Files
mp-units/test/unit_test/runtime/math_test.cpp
2022-08-03 13:10:59 +02:00

385 lines
14 KiB
C++

// The MIT License (MIT)
//
// Copyright (c) 2018 Mateusz Pusz
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include <catch2/catch.hpp>
#include <units/isq/si/area.h>
#include <units/isq/si/cgs/length.h>
#include <units/isq/si/length.h>
#include <units/isq/si/time.h>
#include <units/isq/si/volume.h>
#include <units/math.h>
#include <limits>
using namespace units;
using namespace units::isq;
using namespace units::isq::si::literals;
// classical
TEST_CASE("'pow<N>()' on quantity changes the value and the dimension accordingly", "[math][pow]")
{
SECTION("'pow<0>(q)' returns '1'") { CHECK(pow<0>(2_q_m) == 1); }
SECTION("'pow<1>(q)' returns 'q'") { CHECK(pow<1>(2_q_m) == 2_q_m); }
SECTION("'pow<2>(q)' squares both the value and a dimension") { CHECK(pow<2>(2_q_m) == 4_q_m2); }
SECTION("'pow<3>(q)' cubes both the value and a dimension") { CHECK(pow<3>(2_q_m) == 8_q_m3); }
}
TEST_CASE("'sqrt()' on quantity changes the value and the dimension accordingly", "[math][sqrt]")
{
REQUIRE(sqrt(4_q_m2) == 2_q_m);
}
TEST_CASE("'cbrt()' on quantity changes the value and the dimension accordingly", "[math][cbrt]")
{
REQUIRE(cbrt(8_q_m3) == 2_q_m);
}
TEST_CASE("'pow<Num, Den>()' on quantity changes the value and the dimension accordingly", "[math][pow]")
{
REQUIRE(pow<1, 4>(16_q_m2) == sqrt(4_q_m));
}
TEST_CASE("absolute functions on quantity returns the absolute value", "[math][abs][fabs]")
{
SECTION("'abs()' on a negative quantity returns the abs")
{
SECTION("integral representation") { REQUIRE(abs(-1_q_m) == 1_q_m); }
SECTION("floating-point representation") { REQUIRE(abs(-1._q_m) == 1_q_m); }
}
SECTION("'abs()' on a positive quantity returns the abs")
{
SECTION("integral representation") { REQUIRE(abs(1_q_m) == 1_q_m); }
SECTION("floating-point representation") { REQUIRE(abs(1._q_m) == 1_q_m); }
}
}
TEST_CASE("numeric_limits functions", "[limits]")
{
SECTION("'epsilon' works as expected using default floating type")
{
REQUIRE(epsilon<decltype(1._q_m)>().number() == std::numeric_limits<decltype(1._q_m)::rep>::epsilon());
}
SECTION("'epsilon' works as expected using integers")
{
REQUIRE(epsilon<decltype(1_q_m)>().number() == std::numeric_limits<decltype(1_q_m)::rep>::epsilon());
}
SECTION("'epsilon' works as expected using mixed Rep types")
{
REQUIRE(epsilon<decltype(1_q_m)>().number() != std::numeric_limits<decltype(1._q_m)::rep>::epsilon());
}
}
TEST_CASE("floor functions", "[floor]")
{
SECTION("floor 1 second with target unit second should be 1 second") { REQUIRE(floor<si::second>(1_q_s) == 1_q_s); }
SECTION("floor 1000 milliseconds with target unit second should be 1 second")
{
REQUIRE(floor<si::second>(1000_q_ms) == 1_q_s);
}
SECTION("floor 1001 milliseconds with target unit second should be 1 second")
{
REQUIRE(floor<si::second>(1001_q_ms) == 1_q_s);
}
SECTION("floor 1999 milliseconds with target unit second should be 1 second")
{
REQUIRE(floor<si::second>(1999_q_ms) == 1_q_s);
}
SECTION("floor -1000 milliseconds with target unit second should be -1 second")
{
REQUIRE(floor<si::second>(-1000_q_ms) == -1_q_s);
}
SECTION("floor -999 milliseconds with target unit second should be -1 second")
{
REQUIRE(floor<si::second>(-999_q_ms) == -1_q_s);
}
SECTION("floor 1.3 seconds with target unit second should be 1 second")
{
REQUIRE(floor<si::second>(1.3_q_s) == 1_q_s);
}
SECTION("floor -1.3 seconds with target unit second should be -2 seconds")
{
REQUIRE(floor<si::second>(-1.3_q_s) == -2_q_s);
}
SECTION("floor 1001. milliseconds with target unit second should be 1 second")
{
REQUIRE(floor<si::second>(1001._q_ms) == 1_q_s);
}
SECTION("floor 1999. milliseconds with target unit second should be 1 second")
{
REQUIRE(floor<si::second>(1999._q_ms) == 1_q_s);
}
SECTION("floor -1000. milliseconds with target unit second should be -1 second")
{
REQUIRE(floor<si::second>(-1000._q_ms) == -1_q_s);
}
SECTION("floor -999. milliseconds with target unit second should be -1 second")
{
REQUIRE(floor<si::second>(-999._q_ms) == -1_q_s);
}
SECTION("floor 1 second with target quantity with unit type second should be 1 second")
{
using showtime = si::time<si::second, int>;
REQUIRE(floor<showtime>(showtime::one()) == showtime::one());
}
}
TEST_CASE("ceil functions", "[ceil]")
{
SECTION("ceil 1 second with target unit second should be 1 second") { REQUIRE(ceil<si::second>(1_q_s) == 1_q_s); }
SECTION("ceil 1000 milliseconds with target unit second should be 1 second")
{
REQUIRE(ceil<si::second>(1000_q_ms) == 1_q_s);
}
SECTION("ceil 1001 milliseconds with target unit second should be 2 seconds")
{
REQUIRE(ceil<si::second>(1001_q_ms) == 2_q_s);
}
SECTION("ceil 1999 milliseconds with target unit second should be 2 seconds")
{
REQUIRE(ceil<si::second>(1999_q_ms) == 2_q_s);
}
SECTION("ceil -1000 milliseconds with target unit second should be -1 second")
{
REQUIRE(ceil<si::second>(-1000_q_ms) == -1_q_s);
}
SECTION("ceil -999 milliseconds with target unit second should be 0 seconds")
{
REQUIRE(ceil<si::second>(-999_q_ms) == 0_q_s);
}
SECTION("ceil 1.3 seconds with target unit second should be 2 seconds")
{
REQUIRE(ceil<si::second>(1.3_q_s) == 2_q_s);
}
SECTION("ceil -1.3 seconds with target unit second should be -1 second")
{
REQUIRE(ceil<si::second>(-1.3_q_s) == -1_q_s);
}
SECTION("ceil 1001. milliseconds with target unit second should be 2 seconds")
{
REQUIRE(ceil<si::second>(1001._q_ms) == 2_q_s);
}
SECTION("ceil 1999. milliseconds with target unit second should be 2 seconds")
{
REQUIRE(ceil<si::second>(1999._q_ms) == 2_q_s);
}
// TODO does not work, probably due to a bug in fpow10() see #311
// SECTION ("ceil -1000. milliseconds with target unit second should be -1 second") {
// REQUIRE(ceil<si::second>(-1000._q_ms) == -1_q_s);
// }
SECTION("ceil -999. milliseconds with target unit second should be 0 seconds")
{
REQUIRE(ceil<si::second>(-999._q_ms) == 0_q_s);
}
SECTION("ceil 1 second with target quantity with unit type second should be 1 second")
{
using showtime = si::time<si::second, int>;
REQUIRE(ceil<showtime>(showtime::one()) == showtime::one());
}
}
TEST_CASE("round functions", "[round]")
{
SECTION("round 1 second with target unit second should be 1 second") { REQUIRE(round<si::second>(1_q_s) == 1_q_s); }
SECTION("round 1000 milliseconds with target unit second should be 1 second")
{
REQUIRE(round<si::second>(1000_q_ms) == 1_q_s);
}
SECTION("round 1001 milliseconds with target unit second should be 1 second")
{
REQUIRE(round<si::second>(1001_q_ms) == 1_q_s);
}
SECTION("round 1499 milliseconds with target unit second should be 1 second")
{
REQUIRE(round<si::second>(1499_q_ms) == 1_q_s);
}
SECTION("round 1500 milliseconds with target unit second should be 2 seconds")
{
REQUIRE(round<si::second>(1500_q_ms) == 2_q_s);
}
SECTION("round 1999 milliseconds with target unit second should be 2 seconds")
{
REQUIRE(round<si::second>(1999_q_ms) == 2_q_s);
}
SECTION("round -1000 milliseconds with target unit second should be -1 second")
{
REQUIRE(round<si::second>(-1000_q_ms) == -1_q_s);
}
SECTION("round -1001 milliseconds with target unit second should be -1 second")
{
REQUIRE(round<si::second>(-1001_q_ms) == -1_q_s);
}
SECTION("round -1499 milliseconds with target unit second should be -1 second")
{
REQUIRE(round<si::second>(-1499_q_ms) == -1_q_s);
}
SECTION("round -1500 milliseconds with target unit second should be -2 seconds")
{
REQUIRE(round<si::second>(-1500_q_ms) == -2_q_s);
}
SECTION("round -1999 milliseconds with target unit second should be -2 seconds")
{
REQUIRE(round<si::second>(-1999_q_ms) == -2_q_s);
}
SECTION("round 1000. milliseconds with target unit second should be 1 second")
{
REQUIRE(round<si::second>(1000._q_ms) == 1_q_s);
}
SECTION("round 1001. milliseconds with target unit second should be 1 second")
{
REQUIRE(round<si::second>(1001._q_ms) == 1_q_s);
}
SECTION("round 1499. milliseconds with target unit second should be 1 second")
{
REQUIRE(round<si::second>(1499._q_ms) == 1_q_s);
}
SECTION("round 1500. milliseconds with target unit second should be 2 seconds")
{
REQUIRE(round<si::second>(1500._q_ms) == 2_q_s);
}
SECTION("round 1999. milliseconds with target unit second should be 2 seconds")
{
REQUIRE(round<si::second>(1999._q_ms) == 2_q_s);
}
SECTION("round -1000. milliseconds with target unit second should be -1 second")
{
REQUIRE(round<si::second>(-1000._q_ms) == -1_q_s);
}
SECTION("round -1001. milliseconds with target unit second should be -1 second")
{
REQUIRE(round<si::second>(-1001._q_ms) == -1_q_s);
}
SECTION("round -1499. milliseconds with target unit second should be -1 second")
{
REQUIRE(round<si::second>(-1499._q_ms) == -1_q_s);
}
SECTION("round -1500. milliseconds with target unit second should be -2 seconds")
{
REQUIRE(round<si::second>(-1500._q_ms) == -2_q_s);
}
SECTION("round -1999. milliseconds with target unit second should be -2 seconds")
{
REQUIRE(round<si::second>(-1999._q_ms) == -2_q_s);
}
SECTION("round 1 second with target quantity with unit type second should be 1 second")
{
using showtime = si::time<si::second, int>;
REQUIRE(round<showtime>(showtime::one()) == showtime::one());
}
}
TEMPLATE_TEST_CASE_SIG("pow<N>() implementation exponentiates values to power N", "[math][pow][exp]",
(std::intmax_t N, N), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25)
{
auto v = GENERATE(range(0.5, 20.0, 0.5));
REQUIRE(detail::pow_impl<N>(v) == Approx(std::pow(v, N)).epsilon(1e-15).margin(0));
}
template<std::intmax_t N>
struct Pow {
constexpr static std::intmax_t exponent = N;
template<typename T>
[[nodiscard]] constexpr static auto pow(const T& v) noexcept
{
return detail::pow_impl<N>(v);
}
};
template<std::intmax_t N>
struct CompileRoot : Pow<N> {
[[nodiscard]] constexpr static std::intmax_t root(std::intmax_t v) noexcept { return detail::iroot_compile<N>(v); }
};
template<std::intmax_t N>
struct RuntimeRoot : Pow<N> {
[[nodiscard]] static std::intmax_t root(std::intmax_t v) noexcept { return detail::iroot_runtime<N>(v); }
};
// test to make sure precision is not lost when rounding what should be integer roots
template<typename TestType>
static void root_test()
{
SECTION("Roots are truncated down")
{
auto base = GENERATE(range(1.0, 10.0, 1.0)); // doubles to guard against overflow
if (TestType::pow(base) < static_cast<double>(std::numeric_limits<std::intmax_t>::max())) {
const std::intmax_t x = TestType::pow(static_cast<std::intmax_t>(base));
const auto expect = static_cast<std::intmax_t>(base);
REQUIRE(TestType::root(x - 1) == expect - 1);
REQUIRE(TestType::root(x) == expect);
}
}
SECTION("Roots are truncated correctly for very large inputs")
{
auto exponent = GENERATE(range(10, std::numeric_limits<std::intmax_t>::digits10, 1));
const auto large_val = static_cast<std::intmax_t>(std::pow(10, exponent));
const auto expected = static_cast<std::intmax_t>(std::pow(10, exponent / static_cast<double>(TestType::exponent)));
REQUIRE(TestType::root(large_val) == expected);
}
}
/* Catch2 uses int for indexing in TEMPLATE_PRODUCT_TEST_CASE_SIG so it does not compile with -Werror=sign-conversion
* https://github.com/catchorg/Catch2/pull/2074
TEMPLATE_PRODUCT_TEST_CASE_SIG("detail::iroot<N>()", "[math][pow][iroot]", (std::intmax_t N, N),
(CompileRoot, RuntimeRoot), (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25))
{
root_test<TestType>();
}
*/
#define ROOT_TEST_CASE(Type) \
TEMPLATE_TEST_CASE_SIG("detail::iroot<N>() - " #Type, "[math][pow][iroot]", (std::intmax_t N, N), 1, 2, 3, 4, 5, 6, \
7, 8, 9, 10, 15, 20, 25) \
{ \
root_test<Type<N>>(); \
}
ROOT_TEST_CASE(CompileRoot)
ROOT_TEST_CASE(RuntimeRoot)
TEST_CASE("hypot functions", "[hypot]")
{
using namespace units::aliases::isq::si;
SECTION("hypot of 3 kilometres with 4 kilometres should be 5 kilometres")
{
REQUIRE(hypot(km<>(3.), km<>(4.)) == km<>(5.));
}
SECTION("hypot should work with different units of the same dimension")
{
REQUIRE(hypot(km<>(3.), m<>(4000.)) == km<>(5.));
}
SECTION("hypot should work with different but equivalent dimensions")
{
REQUIRE(hypot(km<>(3.), cgs::length::cm<>(400'000.)) == km<>(5.));
}
}