Files
mp-units/example/glide_computer/include/geographic.h
2023-02-09 09:42:00 -08:00

176 lines
6.7 KiB
C++

// The MIT License (MIT)
//
// Copyright (c) 2018 Mateusz Pusz
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#pragma once
#include "ranged_representation.h"
#include <mp_units/bits/fmt_hacks.h>
#include <mp_units/quantity.h>
#include <mp_units/systems/isq/space_and_time.h>
#include <mp_units/systems/si/units.h>
#include <compare>
#include <limits>
#include <numbers>
#include <ostream>
namespace geographic {
template<typename T = double>
using latitude =
mp_units::quantity<mp_units::isq::angular_measure[mp_units::si::degree], ranged_representation<T, -90, 90>>;
template<typename T = double>
using longitude =
mp_units::quantity<mp_units::isq::angular_measure[mp_units::si::degree], ranged_representation<T, -180, 180>>;
template<class CharT, class Traits, typename T>
std::basic_ostream<CharT, Traits>& operator<<(std::basic_ostream<CharT, Traits>& os, const latitude<T>& lat)
{
if (lat.number() > 0)
return os << "N" << lat.number();
else
return os << "S" << -lat.number();
}
template<class CharT, class Traits, typename T>
std::basic_ostream<CharT, Traits>& operator<<(std::basic_ostream<CharT, Traits>& os, const longitude<T>& lon)
{
if (lon.number() > 0)
return os << "E" << lon.number();
else
return os << "W" << -lon.number();
}
inline namespace literals {
constexpr latitude<long double> operator"" _N(long double v) { return v * mp_units::si::degree; }
constexpr latitude<long double> operator"" _S(long double v) { return -v * mp_units::si::degree; }
constexpr longitude<long double> operator"" _E(long double v) { return v * mp_units::si::degree; }
constexpr longitude<long double> operator"" _W(long double v) { return -v * mp_units::si::degree; }
constexpr latitude<std::int64_t> operator"" _N(unsigned long long v)
{
gsl_ExpectsAudit(std::in_range<std::int64_t>(v));
return static_cast<std::int64_t>(v) * mp_units::si::degree;
}
constexpr latitude<std::int64_t> operator"" _S(unsigned long long v)
{
gsl_ExpectsAudit(std::in_range<std::int64_t>(v));
return -static_cast<std::int64_t>(v) * mp_units::si::degree;
}
constexpr longitude<std::int64_t> operator"" _E(unsigned long long v)
{
gsl_ExpectsAudit(std::in_range<std::int64_t>(v));
return static_cast<std::int64_t>(v) * mp_units::si::degree;
}
constexpr longitude<std::int64_t> operator"" _W(unsigned long long v)
{
gsl_ExpectsAudit(std::in_range<std::int64_t>(v));
return -static_cast<std::int64_t>(v) * mp_units::si::degree;
}
} // namespace literals
} // namespace geographic
template<typename T>
class std::numeric_limits<geographic::latitude<T>> : public numeric_limits<T> {
static constexpr auto min() noexcept { return geographic::latitude<T>(-90); }
static constexpr auto lowest() noexcept { return geographic::latitude<T>(-90); }
static constexpr auto max() noexcept { return geographic::latitude<T>(90); }
};
template<typename T>
class std::numeric_limits<geographic::longitude<T>> : public numeric_limits<T> {
static constexpr auto min() noexcept { return geographic::longitude<T>(-180); }
static constexpr auto lowest() noexcept { return geographic::longitude<T>(-180); }
static constexpr auto max() noexcept { return geographic::longitude<T>(180); }
};
template<typename T>
struct STD_FMT::formatter<geographic::latitude<T>> : formatter<T> {
template<typename FormatContext>
auto format(geographic::latitude<T> lat, FormatContext& ctx)
{
STD_FMT::format_to(ctx.out(), "{}", lat > geographic::latitude<T>::zero() ? 'N' : 'S');
return formatter<T>::format(lat > geographic::latitude<T>::zero() ? lat.number() : -lat.number(), ctx);
}
};
template<typename T>
struct STD_FMT::formatter<geographic::longitude<T>> : formatter<T> {
template<typename FormatContext>
auto format(geographic::longitude<T> lon, FormatContext& ctx)
{
STD_FMT::format_to(ctx.out(), "{}", lon > geographic::longitude<T>::zero() ? 'E' : 'W');
return formatter<T>::format(lon > geographic::longitude<T>::zero() ? lon.number() : -lon.number(), ctx);
}
};
namespace geographic {
using distance = mp_units::quantity<mp_units::isq::distance[mp_units::si::kilo<mp_units::si::metre>]>;
template<typename T>
struct position {
latitude<T> lat;
longitude<T> lon;
};
template<typename T>
distance spherical_distance(position<T> from, position<T> to)
{
using namespace mp_units;
constexpr auto earth_radius = 6371 * isq::radius[si::kilo<si::metre>];
constexpr auto p = std::numbers::pi_v<T> / 180;
const auto lat1_rad = from.lat.number() * p;
const auto lon1_rad = from.lon.number() * p;
const auto lat2_rad = to.lat.number() * p;
const auto lon2_rad = to.lon.number() * p;
using std::sin, std::cos, std::asin, std::acos, std::sqrt;
// https://en.wikipedia.org/wiki/Great-circle_distance#Formulae
if constexpr (sizeof(T) >= 8) {
// spherical law of cosines
const auto central_angle =
acos(sin(lat1_rad) * sin(lat2_rad) + cos(lat1_rad) * cos(lat2_rad) * cos(lon2_rad - lon1_rad));
// const auto central_angle = 2 * asin(sqrt(0.5 - cos(lat2_rad - lat1_rad) / 2 + cos(lat1_rad) * cos(lat2_rad) * (1
// - cos(lon2_rad - lon1_rad)) / 2));
// TODO can we improve the below
// return quantity_cast<isq::distance>(earth_radius * central_angle);
return earth_radius.number() * central_angle * isq::distance[earth_radius.unit];
} else {
// the haversine formula
const auto sin_lat = sin((lat2_rad - lat1_rad) / 2);
const auto sin_lon = sin((lon2_rad - lon1_rad) / 2);
const auto central_angle = 2 * asin(sqrt(sin_lat * sin_lat + cos(lat1_rad) * cos(lat2_rad) * sin_lon * sin_lon));
// TODO can we improve the below
// return quantity_cast<isq::distance>(earth_radius * central_angle);
return earth_radius.number() * central_angle * isq::distance[earth_radius.unit];
}
}
} // namespace geographic