// The MIT License (MIT) // // Copyright (c) 2018 Mateusz Pusz // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #include #ifdef MP_UNITS_IMPORT_STD import std; #else #include #include #include #endif using namespace mp_units::detail; namespace { inline constexpr auto MAX_U64 = std::numeric_limits::max(); template constexpr bool check_primes(std::index_sequence) { return ((Is < 2 || wheel_factorizer::is_prime(Is) == is_prime_by_trial_division(Is)) && ...); } static_assert(check_primes<2>(std::make_index_sequence<122>{})); // This is the smallest number that can catch the bug where we use only _prime_ numbers in the first wheel, rather than // numbers which are _coprime to the basis_. // // The basis for N = 4 is {2, 3, 5, 7}, so the wheel size is 210. 11 * 11 = 121 is within the first wheel. It is // coprime with every element of the basis, but it is _not_ prime. If we keep only prime numbers, then we will neglect // using numbers of the form (210 * n + 121) as trial divisors, which is a problem if any are prime. For n = 1, we have // a divisor of (210 + 121 = 331), which happens to be prime but will not be used. Thus, (331 * 331 = 109561) is a // composite number which could wrongly appear prime if we skip over 331. static_assert(wheel_factorizer<4>::is_prime(109'561) == is_prime_by_trial_division(109'561)); static_assert(wheel_factorizer<1>::coprimes_in_first_wheel.size() == 1); static_assert(wheel_factorizer<2>::coprimes_in_first_wheel.size() == 2); static_assert(wheel_factorizer<3>::coprimes_in_first_wheel.size() == 8); static_assert(wheel_factorizer<4>::coprimes_in_first_wheel.size() == 48); static_assert(wheel_factorizer<5>::coprimes_in_first_wheel.size() == 480); static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[0] == 1); static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[1] == 7); static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[2] == 11); static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[3] == 13); static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[4] == 17); static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[5] == 19); static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[6] == 23); static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[7] == 29); static_assert(!wheel_factorizer<1>::is_prime(0)); static_assert(!wheel_factorizer<1>::is_prime(1)); static_assert(wheel_factorizer<1>::is_prime(2)); static_assert(!wheel_factorizer<2>::is_prime(0)); static_assert(!wheel_factorizer<2>::is_prime(1)); static_assert(wheel_factorizer<2>::is_prime(2)); static_assert(!wheel_factorizer<3>::is_prime(0)); static_assert(!wheel_factorizer<3>::is_prime(1)); static_assert(wheel_factorizer<3>::is_prime(2)); // Modular arithmetic. static_assert(add_mod(1u, 2u, 5u) == 3u); static_assert(add_mod(4u, 4u, 5u) == 3u); static_assert(add_mod(MAX_U64 - 1u, MAX_U64 - 2u, MAX_U64) == MAX_U64 - 3u); static_assert(sub_mod(2u, 1u, 5u) == 1u); static_assert(sub_mod(1u, 2u, 5u) == 4u); static_assert(sub_mod(MAX_U64 - 2u, MAX_U64 - 1u, MAX_U64) == MAX_U64 - 1u); static_assert(sub_mod(1u, MAX_U64 - 1u, MAX_U64) == 2u); static_assert(mul_mod(6u, 7u, 10u) == 2u); static_assert(mul_mod(13u, 11u, 50u) == 43u); static_assert(mul_mod(MAX_U64 / 2u, 10u, MAX_U64) == MAX_U64 - 5u); static_assert(half_mod_odd(0u, 11u) == 0u); static_assert(half_mod_odd(10u, 11u) == 5u); static_assert(half_mod_odd(1u, 11u) == 6u); static_assert(half_mod_odd(9u, 11u) == 10u); static_assert(half_mod_odd(MAX_U64 - 1u, MAX_U64) == (MAX_U64 - 1u) / 2u); static_assert(half_mod_odd(MAX_U64 - 2u, MAX_U64) == MAX_U64 - 1u); static_assert(pow_mod(5u, 8u, 9u) == ((5u * 5u * 5u * 5u) * (5u * 5u * 5u * 5u)) % 9u); static_assert(pow_mod(2u, 64u, MAX_U64) == 1u); } // namespace