mirror of
https://github.com/mpusz/mp-units.git
synced 2026-01-31 02:29:30 +01:00
176 lines
9.8 KiB
C++
176 lines
9.8 KiB
C++
// The MIT License (MIT)
|
||
//
|
||
// Copyright (c) 2018 Mateusz Pusz
|
||
//
|
||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
// of this software and associated documentation files (the "Software"), to deal
|
||
// in the Software without restriction, including without limitation the rights
|
||
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
// copies of the Software, and to permit persons to whom the Software is
|
||
// furnished to do so, subject to the following conditions:
|
||
//
|
||
// The above copyright notice and this permission notice shall be included in all
|
||
// copies or substantial portions of the Software.
|
||
//
|
||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
// SOFTWARE.
|
||
|
||
#include <mp-units/systems/iau/iau.h>
|
||
#include <mp-units/systems/iec80000/iec80000.h>
|
||
#include <mp-units/systems/si/si.h>
|
||
|
||
namespace {
|
||
|
||
using namespace mp_units;
|
||
using namespace mp_units::si;
|
||
using namespace mp_units::iec80000;
|
||
|
||
#if __cpp_lib_constexpr_string && (!defined MP_UNITS_COMP_GCC || MP_UNITS_COMP_GCC > 11)
|
||
|
||
using enum text_encoding;
|
||
using enum unit_symbol_solidus;
|
||
using enum unit_symbol_separator;
|
||
|
||
// named units
|
||
static_assert(unit_symbol(metre) == "m");
|
||
static_assert(unit_symbol(second) == "s");
|
||
static_assert(unit_symbol(joule) == "J");
|
||
static_assert(unit_symbol(degree_Celsius) == "\u00B0C");
|
||
static_assert(unit_symbol(degree_Celsius, {.encoding = ascii}) == "`C");
|
||
static_assert(unit_symbol(kilogram) == "kg");
|
||
static_assert(unit_symbol(hour) == "h");
|
||
|
||
// prefixed units
|
||
static_assert(unit_symbol(quecto<ohm>) == "qΩ");
|
||
static_assert(unit_symbol(quecto<ohm>, {.encoding = ascii}) == "qohm");
|
||
static_assert(unit_symbol(ronto<ohm>) == "rΩ");
|
||
static_assert(unit_symbol(ronto<ohm>, {.encoding = ascii}) == "rohm");
|
||
static_assert(unit_symbol(yocto<ohm>) == "yΩ");
|
||
static_assert(unit_symbol(yocto<ohm>, {.encoding = ascii}) == "yohm");
|
||
static_assert(unit_symbol(zepto<ohm>) == "zΩ");
|
||
static_assert(unit_symbol(zepto<ohm>, {.encoding = ascii}) == "zohm");
|
||
static_assert(unit_symbol(atto<ohm>) == "aΩ");
|
||
static_assert(unit_symbol(atto<ohm>, {.encoding = ascii}) == "aohm");
|
||
static_assert(unit_symbol(femto<ohm>) == "fΩ");
|
||
static_assert(unit_symbol(femto<ohm>, {.encoding = ascii}) == "fohm");
|
||
static_assert(unit_symbol(pico<ohm>) == "pΩ");
|
||
static_assert(unit_symbol(pico<ohm>, {.encoding = ascii}) == "pohm");
|
||
static_assert(unit_symbol(nano<ohm>) == "nΩ");
|
||
static_assert(unit_symbol(nano<ohm>, {.encoding = ascii}) == "nohm");
|
||
static_assert(unit_symbol(micro<ohm>) == "µΩ");
|
||
static_assert(unit_symbol(micro<ohm>, {.encoding = ascii}) == "uohm");
|
||
static_assert(unit_symbol(milli<ohm>) == "mΩ");
|
||
static_assert(unit_symbol(milli<ohm>, {.encoding = ascii}) == "mohm");
|
||
static_assert(unit_symbol(centi<ohm>) == "cΩ");
|
||
static_assert(unit_symbol(centi<ohm>, {.encoding = ascii}) == "cohm");
|
||
static_assert(unit_symbol(deci<ohm>) == "dΩ");
|
||
static_assert(unit_symbol(deci<ohm>, {.encoding = ascii}) == "dohm");
|
||
static_assert(unit_symbol(deca<ohm>) == "daΩ");
|
||
static_assert(unit_symbol(deca<ohm>, {.encoding = ascii}) == "daohm");
|
||
static_assert(unit_symbol(hecto<ohm>) == "hΩ");
|
||
static_assert(unit_symbol(hecto<ohm>, {.encoding = ascii}) == "hohm");
|
||
static_assert(unit_symbol(kilo<ohm>) == "kΩ");
|
||
static_assert(unit_symbol(kilo<ohm>, {.encoding = ascii}) == "kohm");
|
||
static_assert(unit_symbol(mega<ohm>) == "MΩ");
|
||
static_assert(unit_symbol(mega<ohm>, {.encoding = ascii}) == "Mohm");
|
||
static_assert(unit_symbol(giga<ohm>) == "GΩ");
|
||
static_assert(unit_symbol(giga<ohm>, {.encoding = ascii}) == "Gohm");
|
||
static_assert(unit_symbol(tera<ohm>) == "TΩ");
|
||
static_assert(unit_symbol(tera<ohm>, {.encoding = ascii}) == "Tohm");
|
||
static_assert(unit_symbol(peta<ohm>) == "PΩ");
|
||
static_assert(unit_symbol(peta<ohm>, {.encoding = ascii}) == "Pohm");
|
||
static_assert(unit_symbol(exa<ohm>) == "EΩ");
|
||
static_assert(unit_symbol(exa<ohm>, {.encoding = ascii}) == "Eohm");
|
||
static_assert(unit_symbol(zetta<ohm>) == "ZΩ");
|
||
static_assert(unit_symbol(zetta<ohm>, {.encoding = ascii}) == "Zohm");
|
||
static_assert(unit_symbol(yotta<ohm>) == "YΩ");
|
||
static_assert(unit_symbol(yotta<ohm>, {.encoding = ascii}) == "Yohm");
|
||
static_assert(unit_symbol(ronna<ohm>) == "RΩ");
|
||
static_assert(unit_symbol(ronna<ohm>, {.encoding = ascii}) == "Rohm");
|
||
static_assert(unit_symbol(quetta<ohm>) == "QΩ");
|
||
static_assert(unit_symbol(quetta<ohm>, {.encoding = ascii}) == "Qohm");
|
||
|
||
static_assert(unit_symbol(kibi<bit>) == "Kibit");
|
||
static_assert(unit_symbol(mebi<bit>) == "Mibit");
|
||
static_assert(unit_symbol(gibi<bit>) == "Gibit");
|
||
static_assert(unit_symbol(tebi<bit>) == "Tibit");
|
||
static_assert(unit_symbol(pebi<bit>) == "Pibit");
|
||
static_assert(unit_symbol(exbi<bit>) == "Eibit");
|
||
static_assert(unit_symbol(zebi<bit>) == "Zibit");
|
||
static_assert(unit_symbol(yobi<bit>) == "Yibit");
|
||
|
||
// scaled units
|
||
static_assert(unit_symbol(mag<100> * metre) == "× 10² m");
|
||
static_assert(unit_symbol(mag<100> * metre, {.encoding = ascii}) == "x 10^2 m");
|
||
static_assert(unit_symbol(mag<60> * second) == "[6 × 10¹] s");
|
||
static_assert(unit_symbol(mag<60> * second, {.encoding = ascii}) == "[6 x 10^1] s");
|
||
static_assert(unit_symbol(mag<ratio{1, 18}> * metre / second) == "[1/18] m/s");
|
||
|
||
// derived units
|
||
static_assert(unit_symbol(one) == "");
|
||
static_assert(unit_symbol(percent) == "%");
|
||
static_assert(unit_symbol(per_mille) == "‰");
|
||
static_assert(unit_symbol(per_mille, {.encoding = ascii}) == "%o");
|
||
static_assert(unit_symbol(square(metre)) == "m²");
|
||
static_assert(unit_symbol(square(metre), {.encoding = ascii}) == "m^2");
|
||
static_assert(unit_symbol(cubic(metre)) == "m³");
|
||
static_assert(unit_symbol(cubic(metre), {.encoding = ascii}) == "m^3");
|
||
static_assert(unit_symbol(kilo<metre> * metre) == "km m");
|
||
static_assert(unit_symbol(kilo<metre> * metre, {.separator = half_high_dot}) == "km⋅m");
|
||
static_assert(unit_symbol(metre / metre) == "");
|
||
static_assert(unit_symbol(kilo<metre> / metre) == "km/m");
|
||
static_assert(unit_symbol(kilo<metre> / metre, {.solidus = never}) == "km m⁻¹");
|
||
static_assert(unit_symbol(kilo<metre> / metre, {.encoding = ascii, .solidus = never}) == "km m^-1");
|
||
static_assert(unit_symbol(metre / second) == "m/s");
|
||
static_assert(unit_symbol(metre / second, {.solidus = always}) == "m/s");
|
||
static_assert(unit_symbol(metre / second, {.solidus = never}) == "m s⁻¹");
|
||
static_assert(unit_symbol(metre / second, {.encoding = ascii, .solidus = never}) == "m s^-1");
|
||
static_assert(unit_symbol(metre / second, {.solidus = never, .separator = half_high_dot}) == "m⋅s⁻¹");
|
||
static_assert(unit_symbol(metre / square(second)) == "m/s²");
|
||
static_assert(unit_symbol(metre / square(second), {.encoding = ascii}) == "m/s^2");
|
||
static_assert(unit_symbol(metre / square(second), {.solidus = always}) == "m/s²");
|
||
static_assert(unit_symbol(metre / square(second), {.encoding = ascii, .solidus = always}) == "m/s^2");
|
||
static_assert(unit_symbol(metre / square(second), {.solidus = never}) == "m s⁻²");
|
||
static_assert(unit_symbol(metre / square(second), {.encoding = ascii, .solidus = never}) == "m s^-2");
|
||
static_assert(unit_symbol(metre / square(second), {.solidus = never, .separator = half_high_dot}) == "m⋅s⁻²");
|
||
static_assert(unit_symbol(kilogram * metre / square(second)) == "kg m/s²");
|
||
static_assert(unit_symbol(kilogram * metre / square(second), {.separator = half_high_dot}) == "kg⋅m/s²");
|
||
static_assert(unit_symbol(kilogram * metre / square(second), {.encoding = ascii}) == "kg m/s^2");
|
||
static_assert(unit_symbol(kilogram * metre / square(second), {.solidus = always}) == "kg m/s²");
|
||
static_assert(unit_symbol(kilogram * metre / square(second), {.encoding = ascii, .solidus = always}) == "kg m/s^2");
|
||
static_assert(unit_symbol(kilogram * metre / square(second), {.solidus = never}) == "kg m s⁻²");
|
||
static_assert(unit_symbol(kilogram * metre / square(second), {.encoding = ascii, .solidus = never}) == "kg m s^-2");
|
||
static_assert(unit_symbol(kilogram * metre / square(second), {.solidus = never, .separator = half_high_dot}) ==
|
||
"kg⋅m⋅s⁻²");
|
||
static_assert(unit_symbol(kilogram / metre / square(second)) == "kg m⁻¹ s⁻²");
|
||
static_assert(unit_symbol(kilogram / metre / square(second), {.separator = half_high_dot}) == "kg⋅m⁻¹⋅s⁻²");
|
||
static_assert(unit_symbol(kilogram / metre / square(second), {.encoding = ascii}) == "kg m^-1 s^-2");
|
||
static_assert(unit_symbol(kilogram / metre / square(second), {.solidus = always}) == "kg/(m s²)");
|
||
static_assert(unit_symbol(kilogram / metre / square(second), {.encoding = ascii, .solidus = always}) == "kg/(m s^2)");
|
||
static_assert(unit_symbol(kilogram / metre / square(second), {.solidus = never}) == "kg m⁻¹ s⁻²");
|
||
static_assert(unit_symbol(kilogram / metre / square(second), {.encoding = ascii, .solidus = never}) == "kg m^-1 s^-2");
|
||
static_assert(unit_symbol(kilogram / metre / square(second), {.solidus = never, .separator = half_high_dot}) ==
|
||
"kg⋅m⁻¹⋅s⁻²");
|
||
static_assert(unit_symbol(pow<123>(metre)) == "m¹²³");
|
||
static_assert(unit_symbol(pow<1, 2>(metre)) == "m^(1/2)");
|
||
static_assert(unit_symbol(pow<3, 5>(metre)) == "m^(3/5)");
|
||
static_assert(unit_symbol(pow<1, 2>(metre / second)) == "m^(1/2)/s^(1/2)");
|
||
|
||
// dimensionless unit
|
||
static_assert(unit_symbol(radian) == "rad");
|
||
|
||
// Physical constants
|
||
static_assert(unit_symbol(si2019::speed_of_light_in_vacuum) == "c");
|
||
static_assert(unit_symbol(gram * standard_gravity * si2019::speed_of_light_in_vacuum) == "c g g₀");
|
||
static_assert(unit_symbol(gram / standard_gravity) == "g/g₀");
|
||
static_assert(unit_symbol(kilo<metre> / second / mega<iau::parsec>) == "km Mpc⁻¹ s⁻¹");
|
||
|
||
#endif // __cpp_lib_constexpr_string
|
||
|
||
} // namespace
|