Files
wolfssl/wolfcrypt/src/sha.c
David Garske 4c709f1f2c Improvements to SHA-1, SHA-256 and MD5 performance:
* Added detection for buffer alignment to avoid memcpy.
* Added MD5 and SHA-1 support for XTRANSFORM_LEN to process blocks.
* Cleanups for consistency between algorithms and code commenting.
* Enhancement for NXP MMCAU to process more than one block at a time.
* Improved MMCAU performance: SHA-1 by 35%, SHA-256 by 20% and MD5 by 78%.

```
NXP K64 w/MMCAU after:

MD5                  8 MB took 1.000 seconds,    7.910 MB/s
SHA                  4 MB took 1.005 seconds,    3.644 MB/s
SHA-256              2 MB took 1.006 seconds,    2.306 MB/s

NXP K64 w/MMCAU before:
MD5                  4 MB took 1.004 seconds,    4.450 MB/s
SHA                  3 MB took 1.006 seconds,    2.670 MB/s
SHA-256              2 MB took 1.008 seconds,    1.913 MB/s
```
2019-09-26 11:32:59 -07:00

863 lines
24 KiB
C

/* sha.c
*
* Copyright (C) 2006-2019 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#if !defined(NO_SHA)
#if defined(HAVE_FIPS) && \
defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION >= 2)
/* set NO_WRAPPERS before headers, use direct internal f()s not wrappers */
#define FIPS_NO_WRAPPERS
#ifdef USE_WINDOWS_API
#pragma code_seg(".fipsA$j")
#pragma const_seg(".fipsB$j")
#endif
#endif
#include <wolfssl/wolfcrypt/sha.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
#include <wolfssl/wolfcrypt/hash.h>
#ifdef WOLF_CRYPTO_CB
#include <wolfssl/wolfcrypt/cryptocb.h>
#endif
/* fips wrapper calls, user can call direct */
#if defined(HAVE_FIPS) && \
(!defined(HAVE_FIPS_VERSION) || (HAVE_FIPS_VERSION < 2))
int wc_InitSha(wc_Sha* sha)
{
if (sha == NULL) {
return BAD_FUNC_ARG;
}
return InitSha_fips(sha);
}
int wc_InitSha_ex(wc_Sha* sha, void* heap, int devId)
{
(void)heap;
(void)devId;
if (sha == NULL) {
return BAD_FUNC_ARG;
}
return InitSha_fips(sha);
}
int wc_ShaUpdate(wc_Sha* sha, const byte* data, word32 len)
{
if (sha == NULL || (data == NULL && len > 0)) {
return BAD_FUNC_ARG;
}
return ShaUpdate_fips(sha, data, len);
}
int wc_ShaFinal(wc_Sha* sha, byte* out)
{
if (sha == NULL || out == NULL) {
return BAD_FUNC_ARG;
}
return ShaFinal_fips(sha,out);
}
void wc_ShaFree(wc_Sha* sha)
{
(void)sha;
/* Not supported in FIPS */
}
#else /* else build without fips, or for FIPS v2 */
#if defined(WOLFSSL_TI_HASH)
/* #include <wolfcrypt/src/port/ti/ti-hash.c> included by wc_port.c */
#else
#include <wolfssl/wolfcrypt/logging.h>
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
/* Hardware Acceleration */
#if defined(WOLFSSL_PIC32MZ_HASH)
#include <wolfssl/wolfcrypt/port/pic32/pic32mz-crypt.h>
#elif defined(STM32_HASH)
/* Supports CubeMX HAL or Standard Peripheral Library */
int wc_InitSha_ex(wc_Sha* sha, void* heap, int devId)
{
if (sha == NULL) {
return BAD_FUNC_ARG;
}
(void)devId;
(void)heap;
wc_Stm32_Hash_Init(&sha->stmCtx);
return 0;
}
int wc_ShaUpdate(wc_Sha* sha, const byte* data, word32 len)
{
int ret;
if (sha == NULL || (data == NULL && len > 0)) {
return BAD_FUNC_ARG;
}
ret = wolfSSL_CryptHwMutexLock();
if (ret == 0) {
ret = wc_Stm32_Hash_Update(&sha->stmCtx, HASH_AlgoSelection_SHA1,
data, len);
wolfSSL_CryptHwMutexUnLock();
}
return ret;
}
int wc_ShaFinal(wc_Sha* sha, byte* hash)
{
int ret;
if (sha == NULL || hash == NULL) {
return BAD_FUNC_ARG;
}
ret = wolfSSL_CryptHwMutexLock();
if (ret == 0) {
ret = wc_Stm32_Hash_Final(&sha->stmCtx, HASH_AlgoSelection_SHA1,
hash, WC_SHA_DIGEST_SIZE);
wolfSSL_CryptHwMutexUnLock();
}
(void)wc_InitSha(sha); /* reset state */
return ret;
}
#elif defined(FREESCALE_LTC_SHA)
#include "fsl_ltc.h"
int wc_InitSha_ex(wc_Sha* sha, void* heap, int devId)
{
if (sha == NULL) {
return BAD_FUNC_ARG;
}
(void)devId;
(void)heap;
LTC_HASH_Init(LTC_BASE, &sha->ctx, kLTC_Sha1, NULL, 0);
return 0;
}
int wc_ShaUpdate(wc_Sha* sha, const byte* data, word32 len)
{
LTC_HASH_Update(&sha->ctx, data, len);
return 0;
}
int wc_ShaFinal(wc_Sha* sha, byte* hash)
{
uint32_t hashlen = WC_SHA_DIGEST_SIZE;
LTC_HASH_Finish(&sha->ctx, hash, &hashlen);
return wc_InitSha(sha); /* reset state */
}
#elif defined(FREESCALE_MMCAU_SHA)
#ifdef FREESCALE_MMCAU_CLASSIC_SHA
#include "cau_api.h"
#else
#include "fsl_mmcau.h"
#endif
#define USE_SHA_SOFTWARE_IMPL /* Only for API's, actual transform is here */
#define XTRANSFORM(S,B) Transform((S),(B))
#define XTRANSFORM_LEN(S,B,L) Transform_Len((S),(B),(L))
static int InitSha(wc_Sha* sha)
{
int ret = 0;
ret = wolfSSL_CryptHwMutexLock();
if (ret != 0) {
return ret;
}
#ifdef FREESCALE_MMCAU_CLASSIC_SHA
cau_sha1_initialize_output(sha->digest);
#else
MMCAU_SHA1_InitializeOutput((uint32_t*)sha->digest);
#endif
wolfSSL_CryptHwMutexUnLock();
sha->buffLen = 0;
sha->loLen = 0;
sha->hiLen = 0;
return ret;
}
static int Transform(wc_Sha* sha, const byte* data)
{
int ret = wolfSSL_CryptHwMutexLock();
if(ret == 0) {
#ifdef FREESCALE_MMCAU_CLASSIC_SHA
cau_sha1_hash_n((byte*)data, 1, sha->digest);
#else
MMCAU_SHA1_HashN((byte*)data, 1, (uint32_t*)sha->digest);
#endif
wolfSSL_CryptHwMutexUnLock();
}
return ret;
}
static int Transform_Len(wc_Sha* sha, const byte* data, word32 len)
{
int ret = wolfSSL_CryptHwMutexLock();
if(ret == 0) {
#ifdef FREESCALE_MMCAU_CLASSIC_SHA
cau_sha1_hash_n((byte*)data, len/WC_SHA_BLOCK_SIZE, sha->digest);
#else
MMCAU_SHA1_HashN((byte*)data, len/WC_SHA_BLOCK_SIZE,
(uint32_t*)sha->digest);
#endif
wolfSSL_CryptHwMutexUnLock();
}
return ret;
}
#elif defined(WOLFSSL_IMX6_CAAM) && !defined(NO_IMX6_CAAM_HASH)
/* wolfcrypt/src/port/caam/caam_sha.c */
#elif defined(WOLFSSL_ESP32WROOM32_CRYPT) && \
!defined(NO_WOLFSSL_ESP32WROOM32_CRYPT_HASH)
#include "wolfssl/wolfcrypt/port/Espressif/esp32-crypt.h"
#define USE_SHA_SOFTWARE_IMPL
static int InitSha(wc_Sha* sha)
{
int ret = 0;
sha->digest[0] = 0x67452301L;
sha->digest[1] = 0xEFCDAB89L;
sha->digest[2] = 0x98BADCFEL;
sha->digest[3] = 0x10325476L;
sha->digest[4] = 0xC3D2E1F0L;
sha->buffLen = 0;
sha->loLen = 0;
sha->hiLen = 0;
/* alwasy start firstblock = 1 when using hw engine */
sha->ctx.isfirstblock = 1;
sha->ctx.sha_type = SHA1;
if(sha->ctx.mode == ESP32_SHA_HW){
/* release hw engine */
esp_sha_hw_unlock();
}
/* always set mode as INIT
* whether using HW or SW is detemined at first call of update()
*/
sha->ctx.mode = ESP32_SHA_INIT;
return ret;
}
#elif defined(WOLFSSL_RENESAS_TSIP_CRYPT) && \
!defined(NO_WOLFSSL_RENESAS_TSIP_CRYPT_HASH)
/* implemented in wolfcrypt/src/port/Renesas/renesas_tsip_sha.c */
#else
/* Software implementation */
#define USE_SHA_SOFTWARE_IMPL
static int InitSha(wc_Sha* sha)
{
int ret = 0;
sha->digest[0] = 0x67452301L;
sha->digest[1] = 0xEFCDAB89L;
sha->digest[2] = 0x98BADCFEL;
sha->digest[3] = 0x10325476L;
sha->digest[4] = 0xC3D2E1F0L;
sha->buffLen = 0;
sha->loLen = 0;
sha->hiLen = 0;
#if defined(WOLFSSL_HASH_FLAGS) || defined(WOLF_CRYPTO_CB)
sha->flags = 0;
#endif
return ret;
}
#endif /* End Hardware Acceleration */
#ifndef WC_SHA_DATA_ALIGNMENT
/* default to 32-bit alignement */
#define WC_SHA_DATA_ALIGNMENT 4
#endif
/* Software implementation */
#ifdef USE_SHA_SOFTWARE_IMPL
static WC_INLINE void AddLength(wc_Sha* sha, word32 len)
{
word32 tmp = sha->loLen;
if ((sha->loLen += len) < tmp)
sha->hiLen++; /* carry low to high */
}
/* Check if custom wc_Sha transform is used */
#ifndef XTRANSFORM
#define XTRANSFORM(S,B) Transform((S),(B))
#define blk0(i) (W[i] = *((word32*)&data[i*sizeof(word32)]))
#define blk1(i) (W[(i)&15] = \
rotlFixed(W[((i)+13)&15]^W[((i)+8)&15]^W[((i)+2)&15]^W[(i)&15],1))
#define f1(x,y,z) ((z)^((x) &((y)^(z))))
#define f2(x,y,z) ((x)^(y)^(z))
#define f3(x,y,z) (((x)&(y))|((z)&((x)|(y))))
#define f4(x,y,z) ((x)^(y)^(z))
#ifdef WOLFSSL_NUCLEUS_1_2
/* nucleus.h also defines R1-R4 */
#undef R1
#undef R2
#undef R3
#undef R4
#endif
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) (z)+= f1((w),(x),(y)) + blk0((i)) + 0x5A827999+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
#define R1(v,w,x,y,z,i) (z)+= f1((w),(x),(y)) + blk1((i)) + 0x5A827999+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
#define R2(v,w,x,y,z,i) (z)+= f2((w),(x),(y)) + blk1((i)) + 0x6ED9EBA1+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
#define R3(v,w,x,y,z,i) (z)+= f3((w),(x),(y)) + blk1((i)) + 0x8F1BBCDC+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
#define R4(v,w,x,y,z,i) (z)+= f4((w),(x),(y)) + blk1((i)) + 0xCA62C1D6+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
static int Transform(wc_Sha* sha, const byte* data)
{
word32 W[WC_SHA_BLOCK_SIZE / sizeof(word32)];
/* Copy context->state[] to working vars */
word32 a = sha->digest[0];
word32 b = sha->digest[1];
word32 c = sha->digest[2];
word32 d = sha->digest[3];
word32 e = sha->digest[4];
#ifdef USE_SLOW_SHA
word32 t, i;
for (i = 0; i < 16; i++) {
R0(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 20; i++) {
R1(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 40; i++) {
R2(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 60; i++) {
R3(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 80; i++) {
R4(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
#else
/* nearly 1 K bigger in code size but 25% faster */
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
#endif
/* Add the working vars back into digest state[] */
sha->digest[0] += a;
sha->digest[1] += b;
sha->digest[2] += c;
sha->digest[3] += d;
sha->digest[4] += e;
(void)data; /* Not used */
return 0;
}
#endif /* !USE_CUSTOM_SHA_TRANSFORM */
int wc_InitSha_ex(wc_Sha* sha, void* heap, int devId)
{
int ret = 0;
if (sha == NULL)
return BAD_FUNC_ARG;
sha->heap = heap;
#ifdef WOLF_CRYPTO_CB
sha->devId = devId;
#endif
#if defined(WOLFSSL_ESP32WROOM32_CRYPT) && \
!defined(NO_WOLFSSL_ESP32WROOM32_CRYPT_HASH)
sha->ctx.mode = ESP32_SHA_INIT;
sha->ctx.isfirstblock = 1;
#endif
ret = InitSha(sha);
if (ret != 0)
return ret;
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
ret = wolfAsync_DevCtxInit(&sha->asyncDev, WOLFSSL_ASYNC_MARKER_SHA,
sha->heap, devId);
#else
(void)devId;
#endif /* WOLFSSL_ASYNC_CRYPT */
return ret;
}
/* do block size increments/updates */
int wc_ShaUpdate(wc_Sha* sha, const byte* data, word32 len)
{
int ret = 0;
word32 blocksLen;
byte* local;
word32* local32;
if (sha == NULL || (data == NULL && len > 0)) {
return BAD_FUNC_ARG;
}
#ifdef WOLF_CRYPTO_CB
if (sha->devId != INVALID_DEVID) {
int ret = wc_CryptoCb_ShaHash(sha, data, len, NULL);
if (ret != CRYPTOCB_UNAVAILABLE)
return ret;
/* fall-through when unavailable */
}
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
if (sha->asyncDev.marker == WOLFSSL_ASYNC_MARKER_SHA) {
#if defined(HAVE_INTEL_QA)
return IntelQaSymSha(&sha->asyncDev, NULL, data, len);
#endif
}
#endif /* WOLFSSL_ASYNC_CRYPT */
/* check that internal buffLen is valid */
if (sha->buffLen >= WC_SHA_BLOCK_SIZE)
return BUFFER_E;
if (data == NULL && len == 0) {
/* valid, but do nothing */
return 0;
}
/* add length for final */
AddLength(sha, len);
local = (byte*)sha->buffer;
local32 = sha->buffer;
/* process any remainder from previous operation */
if (sha->buffLen > 0) {
blocksLen = min(len, WC_SHA_BLOCK_SIZE - sha->buffLen);
XMEMCPY(&local[sha->buffLen], data, blocksLen);
sha->buffLen += blocksLen;
data += blocksLen;
len -= blocksLen;
if (sha->buffLen == WC_SHA_BLOCK_SIZE) {
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
ByteReverseWords(local32, local32, WC_SHA_BLOCK_SIZE);
#endif
#if defined(WOLFSSL_ESP32WROOM32_CRYPT) && \
!defined(NO_WOLFSSL_ESP32WROOM32_CRYPT_HASH)
if (sha->ctx.mode == ESP32_SHA_INIT) {
esp_sha_try_hw_lock(&sha->ctx);
}
if (sha->ctx.mode == ESP32_SHA_SW {
ret = XTRANSFORM(sha, (const byte*)local);
} else {
esp_sha_process(sha, (const byte*)local);
}
#else
ret = XTRANSFORM(sha, (const byte*)local);
#endif
if (ret != 0)
return ret;
sha->buffLen = 0;
}
}
/* process blocks */
#ifdef XTRANSFORM_LEN
/* get number of blocks */
/* 64-1 = 0x3F (~ Inverted = 0xFFFFFFC0) */
/* len (masked by 0xFFFFFFC0) returns block aligned length */
blocksLen = len & ~(WC_SHA_BLOCK_SIZE-1);
if (blocksLen > 0) {
/* Byte reversal performed in function if required. */
XTRANSFORM_LEN(sha, data, blocksLen);
data += blocksLen;
len -= blocksLen;
}
#else
while (len >= WC_SHA_BLOCK_SIZE) {
/* optimization to avoid memcpy if data pointer is properly aligned */
/* Little Endian requires byte swap, so can't use data directly */
#if defined(WC_SHA_DATA_ALIGNMENT) && !defined(LITTLE_ENDIAN_ORDER)
if (((size_t)data % WC_SHA_DATA_ALIGNMENT) == 0) {
local32 = (word32*)data;
}
else
#endif
{
XMEMCPY(local32, data, WC_SHA_BLOCK_SIZE);
}
data += WC_SHA_BLOCK_SIZE;
len -= WC_SHA_BLOCK_SIZE;
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
ByteReverseWords(local32, local32, WC_SHA_BLOCK_SIZE);
#endif
#if defined(WOLFSSL_ESP32WROOM32_CRYPT) && \
!defined(NO_WOLFSSL_ESP32WROOM32_CRYPT_HASH)
if (sha->ctx.mode == ESP32_SHA_INIT){
esp_sha_try_hw_lock(&sha->ctx);
}
if (sha->ctx.mode == ESP32_SHA_SW){
ret = XTRANSFORM(sha, (const byte*)local32);
} else {
esp_sha_process(sha, (const byte*)local32);
}
#else
ret = XTRANSFORM(sha, (const byte*)local32);
#endif
}
#endif /* XTRANSFORM_LEN */
/* save remainder */
if (len > 0) {
XMEMCPY(local, data, len);
sha->buffLen = len;
}
return ret;
}
int wc_ShaFinalRaw(wc_Sha* sha, byte* hash)
{
#ifdef LITTLE_ENDIAN_ORDER
word32 digest[WC_SHA_DIGEST_SIZE / sizeof(word32)];
#endif
if (sha == NULL || hash == NULL) {
return BAD_FUNC_ARG;
}
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords((word32*)digest, (word32*)sha->digest, WC_SHA_DIGEST_SIZE);
XMEMCPY(hash, digest, WC_SHA_DIGEST_SIZE);
#else
XMEMCPY(hash, sha->digest, WC_SHA_DIGEST_SIZE);
#endif
return 0;
}
int wc_ShaFinal(wc_Sha* sha, byte* hash)
{
int ret;
byte* local;
if (sha == NULL || hash == NULL) {
return BAD_FUNC_ARG;
}
local = (byte*)sha->buffer;
#ifdef WOLF_CRYPTO_CB
if (sha->devId != INVALID_DEVID) {
int ret = wc_CryptoCb_ShaHash(sha, NULL, 0, hash);
if (ret != CRYPTOCB_UNAVAILABLE)
return ret;
/* fall-through when unavailable */
}
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
if (sha->asyncDev.marker == WOLFSSL_ASYNC_MARKER_SHA) {
#if defined(HAVE_INTEL_QA)
return IntelQaSymSha(&sha->asyncDev, hash, NULL, WC_SHA_DIGEST_SIZE);
#endif
}
#endif /* WOLFSSL_ASYNC_CRYPT */
local[sha->buffLen++] = 0x80; /* add 1 */
/* pad with zeros */
if (sha->buffLen > WC_SHA_PAD_SIZE) {
XMEMSET(&local[sha->buffLen], 0, WC_SHA_BLOCK_SIZE - sha->buffLen);
sha->buffLen += WC_SHA_BLOCK_SIZE - sha->buffLen;
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
ByteReverseWords(sha->buffer, sha->buffer, WC_SHA_BLOCK_SIZE);
#endif
#if defined(WOLFSSL_ESP32WROOM32_CRYPT) && \
!defined(NO_WOLFSSL_ESP32WROOM32_CRYPT_HASH)
if (sha->ctx.mode == ESP32_SHA_INIT) {
esp_sha_try_hw_lock(&sha->ctx);
}
if (sha->ctx.mode == ESP32_SHA_SW) {
ret = XTRANSFORM(sha, (const byte*)local);
} else {
esp_sha_process(sha, (const byte*)local);
}
#else
ret = XTRANSFORM(sha, (const byte*)local);
#endif
if (ret != 0)
return ret;
sha->buffLen = 0;
}
XMEMSET(&local[sha->buffLen], 0, WC_SHA_PAD_SIZE - sha->buffLen);
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
ByteReverseWords(sha->buffer, sha->buffer, WC_SHA_BLOCK_SIZE);
#endif
/* store lengths */
/* put lengths in bits */
sha->hiLen = (sha->loLen >> (8*sizeof(sha->loLen) - 3)) + (sha->hiLen << 3);
sha->loLen = sha->loLen << 3;
/* ! length ordering dependent on digest endian type ! */
XMEMCPY(&local[WC_SHA_PAD_SIZE], &sha->hiLen, sizeof(word32));
XMEMCPY(&local[WC_SHA_PAD_SIZE + sizeof(word32)], &sha->loLen, sizeof(word32));
#if defined(FREESCALE_MMCAU_SHA)
/* Kinetis requires only these bytes reversed */
ByteReverseWords(&sha->buffer[WC_SHA_PAD_SIZE/sizeof(word32)],
&sha->buffer[WC_SHA_PAD_SIZE/sizeof(word32)],
2 * sizeof(word32));
#endif
#if defined(WOLFSSL_ESP32WROOM32_CRYPT) && \
!defined(NO_WOLFSSL_ESP32WROOM32_CRYPT_HASH)
if (sha->ctx.mode == ESP32_SHA_INIT) {
esp_sha_try_hw_lock(&sha->ctx);
}
if (sha->ctx.mode == ESP32_SHA_SW) {
ret = XTRANSFORM(sha, (const byte*)local);
} else {
esp_sha_digest_process(sha, 1);
}
#else
ret = XTRANSFORM(sha, (const byte*)local);
#endif
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords(sha->digest, sha->digest, WC_SHA_DIGEST_SIZE);
#endif
XMEMCPY(hash, sha->digest, WC_SHA_DIGEST_SIZE);
(void)InitSha(sha); /* reset state */
return ret;
}
#endif /* USE_SHA_SOFTWARE_IMPL */
int wc_InitSha(wc_Sha* sha)
{
return wc_InitSha_ex(sha, NULL, INVALID_DEVID);
}
void wc_ShaFree(wc_Sha* sha)
{
if (sha == NULL)
return;
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
wolfAsync_DevCtxFree(&sha->asyncDev, WOLFSSL_ASYNC_MARKER_SHA);
#endif /* WOLFSSL_ASYNC_CRYPT */
#ifdef WOLFSSL_PIC32MZ_HASH
wc_ShaPic32Free(sha);
#endif
#if (defined(WOLFSSL_RENESAS_TSIP_CRYPT) && \
!defined(NO_WOLFSSL_RENESAS_TSIP_CRYPT_HASH))
if (sha->msg != NULL) {
XFREE(sha->msg, sha->heap, DYNAMIC_TYPE_TMP_BUFFER);
sha->msg = NULL;
}
#endif
}
#endif /* !WOLFSSL_TI_HASH */
#endif /* HAVE_FIPS */
#ifndef WOLFSSL_TI_HASH
#if !defined(WOLFSSL_RENESAS_TSIP_CRYPT) || \
defined(NO_WOLFSSL_RENESAS_TSIP_CRYPT_HASH)
int wc_ShaGetHash(wc_Sha* sha, byte* hash)
{
int ret;
wc_Sha tmpSha;
if (sha == NULL || hash == NULL)
return BAD_FUNC_ARG;
#if defined(WOLFSSL_ESP32WROOM32_CRYPT) && \
!defined(NO_WOLFSSL_ESP32WROOM32_CRYPT_HASH)
if(sha->ctx.mode == ESP32_SHA_INIT){
esp_sha_try_hw_lock(&sha->ctx);
}
if(sha->ctx.mode != ESP32_SHA_SW)
esp_sha_digest_process(sha, 0);
#endif
ret = wc_ShaCopy(sha, &tmpSha);
if (ret == 0) {
ret = wc_ShaFinal(&tmpSha, hash);
#if defined(WOLFSSL_ESP32WROOM32_CRYPT) && \
!defined(NO_WOLFSSL_ESP32WROOM32_CRYPT_HASH)
sha->ctx.mode = ESP32_SHA_SW;
#endif
}
return ret;
}
int wc_ShaCopy(wc_Sha* src, wc_Sha* dst)
{
int ret = 0;
if (src == NULL || dst == NULL)
return BAD_FUNC_ARG;
XMEMCPY(dst, src, sizeof(wc_Sha));
#ifdef WOLFSSL_ASYNC_CRYPT
ret = wolfAsync_DevCopy(&src->asyncDev, &dst->asyncDev);
#endif
#ifdef WOLFSSL_PIC32MZ_HASH
ret = wc_Pic32HashCopy(&src->cache, &dst->cache);
#endif
#if defined(WOLFSSL_ESP32WROOM32_CRYPT) && \
!defined(NO_WOLFSSL_ESP32WROOM32_CRYPT_HASH)
dst->ctx.mode = src->ctx.mode;
dst->ctx.isfirstblock = src->ctx.isfirstblock;
dst->ctx.sha_type = src->ctx.sha_type;
#endif
#if defined(WOLFSSL_HASH_FLAGS) || defined(WOLF_CRYPTO_CB)
dst->flags |= WC_HASH_FLAG_ISCOPY;
#endif
return ret;
}
#endif /* defined(WOLFSSL_RENESAS_TSIP_CRYPT) ... */
#endif /* !WOLFSSL_TI_HASH */
#if defined(WOLFSSL_HASH_FLAGS) || defined(WOLF_CRYPTO_CB)
int wc_ShaSetFlags(wc_Sha* sha, word32 flags)
{
if (sha) {
sha->flags = flags;
}
return 0;
}
int wc_ShaGetFlags(wc_Sha* sha, word32* flags)
{
if (sha && flags) {
*flags = sha->flags;
}
return 0;
}
#endif
#endif /* !NO_SHA */