Files
wolfssl/wolfcrypt/src/hmac.c

1666 lines
49 KiB
C

/* hmac.c
*
* Copyright (C) 2006-2025 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#include <wolfssl/wolfcrypt/libwolfssl_sources.h>
#ifndef NO_HMAC
#if FIPS_VERSION3_GE(2,0,0)
/* set NO_WRAPPERS before headers, use direct internal f()s not wrappers */
#define FIPS_NO_WRAPPERS
#ifdef USE_WINDOWS_API
#pragma code_seg(".fipsA$g")
#pragma const_seg(".fipsB$g")
#endif
#endif
#include <wolfssl/wolfcrypt/hmac.h>
#ifdef WOLF_CRYPTO_CB
#include <wolfssl/wolfcrypt/cryptocb.h>
#endif
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
#ifdef WOLFSSL_KCAPI_HMAC
#include <wolfssl/wolfcrypt/port/kcapi/kcapi_hmac.h>
/* map the _Software calls used by kcapi_hmac.c */
#define wc_HmacSetKey wc_HmacSetKey_Software
#define wc_HmacUpdate wc_HmacUpdate_Software
#define wc_HmacFinal wc_HmacFinal_Software
#endif
#if FIPS_VERSION3_GE(6,0,0)
const unsigned int wolfCrypt_FIPS_hmac_ro_sanity[2] =
{ 0x1a2b3c4d, 0x00000008 };
int wolfCrypt_FIPS_HMAC_sanity(void)
{
return 0;
}
#endif
int wc_HmacSizeByType(int type)
{
int ret;
if (!(type == WC_MD5 || type == WC_SHA ||
#ifdef WOLFSSL_SM3
type == WC_SM3 ||
#endif
type == WC_SHA224 || type == WC_SHA256 ||
type == WC_SHA384 || type == WC_SHA512 ||
type == WC_SHA3_224 || type == WC_SHA3_256 ||
type == WC_SHA3_384 || type == WC_SHA3_512)) {
return BAD_FUNC_ARG;
}
switch (type) {
#ifndef NO_MD5
case WC_MD5:
ret = WC_MD5_DIGEST_SIZE;
break;
#endif /* !NO_MD5 */
#ifndef NO_SHA
case WC_SHA:
ret = WC_SHA_DIGEST_SIZE;
break;
#endif /* !NO_SHA */
#ifdef WOLFSSL_SHA224
case WC_SHA224:
ret = WC_SHA224_DIGEST_SIZE;
break;
#endif /* WOLFSSL_SHA224 */
#ifndef NO_SHA256
case WC_SHA256:
ret = WC_SHA256_DIGEST_SIZE;
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
ret = WC_SHA384_DIGEST_SIZE;
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
ret = WC_SHA512_DIGEST_SIZE;
break;
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SHA3
case WC_SHA3_224:
ret = WC_SHA3_224_DIGEST_SIZE;
break;
case WC_SHA3_256:
ret = WC_SHA3_256_DIGEST_SIZE;
break;
case WC_SHA3_384:
ret = WC_SHA3_384_DIGEST_SIZE;
break;
case WC_SHA3_512:
ret = WC_SHA3_512_DIGEST_SIZE;
break;
#endif /* WOLFSSL_SHA3 */
#ifdef WOLFSSL_SM3
case WC_SM3:
ret = WC_SM3_DIGEST_SIZE;
break;
#endif
default:
ret = BAD_FUNC_ARG;
break;
}
return ret;
}
static int HmacKeyInitHash(wc_HmacHash* hash, int type, void* heap, int devId)
{
int ret = 0;
switch (type) {
#ifndef NO_MD5
case WC_MD5:
ret = wc_InitMd5_ex(&hash->md5, heap, devId);
break;
#endif /* !NO_MD5 */
#ifndef NO_SHA
case WC_SHA:
ret = wc_InitSha_ex(&hash->sha, heap, devId);
break;
#endif /* !NO_SHA */
#ifdef WOLFSSL_SHA224
case WC_SHA224:
ret = wc_InitSha224_ex(&hash->sha224, heap, devId);
break;
#endif /* WOLFSSL_SHA224 */
#ifndef NO_SHA256
case WC_SHA256:
ret = wc_InitSha256_ex(&hash->sha256, heap, devId);
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
ret = wc_InitSha384_ex(&hash->sha384, heap, devId);
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
ret = wc_InitSha512_ex(&hash->sha512, heap, devId);
break;
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
case WC_SHA3_224:
ret = wc_InitSha3_224(&hash->sha3, heap, devId);
break;
#endif
#ifndef WOLFSSL_NOSHA3_256
case WC_SHA3_256:
ret = wc_InitSha3_256(&hash->sha3, heap, devId);
break;
#endif
#ifndef WOLFSSL_NOSHA3_384
case WC_SHA3_384:
ret = wc_InitSha3_384(&hash->sha3, heap, devId);
break;
#endif
#ifndef WOLFSSL_NOSHA3_512
case WC_SHA3_512:
ret = wc_InitSha3_512(&hash->sha3, heap, devId);
break;
#endif
#endif
#ifdef WOLFSSL_SM3
case WC_SM3:
ret = wc_InitSm3(&hash->sm3, heap, devId);
break;
#endif
default:
ret = BAD_FUNC_ARG;
break;
}
return ret;
}
int _InitHmac(Hmac* hmac, int type, void* heap)
{
int ret;
#ifdef WOLF_CRYPTO_CB
int devId = hmac->devId;
#else
int devId = INVALID_DEVID;
#endif
ret = HmacKeyInitHash(&hmac->hash, type, heap, devId);
if (ret != 0)
return ret;
/* default to NULL heap hint or test value */
#ifdef WOLFSSL_HEAP_TEST
hmac->heap = (void*)WOLFSSL_HEAP_TEST;
#else
hmac->heap = heap;
#endif /* WOLFSSL_HEAP_TEST */
return ret;
}
static int HmacKeyCopyHash(byte macType, wc_HmacHash* src, wc_HmacHash* dst)
{
int ret = 0;
switch (macType) {
#ifndef NO_MD5
case WC_MD5:
ret = wc_Md5Copy(&src->md5, &dst->md5);
break;
#endif /* !NO_MD5 */
#ifndef NO_SHA
case WC_SHA:
ret = wc_ShaCopy(&src->sha, &dst->sha);
break;
#endif /* !NO_SHA */
#ifdef WOLFSSL_SHA224
case WC_SHA224:
ret = wc_Sha224Copy(&src->sha224, &dst->sha224);
break;
#endif /* WOLFSSL_SHA224 */
#ifndef NO_SHA256
case WC_SHA256:
ret = wc_Sha256Copy(&src->sha256, &dst->sha256);
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
ret = wc_Sha384Copy(&src->sha384, &dst->sha384);
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
ret = wc_Sha512Copy(&src->sha512, &dst->sha512);
break;
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
case WC_SHA3_224:
ret = wc_Sha3_224_Copy(&src->sha3, &dst->sha3);
break;
#endif
#ifndef WOLFSSL_NOSHA3_256
case WC_SHA3_256:
ret = wc_Sha3_256_Copy(&src->sha3, &dst->sha3);
break;
#endif
#ifndef WOLFSSL_NOSHA3_384
case WC_SHA3_384:
ret = wc_Sha3_384_Copy(&src->sha3, &dst->sha3);
break;
#endif
#ifndef WOLFSSL_NOSHA3_512
case WC_SHA3_512:
ret = wc_Sha3_512_Copy(&src->sha3, &dst->sha3);
break;
#endif
#endif /* WOLFSSL_SHA3 */
#ifdef WOLFSSL_SM3
case WC_SM3:
ret = wc_Sm3Copy(&src->sm3, &dst->sm3);
break;
#endif
default:
break;
}
return ret;
}
int wc_HmacCopy(Hmac* src, Hmac* dst) {
int ret;
if ((src == NULL) || (dst == NULL))
return BAD_FUNC_ARG;
XMEMCPY(dst, src, sizeof(*dst));
ret = HmacKeyCopyHash(src->macType, &src->hash, &dst->hash);
if (ret != 0)
XMEMSET(dst, 0, sizeof(*dst));
return ret;
}
static int HmacKeyHashUpdate(byte macType, wc_HmacHash* hash, byte* pad)
{
int ret = 0;
switch (macType) {
#ifndef NO_MD5
case WC_MD5:
ret = wc_Md5Update(&hash->md5, pad, WC_MD5_BLOCK_SIZE);
break;
#endif /* !NO_MD5 */
#ifndef NO_SHA
case WC_SHA:
ret = wc_ShaUpdate(&hash->sha, pad, WC_SHA_BLOCK_SIZE);
break;
#endif /* !NO_SHA */
#ifdef WOLFSSL_SHA224
case WC_SHA224:
ret = wc_Sha224Update(&hash->sha224, pad, WC_SHA224_BLOCK_SIZE);
break;
#endif /* WOLFSSL_SHA224 */
#ifndef NO_SHA256
case WC_SHA256:
ret = wc_Sha256Update(&hash->sha256, pad, WC_SHA256_BLOCK_SIZE);
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
ret = wc_Sha384Update(&hash->sha384, pad, WC_SHA384_BLOCK_SIZE);
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
ret = wc_Sha512Update(&hash->sha512, pad, WC_SHA512_BLOCK_SIZE);
break;
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
case WC_SHA3_224:
ret = wc_Sha3_224_Update(&hash->sha3, pad, WC_SHA3_224_BLOCK_SIZE);
break;
#endif
#ifndef WOLFSSL_NOSHA3_256
case WC_SHA3_256:
ret = wc_Sha3_256_Update(&hash->sha3, pad, WC_SHA3_256_BLOCK_SIZE);
break;
#endif
#ifndef WOLFSSL_NOSHA3_384
case WC_SHA3_384:
ret = wc_Sha3_384_Update(&hash->sha3, pad, WC_SHA3_384_BLOCK_SIZE);
break;
#endif
#ifndef WOLFSSL_NOSHA3_512
case WC_SHA3_512:
ret = wc_Sha3_512_Update(&hash->sha3, pad, WC_SHA3_512_BLOCK_SIZE);
break;
#endif
#endif /* WOLFSSL_SHA3 */
#ifdef WOLFSSL_SM3
case WC_SM3:
ret = wc_Sm3Update(&hash->sm3, pad, WC_SM3_BLOCK_SIZE);
break;
#endif
default:
break;
}
return ret;
}
#ifdef WOLFSSL_HMAC_COPY_HASH
int _HmacInitIOHashes(Hmac* hmac)
{
int ret;
#ifdef WOLF_CRYPTO_CB
int devId = hmac->devId;
#else
int devId = INVALID_DEVID;
#endif
ret = HmacKeyInitHash(&hmac->i_hash, hmac->macType, hmac->heap, devId);
if (ret == 0) {
ret = HmacKeyInitHash(&hmac->o_hash, hmac->macType, hmac->heap, devId);
}
if (ret == 0) {
ret = HmacKeyHashUpdate(hmac->macType, &hmac->i_hash,
(byte*)hmac->ipad);
}
if (ret == 0) {
ret = HmacKeyHashUpdate(hmac->macType, &hmac->o_hash,
(byte*)hmac->opad);
}
return ret;
}
#endif
int wc_HmacSetKey_ex(Hmac* hmac, int type, const byte* key, word32 length,
int allowFlag)
{
#ifndef WOLFSSL_MAXQ108X
byte* ip;
byte* op;
word32 hmac_block_size = 0;
#endif
int ret = 0;
void* heap = NULL;
if (hmac == NULL || (key == NULL && length != 0) ||
!(type == WC_MD5 || type == WC_SHA ||
#ifdef WOLFSSL_SM3
type == WC_SM3 ||
#endif
type == WC_SHA224 || type == WC_SHA256 ||
type == WC_SHA384 || type == WC_SHA512 ||
type == WC_SHA3_224 || type == WC_SHA3_256 ||
type == WC_SHA3_384 || type == WC_SHA3_512)) {
return BAD_FUNC_ARG;
}
heap = hmac->heap;
#if !defined(HAVE_FIPS) || FIPS_VERSION3_GE(6,0,0)
/* if set key has already been run then make sure and free existing */
/* This is for async and PIC32MZ situations, and just normally OK,
provided the user calls wc_HmacInit() first. That function is not
available in FIPS builds. In current FIPS builds, the hashes are
not allocating resources. */
if (hmac->macType != WC_HASH_TYPE_NONE) {
#ifdef WOLF_CRYPTO_CB
int devId = hmac->devId;
#endif
wc_HmacFree(hmac);
#ifdef WOLF_CRYPTO_CB
hmac->devId = devId;
#endif
}
#endif
hmac->innerHashKeyed = 0;
hmac->macType = (byte)type;
ret = _InitHmac(hmac, type, heap);
if (ret != 0)
return ret;
/* Regarding the password length:
* SP800-107r1 ss 5.3.2 states: "An HMAC key shall have a security strength
* that meets or exceeds the security strength required to protect the data
* over which the HMAC is computed" then refers to SP800-133 for HMAC keys
* generation.
*
* SP800-133r2 ss 6.2.3 states: "When a key is generated from a password,
* the entropy provided (and thus, the maximum security strength that can be
* supported by the generated key) shall be considered to be zero unless the
* password is generated using an approved RBG"
*
* wolfSSL Notes: The statement from SP800-133r2 applies to
* all password lengths. Any human generated password is considered to have
* 0 security strength regardless of length, there is no minimum length that
* is OK or will provide any amount of security strength other than 0. If
* a security strength is required users shall generate random passwords
* using a FIPS approved RBG of sufficient length that any HMAC key
* generated from that password can claim to inherit the needed security
* strength from that input.
*/
/* In light of the above, Loosen past restriction that limited passwords to
* no less than 14-bytes to allow for shorter Passwords.
* User needs to pass true (non-zero) to override historical behavior that
* prevented use of any password less than 14-bytes. ALL non-RBG generated
* passwords shall inherit a security strength of zero
* (no security strength)
*/
if (!allowFlag) {
if (length < HMAC_FIPS_MIN_KEY) {
WOLFSSL_ERROR_VERBOSE(HMAC_MIN_KEYLEN_E);
return HMAC_MIN_KEYLEN_E;
}
}
#ifdef WOLF_CRYPTO_CB
hmac->keyRaw = key; /* use buffer directly */
hmac->keyLen = (word16)length;
#endif
#ifdef WOLFSSL_MAXQ108X
/* For MAXQ108x, nothing left to do. */
return 0;
#else
ip = (byte*)hmac->ipad;
op = (byte*)hmac->opad;
switch (hmac->macType) {
#ifndef NO_MD5
case WC_MD5:
hmac_block_size = WC_MD5_BLOCK_SIZE;
if (length <= WC_MD5_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_Md5Update(&hmac->hash.md5, key, length);
if (ret != 0)
break;
ret = wc_Md5Final(&hmac->hash.md5, ip);
if (ret != 0)
break;
length = WC_MD5_DIGEST_SIZE;
}
break;
#endif /* !NO_MD5 */
#ifndef NO_SHA
case WC_SHA:
hmac_block_size = WC_SHA_BLOCK_SIZE;
if (length <= WC_SHA_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_ShaUpdate(&hmac->hash.sha, key, length);
if (ret != 0)
break;
ret = wc_ShaFinal(&hmac->hash.sha, ip);
if (ret != 0)
break;
length = WC_SHA_DIGEST_SIZE;
}
break;
#endif /* !NO_SHA */
#ifdef WOLFSSL_SHA224
case WC_SHA224:
hmac_block_size = WC_SHA224_BLOCK_SIZE;
if (length <= WC_SHA224_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_Sha224Update(&hmac->hash.sha224, key, length);
if (ret != 0)
break;
ret = wc_Sha224Final(&hmac->hash.sha224, ip);
if (ret != 0)
break;
length = WC_SHA224_DIGEST_SIZE;
}
break;
#endif /* WOLFSSL_SHA224 */
#ifndef NO_SHA256
case WC_SHA256:
hmac_block_size = WC_SHA256_BLOCK_SIZE;
if (length <= WC_SHA256_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_Sha256Update(&hmac->hash.sha256, key, length);
if (ret != 0)
break;
ret = wc_Sha256Final(&hmac->hash.sha256, ip);
if (ret != 0)
break;
length = WC_SHA256_DIGEST_SIZE;
}
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
hmac_block_size = WC_SHA384_BLOCK_SIZE;
if (length <= WC_SHA384_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_Sha384Update(&hmac->hash.sha384, key, length);
if (ret != 0)
break;
ret = wc_Sha384Final(&hmac->hash.sha384, ip);
if (ret != 0)
break;
length = WC_SHA384_DIGEST_SIZE;
}
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
hmac_block_size = WC_SHA512_BLOCK_SIZE;
if (length <= WC_SHA512_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_Sha512Update(&hmac->hash.sha512, key, length);
if (ret != 0)
break;
ret = wc_Sha512Final(&hmac->hash.sha512, ip);
if (ret != 0)
break;
length = WC_SHA512_DIGEST_SIZE;
}
break;
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
case WC_SHA3_224:
hmac_block_size = WC_SHA3_224_BLOCK_SIZE;
if (length <= WC_SHA3_224_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_Sha3_224_Update(&hmac->hash.sha3, key, length);
if (ret != 0)
break;
ret = wc_Sha3_224_Final(&hmac->hash.sha3, ip);
if (ret != 0)
break;
length = WC_SHA3_224_DIGEST_SIZE;
}
break;
#endif
#ifndef WOLFSSL_NOSHA3_256
case WC_SHA3_256:
hmac_block_size = WC_SHA3_256_BLOCK_SIZE;
if (length <= WC_SHA3_256_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_Sha3_256_Update(&hmac->hash.sha3, key, length);
if (ret != 0)
break;
ret = wc_Sha3_256_Final(&hmac->hash.sha3, ip);
if (ret != 0)
break;
length = WC_SHA3_256_DIGEST_SIZE;
}
break;
#endif
#ifndef WOLFSSL_NOSHA3_384
case WC_SHA3_384:
hmac_block_size = WC_SHA3_384_BLOCK_SIZE;
if (length <= WC_SHA3_384_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_Sha3_384_Update(&hmac->hash.sha3, key, length);
if (ret != 0)
break;
ret = wc_Sha3_384_Final(&hmac->hash.sha3, ip);
if (ret != 0)
break;
length = WC_SHA3_384_DIGEST_SIZE;
}
break;
#endif
#ifndef WOLFSSL_NOSHA3_512
case WC_SHA3_512:
hmac_block_size = WC_SHA3_512_BLOCK_SIZE;
if (length <= WC_SHA3_512_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_Sha3_512_Update(&hmac->hash.sha3, key, length);
if (ret != 0)
break;
ret = wc_Sha3_512_Final(&hmac->hash.sha3, ip);
if (ret != 0)
break;
length = WC_SHA3_512_DIGEST_SIZE;
}
break;
#endif
#endif /* WOLFSSL_SHA3 */
#ifdef WOLFSSL_SM3
case WC_SM3:
hmac_block_size = WC_SM3_BLOCK_SIZE;
if (length <= WC_SM3_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_Sm3Update(&hmac->hash.sm3, key, length);
if (ret != 0)
break;
ret = wc_Sm3Final(&hmac->hash.sm3, ip);
if (ret != 0)
break;
length = WC_SM3_DIGEST_SIZE;
}
break;
#endif
default:
return BAD_FUNC_ARG;
}
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_HMAC)
if (hmac->asyncDev.marker == WOLFSSL_ASYNC_MARKER_HMAC) {
#if defined(HAVE_INTEL_QA) || defined(HAVE_CAVIUM)
#ifdef HAVE_INTEL_QA
if (IntelQaHmacGetType(hmac->macType, NULL) == 0)
#endif
{
if (length > hmac_block_size)
length = hmac_block_size;
/* update key length */
hmac->keyLen = (word16)length;
return ret;
}
/* no need to pad below */
#endif
}
#endif
if (ret == 0) {
word32 i;
if (length < hmac_block_size)
XMEMSET(ip + length, 0, hmac_block_size - length);
for(i = 0; i < hmac_block_size; i++) {
op[i] = (byte)(ip[i] ^ OPAD);
ip[i] ^= IPAD;
}
}
#ifdef WOLFSSL_HMAC_COPY_HASH
if (ret == 0) {
ret = _HmacInitIOHashes(hmac);
}
#endif
return ret;
#endif /* WOLFSSL_MAXQ108X */
}
int wc_HmacSetKey(Hmac* hmac, int type, const byte* key, word32 length)
{
int allowFlag;
#if defined(HAVE_FIPS)
allowFlag = 0; /* default false for FIPS cases */
#else
allowFlag = 1; /* default true for all non-FIPS cases */
#endif
return wc_HmacSetKey_ex(hmac, type, key, length, allowFlag);
}
int wc_HmacUpdate(Hmac* hmac, const byte* msg, word32 length)
{
int ret = 0;
if (hmac == NULL || (msg == NULL && length > 0)) {
return BAD_FUNC_ARG;
}
if (length == 0) {
return 0; /* nothing to do, return success */
}
#ifdef WOLF_CRYPTO_CB
if (hmac->devId != INVALID_DEVID) {
ret = wc_CryptoCb_Hmac(hmac, hmac->macType, msg, length, NULL);
if (ret != WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE))
return ret;
/* fall-through when unavailable */
ret = 0; /* reset error code */
}
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_HMAC)
if (hmac->asyncDev.marker == WOLFSSL_ASYNC_MARKER_HMAC) {
#if defined(HAVE_CAVIUM)
return NitroxHmacUpdate(hmac, msg, length);
#elif defined(HAVE_INTEL_QA)
if (IntelQaHmacGetType(hmac->macType, NULL) == 0) {
return IntelQaHmac(&hmac->asyncDev, hmac->macType,
(byte*)hmac->ipad, hmac->keyLen, NULL, msg, length);
}
#endif
}
#endif /* WOLFSSL_ASYNC_CRYPT */
if (!hmac->innerHashKeyed) {
#ifndef WOLFSSL_HMAC_COPY_HASH
ret = HmacKeyHashUpdate(hmac->macType, &hmac->hash, (byte*)hmac->ipad);
#else
ret = HmacKeyCopyHash(hmac->macType, &hmac->i_hash, &hmac->hash);
#endif
if (ret != 0)
return ret;
hmac->innerHashKeyed = WC_HMAC_INNER_HASH_KEYED_SW;
}
switch (hmac->macType) {
#ifndef NO_MD5
case WC_MD5:
ret = wc_Md5Update(&hmac->hash.md5, msg, length);
break;
#endif /* !NO_MD5 */
#ifndef NO_SHA
case WC_SHA:
ret = wc_ShaUpdate(&hmac->hash.sha, msg, length);
break;
#endif /* !NO_SHA */
#ifdef WOLFSSL_SHA224
case WC_SHA224:
ret = wc_Sha224Update(&hmac->hash.sha224, msg, length);
break;
#endif /* WOLFSSL_SHA224 */
#ifndef NO_SHA256
case WC_SHA256:
ret = wc_Sha256Update(&hmac->hash.sha256, msg, length);
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
ret = wc_Sha384Update(&hmac->hash.sha384, msg, length);
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
ret = wc_Sha512Update(&hmac->hash.sha512, msg, length);
break;
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
case WC_SHA3_224:
ret = wc_Sha3_224_Update(&hmac->hash.sha3, msg, length);
break;
#endif
#ifndef WOLFSSL_NOSHA3_256
case WC_SHA3_256:
ret = wc_Sha3_256_Update(&hmac->hash.sha3, msg, length);
break;
#endif
#ifndef WOLFSSL_NOSHA3_384
case WC_SHA3_384:
ret = wc_Sha3_384_Update(&hmac->hash.sha3, msg, length);
break;
#endif
#ifndef WOLFSSL_NOSHA3_512
case WC_SHA3_512:
ret = wc_Sha3_512_Update(&hmac->hash.sha3, msg, length);
break;
#endif
#endif /* WOLFSSL_SHA3 */
#ifdef WOLFSSL_SM3
case WC_SM3:
ret = wc_Sm3Update(&hmac->hash.sm3, msg, length);
break;
#endif
default:
break;
}
return ret;
}
int wc_HmacFinal(Hmac* hmac, byte* hash)
{
int ret;
if (hmac == NULL || hash == NULL) {
return BAD_FUNC_ARG;
}
#ifdef WOLF_CRYPTO_CB
if (hmac->devId != INVALID_DEVID) {
ret = wc_CryptoCb_Hmac(hmac, hmac->macType, NULL, 0, hash);
if (ret != WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE))
return ret;
/* fall-through when unavailable */
}
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_HMAC)
if (hmac->asyncDev.marker == WOLFSSL_ASYNC_MARKER_HMAC) {
int hashLen = wc_HmacSizeByType(hmac->macType);
if (hashLen <= 0)
return hashLen;
#if defined(HAVE_CAVIUM)
return NitroxHmacFinal(hmac, hash, hashLen);
#elif defined(HAVE_INTEL_QA)
if (IntelQaHmacGetType(hmac->macType, NULL) == 0) {
return IntelQaHmac(&hmac->asyncDev, hmac->macType,
(byte*)hmac->ipad, hmac->keyLen, hash, NULL, hashLen);
}
#endif
}
#endif /* WOLFSSL_ASYNC_CRYPT */
if (!hmac->innerHashKeyed) {
#ifndef WOLFSSL_HMAC_COPY_HASH
ret = HmacKeyHashUpdate(hmac->macType, &hmac->hash, (byte*)hmac->ipad);
#else
ret = HmacKeyCopyHash(hmac->macType, &hmac->i_hash, &hmac->hash);
#endif
if (ret != 0)
return ret;
hmac->innerHashKeyed = WC_HMAC_INNER_HASH_KEYED_SW;
}
switch (hmac->macType) {
#ifndef NO_MD5
case WC_MD5:
ret = wc_Md5Final(&hmac->hash.md5, (byte*)hmac->innerHash);
if (ret != 0)
break;
#ifndef WOLFSSL_HMAC_COPY_HASH
ret = wc_Md5Update(&hmac->hash.md5, (byte*)hmac->opad,
WC_MD5_BLOCK_SIZE);
#else
ret = HmacKeyCopyHash(WC_MD5, &hmac->o_hash, &hmac->hash);
#endif
if (ret != 0)
break;
ret = wc_Md5Update(&hmac->hash.md5, (byte*)hmac->innerHash,
WC_MD5_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_Md5Final(&hmac->hash.md5, hash);
break;
#endif /* !NO_MD5 */
#ifndef NO_SHA
case WC_SHA:
ret = wc_ShaFinal(&hmac->hash.sha, (byte*)hmac->innerHash);
if (ret != 0)
break;
#ifndef WOLFSSL_HMAC_COPY_HASH
ret = wc_ShaUpdate(&hmac->hash.sha, (byte*)hmac->opad,
WC_SHA_BLOCK_SIZE);
#else
ret = HmacKeyCopyHash(WC_SHA, &hmac->o_hash, &hmac->hash);
#endif
if (ret != 0)
break;
ret = wc_ShaUpdate(&hmac->hash.sha, (byte*)hmac->innerHash,
WC_SHA_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_ShaFinal(&hmac->hash.sha, hash);
break;
#endif /* !NO_SHA */
#ifdef WOLFSSL_SHA224
case WC_SHA224:
ret = wc_Sha224Final(&hmac->hash.sha224, (byte*)hmac->innerHash);
if (ret != 0)
break;
#ifndef WOLFSSL_HMAC_COPY_HASH
ret = wc_Sha224Update(&hmac->hash.sha224, (byte*)hmac->opad,
WC_SHA224_BLOCK_SIZE);
#else
ret = HmacKeyCopyHash(WC_SHA224, &hmac->o_hash, &hmac->hash);
#endif
if (ret != 0)
break;
ret = wc_Sha224Update(&hmac->hash.sha224, (byte*)hmac->innerHash,
WC_SHA224_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_Sha224Final(&hmac->hash.sha224, hash);
if (ret != 0)
break;
break;
#endif /* WOLFSSL_SHA224 */
#ifndef NO_SHA256
case WC_SHA256:
ret = wc_Sha256Final(&hmac->hash.sha256, (byte*)hmac->innerHash);
if (ret != 0)
break;
#ifndef WOLFSSL_HMAC_COPY_HASH
ret = wc_Sha256Update(&hmac->hash.sha256, (byte*)hmac->opad,
WC_SHA256_BLOCK_SIZE);
#else
ret = HmacKeyCopyHash(WC_SHA256, &hmac->o_hash, &hmac->hash);
#endif
if (ret != 0)
break;
ret = wc_Sha256Update(&hmac->hash.sha256, (byte*)hmac->innerHash,
WC_SHA256_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_Sha256Final(&hmac->hash.sha256, hash);
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
ret = wc_Sha384Final(&hmac->hash.sha384, (byte*)hmac->innerHash);
if (ret != 0)
break;
#ifndef WOLFSSL_HMAC_COPY_HASH
ret = wc_Sha384Update(&hmac->hash.sha384, (byte*)hmac->opad,
WC_SHA384_BLOCK_SIZE);
#else
ret = HmacKeyCopyHash(WC_SHA384, &hmac->o_hash, &hmac->hash);
#endif
if (ret != 0)
break;
ret = wc_Sha384Update(&hmac->hash.sha384, (byte*)hmac->innerHash,
WC_SHA384_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_Sha384Final(&hmac->hash.sha384, hash);
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
ret = wc_Sha512Final(&hmac->hash.sha512, (byte*)hmac->innerHash);
if (ret != 0)
break;
#ifndef WOLFSSL_HMAC_COPY_HASH
ret = wc_Sha512Update(&hmac->hash.sha512, (byte*)hmac->opad,
WC_SHA512_BLOCK_SIZE);
#else
ret = HmacKeyCopyHash(WC_SHA512, &hmac->o_hash, &hmac->hash);
#endif
if (ret != 0)
break;
ret = wc_Sha512Update(&hmac->hash.sha512, (byte*)hmac->innerHash,
WC_SHA512_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_Sha512Final(&hmac->hash.sha512, hash);
break;
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
case WC_SHA3_224:
ret = wc_Sha3_224_Final(&hmac->hash.sha3, (byte*)hmac->innerHash);
if (ret != 0)
break;
#ifndef WOLFSSL_HMAC_COPY_HASH
ret = wc_Sha3_224_Update(&hmac->hash.sha3, (byte*)hmac->opad,
WC_SHA3_224_BLOCK_SIZE);
#else
ret = HmacKeyCopyHash(WC_SHA3_224, &hmac->o_hash, &hmac->hash);
#endif
if (ret != 0)
break;
ret = wc_Sha3_224_Update(&hmac->hash.sha3, (byte*)hmac->innerHash,
WC_SHA3_224_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_Sha3_224_Final(&hmac->hash.sha3, hash);
break;
#endif
#ifndef WOLFSSL_NOSHA3_256
case WC_SHA3_256:
ret = wc_Sha3_256_Final(&hmac->hash.sha3, (byte*)hmac->innerHash);
if (ret != 0)
break;
#ifndef WOLFSSL_HMAC_COPY_HASH
ret = wc_Sha3_256_Update(&hmac->hash.sha3, (byte*)hmac->opad,
WC_SHA3_256_BLOCK_SIZE);
#else
ret = HmacKeyCopyHash(WC_SHA3_256, &hmac->o_hash, &hmac->hash);
#endif
if (ret != 0)
break;
ret = wc_Sha3_256_Update(&hmac->hash.sha3, (byte*)hmac->innerHash,
WC_SHA3_256_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_Sha3_256_Final(&hmac->hash.sha3, hash);
break;
#endif
#ifndef WOLFSSL_NOSHA3_384
case WC_SHA3_384:
ret = wc_Sha3_384_Final(&hmac->hash.sha3, (byte*)hmac->innerHash);
if (ret != 0)
break;
#ifndef WOLFSSL_HMAC_COPY_HASH
ret = wc_Sha3_384_Update(&hmac->hash.sha3, (byte*)hmac->opad,
WC_SHA3_384_BLOCK_SIZE);
#else
ret = HmacKeyCopyHash(WC_SHA3_384, &hmac->o_hash, &hmac->hash);
#endif
if (ret != 0)
break;
ret = wc_Sha3_384_Update(&hmac->hash.sha3, (byte*)hmac->innerHash,
WC_SHA3_384_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_Sha3_384_Final(&hmac->hash.sha3, hash);
break;
#endif
#ifndef WOLFSSL_NOSHA3_512
case WC_SHA3_512:
ret = wc_Sha3_512_Final(&hmac->hash.sha3, (byte*)hmac->innerHash);
if (ret != 0)
break;
#ifndef WOLFSSL_HMAC_COPY_HASH
ret = wc_Sha3_512_Update(&hmac->hash.sha3, (byte*)hmac->opad,
WC_SHA3_512_BLOCK_SIZE);
#else
ret = HmacKeyCopyHash(WC_SHA3_512, &hmac->o_hash, &hmac->hash);
#endif
if (ret != 0)
break;
ret = wc_Sha3_512_Update(&hmac->hash.sha3, (byte*)hmac->innerHash,
WC_SHA3_512_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_Sha3_512_Final(&hmac->hash.sha3, hash);
break;
#endif
#endif /* WOLFSSL_SHA3 */
#ifdef WOLFSSL_SM3
case WC_SM3:
ret = wc_Sm3Final(&hmac->hash.sm3, (byte*)hmac->innerHash);
if (ret != 0)
break;
#ifndef WOLFSSL_HMAC_COPY_HASH
ret = wc_Sm3Update(&hmac->hash.sm3, (byte*)hmac->opad,
WC_SM3_BLOCK_SIZE);
#else
ret = HmacKeyCopyHash(WC_SM3, &hmac->o_hash, &hmac->hash);
#endif
if (ret != 0)
break;
ret = wc_Sm3Update(&hmac->hash.sm3, (byte*)hmac->innerHash,
WC_SM3_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_Sm3Final(&hmac->hash.sm3, hash);
break;
#endif
default:
ret = BAD_FUNC_ARG;
break;
}
if (ret == 0) {
hmac->innerHashKeyed = 0;
}
return ret;
}
#ifdef WOLFSSL_KCAPI_HMAC
/* implemented in wolfcrypt/src/port/kcapi/kcapi_hmac.c */
/* unmap the _Software calls used by kcapi_hmac.c */
#undef wc_HmacSetKey
#undef wc_HmacUpdate
#undef wc_HmacFinal
#else
/* Initialize Hmac for use with async device */
int wc_HmacInit(Hmac* hmac, void* heap, int devId)
{
int ret = 0;
if (hmac == NULL)
return BAD_FUNC_ARG;
XMEMSET(hmac, 0, sizeof(Hmac));
hmac->macType = WC_HASH_TYPE_NONE;
hmac->heap = heap;
#ifdef WOLF_CRYPTO_CB
hmac->devId = devId;
hmac->devCtx = NULL;
#endif
#if defined(WOLFSSL_DEVCRYPTO_HMAC)
hmac->ctx.cfd = -1;
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_HMAC)
ret = wolfAsync_DevCtxInit(&hmac->asyncDev, WOLFSSL_ASYNC_MARKER_HMAC,
hmac->heap, devId);
#else
(void)devId;
#endif /* WOLFSSL_ASYNC_CRYPT */
return ret;
}
#ifdef WOLF_PRIVATE_KEY_ID
int wc_HmacInit_Id(Hmac* hmac, unsigned char* id, int len, void* heap,
int devId)
{
int ret = 0;
if (hmac == NULL)
ret = BAD_FUNC_ARG;
if (ret == 0 && (len < 0 || len > HMAC_MAX_ID_LEN))
ret = BUFFER_E;
if (ret == 0)
ret = wc_HmacInit(hmac, heap, devId);
if (ret == 0) {
XMEMCPY(hmac->id, id, (size_t)len);
hmac->idLen = len;
}
return ret;
}
int wc_HmacInit_Label(Hmac* hmac, const char* label, void* heap, int devId)
{
int ret = 0;
int labelLen = 0;
if (hmac == NULL || label == NULL)
ret = BAD_FUNC_ARG;
if (ret == 0) {
labelLen = (int)XSTRLEN(label);
if (labelLen == 0 || labelLen > HMAC_MAX_LABEL_LEN)
ret = BUFFER_E;
}
if (ret == 0)
ret = wc_HmacInit(hmac, heap, devId);
if (ret == 0) {
XMEMCPY(hmac->label, label, (size_t)labelLen);
hmac->labelLen = labelLen;
}
return ret;
}
#endif /* WOLF_PRIVATE_KEY_ID */
/* Free Hmac from use with async device */
void wc_HmacFree(Hmac* hmac)
{
if (hmac == NULL)
return;
#ifdef WOLF_CRYPTO_CB
/* handle cleanup case where final is not called */
if (hmac->devId != INVALID_DEVID && hmac->devCtx != NULL) {
int ret;
byte finalHash[WC_HMAC_BLOCK_SIZE];
ret = wc_CryptoCb_Hmac(hmac, hmac->macType, NULL, 0, finalHash);
(void)ret; /* must ignore return code here */
(void)finalHash;
}
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_HMAC)
wolfAsync_DevCtxFree(&hmac->asyncDev, WOLFSSL_ASYNC_MARKER_HMAC);
#endif /* WOLFSSL_ASYNC_CRYPT */
switch (hmac->macType) {
#ifndef NO_MD5
case WC_MD5:
wc_Md5Free(&hmac->hash.md5);
#ifdef WOLFSSL_HMAC_COPY_HASH
wc_Md5Free(&hmac->i_hash.md5);
wc_Md5Free(&hmac->o_hash.md5);
#endif
break;
#endif /* !NO_MD5 */
#ifndef NO_SHA
case WC_SHA:
wc_ShaFree(&hmac->hash.sha);
#ifdef WOLFSSL_HMAC_COPY_HASH
wc_ShaFree(&hmac->i_hash.sha);
wc_ShaFree(&hmac->o_hash.sha);
#endif
break;
#endif /* !NO_SHA */
#ifdef WOLFSSL_SHA224
case WC_SHA224:
wc_Sha224Free(&hmac->hash.sha224);
#ifdef WOLFSSL_HMAC_COPY_HASH
wc_Sha224Free(&hmac->i_hash.sha224);
wc_Sha224Free(&hmac->o_hash.sha224);
#endif
break;
#endif /* WOLFSSL_SHA224 */
#ifndef NO_SHA256
case WC_SHA256:
wc_Sha256Free(&hmac->hash.sha256);
#ifdef WOLFSSL_HMAC_COPY_HASH
wc_Sha256Free(&hmac->i_hash.sha256);
wc_Sha256Free(&hmac->o_hash.sha256);
#endif
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
wc_Sha384Free(&hmac->hash.sha384);
#ifdef WOLFSSL_HMAC_COPY_HASH
wc_Sha384Free(&hmac->i_hash.sha384);
wc_Sha384Free(&hmac->o_hash.sha384);
#endif
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
wc_Sha512Free(&hmac->hash.sha512);
#ifdef WOLFSSL_HMAC_COPY_HASH
wc_Sha512Free(&hmac->i_hash.sha512);
wc_Sha512Free(&hmac->o_hash.sha512);
#endif
break;
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
case WC_SHA3_224:
wc_Sha3_224_Free(&hmac->hash.sha3);
#ifdef WOLFSSL_HMAC_COPY_HASH
wc_Sha3_224_Free(&hmac->i_hash.sha3);
wc_Sha3_224_Free(&hmac->o_hash.sha3);
#endif
break;
#endif
#ifndef WOLFSSL_NOSHA3_256
case WC_SHA3_256:
wc_Sha3_256_Free(&hmac->hash.sha3);
#ifdef WOLFSSL_HMAC_COPY_HASH
wc_Sha3_256_Free(&hmac->i_hash.sha3);
wc_Sha3_256_Free(&hmac->o_hash.sha3);
#endif
break;
#endif
#ifndef WOLFSSL_NOSHA3_384
case WC_SHA3_384:
wc_Sha3_384_Free(&hmac->hash.sha3);
#ifdef WOLFSSL_HMAC_COPY_HASH
wc_Sha3_384_Free(&hmac->i_hash.sha3);
wc_Sha3_384_Free(&hmac->o_hash.sha3);
#endif
break;
#endif
#ifndef WOLFSSL_NOSHA3_512
case WC_SHA3_512:
wc_Sha3_512_Free(&hmac->hash.sha3);
#ifdef WOLFSSL_HMAC_COPY_HASH
wc_Sha3_512_Free(&hmac->i_hash.sha3);
wc_Sha3_512_Free(&hmac->o_hash.sha3);
#endif
break;
#endif
#endif /* WOLFSSL_SHA3 */
#ifdef WOLFSSL_SM3
case WC_SM3:
wc_Sm3Free(&hmac->hash.sm3);
#ifdef WOLFSSL_HMAC_COPY_HASH
wc_Sm3Free(&hmac->i_hash.sm3);
wc_Sm3Free(&hmac->o_hash.sm3);
#endif
break;
#endif
default:
break;
}
ForceZero(hmac, sizeof(*hmac));
}
#endif /* WOLFSSL_KCAPI_HMAC */
int wolfSSL_GetHmacMaxSize(void)
{
return WC_MAX_DIGEST_SIZE;
}
#ifdef HAVE_HKDF
/* HMAC-KDF-Extract.
* RFC 5869 - HMAC-based Extract-and-Expand Key Derivation Function (HKDF).
*
* type The hash algorithm type.
* salt The optional salt value.
* saltSz The size of the salt.
* inKey The input keying material.
* inKeySz The size of the input keying material.
* out The pseudorandom key with the length that of the hash.
* returns 0 on success, otherwise failure.
*/
int wc_HKDF_Extract_ex(int type, const byte* salt, word32 saltSz,
const byte* inKey, word32 inKeySz, byte* out, void* heap, int devId)
{
byte tmp[WC_MAX_DIGEST_SIZE]; /* localSalt helper */
WC_DECLARE_VAR(myHmac, Hmac, 1, 0);
int ret;
const byte* localSalt; /* either points to user input or tmp */
word32 hashSz;
ret = wc_HmacSizeByType(type);
if (ret < 0) {
return ret;
}
WC_ALLOC_VAR_EX(myHmac, Hmac, 1, NULL, DYNAMIC_TYPE_HMAC,
return MEMORY_E);
hashSz = (word32)ret;
localSalt = salt;
if (localSalt == NULL) {
XMEMSET(tmp, 0, hashSz);
localSalt = tmp;
saltSz = hashSz;
}
ret = wc_HmacInit(myHmac, heap, devId);
if (ret == 0) {
#if FIPS_VERSION3_GE(6,0,0)
ret = wc_HmacSetKey_ex(myHmac, type, localSalt, saltSz,
FIPS_ALLOW_SHORT);
#else
ret = wc_HmacSetKey(myHmac, type, localSalt, saltSz);
#endif
if (ret == 0)
ret = wc_HmacUpdate(myHmac, inKey, inKeySz);
if (ret == 0)
ret = wc_HmacFinal(myHmac, out);
wc_HmacFree(myHmac);
}
WC_FREE_VAR_EX(myHmac, NULL, DYNAMIC_TYPE_HMAC);
return ret;
}
int wc_HKDF_Extract(int type, const byte* salt, word32 saltSz,
const byte* inKey, word32 inKeySz, byte* out)
{
return wc_HKDF_Extract_ex(type, salt, saltSz, inKey, inKeySz, out, NULL,
INVALID_DEVID);
}
/* HMAC-KDF-Expand.
* RFC 5869 - HMAC-based Extract-and-Expand Key Derivation Function (HKDF).
*
* type The hash algorithm type.
* inKey The input key.
* inKeySz The size of the input key.
* info The application specific information.
* infoSz The size of the application specific information.
* out The output keying material.
* returns 0 on success, otherwise failure.
*/
int wc_HKDF_Expand_ex(int type, const byte* inKey, word32 inKeySz,
const byte* info, word32 infoSz, byte* out, word32 outSz,
void* heap, int devId)
{
byte tmp[WC_MAX_DIGEST_SIZE];
WC_DECLARE_VAR(myHmac, Hmac, 1, 0);
int ret = 0;
word32 outIdx = 0;
word32 hashSz;
byte n = 0x1;
ret = wc_HmacSizeByType(type);
if (ret < 0) {
return ret;
}
hashSz = (word32)ret;
/* RFC 5869 states that the length of output keying material in
* octets must be L <= 255*HashLen or N = ceil(L/HashLen) */
if (out == NULL || ((outSz/hashSz) + ((outSz % hashSz) != 0)) > 255) {
return BAD_FUNC_ARG;
}
WC_ALLOC_VAR_EX(myHmac, Hmac, 1, NULL, DYNAMIC_TYPE_HMAC,
return MEMORY_E);
ret = wc_HmacInit(myHmac, heap, devId);
if (ret != 0) {
WC_FREE_VAR_EX(myHmac, NULL, DYNAMIC_TYPE_HMAC);
return ret;
}
XMEMSET(tmp, 0, WC_MAX_DIGEST_SIZE);
while (outIdx < outSz) {
word32 tmpSz = (n == 1) ? 0 : hashSz;
word32 left = outSz - outIdx;
#if FIPS_VERSION3_GE(6,0,0)
ret = wc_HmacSetKey_ex(myHmac, type, inKey, inKeySz,
FIPS_ALLOW_SHORT);
#else
ret = wc_HmacSetKey(myHmac, type, inKey, inKeySz);
#endif
if (ret != 0)
break;
ret = wc_HmacUpdate(myHmac, tmp, tmpSz);
if (ret != 0)
break;
ret = wc_HmacUpdate(myHmac, info, infoSz);
if (ret != 0)
break;
ret = wc_HmacUpdate(myHmac, &n, 1);
if (ret != 0)
break;
ret = wc_HmacFinal(myHmac, tmp);
if (ret != 0)
break;
left = min(left, hashSz);
XMEMCPY(out+outIdx, tmp, left);
outIdx += left;
n++;
}
wc_HmacFree(myHmac);
WC_FREE_VAR_EX(myHmac, NULL, DYNAMIC_TYPE_HMAC);
return ret;
}
int wc_HKDF_Expand(int type, const byte* inKey, word32 inKeySz,
const byte* info, word32 infoSz, byte* out, word32 outSz)
{
return wc_HKDF_Expand_ex(type, inKey, inKeySz, info, infoSz, out, outSz,
NULL, INVALID_DEVID);
}
/* HMAC-KDF.
* RFC 5869 - HMAC-based Extract-and-Expand Key Derivation Function (HKDF).
*
* type The hash algorithm type.
* inKey The input keying material.
* inKeySz The size of the input keying material.
* salt The optional salt value.
* saltSz The size of the salt.
* info The application specific information.
* infoSz The size of the application specific information.
* out The output keying material.
* returns 0 on success, otherwise failure.
*/
int wc_HKDF_ex(int type, const byte* inKey, word32 inKeySz,
const byte* salt, word32 saltSz, const byte* info,
word32 infoSz, byte* out, word32 outSz, void* heap,
int devId)
{
byte prk[WC_MAX_DIGEST_SIZE];
word32 hashSz;
int ret;
(void)devId; /* suppress unused parameter warning */
#ifdef WOLF_CRYPTO_CB
/* Try crypto callback first for complete operation */
if (devId != INVALID_DEVID) {
ret = wc_CryptoCb_Hkdf(type, inKey, inKeySz, salt, saltSz, info,
infoSz, out, outSz, devId);
if (ret != WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE))
return ret;
}
#endif
ret = wc_HmacSizeByType(type);
if (ret < 0) {
return ret;
}
hashSz = (word32)ret;
ret = wc_HKDF_Extract_ex(type, salt, saltSz, inKey, inKeySz, prk, heap,
devId);
if (ret != 0)
return ret;
return wc_HKDF_Expand_ex(type, prk, hashSz, info, infoSz, out, outSz,
heap, devId);
}
int wc_HKDF(int type, const byte* inKey, word32 inKeySz, const byte* salt,
word32 saltSz, const byte* info, word32 infoSz, byte* out,
word32 outSz)
{
return wc_HKDF_ex(type, inKey, inKeySz, salt, saltSz, info, infoSz, out,
outSz, NULL, INVALID_DEVID);
}
#endif /* HAVE_HKDF */
#endif /* NO_HMAC */