Files
fmt/include/fmt/format-inl.h

710 lines
23 KiB
C
Raw Normal View History

2018-01-06 09:09:50 -08:00
// Formatting library for C++
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
2012-12-07 08:31:09 -08:00
2018-03-21 07:50:59 -07:00
#ifndef FMT_FORMAT_INL_H_
#define FMT_FORMAT_INL_H_
2018-01-20 10:28:10 -08:00
#include "format.h"
2013-01-14 15:16:20 -08:00
2014-04-30 06:55:21 -07:00
#include <string.h>
2012-12-12 09:17:28 -08:00
#include <cctype>
2014-07-01 16:23:50 -07:00
#include <cerrno>
2014-04-24 12:37:06 -07:00
#include <climits>
2013-09-07 10:15:08 -07:00
#include <cmath>
#include <cstdarg>
#include <cstddef> // for std::ptrdiff_t
2018-08-26 08:12:35 -07:00
#include <cstring> // for std::memmove
#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
# include <locale>
#endif
2013-09-07 10:15:08 -07:00
#if FMT_USE_WINDOWS_H
# if !defined(FMT_HEADER_ONLY) && !defined(WIN32_LEAN_AND_MEAN)
# define WIN32_LEAN_AND_MEAN
# endif
# if defined(NOMINMAX) || defined(FMT_WIN_MINMAX)
# include <windows.h>
# else
# define NOMINMAX
# include <windows.h>
# undef NOMINMAX
# endif
#endif
#if FMT_EXCEPTIONS
# define FMT_TRY try
# define FMT_CATCH(x) catch (x)
#else
# define FMT_TRY if (true)
# define FMT_CATCH(x) if (false)
#endif
#ifdef _MSC_VER
2014-03-11 18:56:24 +00:00
# pragma warning(push)
# pragma warning(disable: 4127) // conditional expression is constant
# pragma warning(disable: 4702) // unreachable code
2015-03-16 18:53:14 -07:00
// Disable deprecation warning for strerror. The latter is not called but
// MSVC fails to detect it.
# pragma warning(disable: 4996)
2014-03-11 18:56:24 +00:00
#endif
// Dummy implementations of strerror_r and strerror_s called if corresponding
// system functions are not available.
2018-02-10 06:28:33 -08:00
inline fmt::internal::null<> strerror_r(int, char *, ...) {
2017-02-19 08:41:38 -08:00
return fmt::internal::null<>();
}
2018-02-10 06:28:33 -08:00
inline fmt::internal::null<> strerror_s(char *, std::size_t, ...) {
2017-02-19 08:41:38 -08:00
return fmt::internal::null<>();
}
2018-05-12 08:33:51 -07:00
FMT_BEGIN_NAMESPACE
2016-06-14 08:11:33 -07:00
2013-09-07 10:15:08 -07:00
namespace {
#ifndef _MSC_VER
# define FMT_SNPRINTF snprintf
#else // _MSC_VER
2014-08-19 08:47:38 -07:00
inline int fmt_snprintf(char *buffer, size_t size, const char *format, ...) {
va_list args;
va_start(args, format);
int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args);
va_end(args);
return result;
}
# define FMT_SNPRINTF fmt_snprintf
2013-09-07 10:15:08 -07:00
#endif // _MSC_VER
#if defined(_WIN32) && defined(__MINGW32__) && !defined(__NO_ISOCEXT)
# define FMT_SWPRINTF snwprintf
#else
# define FMT_SWPRINTF swprintf
#endif // defined(_WIN32) && defined(__MINGW32__) && !defined(__NO_ISOCEXT)
2018-01-14 14:15:59 -08:00
typedef void (*FormatFunc)(internal::buffer &, int, string_view);
// Portable thread-safe version of strerror.
// Sets buffer to point to a string describing the error code.
// This can be either a pointer to a string stored in buffer,
// or a pointer to some static immutable string.
// Returns one of the following values:
// 0 - success
// ERANGE - buffer is not large enough to store the error message
// other - failure
// Buffer should be at least of size 1.
int safe_strerror(
int error_code, char *&buffer, std::size_t buffer_size) FMT_NOEXCEPT {
FMT_ASSERT(buffer != FMT_NULL && buffer_size != 0, "invalid buffer");
2018-05-19 08:57:31 -07:00
class dispatcher {
private:
int error_code_;
char *&buffer_;
std::size_t buffer_size_;
2015-03-21 07:53:39 -07:00
// A noop assignment operator to avoid bogus warnings.
2018-05-19 08:57:31 -07:00
void operator=(const dispatcher &) {}
2015-03-21 07:53:39 -07:00
// Handle the result of XSI-compliant version of strerror_r.
int handle(int result) {
// glibc versions before 2.13 return result in errno.
return result == -1 ? errno : result;
}
// Handle the result of GNU-specific version of strerror_r.
int handle(char *message) {
// If the buffer is full then the message is probably truncated.
if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1)
return ERANGE;
buffer_ = message;
return 0;
}
// Handle the case when strerror_r is not available.
2017-02-19 08:41:38 -08:00
int handle(internal::null<>) {
return fallback(strerror_s(buffer_, buffer_size_, error_code_));
}
// Fallback to strerror_s when strerror_r is not available.
int fallback(int result) {
// If the buffer is full then the message is probably truncated.
return result == 0 && strlen(buffer_) == buffer_size_ - 1 ?
ERANGE : result;
}
// Fallback to strerror if strerror_r and strerror_s are not available.
2017-02-19 08:41:38 -08:00
int fallback(internal::null<>) {
errno = 0;
buffer_ = strerror(error_code_);
return errno;
}
public:
2018-05-19 08:57:31 -07:00
dispatcher(int err_code, char *&buf, std::size_t buf_size)
: error_code_(err_code), buffer_(buf), buffer_size_(buf_size) {}
int run() {
return handle(strerror_r(error_code_, buffer_, buffer_size_));
}
};
2018-05-19 08:57:31 -07:00
return dispatcher(error_code, buffer, buffer_size).run();
}
2018-01-14 14:15:59 -08:00
void format_error_code(internal::buffer &out, int error_code,
string_view message) FMT_NOEXCEPT {
// Report error code making sure that the output fits into
// inline_buffer_size to avoid dynamic memory allocation and potential
// bad_alloc.
out.resize(0);
static const char SEP[] = ": ";
static const char ERROR_STR[] = "error ";
// Subtract 2 to account for terminating null characters in SEP and ERROR_STR.
std::size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2;
2017-02-19 06:46:51 -08:00
typedef internal::int_traits<int>::main_type main_type;
main_type abs_value = static_cast<main_type>(error_code);
if (internal::is_negative(error_code)) {
abs_value = 0 - abs_value;
++error_code_size;
}
error_code_size += internal::count_digits(abs_value);
2018-01-14 07:19:23 -08:00
writer w(out);
if (message.size() <= inline_buffer_size - error_code_size) {
w.write(message);
w.write(SEP);
2017-01-22 07:40:21 -08:00
}
w.write(ERROR_STR);
w.write(error_code);
assert(out.size() <= inline_buffer_size);
}
void report_error(FormatFunc func, int error_code,
string_view message) FMT_NOEXCEPT {
memory_buffer full_message;
2014-09-05 08:04:26 -07:00
func(full_message, error_code, message);
// Use Writer::data instead of Writer::c_str to avoid potential memory
// allocation.
std::fwrite(full_message.data(), full_message.size(), 1, stderr);
std::fputc('\n', stderr);
}
} // namespace
#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
2018-05-20 17:16:34 -07:00
class locale {
private:
std::locale locale_;
public:
explicit locale(std::locale loc = std::locale()) : locale_(loc) {}
std::locale get() { return locale_; }
};
2018-07-21 09:13:21 -07:00
FMT_FUNC size_t internal::count_code_points(u8string_view s) {
const char8_t *data = s.data();
int num_code_points = 0;
for (size_t i = 0, size = s.size(); i != size; ++i) {
if ((data[i].value & 0xc0) != 0x80)
++num_code_points;
}
return num_code_points;
}
template <typename Char>
2017-12-26 17:22:07 -08:00
FMT_FUNC Char internal::thousands_sep(locale_provider *lp) {
std::locale loc = lp ? lp->locale().get() : std::locale();
return std::use_facet<std::numpunct<Char>>(loc).thousands_sep();
}
#else
template <typename Char>
FMT_FUNC Char internal::thousands_sep(locale_provider *lp) {
return FMT_STATIC_THOUSANDS_SEPARATOR;
}
#endif
2017-02-19 08:41:38 -08:00
FMT_FUNC void system_error::init(
2017-12-03 07:32:04 -08:00
int err_code, string_view format_str, format_args args) {
2014-12-09 07:45:54 -08:00
error_code_ = err_code;
memory_buffer buffer;
format_system_error(buffer, err_code, vformat(format_str, args));
2014-06-30 14:26:29 -07:00
std::runtime_error &base = *this;
base = std::runtime_error(to_string(buffer));
2014-06-30 14:26:29 -07:00
}
2018-04-21 17:26:24 -07:00
namespace internal {
template <typename T>
2018-04-21 17:26:24 -07:00
int char_traits<char>::format_float(
2018-05-28 20:16:30 -07:00
char *buffer, std::size_t size, const char *format, int precision, T value) {
return precision < 0 ?
2018-05-28 20:16:30 -07:00
FMT_SNPRINTF(buffer, size, format, value) :
FMT_SNPRINTF(buffer, size, format, precision, value);
}
template <typename T>
2018-04-21 17:26:24 -07:00
int char_traits<wchar_t>::format_float(
2018-05-28 20:16:30 -07:00
wchar_t *buffer, std::size_t size, const wchar_t *format, int precision,
T value) {
return precision < 0 ?
2018-05-28 20:16:30 -07:00
FMT_SWPRINTF(buffer, size, format, value) :
FMT_SWPRINTF(buffer, size, format, precision, value);
}
template <typename T>
2018-04-21 17:26:24 -07:00
const char basic_data<T>::DIGITS[] =
"0001020304050607080910111213141516171819"
"2021222324252627282930313233343536373839"
"4041424344454647484950515253545556575859"
"6061626364656667686970717273747576777879"
"8081828384858687888990919293949596979899";
2014-02-19 12:43:55 -08:00
2014-02-19 13:02:22 -08:00
#define FMT_POWERS_OF_10(factor) \
factor * 10, \
factor * 100, \
factor * 1000, \
factor * 10000, \
factor * 100000, \
factor * 1000000, \
factor * 10000000, \
factor * 100000000, \
factor * 1000000000
template <typename T>
2018-04-21 17:26:24 -07:00
const uint32_t basic_data<T>::POWERS_OF_10_32[] = {
2018-08-25 16:08:32 -07:00
1, FMT_POWERS_OF_10(1)
};
template <typename T>
const uint32_t basic_data<T>::ZERO_OR_POWERS_OF_10_32[] = {
0, FMT_POWERS_OF_10(1)
};
template <typename T>
2018-08-25 16:08:32 -07:00
const uint64_t basic_data<T>::ZERO_OR_POWERS_OF_10_64[] = {
0,
2014-02-19 13:02:22 -08:00
FMT_POWERS_OF_10(1),
2017-08-26 09:09:43 -07:00
FMT_POWERS_OF_10(1000000000ull),
10000000000000000000ull
};
2018-04-29 06:33:05 -07:00
// Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
// These are generated by support/compute-powers.py.
template <typename T>
const uint64_t basic_data<T>::POW10_SIGNIFICANDS[] = {
2018-08-15 06:54:43 -07:00
0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76,
0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df,
0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c,
0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5,
0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57,
0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7,
0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e,
0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996,
0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126,
0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053,
0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f,
0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b,
0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06,
0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb,
0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000,
0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984,
0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068,
0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8,
0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758,
0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85,
0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d,
0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25,
0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2,
0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a,
0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410,
0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129,
0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85,
0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841,
0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b,
2018-04-29 06:33:05 -07:00
};
// Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
// to significands above.
template <typename T>
const int16_t basic_data<T>::POW10_EXPONENTS[] = {
-1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954,
-927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661,
-635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369,
-343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77,
-50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216,
242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508,
534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800,
827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066
};
template <typename T> const char basic_data<T>::RESET_COLOR[] = "\x1b[0m";
template <typename T> const wchar_t basic_data<T>::WRESET_COLOR[] = L"\x1b[0m";
2018-04-21 17:26:24 -07:00
FMT_FUNC fp operator*(fp x, fp y) {
// Multiply 32-bit parts of significands.
uint64_t mask = (1ULL << 32) - 1;
uint64_t a = x.f >> 32, b = x.f & mask;
uint64_t c = y.f >> 32, d = y.f & mask;
uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
// Compute mid 64-bit of result and round.
uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
return fp(ac + (ad >> 32) + (bc >> 32) + (mid >> 32), x.e + y.e + 64);
2018-04-21 17:26:24 -07:00
}
FMT_FUNC fp get_cached_power(int min_exponent, int &pow10_exponent) {
const double one_over_log2_10 = 0.30102999566398114; // 1 / log2(10)
int index = static_cast<int>(std::ceil(
2018-05-28 11:25:07 -07:00
(min_exponent + fp::significand_size - 1) * one_over_log2_10));
// Decimal exponent of the first (smallest) cached power of 10.
const int first_dec_exp = -348;
2018-08-15 06:54:43 -07:00
// Difference between 2 consecutive decimal exponents in cached powers of 10.
const int dec_exp_step = 8;
index = (index - first_dec_exp - 1) / dec_exp_step + 1;
pow10_exponent = first_dec_exp + index * dec_exp_step;
return fp(data::POW10_SIGNIFICANDS[index], data::POW10_EXPONENTS[index]);
}
2018-08-25 16:08:32 -07:00
// Writes the exponent exp in the form "[-]d{1,3}" to buffer.
2018-08-26 08:12:35 -07:00
FMT_FUNC char *write_exponent(char *buffer, int exp) {
FMT_ASSERT(-1000 < exp && exp < 1000, "exponent out of range");
if (exp < 0) {
*buffer++ = '-';
exp = -exp;
}
if (exp >= 100) {
*buffer++ = '0' + static_cast<char>(exp / 100);
exp %= 100;
const char *d = data::DIGITS + exp * 2;
*buffer++ = d[0];
*buffer++ = d[1];
} else if (exp >= 10) {
const char *d = data::DIGITS + exp * 2;
*buffer++ = d[0];
*buffer++ = d[1];
} else {
*buffer++ = '0' + static_cast<char>(exp);
}
return buffer;
}
2018-08-25 16:08:32 -07:00
// Generates output using Grisu2 digit-gen algorithm.
FMT_FUNC void grisu2_gen_digits(
const fp &scaled_value, const fp &scaled_upper, uint64_t delta,
char *buffer, size_t &size, int &dec_exp) {
internal::fp one(1ull << -scaled_upper.e, scaled_upper.e);
2018-08-26 08:12:35 -07:00
// hi (p1 in Grisu) contains the most significant digits of scaled_upper.
// hi = floor(scaled_upper / one).
uint32_t hi = static_cast<uint32_t>(scaled_upper.f >> -one.e);
// lo (p2 in Grisu) contains the least significants digits of scaled_upper.
// lo = scaled_upper mod 1.
uint64_t lo = scaled_upper.f & (one.f - 1);
2018-08-25 16:08:32 -07:00
size = 0;
2018-08-26 08:12:35 -07:00
auto exp = count_digits(hi); // kappa in Grisu.
while (exp > 0) {
2018-08-25 16:08:32 -07:00
uint32_t digit = 0;
// This optimization by miloyip reduces the number of integer divisions by
// one per iteration.
2018-08-26 08:12:35 -07:00
switch (exp) {
2018-08-25 16:08:32 -07:00
case 10: digit = hi / 1000000000; hi %= 1000000000; break;
case 9: digit = hi / 100000000; hi %= 100000000; break;
case 8: digit = hi / 10000000; hi %= 10000000; break;
case 7: digit = hi / 1000000; hi %= 1000000; break;
case 6: digit = hi / 100000; hi %= 100000; break;
case 5: digit = hi / 10000; hi %= 10000; break;
case 4: digit = hi / 1000; hi %= 1000; break;
case 3: digit = hi / 100; hi %= 100; break;
case 2: digit = hi / 10; hi %= 10; break;
case 1: digit = hi; hi = 0; break;
default:
FMT_ASSERT(false, "invalid number of digits");
}
if (digit != 0 || size != 0)
buffer[size++] = '0' + static_cast<char>(digit);
2018-08-26 08:12:35 -07:00
--exp;
2018-08-25 16:08:32 -07:00
uint64_t remainder = (static_cast<uint64_t>(hi) << -one.e) + lo;
if (remainder <= delta) {
2018-08-26 08:12:35 -07:00
dec_exp += exp;
2018-08-25 16:08:32 -07:00
// TODO: use scaled_value
(void)scaled_value;
return;
}
}
for (;;) {
lo *= 10;
delta *= 10;
char digit = static_cast<char>(lo >> -one.e);
if (digit != 0 || size != 0)
buffer[size++] = '0' + digit;
lo &= one.f - 1;
2018-08-26 08:12:35 -07:00
--exp;
2018-08-25 16:08:32 -07:00
if (lo < delta) {
2018-08-26 08:12:35 -07:00
dec_exp += exp;
2018-08-25 16:08:32 -07:00
return;
}
}
}
2018-08-26 08:12:35 -07:00
// Prettifies the output of the Grisu2 algorithm.
// The number is given as v = buffer * 10^exp.
FMT_FUNC void grisu2_prettify(char *buffer, size_t &size, int exp) {
2018-08-26 08:12:35 -07:00
// 10^(full_exp - 1) <= v <= 10^full_exp.
int full_exp = static_cast<int>(size) + exp;
// Insert a decimal point after the first digit and add an exponent.
std::memmove(buffer + 2, buffer + 1, size - 1);
buffer[1] = '.';
char *p = buffer + size + 1;
*p++ = 'e';
size = to_unsigned(write_exponent(p, full_exp - 1) - buffer);
2018-08-26 08:12:35 -07:00
}
// Formats value using Grisu2 algorithm. Grisu2 doesn't give any guarantees on
// the shortness of the result.
FMT_FUNC void grisu2_format(double value, char *buffer, size_t &size) {
2018-08-25 16:08:32 -07:00
fp fp_value(value);
2018-08-26 08:12:35 -07:00
fp lower, upper; // w^- and w^+ in the Grisu paper.
2018-08-25 16:08:32 -07:00
fp_value.compute_boundaries(lower, upper);
// Find a cached power of 10 close to 1 / upper.
int dec_exp = 0; // K in Grisu.
2018-08-26 08:12:35 -07:00
const int min_exp = -60; // alpha in Grisu.
auto dec_pow = get_cached_power( // \tilde{c}_{-k} in Grisu.
2018-08-25 16:08:32 -07:00
min_exp - (upper.e + fp::significand_size), dec_exp);
2018-08-26 08:12:35 -07:00
dec_exp = -dec_exp;
2018-08-25 16:08:32 -07:00
fp_value.normalize();
fp scaled_value = fp_value * dec_pow;
2018-08-26 08:12:35 -07:00
fp scaled_lower = lower * dec_pow; // \tilde{M}^- in Grisu.
fp scaled_upper = upper * dec_pow; // \tilde{M}^+ in Grisu.
++scaled_lower.f; // \tilde{M}^- + 1 ulp -> M^-_{\uparrow}.
--scaled_upper.f; // \tilde{M}^+ - 1 ulp -> M^+_{\downarrow}.
2018-08-25 16:08:32 -07:00
uint64_t delta = scaled_upper.f - scaled_lower.f;
grisu2_gen_digits(scaled_value, scaled_upper, delta, buffer, size, dec_exp);
grisu2_prettify(buffer, size, dec_exp);
2018-08-25 16:08:32 -07:00
}
2018-04-21 17:26:24 -07:00
} // namespace internal
#if FMT_USE_WINDOWS_H
2014-04-30 07:23:43 -07:00
2017-02-19 06:46:51 -08:00
FMT_FUNC internal::utf8_to_utf16::utf8_to_utf16(string_view s) {
static const char ERROR_MSG[] = "cannot convert string from UTF-8 to UTF-16";
2015-08-07 07:34:58 -07:00
if (s.size() > INT_MAX)
2017-02-19 08:41:38 -08:00
FMT_THROW(windows_error(ERROR_INVALID_PARAMETER, ERROR_MSG));
2015-08-07 07:34:58 -07:00
int s_size = static_cast<int>(s.size());
if (s_size == 0) {
// MultiByteToWideChar does not support zero length, handle separately.
buffer_.resize(1);
buffer_[0] = 0;
return;
}
2015-08-07 07:34:58 -07:00
int length = MultiByteToWideChar(
2018-01-20 18:37:57 -08:00
CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, FMT_NULL, 0);
2014-04-30 07:23:43 -07:00
if (length == 0)
2017-02-19 08:41:38 -08:00
FMT_THROW(windows_error(GetLastError(), ERROR_MSG));
buffer_.resize(length + 1);
2014-04-30 07:23:43 -07:00
length = MultiByteToWideChar(
2015-08-07 07:34:58 -07:00
CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, &buffer_[0], length);
2014-04-30 07:23:43 -07:00
if (length == 0)
2017-02-19 08:41:38 -08:00
FMT_THROW(windows_error(GetLastError(), ERROR_MSG));
buffer_[length] = 0;
2014-04-30 07:23:43 -07:00
}
2017-02-19 08:41:38 -08:00
FMT_FUNC internal::utf16_to_utf8::utf16_to_utf8(wstring_view s) {
if (int error_code = convert(s)) {
2017-02-19 08:41:38 -08:00
FMT_THROW(windows_error(error_code,
"cannot convert string from UTF-16 to UTF-8"));
2014-04-30 07:23:43 -07:00
}
}
2017-02-19 08:41:38 -08:00
FMT_FUNC int internal::utf16_to_utf8::convert(wstring_view s) {
2015-08-07 07:08:46 -07:00
if (s.size() > INT_MAX)
return ERROR_INVALID_PARAMETER;
int s_size = static_cast<int>(s.size());
if (s_size == 0) {
// WideCharToMultiByte does not support zero length, handle separately.
buffer_.resize(1);
buffer_[0] = 0;
return 0;
}
2018-01-20 18:37:57 -08:00
int length = WideCharToMultiByte(
CP_UTF8, 0, s.data(), s_size, FMT_NULL, 0, FMT_NULL, FMT_NULL);
2014-04-30 07:23:43 -07:00
if (length == 0)
return GetLastError();
buffer_.resize(length + 1);
2014-04-30 07:23:43 -07:00
length = WideCharToMultiByte(
2018-01-20 18:37:57 -08:00
CP_UTF8, 0, s.data(), s_size, &buffer_[0], length, FMT_NULL, FMT_NULL);
2014-04-30 07:23:43 -07:00
if (length == 0)
return GetLastError();
buffer_[length] = 0;
2014-04-30 07:23:43 -07:00
return 0;
}
2017-02-19 08:41:38 -08:00
FMT_FUNC void windows_error::init(
int err_code, string_view format_str, format_args args) {
2015-02-17 10:11:42 +08:00
error_code_ = err_code;
2017-02-19 06:46:51 -08:00
memory_buffer buffer;
2017-02-17 06:38:53 -08:00
internal::format_windows_error(buffer, err_code, vformat(format_str, args));
2014-06-30 14:26:29 -07:00
std::runtime_error &base = *this;
2017-02-17 06:38:53 -08:00
base = std::runtime_error(to_string(buffer));
2014-06-30 14:26:29 -07:00
}
FMT_FUNC void internal::format_windows_error(
2018-01-15 08:22:31 -08:00
internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT {
FMT_TRY {
2018-01-06 09:09:50 -08:00
wmemory_buffer buf;
buf.resize(inline_buffer_size);
for (;;) {
2018-01-06 09:09:50 -08:00
wchar_t *system_message = &buf[0];
2016-10-22 08:04:20 -07:00
int result = FormatMessageW(
FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
2018-01-20 18:37:57 -08:00
FMT_NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
system_message, static_cast<uint32_t>(buf.size()), FMT_NULL);
if (result != 0) {
2017-02-19 08:41:38 -08:00
utf16_to_utf8 utf8_message;
if (utf8_message.convert(system_message) == ERROR_SUCCESS) {
2018-01-14 07:19:23 -08:00
writer w(out);
2017-02-17 06:38:53 -08:00
w.write(message);
w.write(": ");
w.write(utf8_message);
return;
}
break;
}
if (GetLastError() != ERROR_INSUFFICIENT_BUFFER)
break; // Can't get error message, report error code instead.
2018-01-06 09:09:50 -08:00
buf.resize(buf.size() * 2);
}
} FMT_CATCH(...) {}
2018-01-06 09:09:50 -08:00
format_error_code(out, error_code, message);
}
#endif // FMT_USE_WINDOWS_H
FMT_FUNC void format_system_error(
2018-01-14 14:15:59 -08:00
internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT {
FMT_TRY {
memory_buffer buf;
buf.resize(inline_buffer_size);
for (;;) {
char *system_message = &buf[0];
int result = safe_strerror(error_code, system_message, buf.size());
if (result == 0) {
2018-01-14 07:19:23 -08:00
writer w(out);
w.write(message);
w.write(": ");
w.write(system_message);
return;
}
if (result != ERANGE)
break; // Can't get error message, report error code instead.
buf.resize(buf.size() * 2);
}
} FMT_CATCH(...) {}
2018-02-01 16:49:47 -08:00
format_error_code(out, error_code, message);
}
2015-03-01 18:19:56 -08:00
template <typename Char>
2017-02-19 06:46:51 -08:00
void basic_fixed_buffer<Char>::grow(std::size_t) {
2015-03-01 18:19:56 -08:00
FMT_THROW(std::runtime_error("buffer overflow"));
}
FMT_FUNC void internal::error_handler::on_error(const char *message) {
FMT_THROW(format_error(message));
}
FMT_FUNC void report_system_error(
int error_code, fmt::string_view message) FMT_NOEXCEPT {
report_error(format_system_error, error_code, message);
}
#if FMT_USE_WINDOWS_H
FMT_FUNC void report_windows_error(
int error_code, fmt::string_view message) FMT_NOEXCEPT {
report_error(internal::format_windows_error, error_code, message);
}
2014-04-30 12:38:17 -07:00
#endif
2017-12-03 07:32:04 -08:00
FMT_FUNC void vprint(std::FILE *f, string_view format_str, format_args args) {
memory_buffer buffer;
vformat_to(buffer, format_str, args);
std::fwrite(buffer.data(), 1, buffer.size(), f);
2014-06-28 21:56:40 -07:00
}
FMT_FUNC void vprint(std::FILE *f, wstring_view format_str, wformat_args args) {
wmemory_buffer buffer;
vformat_to(buffer, format_str, args);
std::fwrite(buffer.data(), sizeof(wchar_t), buffer.size(), f);
}
2017-12-03 07:32:04 -08:00
FMT_FUNC void vprint(string_view format_str, format_args args) {
2016-08-26 17:23:13 -07:00
vprint(stdout, format_str, args);
2014-09-25 07:08:25 -07:00
}
FMT_FUNC void vprint(wstring_view format_str, wformat_args args) {
vprint(stdout, format_str, args);
}
#ifndef FMT_EXTENDED_COLORS
2018-03-04 11:25:40 -08:00
FMT_FUNC void vprint_colored(color c, string_view format, format_args args) {
char escape[] = "\x1b[30m";
escape[3] = static_cast<char>('0' + c);
std::fputs(escape, stdout);
2016-08-26 17:23:13 -07:00
vprint(format, args);
std::fputs(internal::data::RESET_COLOR, stdout);
}
FMT_FUNC void vprint_colored(color c, wstring_view format, wformat_args args) {
wchar_t escape[] = L"\x1b[30m";
escape[3] = static_cast<wchar_t>('0' + c);
std::fputws(escape, stdout);
vprint(format, args);
std::fputws(internal::data::WRESET_COLOR, stdout);
}
#else
namespace internal {
FMT_CONSTEXPR void to_esc(uint8_t c, char out[], int offset) {
out[offset + 0] = static_cast<char>('0' + c / 100);
out[offset + 1] = static_cast<char>('0' + c / 10 % 10);
out[offset + 2] = static_cast<char>('0' + c % 10);
}
} // namespace internal
FMT_FUNC void vprint_rgb(rgb fd, string_view format, format_args args) {
char escape_fd[] = "\x1b[38;2;000;000;000m";
internal::to_esc(fd.r, escape_fd, 7);
internal::to_esc(fd.g, escape_fd, 11);
internal::to_esc(fd.b, escape_fd, 15);
std::fputs(escape_fd, stdout);
vprint(format, args);
std::fputs(internal::data::RESET_COLOR, stdout);
}
FMT_FUNC void vprint_rgb(rgb fd, rgb bg, string_view format, format_args args) {
char escape_fd[] = "\x1b[38;2;000;000;000m"; // foreground color
char escape_bg[] = "\x1b[48;2;000;000;000m"; // background color
internal::to_esc(fd.r, escape_fd, 7);
internal::to_esc(fd.g, escape_fd, 11);
internal::to_esc(fd.b, escape_fd, 15);
internal::to_esc(bg.r, escape_bg, 7);
internal::to_esc(bg.g, escape_bg, 11);
internal::to_esc(bg.b, escape_bg, 15);
std::fputs(escape_fd, stdout);
std::fputs(escape_bg, stdout);
vprint(format, args);
std::fputs(internal::data::RESET_COLOR, stdout);
}
#endif
#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
2017-12-26 17:22:07 -08:00
FMT_FUNC locale locale_provider::locale() { return fmt::locale(); }
#endif
2017-12-26 17:22:07 -08:00
2018-05-12 08:33:51 -07:00
FMT_END_NAMESPACE
#ifdef _MSC_VER
2014-03-11 18:56:24 +00:00
# pragma warning(pop)
#endif
2018-03-21 07:50:59 -07:00
#endif // FMT_FORMAT_INL_H_