Files
mp-units/test/static/unit_symbol_test.cpp

286 lines
17 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// The MIT License (MIT)
//
// Copyright (c) 2018 Mateusz Pusz
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include <mp-units/systems/angular.h>
#include <mp-units/systems/iau.h>
#include <mp-units/systems/iec.h>
#include <mp-units/systems/international.h>
#include <mp-units/systems/si.h>
#ifdef MP_UNITS_IMPORT_STD
import std;
#else
#include <string_view>
#endif
namespace {
using namespace mp_units;
using namespace mp_units::si;
using namespace mp_units::iec;
using namespace mp_units::international;
using enum character_set;
using enum unit_symbol_solidus;
using enum unit_symbol_separator;
using usf = unit_symbol_formatting;
// named units
static_assert(unit_symbol(metre) == "m");
static_assert(unit_symbol(second) == "s");
static_assert(unit_symbol(joule) == "J");
static_assert(unit_symbol(degree_Celsius) == "\u2103");
static_assert(unit_symbol<usf{.char_set = portable}>(degree_Celsius) == "`C");
static_assert(unit_symbol(kilogram) == "kg");
static_assert(unit_symbol(hour) == "h");
// prefixed units
static_assert(unit_symbol(quecto<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(quecto<ohm>) == "qohm");
static_assert(unit_symbol(ronto<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(ronto<ohm>) == "rohm");
static_assert(unit_symbol(yocto<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(yocto<ohm>) == "yohm");
static_assert(unit_symbol(zepto<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(zepto<ohm>) == "zohm");
static_assert(unit_symbol(atto<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(atto<ohm>) == "aohm");
static_assert(unit_symbol(femto<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(femto<ohm>) == "fohm");
static_assert(unit_symbol(pico<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(pico<ohm>) == "pohm");
static_assert(unit_symbol(nano<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(nano<ohm>) == "nohm");
static_assert(unit_symbol(micro<ohm>) == "µΩ");
static_assert(unit_symbol<usf{.char_set = portable}>(micro<ohm>) == "uohm");
static_assert(unit_symbol(milli<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(milli<ohm>) == "mohm");
static_assert(unit_symbol(centi<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(centi<ohm>) == "cohm");
static_assert(unit_symbol(deci<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(deci<ohm>) == "dohm");
static_assert(unit_symbol(deca<ohm>) == "daΩ");
static_assert(unit_symbol<usf{.char_set = portable}>(deca<ohm>) == "daohm");
static_assert(unit_symbol(hecto<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(hecto<ohm>) == "hohm");
static_assert(unit_symbol(kilo<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(kilo<ohm>) == "kohm");
static_assert(unit_symbol(mega<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(mega<ohm>) == "Mohm");
static_assert(unit_symbol(giga<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(giga<ohm>) == "Gohm");
static_assert(unit_symbol(tera<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(tera<ohm>) == "Tohm");
static_assert(unit_symbol(peta<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(peta<ohm>) == "Pohm");
static_assert(unit_symbol(exa<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(exa<ohm>) == "Eohm");
static_assert(unit_symbol(zetta<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(zetta<ohm>) == "Zohm");
static_assert(unit_symbol(yotta<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(yotta<ohm>) == "Yohm");
static_assert(unit_symbol(ronna<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(ronna<ohm>) == "Rohm");
static_assert(unit_symbol(quetta<ohm>) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(quetta<ohm>) == "Qohm");
static_assert(unit_symbol(kibi<bit>) == "Kibit");
static_assert(unit_symbol(mebi<bit>) == "Mibit");
static_assert(unit_symbol(gibi<bit>) == "Gibit");
static_assert(unit_symbol(tebi<bit>) == "Tibit");
static_assert(unit_symbol(pebi<bit>) == "Pibit");
static_assert(unit_symbol(exbi<bit>) == "Eibit");
static_assert(unit_symbol(zebi<bit>) == "Zibit");
static_assert(unit_symbol(yobi<bit>) == "Yibit");
// scaled units
static_assert(unit_symbol(mag<100> * metre) == "(100 m)");
static_assert(unit_symbol<usf{.char_set = portable}>(mag<100> * metre) == "(100 m)");
static_assert(unit_symbol(mag<1000> * metre) == "(10³ m)");
static_assert(unit_symbol(mag_power<10, 3> * metre) == "(10³ m)");
static_assert(unit_symbol<usf{.char_set = portable}>(mag<1000> * metre) == "(10^3 m)");
static_assert(unit_symbol(mag<6000> * metre) == "(6 × 10³ m)");
static_assert(unit_symbol(mag<6> * mag_power<10, 3> * metre) == "(6 × 10³ m)");
static_assert(unit_symbol<usf{.char_set = portable}>(mag<6000> * metre) == "(6 x 10^3 m)");
static_assert(unit_symbol(mag<10600> * metre) == "(10600 m)");
static_assert(unit_symbol(mag<60> * second) == "(60 s)");
static_assert(unit_symbol(mag_ratio<1, 18> * metre / second) == "(1/18 m)/s");
static_assert(unit_symbol(mag_ratio<1, 18> * (metre / second)) == "(1/18 m/s)");
static_assert(unit_symbol(mag_ratio<1, 1800> * metre / second) == "(1/1800 m)/s");
static_assert(unit_symbol(mag_ratio<1, 1800> * (metre / second)) == "(1/1800 m/s)");
static_assert(unit_symbol(mag_ratio<1, 18000> * metre / second) == "(1/18 × 10⁻³ m)/s");
static_assert(unit_symbol(mag_ratio<1, 18000> * (metre / second)) == "(1/18 × 10⁻³ m/s)");
static_assert(unit_symbol<usf{.char_set = portable}>(mag_ratio<1, 18000> * metre / second) == "(1/18 x 10^-3 m)/s");
static_assert(unit_symbol<usf{.char_set = portable}>(mag_ratio<1, 18000> * (metre / second)) == "(1/18 x 10^-3 m/s)");
// TODO implement all the below
// static_assert(unit_symbol(mag_power<2, 1, 2> * one) == "(2^(1/2))");
// static_assert(unit_symbol<usf{.char_set = portable}>(mag_power<2, 1, 2> * one) == "(2^(1/2))");
// static_assert(unit_symbol(mag_power<2, 1, 2> * m) == "(2^(1/2) m)");
// static_assert(unit_symbol<usf{.char_set = portable}>(mag_power<2, 1, 2> * m) == "(2^(1/2) m)");
// static_assert(unit_symbol(mag<1> / mag_power<2, 1, 2> * one) == "(1/2^(1/2))");
// static_assert(unit_symbol<usf{.char_set = portable}>(mag<1> / mag_power<2, 1, 2> * one) == "(1/2^(1/2))");
// static_assert(unit_symbol(mag<1> / mag_power<2, 1, 2> * m) == "(1/2^(1/2) m)");
// static_assert(unit_symbol<usf{.char_set = portable}>(mag<1> / mag_power<2, 1, 2> * m) == "(1/2^(1/2) m)");
// magnitude constants
#if defined MP_UNITS_COMP_CLANG && MP_UNITS_COMP_CLANG < 18
inline constexpr struct e final : mag_constant<"e"> {
static constexpr long double _value_ = std::numbers::e_v<long double>;
#else
inline constexpr struct e final : mag_constant<"e", std::numbers::e_v<long double> > {
#endif
} e;
static_assert(unit_symbol(mag<π> * one) == "(π)");
static_assert(unit_symbol<usf{.char_set = portable}>(mag<π> * one) == "(pi)");
static_assert(unit_symbol(mag<π> * metre) == "(π m)");
static_assert(unit_symbol<usf{.char_set = portable}>(mag<π> * metre) == "(pi m)");
static_assert(unit_symbol(mag<2> * mag<π> * metre) == "(2 π m)");
static_assert(unit_symbol<usf{.char_set = portable}>(mag<2> * mag<π> * metre) == "(2 pi m)");
static_assert(unit_symbol<usf{.separator = half_high_dot}>(mag<2> * mag<π> * metre) == "(2⋅π m)");
static_assert(unit_symbol(mag<1> / mag<π> * one) == "(1/π)");
static_assert(unit_symbol<usf{.char_set = portable}>(mag<1> / mag<π> * one) == "(1/pi)");
static_assert(unit_symbol<usf{.solidus = never}>(mag<1> / mag<π> * one) == "(π⁻¹)");
static_assert(unit_symbol<usf{.char_set = portable, .solidus = never}>(mag<1> / mag<π> * one) == "(pi^-1)");
static_assert(unit_symbol(mag<1> / mag<π> * metre) == "(1/π m)");
static_assert(unit_symbol<usf{.char_set = portable}>(mag<1> / mag<π> * metre) == "(1/pi m)");
static_assert(unit_symbol<usf{.solidus = never}>(mag<1> / mag<π> * metre) == "(π⁻¹ m)");
static_assert(unit_symbol<usf{.char_set = portable, .solidus = never}>(mag<1> / mag<π> * metre) == "(pi^-1 m)");
static_assert(unit_symbol(mag<2> / mag<π> * metre) == "(2/π m)");
static_assert(unit_symbol<usf{.char_set = portable}>(mag<2> / mag<π> * metre) == "(2/pi m)");
static_assert(unit_symbol<usf{.solidus = never}>(mag<2> / mag<π> * metre) == "(2 π⁻¹ m)");
static_assert(unit_symbol<usf{.char_set = portable, .solidus = never}>(mag<2> / mag<π> * metre) == "(2 pi^-1 m)");
static_assert(unit_symbol<usf{.solidus = never, .separator = half_high_dot}>(mag<2> / mag<π> * metre) == "(2⋅π⁻¹ m)");
static_assert(unit_symbol(mag<1> / (mag<2> * mag<π>)*metre) == "(2⁻¹ π⁻¹ m)");
static_assert(unit_symbol<usf{.solidus = always}>(mag<1> / (mag<2> * mag<π>)*metre) == "(1/(2 π) m)");
static_assert(unit_symbol<usf{.char_set = portable, .solidus = always}>(mag<1> / (mag<2> * mag<π>)*metre) ==
"(1/(2 pi) m)");
static_assert(unit_symbol(mag_ratio<1, 2> / mag<π> * metre) == "(2⁻¹ π⁻¹ m)");
static_assert(unit_symbol<usf{.solidus = always}>(mag_ratio<1, 2> / mag<π> * metre) == "(1/(2 π) m)");
static_assert(unit_symbol<usf{.char_set = portable, .solidus = always}>(mag_ratio<1, 2> / mag<π> * metre) ==
"(1/(2 pi) m)");
static_assert(unit_symbol(mag_ratio<1, 2> * mag<π> * metre) == "(π/2 m)");
static_assert(unit_symbol(mag_power<pi, 2> * one) == "(π²)");
static_assert(unit_symbol<usf{.char_set = portable}>(mag_power<pi, 2> * one) == "(pi^2)");
static_assert(unit_symbol(mag_power<pi, 1, 2> * metre) == "(π^(1/2) m)");
static_assert(unit_symbol<usf{.char_set = portable}>(mag_power<pi, 1, 2> * metre) == "(pi^(1/2) m)");
static_assert(unit_symbol(mag<π> * mag<e> * one) == "(e π)");
static_assert(unit_symbol(mag<e> * mag<π> * one) == "(e π)");
static_assert(unit_symbol<usf{.char_set = portable}>(mag<π> * mag<e> * one) == "(e pi)");
static_assert(unit_symbol(mag<π> / mag<e> * one) == "(π/e)");
static_assert(unit_symbol(mag<1> / mag<e> * mag<π> * one) == "(π/e)");
static_assert(unit_symbol<usf{.solidus = never}>(mag<π> / mag<e> * one) == "(π e⁻¹)");
static_assert(unit_symbol(mag<e> / mag<π> * one) == "(e/π)");
static_assert(unit_symbol(mag<1> / mag<π> * mag<e> * one) == "(e/π)");
static_assert(unit_symbol<usf{.solidus = never}>(mag<e> / mag<π> * one) == "(e π⁻¹)");
static_assert(unit_symbol(mag<1> / (mag<π> * mag<e>)*one) == "(e⁻¹ π⁻¹)");
static_assert(unit_symbol<usf{.solidus = always}>(mag<1> / (mag<π> * mag<e>)*one) == "(1/(e π))");
static_assert(unit_symbol(mag<2> / (mag<π> * mag<e>)*one) == "(2 e⁻¹ π⁻¹)");
static_assert(unit_symbol<usf{.solidus = always}>(mag<2> / (mag<π> * mag<e>)*one) == "(2/(e π))");
// common units
static_assert(unit_symbol(get_common_unit(kilo<metre>, mile)) == "[(1/25146 mi), (1/15625 km)]");
static_assert(unit_symbol(get_common_unit(kilo<metre> / hour, metre / second)) == "[(1/5 km/h), (1/18 m/s)]");
static_assert(unit_symbol(get_common_unit(kilo<metre> / hour, metre / second) / second) ==
"[(1/5 km/h), (1/18 m/s)]/s");
static_assert(unit_symbol(get_common_unit(kilo<metre> / hour, metre / second) * second) ==
"[(1/5 km/h), (1/18 m/s)] s");
static_assert(unit_symbol(get_common_unit(radian, degree)) == "[(1/π°), (1/180 rad)]");
// derived units
static_assert(unit_symbol(one) == ""); // NOLINT(readability-container-size-empty)
static_assert(unit_symbol(percent) == "%");
static_assert(unit_symbol(per_mille) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(per_mille) == "%o");
static_assert(unit_symbol(parts_per_million) == "ppm");
static_assert(unit_symbol(square(metre)) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(square(metre)) == "m^2");
static_assert(unit_symbol(cubic(metre)) == "");
static_assert(unit_symbol<usf{.char_set = portable}>(cubic(metre)) == "m^3");
static_assert(unit_symbol(kilo<metre> * metre) == "km m");
static_assert(unit_symbol<usf{.separator = half_high_dot}>(kilo<metre> * metre) == "km⋅m");
static_assert(unit_symbol(metre / metre) == ""); // NOLINT(readability-container-size-empty)
static_assert(unit_symbol(kilo<metre> / metre) == "km/m");
static_assert(unit_symbol<usf{.solidus = never}>(kilo<metre> / metre) == "km m⁻¹");
static_assert(unit_symbol<usf{.char_set = portable, .solidus = never}>(kilo<metre> / metre) == "km m^-1");
static_assert(unit_symbol(metre / second) == "m/s");
static_assert(unit_symbol<usf{.solidus = always}>(metre / second) == "m/s");
static_assert(unit_symbol<usf{.solidus = never}>(metre / second) == "m s⁻¹");
static_assert(unit_symbol<usf{.char_set = portable, .solidus = never}>(metre / second) == "m s^-1");
static_assert(unit_symbol<usf{.solidus = never, .separator = half_high_dot}>(metre / second) == "m⋅s⁻¹");
static_assert(unit_symbol(metre / square(second)) == "m/s²");
static_assert(unit_symbol<usf{.char_set = portable}>(metre / square(second)) == "m/s^2");
static_assert(unit_symbol<usf{.solidus = always}>(metre / square(second)) == "m/s²");
static_assert(unit_symbol<usf{.char_set = portable, .solidus = always}>(metre / square(second)) == "m/s^2");
static_assert(unit_symbol<usf{.solidus = never}>(metre / square(second)) == "m s⁻²");
static_assert(unit_symbol<usf{.char_set = portable, .solidus = never}>(metre / square(second)) == "m s^-2");
static_assert(unit_symbol<usf{.solidus = never, .separator = half_high_dot}>(metre / square(second)) == "m⋅s⁻²");
static_assert(unit_symbol(kilogram * metre / square(second)) == "kg m/s²");
static_assert(unit_symbol<usf{.separator = half_high_dot}>(kilogram * metre / square(second)) == "kg⋅m/s²");
static_assert(unit_symbol<usf{.char_set = portable}>(kilogram * metre / square(second)) == "kg m/s^2");
static_assert(unit_symbol<usf{.solidus = always}>(kilogram * metre / square(second)) == "kg m/s²");
static_assert(unit_symbol<usf{.char_set = portable, .solidus = always}>(kilogram * metre / square(second)) ==
"kg m/s^2");
static_assert(unit_symbol<usf{.solidus = never}>(kilogram * metre / square(second)) == "kg m s⁻²");
static_assert(unit_symbol<usf{.char_set = portable, .solidus = never}>(kilogram * metre / square(second)) ==
"kg m s^-2");
static_assert(unit_symbol<usf{.solidus = never, .separator = half_high_dot}>(kilogram * metre / square(second)) ==
"kg⋅m⋅s⁻²");
static_assert(unit_symbol(one / metre / square(second)) == "m⁻¹ s⁻²");
static_assert(unit_symbol<usf{.solidus = always}>(one / metre / square(second)) == "1/(m s²)");
static_assert(unit_symbol(kilogram / metre / square(second)) == "kg m⁻¹ s⁻²");
static_assert(unit_symbol<usf{.separator = half_high_dot}>(kilogram / metre / square(second)) == "kg⋅m⁻¹⋅s⁻²");
static_assert(unit_symbol<usf{.char_set = portable}>(kilogram / metre / square(second)) == "kg m^-1 s^-2");
static_assert(unit_symbol<usf{.solidus = always}>(kilogram / metre / square(second)) == "kg/(m s²)");
static_assert(unit_symbol<usf{.char_set = portable, .solidus = always}>(kilogram / metre / square(second)) ==
"kg/(m s^2)");
static_assert(unit_symbol<usf{.solidus = never}>(kilogram / metre / square(second)) == "kg m⁻¹ s⁻²");
static_assert(unit_symbol<usf{.char_set = portable, .solidus = never}>(kilogram / metre / square(second)) ==
"kg m^-1 s^-2");
static_assert(unit_symbol<usf{.solidus = never, .separator = half_high_dot}>(kilogram / metre / square(second)) ==
"kg⋅m⁻¹⋅s⁻²");
static_assert(unit_symbol(pow<123>(metre)) == "m¹²³");
static_assert(unit_symbol(pow<1, 2>(metre)) == "m^(1/2)");
static_assert(unit_symbol(pow<3, 5>(metre)) == "m^(3/5)");
static_assert(unit_symbol(pow<1, 2>(metre / second)) == "m^(1/2)/s^(1/2)");
static_assert(unit_symbol<usf{.solidus = never}>(pow<1, 2>(metre / second)) == "m^(1/2) s^-(1/2)");
static_assert(unit_symbol(litre / (mag<100> * kilo<metre>)) == "L/(100 km)");
static_assert(unit_symbol((mag<10> * metre) / (mag<20> * second)) == "(10 m)/(20 s)");
static_assert(unit_symbol(pow<2>(mag<3600> * second)) == "(3600 s)²");
// dimensionless unit
static_assert(unit_symbol(radian) == "rad");
// Physical constants
static_assert(unit_symbol(si2019::speed_of_light_in_vacuum) == "c");
static_assert(unit_symbol(gram * standard_gravity * si2019::speed_of_light_in_vacuum) == "g c g₀");
static_assert(unit_symbol(gram / standard_gravity) == "g/g₀");
static_assert(unit_symbol(kilo<metre> / second / mega<iau::parsec>) == "km Mpc⁻¹ s⁻¹");
} // namespace