Files
wolfssl/wolfcrypt/src/dsa.c
2022-12-30 17:12:11 -07:00

1146 lines
30 KiB
C

/* dsa.c
*
* Copyright (C) 2006-2023 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#ifndef NO_DSA
#include <wolfssl/wolfcrypt/random.h>
#include <wolfssl/wolfcrypt/integer.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
#include <wolfssl/wolfcrypt/logging.h>
#include <wolfssl/wolfcrypt/sha.h>
#include <wolfssl/wolfcrypt/dsa.h>
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
#ifdef _MSC_VER
/* disable for while(0) cases (MSVC bug) */
#pragma warning(disable:4127)
#endif
int wc_InitDsaKey(DsaKey* key)
{
if (key == NULL)
return BAD_FUNC_ARG;
key->type = -1; /* haven't decided yet */
key->heap = NULL;
return mp_init_multi(
/* public alloc parts */
&key->p,
&key->q,
&key->g,
&key->y,
/* private alloc parts */
&key->x,
NULL
);
}
int wc_InitDsaKey_h(DsaKey* key, void* h)
{
int ret = wc_InitDsaKey(key);
if (ret == 0)
key->heap = h;
return ret;
}
void wc_FreeDsaKey(DsaKey* key)
{
if (key == NULL)
return;
if (key->type == DSA_PRIVATE)
mp_forcezero(&key->x);
mp_clear(&key->x);
mp_clear(&key->y);
mp_clear(&key->g);
mp_clear(&key->q);
mp_clear(&key->p);
}
/* validate that (L,N) match allowed sizes from FIPS 186-4, Section 4.2.
* modLen - represents L, the size of p (prime modulus) in bits
* divLen - represents N, the size of q (prime divisor) in bits
* return 0 on success, -1 on error */
static int CheckDsaLN(int modLen, int divLen)
{
int ret = -1;
switch (modLen) {
#ifdef WOLFSSL_DSA_768_MODULUS
case 768:
#endif
case 1024:
if (divLen == 160)
ret = 0;
break;
case 2048:
if (divLen == 224 || divLen == 256)
ret = 0;
break;
case 3072:
if (divLen == 256)
ret = 0;
break;
default:
break;
}
return ret;
}
#ifdef WOLFSSL_KEY_GEN
/* Create DSA key pair (&dsa->x, &dsa->y)
*
* Based on NIST FIPS 186-4,
* "B.1.1 Key Pair Generation Using Extra Random Bits"
*
* rng - pointer to initialized WC_RNG structure
* dsa - pointer to initialized DsaKey structure, will hold generated key
*
* return 0 on success, negative on error */
int wc_MakeDsaKey(WC_RNG *rng, DsaKey *dsa)
{
byte* cBuf;
int qSz, pSz, cSz, err;
#ifdef WOLFSSL_SMALL_STACK
mp_int *tmpQ = NULL;
#else
mp_int tmpQ[1];
#endif
if (rng == NULL || dsa == NULL)
return BAD_FUNC_ARG;
qSz = mp_unsigned_bin_size(&dsa->q);
pSz = mp_unsigned_bin_size(&dsa->p);
/* verify (L,N) pair bit lengths */
if (CheckDsaLN(pSz * WOLFSSL_BIT_SIZE, qSz * WOLFSSL_BIT_SIZE) != 0)
return BAD_FUNC_ARG;
/* generate extra 64 bits so that bias from mod function is negligible */
cSz = qSz + (64 / WOLFSSL_BIT_SIZE);
cBuf = (byte*)XMALLOC(cSz, dsa->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (cBuf == NULL) {
return MEMORY_E;
}
SAVE_VECTOR_REGISTERS();
#ifdef WOLFSSL_SMALL_STACK
if ((tmpQ = (mp_int *)XMALLOC(sizeof(*tmpQ), NULL, DYNAMIC_TYPE_WOLF_BIGINT)) == NULL)
err = MEMORY_E;
else
err = MP_OKAY;
if (err == MP_OKAY)
#endif
err = mp_init_multi(&dsa->x, &dsa->y, tmpQ, NULL, NULL, NULL);
if (err == MP_OKAY) {
do {
/* Generate N+64 bits (c) from RNG into &dsa->x, making sure
* result is positive.
* Hash_DRBG uses SHA-256 which matches maximum
* requested_security_strength of (L,N).
*/
err = wc_RNG_GenerateBlock(rng, cBuf, cSz);
if (err != MP_OKAY)
break;
err = mp_read_unsigned_bin(&dsa->x, cBuf, cSz);
if (err != MP_OKAY)
break;
} while (mp_cmp_d(&dsa->x, 1) != MP_GT);
}
/* tmpQ = q - 1 */
if (err == MP_OKAY)
err = mp_copy(&dsa->q, tmpQ);
if (err == MP_OKAY)
err = mp_sub_d(tmpQ, 1, tmpQ);
/* x = c mod (q-1), &dsa->x holds c */
if (err == MP_OKAY)
err = mp_mod(&dsa->x, tmpQ, &dsa->x);
/* x = c mod (q-1) + 1 */
if (err == MP_OKAY)
err = mp_add_d(&dsa->x, 1, &dsa->x);
/* public key : y = g^x mod p */
if (err == MP_OKAY)
err = mp_exptmod_ex(&dsa->g, &dsa->x, dsa->q.used, &dsa->p, &dsa->y);
if (err == MP_OKAY)
dsa->type = DSA_PRIVATE;
if (err != MP_OKAY) {
mp_clear(&dsa->x);
mp_clear(&dsa->y);
}
XFREE(cBuf, dsa->heap, DYNAMIC_TYPE_TMP_BUFFER);
#ifdef WOLFSSL_SMALL_STACK
if (tmpQ != NULL) {
mp_clear(tmpQ);
XFREE(tmpQ, dsa->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
#else
mp_clear(tmpQ);
#endif
RESTORE_VECTOR_REGISTERS();
return err;
}
/* modulus_size in bits */
int wc_MakeDsaParameters(WC_RNG *rng, int modulus_size, DsaKey *dsa)
{
#ifdef WOLFSSL_SMALL_STACK
mp_int *tmp = NULL, *tmp2 = NULL;
#else
mp_int tmp[1], tmp2[1];
#endif
int err, msize, qsize,
loop_check_prime = 0,
check_prime = MP_NO;
unsigned char *buf;
if (rng == NULL || dsa == NULL)
return BAD_FUNC_ARG;
/* set group size in bytes from modulus size
* FIPS 186-4 defines valid values (1024, 160) (2048, 256) (3072, 256)
*/
switch (modulus_size) {
#ifdef WOLFSSL_DSA_768_MODULUS
/* This key length is unsecure and only included for bind 9 testing */
case 768:
#endif
case 1024:
qsize = 20;
break;
case 2048:
case 3072:
qsize = 32;
break;
default:
return BAD_FUNC_ARG;
}
/* modulus size in bytes */
msize = modulus_size / WOLFSSL_BIT_SIZE;
/* allocate ram */
buf = (unsigned char *)XMALLOC(msize - qsize,
dsa->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (buf == NULL) {
return MEMORY_E;
}
/* make a random string that will be multiplied against q */
err = wc_RNG_GenerateBlock(rng, buf, msize - qsize);
if (err != MP_OKAY) {
XFREE(buf, dsa->heap, DYNAMIC_TYPE_TMP_BUFFER);
return err;
}
/* force magnitude */
buf[0] |= 0xC0;
/* force even */
buf[msize - qsize - 1] &= ~1;
#ifdef WOLFSSL_SMALL_STACK
if (((tmp = (mp_int *)XMALLOC(sizeof(*tmp), NULL, DYNAMIC_TYPE_WOLF_BIGINT)) == NULL) ||
((tmp2 = (mp_int *)XMALLOC(sizeof(*tmp2), NULL, DYNAMIC_TYPE_WOLF_BIGINT)) == NULL))
err = MEMORY_E;
else
err = MP_OKAY;
if (err == MP_OKAY)
#endif
err = mp_init_multi(tmp2, &dsa->p, &dsa->q, 0, 0, 0);
if (err == MP_OKAY)
err = mp_read_unsigned_bin(tmp2, buf, msize - qsize);
/* make our prime q */
if (err == MP_OKAY)
err = mp_rand_prime(&dsa->q, qsize, rng, NULL);
/* p = random * q */
if (err == MP_OKAY)
err = mp_mul(&dsa->q, tmp2, &dsa->p);
/* p = random * q + 1, so q is a prime divisor of p-1 */
if (err == MP_OKAY)
err = mp_add_d(&dsa->p, 1, &dsa->p);
if (err == MP_OKAY)
err = mp_init(tmp);
/* tmp = 2q */
if (err == MP_OKAY)
err = mp_add(&dsa->q, &dsa->q, tmp);
if (err == MP_OKAY) {
/* loop until p is prime */
while (check_prime == MP_NO) {
err = mp_prime_is_prime_ex(&dsa->p, 8, &check_prime, rng);
if (err != MP_OKAY)
break;
if (check_prime != MP_YES) {
/* p += 2q */
err = mp_add(tmp, &dsa->p, &dsa->p);
if (err != MP_OKAY)
break;
loop_check_prime++;
}
}
}
/* tmp2 += (2*loop_check_prime)
* to have p = (q * tmp2) + 1 prime
*/
if (err == MP_OKAY) {
if (loop_check_prime)
err = mp_add_d(tmp2, 2*loop_check_prime, tmp2);
}
if (err == MP_OKAY)
err = mp_init(&dsa->g);
/* find a value g for which g^tmp2 != 1 */
if (err == MP_OKAY)
err = mp_set(&dsa->g, 1);
if (err == MP_OKAY) {
do {
err = mp_add_d(&dsa->g, 1, &dsa->g);
if (err != MP_OKAY)
break;
err = mp_exptmod(&dsa->g, tmp2, &dsa->p, tmp);
if (err != MP_OKAY)
break;
} while (mp_cmp_d(tmp, 1) == MP_EQ);
}
/* at this point tmp generates a group of order q mod p */
if (err == MP_OKAY) {
#ifndef USE_FAST_MATH
/* Exchanging is quick when the data pointer can be copied. */
err = mp_exch(tmp, &dsa->g);
#else
err = mp_copy(tmp, &dsa->g);
#endif
}
XFREE(buf, dsa->heap, DYNAMIC_TYPE_TMP_BUFFER);
#ifdef WOLFSSL_SMALL_STACK
if (tmp != NULL) {
mp_clear(tmp);
XFREE(tmp, NULL, DYNAMIC_TYPE_WOLF_BIGINT);
}
if (tmp2 != NULL) {
mp_clear(tmp2);
XFREE(tmp2, NULL, DYNAMIC_TYPE_WOLF_BIGINT);
}
#else
mp_clear(tmp);
mp_clear(tmp2);
#endif
if (err != MP_OKAY) {
mp_clear(&dsa->q);
mp_clear(&dsa->p);
mp_clear(&dsa->g);
}
return err;
}
#endif /* WOLFSSL_KEY_GEN */
static int _DsaImportParamsRaw(DsaKey* dsa, const char* p, const char* q,
const char* g, int trusted, WC_RNG* rng)
{
int err;
word32 pSz, qSz;
if (dsa == NULL || p == NULL || q == NULL || g == NULL)
return BAD_FUNC_ARG;
/* read p */
err = mp_read_radix(&dsa->p, p, MP_RADIX_HEX);
if (err == MP_OKAY && !trusted) {
int isPrime = 1;
if (rng == NULL)
err = mp_prime_is_prime(&dsa->p, 8, &isPrime);
else
err = mp_prime_is_prime_ex(&dsa->p, 8, &isPrime, rng);
if (err == MP_OKAY) {
if (!isPrime)
err = DH_CHECK_PUB_E;
}
}
/* read q */
if (err == MP_OKAY)
err = mp_read_radix(&dsa->q, q, MP_RADIX_HEX);
/* read g */
if (err == MP_OKAY)
err = mp_read_radix(&dsa->g, g, MP_RADIX_HEX);
/* verify (L,N) pair bit lengths */
pSz = mp_unsigned_bin_size(&dsa->p);
qSz = mp_unsigned_bin_size(&dsa->q);
if (CheckDsaLN(pSz * WOLFSSL_BIT_SIZE, qSz * WOLFSSL_BIT_SIZE) != 0) {
WOLFSSL_MSG("Invalid DSA p or q parameter size");
err = BAD_FUNC_ARG;
}
if (err != MP_OKAY) {
mp_clear(&dsa->p);
mp_clear(&dsa->q);
mp_clear(&dsa->g);
}
return err;
}
/* Import raw DSA parameters into DsaKey structure for use with wc_MakeDsaKey(),
* input parameters (p,q,g) should be represented as ASCII hex values.
*
* dsa - pointer to initialized DsaKey structure
* p - DSA (p) parameter, ASCII hex string
* pSz - length of p
* q - DSA (q) parameter, ASCII hex string
* qSz - length of q
* g - DSA (g) parameter, ASCII hex string
* gSz - length of g
*
* returns 0 on success, negative upon failure
*/
int wc_DsaImportParamsRaw(DsaKey* dsa, const char* p, const char* q,
const char* g)
{
return _DsaImportParamsRaw(dsa, p, q, g, 1, NULL);
}
/* Import raw DSA parameters into DsaKey structure for use with wc_MakeDsaKey(),
* input parameters (p,q,g) should be represented as ASCII hex values. Check
* that the p value is probably prime.
*
* dsa - pointer to initialized DsaKey structure
* p - DSA (p) parameter, ASCII hex string
* pSz - length of p
* q - DSA (q) parameter, ASCII hex string
* qSz - length of q
* g - DSA (g) parameter, ASCII hex string
* gSz - length of g
* trusted - trust that p is OK
* rng - random number generator for the prime test
*
* returns 0 on success, negative upon failure
*/
int wc_DsaImportParamsRawCheck(DsaKey* dsa, const char* p, const char* q,
const char* g, int trusted, WC_RNG* rng)
{
return _DsaImportParamsRaw(dsa, p, q, g, trusted, rng);
}
/* Export raw DSA parameters from DsaKey structure
*
* dsa - pointer to initialized DsaKey structure
* p - output location for DSA (p) parameter
* pSz - [IN/OUT] size of output buffer for p, size of p
* q - output location for DSA (q) parameter
* qSz - [IN/OUT] size of output buffer for q, size of q
* g - output location for DSA (g) parameter
* gSz - [IN/OUT] size of output buffer for g, size of g
*
* If p, q, and g pointers are all passed in as NULL, the function
* will set pSz, qSz, and gSz to the required output buffer sizes for p,
* q, and g. In this case, the function will return LENGTH_ONLY_E.
*
* returns 0 on success, negative upon failure
*/
int wc_DsaExportParamsRaw(DsaKey* dsa, byte* p, word32* pSz,
byte* q, word32* qSz, byte* g, word32* gSz)
{
int err;
word32 pLen, qLen, gLen;
if (dsa == NULL || pSz == NULL || qSz == NULL || gSz == NULL)
return BAD_FUNC_ARG;
/* get required output buffer sizes */
pLen = mp_unsigned_bin_size(&dsa->p);
qLen = mp_unsigned_bin_size(&dsa->q);
gLen = mp_unsigned_bin_size(&dsa->g);
/* return buffer sizes and LENGTH_ONLY_E if buffers are NULL */
if (p == NULL && q == NULL && g == NULL) {
*pSz = pLen;
*qSz = qLen;
*gSz = gLen;
return LENGTH_ONLY_E;
}
if (p == NULL || q == NULL || g == NULL)
return BAD_FUNC_ARG;
/* export p */
if (*pSz < pLen) {
WOLFSSL_MSG("Output buffer for DSA p parameter too small, "
"required size placed into pSz");
*pSz = pLen;
return BUFFER_E;
}
*pSz = pLen;
err = mp_to_unsigned_bin(&dsa->p, p);
/* export q */
if (err == MP_OKAY) {
if (*qSz < qLen) {
WOLFSSL_MSG("Output buffer for DSA q parameter too small, "
"required size placed into qSz");
*qSz = qLen;
return BUFFER_E;
}
*qSz = qLen;
err = mp_to_unsigned_bin(&dsa->q, q);
}
/* export g */
if (err == MP_OKAY) {
if (*gSz < gLen) {
WOLFSSL_MSG("Output buffer for DSA g parameter too small, "
"required size placed into gSz");
*gSz = gLen;
return BUFFER_E;
}
*gSz = gLen;
err = mp_to_unsigned_bin(&dsa->g, g);
}
return err;
}
/* Export raw DSA key (x, y) from DsaKey structure
*
* dsa - pointer to initialized DsaKey structure
* x - output location for private key
* xSz - [IN/OUT] size of output buffer for x, size of x
* y - output location for public key
* ySz - [IN/OUT] size of output buffer for y, size of y
*
* If x and y pointers are all passed in as NULL, the function
* will set xSz and ySz to the required output buffer sizes for x
* and y. In this case, the function will return LENGTH_ONLY_E.
*
* returns 0 on success, negative upon failure
*/
int wc_DsaExportKeyRaw(DsaKey* dsa, byte* x, word32* xSz, byte* y, word32* ySz)
{
int err;
word32 xLen, yLen;
if (dsa == NULL || xSz == NULL || ySz == NULL)
return BAD_FUNC_ARG;
/* get required output buffer sizes */
xLen = mp_unsigned_bin_size(&dsa->x);
yLen = mp_unsigned_bin_size(&dsa->y);
/* return buffer sizes and LENGTH_ONLY_E if buffers are NULL */
if (x == NULL && y == NULL) {
*xSz = xLen;
*ySz = yLen;
return LENGTH_ONLY_E;
}
if (x == NULL || y == NULL)
return BAD_FUNC_ARG;
/* export x */
if (*xSz < xLen) {
WOLFSSL_MSG("Output buffer for DSA private key (x) too small, "
"required size placed into xSz");
*xSz = xLen;
return BUFFER_E;
}
*xSz = xLen;
err = mp_to_unsigned_bin(&dsa->x, x);
/* export y */
if (err == MP_OKAY) {
if (*ySz < yLen) {
WOLFSSL_MSG("Output buffer to DSA public key (y) too small, "
"required size placed into ySz");
*ySz = yLen;
return BUFFER_E;
}
*ySz = yLen;
err = mp_to_unsigned_bin(&dsa->y, y);
}
return err;
}
int wc_DsaSign(const byte* digest, byte* out, DsaKey* key, WC_RNG* rng)
{
#ifdef WOLFSSL_SMALL_STACK
mp_int *k = NULL;
mp_int *kInv = NULL;
mp_int *r = NULL;
mp_int *s = NULL;
mp_int *H = NULL;
#ifndef WOLFSSL_MP_INVMOD_CONSTANT_TIME
mp_int *b = NULL;
#endif
byte *buffer = NULL;
#else
mp_int k[1], kInv[1], r[1], s[1], H[1];
#ifndef WOLFSSL_MP_INVMOD_CONSTANT_TIME
mp_int b[1];
#endif
byte buffer[DSA_MAX_HALF_SIZE];
#endif
mp_int* qMinus1;
int ret = 0, halfSz = 0;
byte* tmp; /* initial output pointer */
if (digest == NULL || out == NULL || key == NULL || rng == NULL)
return BAD_FUNC_ARG;
SAVE_VECTOR_REGISTERS(return _svr_ret;);
do {
#ifdef WOLFSSL_SMALL_STACK
k = (mp_int *)XMALLOC(sizeof *k, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
kInv = (mp_int *)XMALLOC(sizeof *kInv, key->heap,
DYNAMIC_TYPE_TMP_BUFFER);
r = (mp_int *)XMALLOC(sizeof *r, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
s = (mp_int *)XMALLOC(sizeof *s, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
H = (mp_int *)XMALLOC(sizeof *H, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
#ifndef WOLFSSL_MP_INVMOD_CONSTANT_TIME
b = (mp_int *)XMALLOC(sizeof *b, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
buffer = (byte *)XMALLOC(DSA_MAX_HALF_SIZE, key->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if ((k == NULL) ||
(kInv == NULL) ||
(r == NULL) ||
(s == NULL) ||
(H == NULL)
#ifndef WOLFSSL_MP_INVMOD_CONSTANT_TIME
|| (b == NULL)
#endif
|| (buffer == NULL)) {
ret = MEMORY_E;
break;
}
#endif
#ifdef WOLFSSL_MP_INVMOD_CONSTANT_TIME
if (mp_init_multi(k, kInv, r, s, H, 0) != MP_OKAY)
#else
if (mp_init_multi(k, kInv, r, s, H, b) != MP_OKAY)
#endif
{
ret = MP_INIT_E;
break;
}
halfSz = min(DSA_MAX_HALF_SIZE, mp_unsigned_bin_size(&key->q));
/* NIST FIPS 186-4: Sections 4.1
* q is a prime divisor where 2^(N-1) < q < 2^N and N is the bit length
* of q.
* To satisfy this constraint if N is 0 then q would still need to be
* larger than 0.5, but since there is 0 bits in q it can not be any
* value.
*/
if (halfSz == 0) {
ret = BAD_FUNC_ARG;
break;
}
tmp = out;
qMinus1 = kInv;
/* NIST FIPS 186-4: B.2.2
* Per-Message Secret Number Generation by Testing Candidates
* Generate k in range [1, q-1].
* Check that k is less than q-1: range [0, q-2].
* Add 1 to k: range [1, q-1].
*/
if (mp_sub_d(&key->q, 1, qMinus1)) {
ret = MP_SUB_E;
break;
}
/* if q-1 is 0 or smaller, k will never end up being less than it */
if (mp_iszero(qMinus1) || mp_isneg(qMinus1)) {
ret = BAD_FUNC_ARG;
break;
}
do {
/* Step 4: generate k */
if ((ret = wc_RNG_GenerateBlock(rng, buffer, halfSz))) {
break;
}
/* Step 5 */
if (mp_read_unsigned_bin(k, buffer, halfSz) != MP_OKAY) {
ret = MP_READ_E;
break;
}
/* k is a random numnber and it should be less than q-1
* if k greater than repeat
*/
/* Step 6 */
} while (mp_cmp(k, qMinus1) != MP_LT);
if (ret != 0)
break;
/* Step 7 */
if (mp_add_d(k, 1, k) != MP_OKAY) {
ret = MP_MOD_E;
break;
}
#ifdef WOLFSSL_MP_INVMOD_CONSTANT_TIME
/* inverse k mod q */
if (mp_invmod(k, &key->q, kInv) != MP_OKAY) {
ret = MP_INVMOD_E;
break;
}
/* generate r, r = (g exp k mod p) mod q */
if (mp_exptmod_ex(&key->g, k, key->q.used, &key->p, r) != MP_OKAY) {
ret = MP_EXPTMOD_E;
break;
}
if (mp_mod(r, &key->q, r) != MP_OKAY) {
ret = MP_MOD_E;
break;
}
/* generate H from sha digest */
if (mp_read_unsigned_bin(H, digest,WC_SHA_DIGEST_SIZE) != MP_OKAY) {
ret = MP_READ_E;
break;
}
/* generate s, s = (kInv * (H + x*r)) % q */
if (mp_mul(&key->x, r, s) != MP_OKAY) {
ret = MP_MUL_E;
break;
}
if (mp_add(s, H, s) != MP_OKAY) {
ret = MP_ADD_E;
break;
}
if (mp_mulmod(s, kInv, &key->q, s) != MP_OKAY) {
ret = MP_MULMOD_E;
break;
}
#else
/* Blinding value
* Generate b in range [1, q-1].
*/
do {
if ((ret = wc_RNG_GenerateBlock(rng, buffer, halfSz))) {
break;
}
if (mp_read_unsigned_bin(b, buffer, halfSz) != MP_OKAY) {
ret = MP_READ_E;
break;
}
} while (mp_cmp(b, qMinus1) != MP_LT);
if (ret != 0)
break;
if (mp_add_d(b, 1, b) != MP_OKAY) {
ret = MP_MOD_E;
break;
}
/* set H from sha digest */
if (mp_read_unsigned_bin(H, digest, WC_SHA_DIGEST_SIZE) != MP_OKAY) {
ret = MP_READ_E;
break;
}
/* generate r, r = (g exp k mod p) mod q */
if (mp_exptmod_ex(&key->g, k, key->q.used, &key->p, r) != MP_OKAY) {
ret = MP_EXPTMOD_E;
break;
}
/* calculate s = (H + xr)/k = b.(H/k.b + x.r/k.b) */
/* k = k.b */
if (mp_mulmod(k, b, &key->q, k) != MP_OKAY) {
ret = MP_MULMOD_E;
break;
}
/* kInv = 1/k.b mod q */
if (mp_invmod(k, &key->q, kInv) != MP_OKAY) {
ret = MP_INVMOD_E;
break;
}
if (mp_mod(r, &key->q, r) != MP_OKAY) {
ret = MP_MOD_E;
break;
}
/* s = x.r */
if (mp_mul(&key->x, r, s) != MP_OKAY) {
ret = MP_MUL_E;
break;
}
/* s = x.r/k.b */
if (mp_mulmod(s, kInv, &key->q, s) != MP_OKAY) {
ret = MP_MULMOD_E;
break;
}
/* H = H/k.b */
if (mp_mulmod(H, kInv, &key->q, H) != MP_OKAY) {
ret = MP_MULMOD_E;
break;
}
/* s = H/k.b + x.r/k.b = (H + x.r)/k.b */
if (mp_add(s, H, s) != MP_OKAY) {
ret = MP_ADD_E;
break;
}
/* s = b.(e + x.r)/k.b = (e + x.r)/k */
if (mp_mulmod(s, b, &key->q, s) != MP_OKAY) {
ret = MP_MULMOD_E;
break;
}
/* s = (e + x.r)/k */
if (mp_mod(s, &key->q, s) != MP_OKAY) {
ret = MP_MOD_E;
break;
}
#endif
/* detect zero r or s */
if ((mp_iszero(r) == MP_YES) || (mp_iszero(s) == MP_YES)) {
ret = MP_ZERO_E;
break;
}
/* write out */
{
int rSz = mp_unsigned_bin_size(r);
int sSz = mp_unsigned_bin_size(s);
while (rSz++ < halfSz) {
*out++ = 0x00; /* pad front with zeros */
}
if (mp_to_unsigned_bin(r, out) != MP_OKAY)
ret = MP_TO_E;
else {
out = tmp + halfSz; /* advance to s in output */
while (sSz++ < halfSz) {
*out++ = 0x00; /* pad front with zeros */
}
ret = mp_to_unsigned_bin(s, out);
}
}
} while (0);
RESTORE_VECTOR_REGISTERS();
#ifdef WOLFSSL_SMALL_STACK
if (k) {
if (ret != MP_INIT_E)
mp_forcezero(k);
XFREE(k, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
if (kInv) {
if (ret != MP_INIT_E)
mp_forcezero(kInv);
XFREE(kInv, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
if (r) {
if (ret != MP_INIT_E)
mp_clear(r);
XFREE(r, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
if (s) {
if (ret != MP_INIT_E)
mp_clear(s);
XFREE(s, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
if (H) {
if (ret != MP_INIT_E)
mp_clear(H);
XFREE(H, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
#ifndef WOLFSSL_MP_INVMOD_CONSTANT_TIME
if (b) {
if (ret != MP_INIT_E)
mp_forcezero(b);
XFREE(b, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
if (buffer) {
ForceZero(buffer, halfSz);
XFREE(buffer, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
#else /* !WOLFSSL_SMALL_STACK */
if (ret != MP_INIT_E) {
ForceZero(buffer, halfSz);
mp_forcezero(kInv);
mp_forcezero(k);
#ifndef WOLFSSL_MP_INVMOD_CONSTANT_TIME
mp_forcezero(b);
#endif
mp_clear(H);
mp_clear(s);
mp_clear(r);
}
#endif
return ret;
}
int wc_DsaVerify(const byte* digest, const byte* sig, DsaKey* key, int* answer)
{
#ifdef WOLFSSL_SMALL_STACK
mp_int *w = NULL;
mp_int *u1 = NULL;
mp_int *u2 = NULL;
mp_int *v = NULL;
mp_int *r = NULL;
mp_int *s = NULL;
#else
mp_int w[1], u1[1], u2[1], v[1], r[1], s[1];
#endif
int ret = 0;
int qSz;
if (digest == NULL || sig == NULL || key == NULL || answer == NULL)
return BAD_FUNC_ARG;
do {
#ifdef WOLFSSL_SMALL_STACK
w = (mp_int *)XMALLOC(sizeof *w, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
u1 = (mp_int *)XMALLOC(sizeof *u1, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
u2 = (mp_int *)XMALLOC(sizeof *u2, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
v = (mp_int *)XMALLOC(sizeof *v, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
r = (mp_int *)XMALLOC(sizeof *r, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
s = (mp_int *)XMALLOC(sizeof *s, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if ((w == NULL) ||
(u1 == NULL) ||
(u2 == NULL) ||
(v == NULL) ||
(r == NULL) ||
(s == NULL)) {
ret = MEMORY_E;
break;
}
#endif
if (mp_init_multi(w, u1, u2, v, r, s) != MP_OKAY) {
ret = MP_INIT_E;
break;
}
qSz = mp_unsigned_bin_size(&key->q);
if (qSz <= 0) {
ret = BAD_FUNC_ARG;
break;
}
/* set r and s from signature */
if (mp_read_unsigned_bin(r, sig, qSz) != MP_OKAY ||
mp_read_unsigned_bin(s, sig + qSz, qSz) != MP_OKAY) {
ret = MP_READ_E;
break;
}
/* sanity checks */
if (mp_iszero(r) == MP_YES || mp_iszero(s) == MP_YES ||
mp_cmp(r, &key->q) != MP_LT || mp_cmp(s, &key->q) != MP_LT) {
ret = MP_ZERO_E;
break;
}
/* put H into u1 from sha digest */
if (mp_read_unsigned_bin(u1,digest,WC_SHA_DIGEST_SIZE) != MP_OKAY) {
ret = MP_READ_E;
break;
}
/* w = s invmod q */
if (mp_invmod(s, &key->q, w) != MP_OKAY) {
ret = MP_INVMOD_E;
break;
}
/* u1 = (H * w) % q */
if (mp_mulmod(u1, w, &key->q, u1) != MP_OKAY) {
ret = MP_MULMOD_E;
break;
}
/* u2 = (r * w) % q */
if (mp_mulmod(r, w, &key->q, u2) != MP_OKAY) {
ret = MP_MULMOD_E;
break;
}
/* verify v = ((g^u1 * y^u2) mod p) mod q */
if (mp_exptmod(&key->g, u1, &key->p, u1) != MP_OKAY) {
ret = MP_EXPTMOD_E;
break;
}
if (mp_exptmod(&key->y, u2, &key->p, u2) != MP_OKAY) {
ret = MP_EXPTMOD_E;
break;
}
if (mp_mulmod(u1, u2, &key->p, v) != MP_OKAY) {
ret = MP_MULMOD_E;
break;
}
if (mp_mod(v, &key->q, v) != MP_OKAY) {
ret = MP_MULMOD_E;
break;
}
/* do they match */
if (mp_cmp(r, v) == MP_EQ)
*answer = 1;
else
*answer = 0;
} while (0);
#ifdef WOLFSSL_SMALL_STACK
if (s) {
if (ret != MP_INIT_E)
mp_clear(s);
XFREE(s, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
if (r) {
if (ret != MP_INIT_E)
mp_clear(r);
XFREE(r, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
if (u1) {
if (ret != MP_INIT_E)
mp_clear(u1);
XFREE(u1, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
if (u2) {
if (ret != MP_INIT_E)
mp_clear(u2);
XFREE(u2, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
if (w) {
if (ret != MP_INIT_E)
mp_clear(w);
XFREE(w, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
if (v) {
if (ret != MP_INIT_E)
mp_clear(v);
XFREE(v, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
#else
if (ret != MP_INIT_E) {
mp_clear(s);
mp_clear(r);
mp_clear(u1);
mp_clear(u2);
mp_clear(w);
mp_clear(v);
}
#endif
return ret;
}
#endif /* NO_DSA */