTANT_TIME
2014-12-17 14:37:13 -07:00
/* inverse k mod q */
if (ret == 0 && mp_invmod(&k, &key->q, &kInv) != MP_OKAY)
ret = MP_INVMOD_E;
/* generate r, r = (g exp k mod p) mod q */
if (ret == 0 && mp_exptmod_ex(&key->g, &k, key->q.used, &key->p,
&r) != MP_OKAY) {
2014-12-17 14:37:13 -07:00
ret = MP_EXPTMOD_E;
}
2014-12-17 14:37:13 -07:00
if (ret == 0 && mp_mod(&r, &key->q, &r) != MP_OKAY)
ret = MP_MOD_E;
/* generate H from sha digest */
if (ret == 0 && mp_read_unsigned_bin(&H, digest,WC_SHA_DIGEST_SIZE) != MP_OKAY)
2014-12-17 14:37:13 -07:00
ret = MP_READ_E;
/* generate s, s = (kInv * (H + x*r)) % q */
if (ret == 0 && mp_mul(&key->x, &r, &s) != MP_OKAY)
ret = MP_MUL_E;
if (ret == 0 && mp_add(&s, &H, &s) != MP_OKAY)
ret = MP_ADD_E;
if (ret == 0 && mp_mulmod(&s, &kInv, &key->q, &s) != MP_OKAY)
ret = MP_MULMOD_E;
2019-11-28 11:06:27 +10:00
#else
/* Blinding value
* Generate b in range [1, q-1].
*/
if (ret == 0) {
do {
ret = wc_RNG_GenerateBlock(rng, buffer, sz);
if (ret == 0 && mp_read_unsigned_bin(&b, buffer, sz) != MP_OKAY)
ret = MP_READ_E;
} while (ret == 0 && mp_cmp(&b, qMinus1) != MP_LT);
}
if (ret == 0 && mp_add_d(&b, 1, &b) != MP_OKAY)
ret = MP_MOD_E;
/* set H from sha digest */
if (ret == 0 && mp_read_unsigned_bin(&H, digest,
WC_SHA_DIGEST_SIZE) != MP_OKAY) {
ret = MP_READ_E;
}
/* generate r, r = (g exp k mod p) mod q */
if (ret == 0 && mp_exptmod_ex(&key->g, &k, key->q.used, &key->p,
&r) != MP_OKAY) {
ret = MP_EXPTMOD_E;
}
/* calculate s = (H + xr)/k
= b.(H/k.b + x.r/k.b) */
/* k = k.b */
if (ret == 0 && mp_mulmod(&k, &b, &key->q, &k) != MP_OKAY)
ret = MP_MULMOD_E;
/* kInv = 1/k.b mod q */
if (ret == 0 && mp_invmod(&k, &key->q, &kInv) != MP_OKAY)
ret = MP_INVMOD_E;
if (ret == 0 && mp_mod(&r, &key->q, &r) != MP_OKAY)
ret = MP_MOD_E;
/* s = x.r */
if (ret == 0 && mp_mul(&key->x, &r, &s) != MP_OKAY)
ret = MP_MUL_E;
/* s = x.r/k.b */
if (ret == 0 && mp_mulmod(&s, &kInv, &key->q, &s) != MP_OKAY)
ret = MP_MULMOD_E;
/* H = H/k.b */
if (ret == 0 && mp_mulmod(&H, &kInv, &key->q, &H) != MP_OKAY)
ret = MP_MULMOD_E;
/* s = H/k.b + x.r/k.b
= (H + x.r)/k.b */
if (ret == 0 && mp_add(&s, &H, &s) != MP_OKAY)
ret = MP_ADD_E;
/* s = b.(e + x.r)/k.b
= (e + x.r)/k */
if (ret == 0 && mp_mulmod(&s, &b, &key->q, &s) != MP_OKAY)
ret = MP_MULMOD_E;
/* s = (e + x.r)/k */
if (ret == 0 && mp_mod(&s, &key->q, &s) != MP_OKAY)
ret = MP_MOD_E;
#endif
2014-12-17 14:37:13 -07:00
2016-09-22 12:04:48 -07:00
/* detect zero r or s */
if (ret == 0 && (mp_iszero(&r) == MP_YES || mp_iszero(&s) == MP_YES))
ret = MP_ZERO_E;
2014-12-17 14:37:13 -07:00
/* write out */
if (ret == 0) {
int rSz = mp_unsigned_bin_size(&r);
int sSz = mp_unsigned_bin_size(&s);
2016-09-21 18:51:11 -07:00
while (rSz++ < DSA_HALF_SIZE) {
*out++ = 0x00; /* pad front with zeros */
2014-12-17 14:37:13 -07:00
}
if (mp_to_unsigned_bin(&r, out) != MP_OKAY)
ret = MP_TO_E;
else {
2016-09-21 18:51:11 -07:00
out = tmp + DSA_HALF_SIZE; /* advance to s in output */
while (sSz++ < DSA_HALF_SIZE) {
*out++ = 0x00; /* pad front with zeros */
}
ret = mp_to_unsigned_bin(&s, out);
2014-12-17 14:37:13 -07:00
}
}
2019-11-28 11:06:27 +10:00
ForceZero(buffer, sz);
mp_forcezero(&kInv);
mp_forcezero(&k);
#ifndef WOLFSSL_MP_INVMOD_CONSTANT_TIME
mp_forcezero(&b);
mp_clear(&b);
#endif
2014-12-17 14:37:13 -07:00
mp_clear(&H);
mp_clear(&s);
mp_clear(&r);
mp_clear(&kInv);
mp_clear(&k);
return ret;
}
int wc_DsaVerify(const byte* digest, const byte* sig, DsaKey* key, int* answer)
{
mp_int w, u1, u2, v, r, s;
int ret = 0;
2017-06-13 09:33:42 -06:00
if (digest == NULL || sig == NULL || key == NULL || answer == NULL) {
return BAD_FUNC_ARG;
}
2014-12-17 14:37:13 -07:00
if (mp_init_multi(&w, &u1, &u2, &v, &r, &s) != MP_OKAY)
return MP_INIT_E;
/* set r and s from signature */
if (mp_read_unsigned_bin(&r, sig, DSA_HALF_SIZE) != MP_OKAY ||
mp_read_unsigned_bin(&s, sig + DSA_HALF_SIZE, DSA_HALF_SIZE) != MP_OKAY)
ret = MP_READ_E;
/* sanity checks */
if (ret == 0) {
if (mp_iszero(&r) == MP_YES || mp_iszero(&s) == MP_YES ||
mp_cmp(&r, &key->q) != MP_LT || mp_cmp(&s, &key->q) != MP_LT) {
ret = MP_ZERO_E;
}
}
2014-12-17 14:37:13 -07:00
/* put H into u1 from sha digest */
if (ret == 0 && mp_read_unsigned_bin(&u1,digest,WC_SHA_DIGEST_SIZE) != MP_OKAY)
2014-12-17 14:37:13 -07:00
ret = MP_READ_E;
/* w = s invmod q */
if (ret == 0 && mp_invmod(&s, &key->q, &w) != MP_OKAY)
ret = MP_INVMOD_E;
/* u1 = (H * w) % q */
if (ret == 0 && mp_mulmod(&u1, &w, &key->q, &u1) != MP_OKAY)
ret = MP_MULMOD_E;
/* u2 = (r * w) % q */
if (ret == 0 && mp_mulmod(&r, &w, &key->q, &u2) != MP_OKAY)
ret = MP_MULMOD_E;
/* verify v = ((g^u1 * y^u2) mod p) mod q */
if (ret == 0 && mp_exptmod(&key->g, &u1, &key->p, &u1) != MP_OKAY)
ret = MP_EXPTMOD_E;
if (ret == 0 && mp_exptmod(&key->y, &u2, &key->p, &u2) != MP_OKAY)
ret = MP_EXPTMOD_E;
if (ret == 0 && mp_mulmod(&u1, &u2, &key->p, &v) != MP_OKAY)
ret = MP_MULMOD_E;
if (ret == 0 && mp_mod(&v, &key->q, &v) != MP_OKAY)
ret = MP_MULMOD_E;
/* do they match */
if (ret == 0 && mp_cmp(&r, &v) == MP_EQ)
*answer = 1;
else
*answer = 0;
mp_clear(&s);
mp_clear(&r);
mp_clear(&u1);
mp_clear(&u2);
mp_clear(&w);
mp_clear(&v);
return ret;
}
#endif /* NO_DSA */