mirror of
https://github.com/mpusz/mp-units.git
synced 2025-06-25 01:01:33 +02:00
185 lines
6.9 KiB
C++
185 lines
6.9 KiB
C++
// The MIT License (MIT)
|
|
//
|
|
// Copyright (c) 2018 Mateusz Pusz
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in all
|
|
// copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
// SOFTWARE.
|
|
|
|
#include "glide_computer_lib.h"
|
|
#include <mp-units/ext/format.h>
|
|
#ifdef MP_UNITS_IMPORT_STD
|
|
import std;
|
|
#else
|
|
#include <functional>
|
|
#include <iostream>
|
|
#include <numeric>
|
|
#include <string_view>
|
|
#endif
|
|
#ifdef MP_UNITS_MODULES
|
|
import mp_units.core;
|
|
#else
|
|
#include <mp-units/framework.h>
|
|
#endif
|
|
|
|
namespace glide_computer {
|
|
|
|
using namespace mp_units;
|
|
|
|
task::legs task::make_legs(const waypoints& wpts)
|
|
{
|
|
task::legs res;
|
|
res.reserve(wpts.size() - 1);
|
|
auto to_leg = [](const waypoint& w1, const waypoint& w2) { return task::leg(w1, w2); };
|
|
std::ranges::transform(wpts.cbegin(), prev(wpts.cend()), next(wpts.cbegin()), wpts.cend(), std::back_inserter(res),
|
|
to_leg);
|
|
return res;
|
|
}
|
|
|
|
std::vector<distance> task::make_leg_total_distances(const legs& legs)
|
|
{
|
|
std::vector<distance> res;
|
|
res.reserve(legs.size());
|
|
auto to_length = [](const leg& l) { return l.get_distance(); };
|
|
std::transform_inclusive_scan(legs.cbegin(), legs.cend(), std::back_inserter(res), std::plus(), to_length,
|
|
distance::zero());
|
|
return res;
|
|
}
|
|
|
|
geographic::msl_altitude terrain_level_alt(const task& t, const flight_point& pos)
|
|
{
|
|
const task::leg& l = t.get_legs()[pos.leg_idx];
|
|
const height alt_diff = l.end().alt - l.begin().alt;
|
|
return l.begin().alt + alt_diff * ((pos.dist - t.get_leg_dist_offset(pos.leg_idx)) / l.get_distance());
|
|
}
|
|
|
|
// Returns `x` of the intersection of a glide line and a terrain line.
|
|
// y = -x / glide_ratio + pos.alt;
|
|
// y = (finish_alt - ground_alt) / dist_to_finish * x + ground_alt + min_agl_height;
|
|
distance glide_distance(const flight_point& pos, const glider& g, const task& t, const safety& s,
|
|
geographic::msl_altitude ground_alt)
|
|
{
|
|
const auto dist_to_finish = t.get_distance() - pos.dist;
|
|
return quantity_cast<isq::distance>(ground_alt + s.min_agl_height - pos.alt) /
|
|
((ground_alt - t.get_finish().alt) / dist_to_finish - 1 / glide_ratio(g.polar[0]));
|
|
}
|
|
|
|
} // namespace glide_computer
|
|
|
|
namespace {
|
|
|
|
using namespace glide_computer;
|
|
|
|
void print(std::string_view phase_name, timestamp start_ts, const glide_computer::flight_point& point,
|
|
const glide_computer::flight_point& new_point)
|
|
{
|
|
std::cout << MP_UNITS_STD_FMT::format(
|
|
"| {:<12} | {:>9:N[.1]} (Total: {:>9:N[.1]}) | {:>8:N[.1]} (Total: {:>8:N[.1]}) | {:>7:N[.0f]} ({:>6:N[.0f]}) |\n",
|
|
phase_name, value_cast<si::minute>(new_point.ts - point.ts), value_cast<si::minute>(new_point.ts - start_ts),
|
|
new_point.dist - point.dist, new_point.dist, new_point.alt - point.alt, new_point.alt);
|
|
}
|
|
|
|
flight_point takeoff(timestamp start_ts, const task& t) { return {start_ts, t.get_start().alt}; }
|
|
|
|
flight_point tow(timestamp start_ts, const flight_point& pos, const aircraft_tow& at)
|
|
{
|
|
const duration d = (at.height_agl / at.performance);
|
|
const flight_point new_pos{pos.ts + d, pos.alt + at.height_agl, pos.leg_idx, pos.dist};
|
|
|
|
print("Tow", start_ts, pos, new_pos);
|
|
return new_pos;
|
|
}
|
|
|
|
flight_point circle(timestamp start_ts, const flight_point& pos, const glider& g, const weather& w, const task& t,
|
|
height& height_to_gain)
|
|
{
|
|
const height h_agl = agl(pos.alt, terrain_level_alt(t, pos));
|
|
const height circling_height = std::min(w.cloud_base - h_agl, height_to_gain);
|
|
const rate_of_climb circling_rate = w.thermal_strength + g.polar[0].climb;
|
|
const duration d = (circling_height / circling_rate);
|
|
const flight_point new_pos{pos.ts + d, pos.alt + circling_height, pos.leg_idx, pos.dist};
|
|
|
|
height_to_gain -= circling_height;
|
|
|
|
print("Circle", start_ts, pos, new_pos);
|
|
return new_pos;
|
|
}
|
|
|
|
flight_point glide(timestamp start_ts, const flight_point& pos, const glider& g, const task& t, const safety& s)
|
|
{
|
|
const auto ground_alt = terrain_level_alt(t, pos);
|
|
const auto dist = glide_distance(pos, g, t, s, ground_alt);
|
|
const auto new_distance = pos.dist + dist;
|
|
const auto alt = ground_alt + s.min_agl_height;
|
|
const auto l3d = length_3d(dist, pos.alt - alt);
|
|
const duration d = l3d / g.polar[0].v;
|
|
const flight_point new_pos{pos.ts + d, terrain_level_alt(t, pos) + s.min_agl_height, t.get_leg_index(new_distance),
|
|
new_distance};
|
|
|
|
print("Glide", start_ts, pos, new_pos);
|
|
return new_pos;
|
|
}
|
|
|
|
flight_point final_glide(timestamp start_ts, const flight_point& pos, const glider& g, const task& t)
|
|
{
|
|
const auto dist = t.get_distance() - pos.dist;
|
|
const auto l3d = length_3d(dist, pos.alt - t.get_finish().alt);
|
|
const duration d = l3d / g.polar[0].v;
|
|
const flight_point new_pos{pos.ts + d, t.get_finish().alt, t.get_legs().size() - 1, pos.dist + dist};
|
|
|
|
print("Final Glide", start_ts, pos, new_pos);
|
|
return new_pos;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace glide_computer {
|
|
|
|
void estimate(timestamp start_ts, const glider& g, const weather& w, const task& t, const safety& s,
|
|
const aircraft_tow& at)
|
|
{
|
|
std::cout << MP_UNITS_STD_FMT::format("| {:<12} | {:^28} | {:^26} | {:^21} |\n", "Flight phase", "Duration",
|
|
"Distance", "Height");
|
|
std::cout << MP_UNITS_STD_FMT::format("|{0:-^14}|{0:-^30}|{0:-^28}|{0:-^23}|\n", "");
|
|
|
|
// ready to takeoff
|
|
flight_point pos = takeoff(start_ts, t);
|
|
|
|
// estimate aircraft towing
|
|
pos = tow(start_ts, pos, at);
|
|
|
|
// estimate the msl_altitude needed to reach the finish line from this place
|
|
const geographic::msl_altitude final_glide_alt =
|
|
t.get_finish().alt + quantity_cast<isq::height>(t.get_distance() / glide_ratio(g.polar[0]));
|
|
|
|
// how much height we still need to gain in the thermalls to reach the destination?
|
|
height height_to_gain = final_glide_alt - pos.alt;
|
|
|
|
do {
|
|
// glide to the next thermall
|
|
pos = glide(start_ts, pos, g, t, s);
|
|
|
|
// circle in a thermall to gain height
|
|
pos = circle(start_ts, pos, g, w, t, height_to_gain);
|
|
} while (height_to_gain > height{});
|
|
|
|
// final glide
|
|
pos = final_glide(start_ts, pos, g, t);
|
|
}
|
|
|
|
} // namespace glide_computer
|