refactor: CPOs refactored to be more constrained

This commit is contained in:
Mateusz Pusz
2024-11-26 13:02:17 +01:00
parent febdaec85e
commit 083ef6adb1
2 changed files with 110 additions and 110 deletions

View File

@ -105,112 +105,6 @@ constexpr bool is_vector = false;
template<typename Rep> template<typename Rep>
constexpr bool is_tensor = false; constexpr bool is_tensor = false;
MP_UNITS_EXPORT_END
namespace detail::norm_impl {
void norm() = delete; // poison pill
struct norm_t {
template<typename T>
[[nodiscard]] constexpr auto operator()(const T& vec) const
{
if constexpr (requires { vec.norm(); })
return vec.norm();
else if constexpr (requires { norm(vec); })
return norm(vec);
else if constexpr (requires { vec.magnitude(); })
return vec.magnitude();
else if constexpr (requires { magnitude(vec); })
return magnitude(vec);
// TODO Is it a good idea to enable fundamental types to represent vector quantities?
// else if constexpr (is_scalar<T>)
// return std::abs(vec);
}
};
} // namespace detail::norm_impl
inline namespace cpo {
MP_UNITS_EXPORT inline constexpr ::mp_units::detail::norm_impl::norm_t norm;
}
namespace detail::real_impl {
void real() = delete; // poison pill
struct real_t {
template<typename T>
[[nodiscard]] constexpr auto operator()(const T& clx) const
{
if constexpr (requires { clx.real(); })
return clx.real();
else if constexpr (requires { real(clx); })
return real(clx);
}
};
} // namespace detail::real_impl
inline namespace cpo {
MP_UNITS_EXPORT inline constexpr ::mp_units::detail::real_impl::real_t real;
}
namespace detail::imag_impl {
void imag() = delete; // poison pill
struct imag_t {
template<typename T>
[[nodiscard]] constexpr auto operator()(const T& clx) const
{
if constexpr (requires { clx.imag(); })
return clx.imag();
else if constexpr (requires { imag(clx); })
return imag(clx);
}
};
} // namespace detail::imag_impl
inline namespace cpo {
MP_UNITS_EXPORT inline constexpr ::mp_units::detail::imag_impl::imag_t imag;
}
namespace detail::modulus_impl {
void modulus() = delete; // poison pill
struct modulus_t {
template<typename T>
[[nodiscard]] constexpr auto operator()(const T& clx) const
{
if constexpr (requires { clx.modulus(); })
return clx.modulus();
else if constexpr (requires { modulus(clx); })
return modulus(clx);
// `std` made a precedence of using `abs` for modulo on `std::complex`
else if constexpr (requires { abs(clx); })
return abs(clx);
}
};
} // namespace detail::modulus_impl
inline namespace cpo {
MP_UNITS_EXPORT inline constexpr ::mp_units::detail::modulus_impl::modulus_t modulus;
}
MP_UNITS_EXPORT_BEGIN
/** /**
* @brief A type trait that defines zero, one, min, and max for a representation type * @brief A type trait that defines zero, one, min, and max for a representation type
* *

View File

@ -102,6 +102,79 @@ concept ScalarRepresentation = Scalar<T> && WeaklyRegular<T> && requires(T a, T
{ a / b } -> Scalar; { a / b } -> Scalar;
}; };
namespace real_impl {
void real() = delete; // poison pill
struct real_t {
[[nodiscard]] constexpr ScalarRepresentation auto operator()(const WeaklyRegular auto& clx) const
{
if constexpr (requires { clx.real(); })
return clx.real();
else if constexpr (requires { real(clx); })
return real(clx);
}
};
} // namespace real_impl
} // namespace detail
inline namespace cpo {
MP_UNITS_EXPORT inline constexpr ::mp_units::detail::real_impl::real_t real;
}
namespace detail::imag_impl {
void imag() = delete; // poison pill
struct imag_t {
[[nodiscard]] constexpr ScalarRepresentation auto operator()(const WeaklyRegular auto& clx) const
{
if constexpr (requires { clx.imag(); })
return clx.imag();
else if constexpr (requires { imag(clx); })
return imag(clx);
}
};
} // namespace detail::imag_impl
inline namespace cpo {
MP_UNITS_EXPORT inline constexpr ::mp_units::detail::imag_impl::imag_t imag;
}
namespace detail::modulus_impl {
void modulus() = delete; // poison pill
struct modulus_t {
[[nodiscard]] constexpr ScalarRepresentation auto operator()(const WeaklyRegular auto& clx) const
{
if constexpr (requires { clx.modulus(); })
return clx.modulus();
else if constexpr (requires { modulus(clx); })
return modulus(clx);
// `std` made a precedence of using `abs` for modulo on `std::complex`
else if constexpr (requires { abs(clx); })
return abs(clx);
}
};
} // namespace detail::modulus_impl
inline namespace cpo {
MP_UNITS_EXPORT inline constexpr ::mp_units::detail::modulus_impl::modulus_t modulus;
}
namespace detail {
template<typename T> template<typename T>
concept ComplexRepresentation = Complex<T> && WeaklyRegular<T> && requires(T a, T b, scaling_factor_type_t<T> f) { concept ComplexRepresentation = Complex<T> && WeaklyRegular<T> && requires(T a, T b, scaling_factor_type_t<T> f) {
// scaling // scaling
@ -118,13 +191,46 @@ concept ComplexRepresentation = Complex<T> && WeaklyRegular<T> && requires(T a,
{ a - b } -> Complex; { a - b } -> Complex;
{ a* b } -> Complex; { a* b } -> Complex;
{ a / b } -> Complex; { a / b } -> Complex;
{ ::mp_units::real(a) } -> Scalar; ::mp_units::real(a);
{ ::mp_units::imag(a) } -> Scalar; ::mp_units::imag(a);
{ ::mp_units::modulus(a) } -> Scalar; ::mp_units::modulus(a);
}; };
// TODO how to check for a complex(Scalar, Scalar) -> Complex? // TODO how to check for a complex(Scalar, Scalar) -> Complex?
namespace norm_impl {
void norm() = delete; // poison pill
struct norm_t {
[[nodiscard]] constexpr ScalarRepresentation auto operator()(const WeaklyRegular auto& vec) const
{
if constexpr (requires { vec.norm(); })
return vec.norm();
else if constexpr (requires { norm(vec); })
return norm(vec);
else if constexpr (requires { vec.magnitude(); })
return vec.magnitude();
else if constexpr (requires { magnitude(vec); })
return magnitude(vec);
// TODO Is it a good idea to enable fundamental types to represent vector quantities?
// else if constexpr (is_scalar<T>)
// return std::abs(vec);
}
};
} // namespace norm_impl
} // namespace detail
inline namespace cpo {
MP_UNITS_EXPORT inline constexpr ::mp_units::detail::norm_impl::norm_t norm;
}
namespace detail {
template<typename T> template<typename T>
concept VectorRepresentation = Vector<T> && WeaklyRegular<T> && requires(T a, T b, scaling_factor_type_t<T> f) { concept VectorRepresentation = Vector<T> && WeaklyRegular<T> && requires(T a, T b, scaling_factor_type_t<T> f) {
// scaling // scaling
@ -136,7 +242,7 @@ concept VectorRepresentation = Vector<T> && WeaklyRegular<T> && requires(T a, T
{ -a } -> Vector; { -a } -> Vector;
{ a + b } -> Vector; { a + b } -> Vector;
{ a - b } -> Vector; { a - b } -> Vector;
{ ::mp_units::norm(a) } -> Scalar; ::mp_units::norm(a);
// TBD // TBD
// { zero_vector<T>() } -> Vector; // { zero_vector<T>() } -> Vector;
// { unit_vector(a) } -> Vector; // { unit_vector(a) } -> Vector;