Files
mp-units/test/unit_test/static/unit_test.cpp
2022-11-07 16:19:42 -10:00

579 lines
32 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
// The MIT License (MIT)
//
// Copyright (c) 2018 Mateusz Pusz
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include "test_tools.h"
#include <units/dimension.h>
#include <units/generic/dimensionless.h>
#include <units/reference.h>
#include <units/si/prefixes.h>
#include <units/unit.h>
namespace {
using namespace units;
using namespace units::detail;
using one_ = struct one;
// base dimensions
BASE_DIMENSION_(length, "L");
BASE_DIMENSION_(time, "T");
BASE_DIMENSION_(mass, "M");
BASE_DIMENSION_(thermodynamic_temperature, "Θ");
// clang-format off
// base units
inline constexpr struct second_ : named_unit<"s", time> {} second;
inline constexpr struct metre_ : named_unit<"m", length> {} metre;
inline constexpr struct gram_ : named_unit<"g", mass> {} gram;
inline constexpr struct kilogram_ : decltype(si::kilo<gram>) {} kilogram;
inline constexpr struct kelvin_ : named_unit<"K", thermodynamic_temperature> {} kelvin;
// hypothetical natural units for c=1
inline constexpr struct nu_second_ : named_unit<"s"> {} nu_second;
// derived named units
inline constexpr struct radian_ : named_unit<"rad", metre / metre> {} radian;
inline constexpr struct steradian_ : named_unit<"sr", square<metre> / square<metre>> {} steradian;
inline constexpr struct hertz_ : named_unit<"Hz", 1 / second> {} hertz;
inline constexpr struct becquerel_ : named_unit<"Bq", 1 / second> {} becquerel;
inline constexpr struct newton_ : named_unit<"N", kilogram * metre / square<second>> {} newton;
inline constexpr struct pascal_ : named_unit<"Pa", newton / square<metre>> {} pascal;
inline constexpr struct joule_ : named_unit<"J", newton * metre> {} joule;
inline constexpr struct watt_ : named_unit<"W", joule / second> {} watt;
inline constexpr struct degree_Celsius_ : named_unit<basic_symbol_text{"\u00B0C", "`C"}, kelvin> {} degree_Celsius;
inline constexpr struct minute_ : named_unit<"min", mag<60> * second> {} minute;
inline constexpr struct hour_ : named_unit<"h", mag<60> * minute> {} hour;
inline constexpr struct day_ : named_unit<"d", mag<24> * hour> {} day;
inline constexpr struct astronomical_unit_ : named_unit<"au", mag<149'597'870'700> * metre> {} astronomical_unit;
inline constexpr struct degree_ : named_unit<basic_symbol_text{"°", "deg"}, mag_pi / mag<180> * radian> {} degree;
inline constexpr struct are_ : named_unit<"a", square<si::deca<metre>>> {} are;
inline constexpr struct hectare_ : decltype(si::hecto<are>) {} hectare;
inline constexpr struct litre_ : named_unit<"l", cubic<si::deci<metre>>> {} litre;
inline constexpr struct tonne_ : named_unit<"t", mag<1000> * kilogram> {} tonne;
inline constexpr struct dalton_ : named_unit<"Da", mag<ratio{16'605'390'666'050, 10'000'000'000'000}> * mag_power<10, -27> * kilogram> {} dalton;
inline constexpr struct electronvolt_ : named_unit<"eV", mag<ratio{1'602'176'634, 1'000'000'000}> * mag_power<10, -19> * joule> {} electronvolt;
inline constexpr struct yard_ : named_unit<"yd", mag<ratio{9'144, 10'000}> * metre> {} yard;
inline constexpr struct foot_ : named_unit<"ft", mag<ratio(1, 3)> * yard> {} foot;
inline constexpr struct mile_ : named_unit<"mi", mag<1760> * yard> {} mile;
inline constexpr struct kilometre_ : decltype(si::kilo<metre>) {} kilometre;
inline constexpr struct kilojoule_ : decltype(si::kilo<joule>) {} kilojoule;
// clang-format on
// concepts verification
static_assert(Unit<metre_>);
static_assert(Unit<second_>);
static_assert(Unit<nu_second_>);
static_assert(Unit<kilogram_>);
static_assert(Unit<hertz_>);
static_assert(Unit<newton_>);
static_assert(Unit<minute_>);
static_assert(Unit<decltype(si::kilo<gram>)>);
static_assert(Unit<decltype(square<metre>)>);
static_assert(Unit<decltype(cubic<metre>)>);
static_assert(Unit<decltype(mag<60> * second)>);
static_assert(Unit<decltype(second * second)>);
static_assert(Unit<decltype(nu_second * nu_second)>);
static_assert(Unit<decltype(metre / second)>);
static_assert(Unit<decltype(nu_second / nu_second)>);
static_assert(Unit<kilometre_>);
static_assert(NamedUnit<metre_>);
static_assert(NamedUnit<hertz_>);
static_assert(NamedUnit<newton_>);
static_assert(NamedUnit<minute_>);
static_assert(NamedUnit<radian_>);
static_assert(!NamedUnit<kilogram_>);
static_assert(!NamedUnit<kilojoule_>);
static_assert(!NamedUnit<hectare_>);
static_assert(!NamedUnit<decltype(si::kilo<gram>)>);
static_assert(!NamedUnit<decltype(square<metre>)>);
static_assert(!NamedUnit<decltype(cubic<metre>)>);
static_assert(!NamedUnit<decltype(mag<60> * second)>);
static_assert(!NamedUnit<kilometre_>);
// named unit
static_assert(is_of_type<metre, metre_>);
static_assert(is_of_type<get_canonical_unit(metre).reference_unit, metre_>);
static_assert(get_canonical_unit(metre).mag == mag<1>);
static_assert(convertible(metre, metre));
static_assert(!convertible(metre, second));
static_assert(metre == metre);
static_assert(metre != second);
static_assert(is_of_type<degree_Celsius, degree_Celsius_>);
static_assert(is_of_type<get_canonical_unit(degree_Celsius).reference_unit, kelvin_>);
static_assert(get_canonical_unit(degree_Celsius).mag == mag<1>);
static_assert(convertible(degree_Celsius, kelvin));
static_assert(degree_Celsius == kelvin);
static_assert(is_of_type<radian, radian_>);
static_assert(is_of_type<get_canonical_unit(radian).reference_unit, one_>);
static_assert(get_canonical_unit(radian).mag == mag<1>);
static_assert(is_of_type<degree, degree_>);
static_assert(is_of_type<get_canonical_unit(degree).reference_unit, one_>);
static_assert(get_canonical_unit(degree).mag == mag_pi / mag<180>);
static_assert(convertible(radian, degree));
static_assert(radian != degree);
static_assert(is_of_type<steradian, steradian_>);
static_assert(is_of_type<get_canonical_unit(steradian).reference_unit, one_>);
static_assert(get_canonical_unit(steradian).mag == mag<1>);
static_assert(convertible(radian, steradian)); // !!!
static_assert(radian == steradian); // !!!
static_assert(is_of_type<minute, minute_>);
static_assert(is_of_type<get_canonical_unit(minute).reference_unit, second_>);
static_assert(get_canonical_unit(minute).mag == mag<60>);
static_assert(convertible(minute, second));
static_assert(minute != second);
static_assert(is_of_type<hour, hour_>);
static_assert(is_of_type<get_canonical_unit(hour).reference_unit, second_>);
static_assert(get_canonical_unit(hour).mag == mag<3600>);
static_assert(convertible(hour, second));
static_assert(convertible(hour, minute));
static_assert(convertible(hour, hour));
static_assert(hour != second);
static_assert(hour != minute);
static_assert(hour == hour);
static_assert(is_of_type<newton, newton_>);
static_assert(
is_of_type<get_canonical_unit(newton).reference_unit, derived_unit<gram_, metre_, per<power<second_, 2>>>>);
static_assert(get_canonical_unit(newton).mag == mag<1000>); // !!! (because of kilogram)
static_assert(convertible(newton, newton));
static_assert(newton == newton);
static_assert(is_of_type<joule, joule_>);
static_assert(
is_of_type<get_canonical_unit(joule).reference_unit, derived_unit<gram_, power<metre_, 2>, per<power<second_, 2>>>>);
static_assert(get_canonical_unit(joule).mag == mag<1000>); // !!! (because of kilogram)
static_assert(convertible(joule, joule));
static_assert(joule == joule);
static_assert(joule != newton);
static_assert(is_of_type<nu_second / nu_second, one_>);
// prefixed_unit
static_assert(is_of_type<kilometre, kilometre_>);
static_assert(is_of_type<get_canonical_unit(kilometre).reference_unit, metre_>);
static_assert(get_canonical_unit(kilometre).mag == mag<1000>);
static_assert(convertible(kilometre, metre));
static_assert(kilometre != metre);
static_assert(kilometre.symbol == "km");
static_assert(is_of_type<kilojoule, kilojoule_>);
static_assert(is_of_type<get_canonical_unit(kilojoule).reference_unit,
derived_unit<gram_, power<metre_, 2>, per<power<second_, 2>>>>);
static_assert(get_canonical_unit(kilojoule).mag == mag<1'000'000>);
static_assert(convertible(kilojoule, joule));
static_assert(kilojoule != joule);
static_assert(kilojoule.symbol == "kJ");
static_assert(is_of_type<si::kilo<metre>, si::kilo_<metre>>);
static_assert(is_of_type<si::kilo<joule>, si::kilo_<joule>>);
// TODO Should the below be a scaled version of metre^2?
static_assert(is_of_type<kilometre * metre, derived_unit<kilometre_, metre_>>); // !!!
static_assert(is_of_type<kilometre / metre, derived_unit<kilometre_, per<metre_>>>); // !!!
// prefixes
static_assert(si::yocto<metre>.symbol == "ym");
static_assert(si::zepto<metre>.symbol == "zm");
static_assert(si::atto<metre>.symbol == "am");
static_assert(si::femto<metre>.symbol == "fm");
static_assert(si::pico<metre>.symbol == "pm");
static_assert(si::nano<metre>.symbol == "nm");
static_assert(si::micro<metre>.symbol == basic_symbol_text{"µm", "um"});
static_assert(si::milli<metre>.symbol == "mm");
static_assert(si::centi<metre>.symbol == "cm");
static_assert(si::deci<metre>.symbol == "dm");
static_assert(si::deca<metre>.symbol == "dam");
static_assert(si::hecto<metre>.symbol == "hm");
static_assert(si::kilo<metre>.symbol == "km");
static_assert(si::mega<metre>.symbol == "Mm");
static_assert(si::giga<metre>.symbol == "Gm");
static_assert(si::tera<metre>.symbol == "Tm");
static_assert(si::peta<metre>.symbol == "Pm");
static_assert(si::exa<metre>.symbol == "Em");
static_assert(si::zetta<metre>.symbol == "Zm");
static_assert(si::yotta<metre>.symbol == "Ym");
// scaled_unit
constexpr auto m_1 = mag<1> * metre;
static_assert(is_of_type<m_1, metre_>);
static_assert(is_of_type<get_canonical_unit(m_1).reference_unit, metre_>);
static_assert(get_canonical_unit(m_1).mag == mag<1>);
constexpr auto m_2 = mag<2> * metre;
static_assert(is_of_type<m_2, scaled_unit<mag<2>, metre_>>);
static_assert(is_of_type<get_canonical_unit(m_2).reference_unit, metre_>);
static_assert(get_canonical_unit(m_2).mag == mag<2>);
constexpr auto km_2 = mag<2> * kilometre;
static_assert(is_of_type<km_2, scaled_unit<mag<2>, kilometre_>>);
static_assert(is_of_type<get_canonical_unit(km_2).reference_unit, metre_>);
static_assert(get_canonical_unit(km_2).mag == mag<2000>);
constexpr auto kJ_42 = mag<42> * si::kilo<joule>;
static_assert(is_of_type<kJ_42, scaled_unit<mag<42>, si::kilo_<joule>>>);
static_assert(
is_of_type<get_canonical_unit(kJ_42).reference_unit, derived_unit<gram_, power<metre_, 2>, per<power<second_, 2>>>>);
static_assert(get_canonical_unit(kJ_42).mag == mag<42'000'000>);
// derived unit expression template syntax verification
static_assert(is_of_type<1 / second, derived_unit<one_, per<second_>>>);
static_assert(is_of_type<1 / (1 / second), second_>);
static_assert(is_of_type<one * second, second_>);
static_assert(is_of_type<second * one, second_>);
static_assert(is_of_type<one * (1 / second), derived_unit<one_, per<second_>>>);
static_assert(is_of_type<1 / second * one, derived_unit<one_, per<second_>>>);
static_assert(is_of_type<metre * second, derived_unit<metre_, second_>>);
static_assert(is_of_type<metre * metre, derived_unit<power<metre_, 2>>>);
static_assert(is_of_type<square<metre>, derived_unit<power<metre_, 2>>>);
static_assert(is_of_type<cubic<metre>, derived_unit<power<metre_, 3>>>);
static_assert(is_of_type<square<metre> * metre, derived_unit<power<metre_, 3>>>);
static_assert(is_of_type<metre * square<metre>, derived_unit<power<metre_, 3>>>);
static_assert(is_of_type<square<metre> / metre, metre_>);
static_assert(is_of_type<cubic<metre> / metre, derived_unit<power<metre_, 2>>>);
static_assert(is_of_type<cubic<metre> / square<metre>, metre_>);
static_assert(is_of_type<metre / second, derived_unit<metre_, per<second_>>>);
static_assert(is_of_type<metre / square<second>, derived_unit<metre_, per<power<second_, 2>>>>);
static_assert(is_of_type<metre / square<second> / second, derived_unit<metre_, per<power<second_, 3>>>>);
static_assert(is_of_type<metre * metre * second, derived_unit<power<metre_, 2>, second_>>);
static_assert(is_of_type<metre * second * metre, derived_unit<power<metre_, 2>, second_>>);
static_assert(is_of_type<metre*(second* metre), derived_unit<power<metre_, 2>, second_>>);
static_assert(is_of_type<second*(metre* metre), derived_unit<power<metre_, 2>, second_>>);
static_assert(is_of_type<1 / second * metre, derived_unit<metre_, per<second_>>>);
static_assert(is_of_type<1 / second * second, one_>);
static_assert(is_of_type<second / one, second_>);
static_assert(is_of_type<1 / second / one, derived_unit<one_, per<second_>>>);
static_assert(is_of_type<metre / second * second, metre_>);
static_assert(is_of_type<1 / second * (1 / second), derived_unit<one_, per<power<second_, 2>>>>);
static_assert(is_of_type<1 / (second * second), derived_unit<one_, per<power<second_, 2>>>>);
static_assert(is_of_type<1 / (1 / (second * second)), derived_unit<power<second_, 2>>>);
static_assert(is_of_type<metre / second * (1 / second), derived_unit<metre_, per<power<second_, 2>>>>);
static_assert(is_of_type<metre / second*(metre / second), derived_unit<power<metre_, 2>, per<power<second_, 2>>>>);
static_assert(is_of_type<metre / second*(second / metre), one_>);
static_assert(is_of_type<watt / joule, derived_unit<watt_, per<joule_>>>);
static_assert(is_of_type<joule / watt, derived_unit<joule_, per<watt_>>>);
static_assert(is_of_type<one / second, derived_unit<one_, per<second_>>>);
static_assert(is_of_type<1 / (1 / second), second_>);
static_assert(is_of_type<one / (1 / second), second_>);
static_assert(is_of_type<1 / pascal, derived_unit<one_, per<pascal_>>>);
static_assert(is_of_type<1 / gram * metre * square<second>, derived_unit<metre_, power<second_, 2>, per<gram_>>>);
static_assert(is_of_type<1 / (gram / (metre * square<second>)), derived_unit<metre_, power<second_, 2>, per<gram_>>>);
static_assert(is_of_type<one*(metre* square<second> / gram), derived_unit<metre_, power<second_, 2>, per<gram_>>>);
static_assert(is_of_type<one * metre * square<second> / gram, derived_unit<metre_, power<second_, 2>, per<gram_>>>);
static_assert(is_of_type<(metre * square<second> / gram) * one, derived_unit<metre_, power<second_, 2>, per<gram_>>>);
static_assert(is_of_type<metre * square<second> / gram * one, derived_unit<metre_, power<second_, 2>, per<gram_>>>);
static_assert(std::is_same_v<decltype(1 / second * metre), decltype(metre / second)>);
static_assert(std::is_same_v<decltype(metre * (1 / second)), decltype(metre / second)>);
static_assert(std::is_same_v<decltype((metre / second) * (1 / second)), decltype(metre / second / second)>);
static_assert(std::is_same_v<decltype((metre / second) * (1 / second)), decltype(metre / (second * second))>);
static_assert(std::is_same_v<decltype((metre / second) * (1 / second)), decltype(metre / square<second>)>);
// derived unit normalization
constexpr auto m_per_s = metre / second;
static_assert(is_of_type<get_canonical_unit(m_per_s).reference_unit, derived_unit<metre_, per<second_>>>);
static_assert(get_canonical_unit(m_per_s).mag == mag<1>);
constexpr auto km_per_s = kilometre / second;
static_assert(is_of_type<km_per_s, derived_unit<kilometre_, per<second_>>>);
static_assert(is_of_type<get_canonical_unit(km_per_s).reference_unit, derived_unit<metre_, per<second_>>>);
static_assert(get_canonical_unit(km_per_s).mag == mag<1000>);
constexpr auto km_per_h = kilometre / hour;
static_assert(is_of_type<km_per_h, derived_unit<kilometre_, per<hour_>>>);
static_assert(is_of_type<get_canonical_unit(km_per_h).reference_unit, derived_unit<metre_, per<second_>>>);
static_assert(get_canonical_unit(km_per_h).mag == mag<ratio{1000, 3600}>);
static_assert(is_of_type<get_canonical_unit(1 / metre).reference_unit, derived_unit<one_, per<metre_>>>);
static_assert(is_of_type<get_canonical_unit(1 / hertz).reference_unit, second_>);
static_assert(
is_of_type<get_canonical_unit(pascal).reference_unit, derived_unit<gram_, per<metre_, power<second_, 2>>>>);
static_assert(
is_of_type<get_canonical_unit(1 / pascal).reference_unit, derived_unit<metre_, power<second_, 2>, per<gram_>>>);
// operations commutativity
constexpr auto u1 = mag<1000> * kilometre / hour;
static_assert(is_of_type<u1, scaled_unit<mag<1000>, derived_unit<kilometre_, per<hour_>>>>);
static_assert(is_of_type<get_canonical_unit(u1).reference_unit, derived_unit<metre_, per<second_>>>);
static_assert(get_canonical_unit(u1).mag == mag<ratio{1'000'000, 3'600}>);
constexpr auto u2 = mag<1000> * (kilometre / hour);
static_assert(is_of_type<u2, scaled_unit<mag<1000>, derived_unit<kilometre_, per<hour_>>>>);
static_assert(is_of_type<get_canonical_unit(u2).reference_unit, derived_unit<metre_, per<second_>>>);
static_assert(get_canonical_unit(u2).mag == mag<ratio{1'000'000, 3'600}>);
constexpr auto u3 = 1 / hour * (mag<1000> * kilometre);
static_assert(is_of_type<u3, scaled_unit<mag<1000>, derived_unit<kilometre_, per<hour_>>>>);
static_assert(is_of_type<get_canonical_unit(u3).reference_unit, derived_unit<metre_, per<second_>>>);
static_assert(get_canonical_unit(u3).mag == mag<ratio{1'000'000, 3'600}>);
template<auto& s>
concept invalid_operations = requires {
requires !requires { s < s; };
requires !requires { s / 2; };
requires !requires { 2 * s; };
requires !requires { s * 2; };
requires !requires { s + 2; };
requires !requires { 2 + s; };
requires !requires { s + s; };
requires !requires { s - 2; };
requires !requires { 2 - s; };
requires !requires { s - s; };
requires !requires { s == 2; };
requires !requires { 2 == s; };
requires !requires { s < 2; };
requires !requires { 2 < s; };
requires !requires { s + time[second]; };
requires !requires { s - time[second]; };
requires !requires { s* time[second]; };
requires !requires { s / time[second]; };
requires !requires { s == time[second]; };
requires !requires { s < time[second]; };
requires !requires { time[second] + s; };
requires !requires { time[second] - s; };
requires !requires { time[second] * s; };
requires !requires { time[second] / s; };
requires !requires { time[second] == s; };
requires !requires { time[second] < s; };
requires !requires { s + 1 * time[second]; };
requires !requires { s - 1 * time[second]; };
requires !requires { s * 1 * time[second]; };
requires !requires { s / 1 * time[second]; };
requires !requires { s == 1 * time[second]; };
requires !requires { s == 1 * time[second]; };
requires !requires { 1 * time[second] + s; };
requires !requires { 1 * time[second] - s; };
requires !requires { 1 * time[second] * s; };
requires !requires { 1 * time[second] == s; };
requires !requires { 1 * time[second] < s; };
};
static_assert(invalid_operations<second>);
// comparisons of the same units
static_assert(second == second);
static_assert(metre / second == metre / second);
static_assert(si::milli<metre> / si::milli<second> == si::micro<metre> / si::micro<second>);
static_assert(si::milli<metre> / si::micro<second> == si::micro<metre> / si::nano<second>);
static_assert(si::micro<metre> / si::milli<second> == si::nano<metre> / si::micro<second>);
static_assert(si::milli<metre> * si::kilo<metre> == si::deci<metre> * si::deca<metre>);
static_assert(si::kilo<metre> * si::milli<metre> == si::deca<metre> * si::deci<metre>);
// comparisons of equivalent units (named vs unnamed/derived)
static_assert(1 / second == hertz);
static_assert(convertible(1 / second, hertz));
// comparisons of equivalent units of different quantities
static_assert(hertz == becquerel);
static_assert(convertible(hertz, becquerel));
// comparisons of scaled units
static_assert(si::kilo<metre> == kilometre);
static_assert(mag<1000> * metre == si::kilo<metre>);
static_assert(mag<1000> * metre == kilometre);
static_assert(convertible(si::kilo<metre>, kilometre));
static_assert(convertible(mag<1000> * metre, si::kilo<metre>));
static_assert(convertible(mag<1000> * metre, kilometre));
static_assert(metre != kilometre);
static_assert(convertible(metre, kilometre));
static_assert(mag<100> * metre != kilometre);
static_assert(convertible(mag<100> * metre, kilometre));
static_assert(si::milli<metre> != kilometre);
static_assert(convertible(si::milli<metre>, kilometre));
// comparisons of non-convertible units
static_assert(metre != metre * metre);
static_assert(!convertible(metre, metre* metre));
// one
static_assert(is_of_type<metre / metre, one_>);
static_assert(metre / metre == one);
static_assert(hertz * second == one);
static_assert(hertz == 1 / second);
static_assert(newton == kilogram * metre / square<second>);
static_assert(joule == kilogram * square<metre> / square<second>);
static_assert(joule == newton * metre);
static_assert(watt == joule / second);
static_assert(watt == kilogram * square<metre> / cubic<second>);
// power
static_assert(is_same_v<decltype(pow<2>(metre)), decltype(metre * metre)>);
static_assert(is_same_v<decltype(pow<2>(kilometre)), decltype(kilometre * kilometre)>);
static_assert(is_same_v<decltype(pow<2>(si::kilo<metre>)), decltype(si::kilo<metre> * si::kilo<metre>)>);
static_assert(is_same_v<decltype(pow<2>(hour)), decltype(hour * hour)>);
static_assert(is_same_v<decltype(pow<2>(mag<3600> * second)), decltype((mag<3600> * second) * (mag<3600> * second))>);
static_assert(is_same_v<decltype(pow<2>(metre / second)), decltype(metre * metre / second / second)>);
static_assert(is_same_v<decltype(pow<2>(kilometre / hour)), decltype(kilometre * kilometre / hour / hour)>);
static_assert(is_of_type<pow<2>(metre), derived_unit<power<metre_, 2>>>);
static_assert(is_of_type<pow<1, 2>(metre), derived_unit<power<metre_, 1, 2>>>);
static_assert(is_of_type<pow<1, 2>(metre* metre), metre_>);
static_assert(is_of_type<pow<1, 3>(metre* metre* metre), metre_>);
static_assert(is_of_type<pow<1, 3>(metre* metre), derived_unit<power<metre_, 2, 3>>>);
static_assert(is_of_type<pow<1, 2>(metre / second), derived_unit<power<metre_, 1, 2>, per<power<second_, 1, 2>>>>);
static_assert(is_of_type<pow<1, 2>(metre / (second * second)), derived_unit<power<metre_, 1, 2>, per<second_>>>);
static_assert(is_of_type<kilometre * kilometre, derived_unit<power<kilometre_, 2>>>);
static_assert(is_of_type<pow<2>(kilometre), derived_unit<power<kilometre_, 2>>>);
static_assert(is_of_type<pow<2>(si::kilo<metre>), derived_unit<power<si::kilo_<metre>, 2>>>);
static_assert(is_of_type<pow<2>(hour), derived_unit<power<hour_, 2>>>);
static_assert(
is_of_type<pow<2>(mag<3600>* second), scaled_unit<mag<3600> * mag<3600>, derived_unit<power<second_, 2>>>>);
// common_type
static_assert(std::is_same_v<std::common_type_t<decltype(gram), decltype(gram)>, gram_>);
static_assert(std::is_same_v<std::common_type_t<decltype(kilogram), decltype(kilogram)>, kilogram_>);
static_assert(std::is_same_v<std::common_type_t<decltype(si::kilo<gram>), decltype(kilogram)>, kilogram_>);
static_assert(std::is_same_v<std::common_type_t<decltype(kilogram), decltype(si::kilo<gram>)>, kilogram_>);
static_assert(std::is_same_v<std::common_type_t<decltype(mag<1000> * gram), decltype(kilogram)>, kilogram_>);
static_assert(std::is_same_v<std::common_type_t<decltype(kilogram), decltype(mag<1000> * gram)>, kilogram_>);
static_assert(std::is_same_v<std::common_type_t<decltype(1 / second), decltype(hertz)>, hertz_>);
static_assert(std::is_same_v<std::common_type_t<decltype(hertz), decltype(1 / second)>, hertz_>);
static_assert(std::is_same_v<std::common_type_t<decltype(gram), decltype(kilogram)>, gram_>);
static_assert(std::is_same_v<std::common_type_t<decltype(kilogram), decltype(gram)>, gram_>);
static_assert(std::is_same_v<std::common_type_t<decltype(second), decltype(hour)>, second_>);
static_assert(std::is_same_v<std::common_type_t<decltype(hour), decltype(second)>, second_>);
static_assert(std::is_same_v<std::common_type_t<decltype(minute), decltype(hour)>, minute_>);
static_assert(std::is_same_v<std::common_type_t<decltype(hour), decltype(minute)>, minute_>);
static_assert(std::is_same_v<std::common_type_t<decltype(si::kilo<metre>), decltype(si::milli<metre>)>,
std::remove_const_t<decltype(si::milli<metre>)>>);
static_assert(std::is_same_v<std::common_type_t<decltype(si::milli<metre>), decltype(si::kilo<metre>)>,
std::remove_const_t<decltype(si::milli<metre>)>>);
static_assert(std::is_same_v<std::common_type_t<decltype(yard), decltype(mile)>, yard_>);
static_assert(std::is_same_v<std::common_type_t<decltype(mile), decltype(yard)>, yard_>);
// TODO The below have long/unreadable magnitude types
static_assert(std::is_same_v<std::common_type_t<decltype(kilometre / hour), decltype(metre / second)>,
scaled_unit<mag<ratio{1, 18}>, derived_unit<metre_, per<second_>>>>);
static_assert(std::is_same_v<std::common_type_t<decltype(metre / second), decltype(kilometre / hour)>,
scaled_unit<mag<ratio{1, 18}>, derived_unit<metre_, per<second_>>>>);
static_assert(
std::is_same_v<std::common_type_t<decltype(kilometre), decltype(mile)>, scaled_unit<mag<ratio{8, 125}>, metre_>>);
static_assert(
std::is_same_v<std::common_type_t<decltype(mile), decltype(kilometre)>, scaled_unit<mag<ratio{8, 125}>, metre_>>);
// unit symbols
#ifdef __cpp_lib_constexpr_string
using enum text_encoding;
using enum unit_symbol_solidus;
using enum unit_symbol_separator;
// named units
static_assert(unit_symbol(metre) == "m");
static_assert(unit_symbol(second) == "s");
static_assert(unit_symbol(joule) == "J");
static_assert(unit_symbol(degree_Celsius) == "\u00B0C");
static_assert(unit_symbol(degree_Celsius, {.encoding = ascii}) == "`C");
static_assert(unit_symbol(kilometre) == "km");
static_assert(unit_symbol(si::milli<metre>) == "mm");
static_assert(unit_symbol(si::micro<metre>) == "µm");
static_assert(unit_symbol(si::micro<metre>, {.encoding = ascii}) == "um");
static_assert(unit_symbol(kilojoule) == "kJ");
static_assert(unit_symbol(hour) == "h");
// scaled units
static_assert(unit_symbol(mag<100> * metre) == "× 10² m");
static_assert(unit_symbol(mag<100> * metre, {.encoding = ascii}) == "x 10^2 m");
static_assert(unit_symbol(mag<60> * second) == "[6 × 10¹] s");
static_assert(unit_symbol(mag<60> * second, {.encoding = ascii}) == "[6 x 10^1] s");
// derived units
static_assert(unit_symbol(one) == "");
static_assert(unit_symbol(percent) == "%");
static_assert(unit_symbol(per_mille) == "");
static_assert(unit_symbol(per_mille, {.encoding = ascii}) == "%o");
static_assert(unit_symbol(square<metre>) == "");
static_assert(unit_symbol(square<metre>, {.encoding = ascii}) == "m^2");
static_assert(unit_symbol(cubic<metre>) == "");
static_assert(unit_symbol(cubic<metre>, {.encoding = ascii}) == "m^3");
static_assert(unit_symbol(kilometre * metre) == "km m");
static_assert(unit_symbol(kilometre * metre, {.separator = dot}) == "km⋅m");
static_assert(unit_symbol(metre / metre) == "");
static_assert(unit_symbol(kilometre / metre) == "km/m");
static_assert(unit_symbol(kilometre / metre, {.solidus = never}) == "km m⁻¹");
static_assert(unit_symbol(kilometre / metre, {.encoding = ascii, .solidus = never}) == "km m^-1");
static_assert(unit_symbol(metre / second) == "m/s");
static_assert(unit_symbol(metre / second, {.solidus = always}) == "m/s");
static_assert(unit_symbol(metre / second, {.solidus = never}) == "m s⁻¹");
static_assert(unit_symbol(metre / second, {.encoding = ascii, .solidus = never}) == "m s^-1");
static_assert(unit_symbol(metre / second, {.solidus = never, .separator = dot}) == "m⋅s⁻¹");
static_assert(unit_symbol(metre / square<second>) == "m/s²");
static_assert(unit_symbol(metre / square<second>, {.encoding = ascii}) == "m/s^2");
static_assert(unit_symbol(metre / square<second>, {.solidus = always}) == "m/s²");
static_assert(unit_symbol(metre / square<second>, {.encoding = ascii, .solidus = always}) == "m/s^2");
static_assert(unit_symbol(metre / square<second>, {.solidus = never}) == "m s⁻²");
static_assert(unit_symbol(metre / square<second>, {.encoding = ascii, .solidus = never}) == "m s^-2");
static_assert(unit_symbol(metre / square<second>, {.solidus = never, .separator = dot}) == "m⋅s⁻²");
static_assert(unit_symbol(kilogram * metre / square<second>) == "kg m/s²");
static_assert(unit_symbol(kilogram * metre / square<second>, {.separator = dot}) == "kg⋅m/s²");
static_assert(unit_symbol(kilogram * metre / square<second>, {.encoding = ascii}) == "kg m/s^2");
static_assert(unit_symbol(kilogram * metre / square<second>, {.solidus = always}) == "kg m/s²");
static_assert(unit_symbol(kilogram * metre / square<second>, {.encoding = ascii, .solidus = always}) == "kg m/s^2");
static_assert(unit_symbol(kilogram * metre / square<second>, {.solidus = never}) == "kg m s⁻²");
static_assert(unit_symbol(kilogram * metre / square<second>, {.encoding = ascii, .solidus = never}) == "kg m s^-2");
static_assert(unit_symbol(kilogram * metre / square<second>, {.solidus = never, .separator = dot}) == "kg⋅m⋅s⁻²");
static_assert(unit_symbol(kilogram / metre / square<second>) == "kg m⁻¹ s⁻²");
static_assert(unit_symbol(kilogram / metre / square<second>, {.separator = dot}) == "kg⋅m⁻¹⋅s⁻²");
static_assert(unit_symbol(kilogram / metre / square<second>, {.encoding = ascii}) == "kg m^-1 s^-2");
static_assert(unit_symbol(kilogram / metre / square<second>, {.solidus = always}) == "kg/(m s²)");
static_assert(unit_symbol(kilogram / metre / square<second>, {.encoding = ascii, .solidus = always}) == "kg/(m s^2)");
static_assert(unit_symbol(kilogram / metre / square<second>, {.solidus = never}) == "kg m⁻¹ s⁻²");
static_assert(unit_symbol(kilogram / metre / square<second>, {.encoding = ascii, .solidus = never}) == "kg m^-1 s^-2");
static_assert(unit_symbol(kilogram / metre / square<second>, {.solidus = never, .separator = dot}) == "kg⋅m⁻¹⋅s⁻²");
static_assert(unit_symbol(pow<123>(metre)) == "m¹²³");
static_assert(unit_symbol(pow<1, 2>(metre)) == "m^(1/2)");
static_assert(unit_symbol(pow<3, 5>(metre)) == "m^(3/5)");
static_assert(unit_symbol(pow<1, 2>(metre / second)) == "m^(1/2)/s^(1/2)");
#endif // __cpp_lib_constexpr_string
} // namespace