Files
wolfssl/wolfcrypt/src/poly1305.c
2018-05-21 13:59:15 -06:00

1648 lines
53 KiB
C

/* poly1305.c
*
* Copyright (C) 2006-2017 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
/*
* Based off the public domain implementations by Andrew Moon
* and Daniel J. Bernstein
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#ifdef HAVE_POLY1305
#include <wolfssl/wolfcrypt/poly1305.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
#include <wolfssl/wolfcrypt/logging.h>
#include <wolfssl/wolfcrypt/cpuid.h>
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
#ifdef CHACHA_AEAD_TEST
#include <stdio.h>
#endif
#ifdef _MSC_VER
/* 4127 warning constant while(1) */
#pragma warning(disable: 4127)
#endif
#ifdef USE_INTEL_SPEEDUP
#include <emmintrin.h>
#include <immintrin.h>
#if defined(__GNUC__) && ((__GNUC__ < 4) || \
(__GNUC__ == 4 && __GNUC_MINOR__ <= 8))
#define NO_AVX2_SUPPORT
#endif
#if defined(__clang__) && ((__clang_major__ < 3) || \
(__clang_major__ == 3 && __clang_minor__ <= 5))
#define NO_AVX2_SUPPORT
#elif defined(__clang__) && defined(NO_AVX2_SUPPORT)
#undef NO_AVX2_SUPPORT
#endif
#define HAVE_INTEL_AVX1
#ifndef NO_AVX2_SUPPORT
#define HAVE_INTEL_AVX2
#endif
#endif
#ifdef USE_INTEL_SPEEDUP
static word32 intel_flags = 0;
static word32 cpu_flags_set = 0;
#endif
#if defined(USE_INTEL_SPEEDUP) || defined(POLY130564)
#if defined(_MSC_VER)
#define POLY1305_NOINLINE __declspec(noinline)
#elif defined(__GNUC__)
#define POLY1305_NOINLINE __attribute__((noinline))
#else
#define POLY1305_NOINLINE
#endif
#if defined(_MSC_VER)
#include <intrin.h>
typedef struct word128 {
word64 lo;
word64 hi;
} word128;
#define MUL(out, x, y) out.lo = _umul128((x), (y), &out.hi)
#define ADD(out, in) { word64 t = out.lo; out.lo += in.lo; \
out.hi += (out.lo < t) + in.hi; }
#define ADDLO(out, in) { word64 t = out.lo; out.lo += in; \
out.hi += (out.lo < t); }
#define SHR(in, shift) (__shiftright128(in.lo, in.hi, (shift)))
#define LO(in) (in.lo)
#elif defined(__GNUC__)
#if defined(__SIZEOF_INT128__)
typedef unsigned __int128 word128;
#else
typedef unsigned word128 __attribute__((mode(TI)));
#endif
#define MUL(out, x, y) out = ((word128)x * y)
#define ADD(out, in) out += in
#define ADDLO(out, in) out += in
#define SHR(in, shift) (word64)(in >> (shift))
#define LO(in) (word64)(in)
#endif
#endif
#ifdef USE_INTEL_SPEEDUP
#ifdef HAVE_INTEL_AVX1
/* Process one block (16 bytes) of data.
*
* ctx Poly1305 context.
* m One block of message data.
*/
static void poly1305_block_avx(Poly1305* ctx, const unsigned char *m)
{
__asm__ __volatile__ (
"movq (%[ctx]), %%r15\n\t"
"movq 24(%[ctx]), %%r8\n\t"
"movq 32(%[ctx]), %%r9\n\t"
"movq 40(%[ctx]), %%r10\n\t"
"xorq %%rbx, %%rbx\n\t"
"movb %[nfin], %%bl\n\t"
"# h += m\n\t"
"movq (%[m]), %%r11\n\t"
"movq 8(%[m]), %%r12\n\t"
"addq %%r11, %%r8\n\t"
"adcq %%r12, %%r9\n\t"
"movq 8(%[ctx]), %%rax\n\t"
"adcq %%rbx, %%r10\n\t"
"# r[1] * h[0] => rdx, rax ==> t2, t1\n\t"
"mulq %%r8\n\t"
"movq %%rax, %%r12\n\t"
"movq %%rdx, %%r13\n\t"
"# r[0] * h[1] => rdx, rax ++> t2, t1\n\t"
"movq %%r15, %%rax\n\t"
"mulq %%r9\n\t"
"addq %%rax, %%r12\n\t"
"movq %%r15, %%rax\n\t"
"adcq %%rdx, %%r13\n\t"
"# r[0] * h[0] => rdx, rax ==> t4, t0\n\t"
"mulq %%r8\n\t"
"movq %%rax, %%r11\n\t"
"movq %%rdx, %%r8\n\t"
"# r[1] * h[1] => rdx, rax =+> t3, t2\n\t"
"movq 8(%[ctx]), %%rax\n\t"
"mulq %%r9\n\t"
"# r[0] * h[2] +> t2\n\t"
"addq 352(%[ctx],%%r10,8), %%r13\n\t"
"movq %%rdx, %%r14\n\t"
"addq %%r8, %%r12\n\t"
"adcq %%rax, %%r13\n\t"
"# r[1] * h[2] +> t3\n\t"
"adcq 408(%[ctx],%%r10,8), %%r14\n\t"
"# r * h in r14, r13, r12, r11 \n\t"
"# h = (r * h) mod 2^130 - 5\n\t"
"movq %%r13, %%r10\n\t"
"andq $-4, %%r13\n\t"
"andq $3, %%r10\n\t"
"addq %%r13, %%r11\n\t"
"movq %%r13, %%r8\n\t"
"adcq %%r14, %%r12\n\t"
"adcq $0, %%r10\n\t"
"shrdq $2, %%r14, %%r8\n\t"
"shrq $2, %%r14\n\t"
"addq %%r11, %%r8\n\t"
"adcq %%r14, %%r12\n\t"
"movq %%r12, %%r9\n\t"
"adcq $0, %%r10\n\t"
"# h in r10, r9, r8 \n\t"
"# Store h to ctx\n\t"
"movq %%r8, 24(%[ctx])\n\t"
"movq %%r9, 32(%[ctx])\n\t"
"movq %%r10, 40(%[ctx])\n\t"
:
: [m] "r" (m), [ctx] "r" (ctx), [nfin] "m" (ctx->finished)
: "rax", "rdx", "r11", "r12", "r13", "r14", "r15", "rbx",
"r8", "r9", "r10", "memory"
);
}
/* Process multiple blocks (n * 16 bytes) of data.
*
* ctx Poly1305 context.
* m Blocks of message data.
* bytes The number of bytes to process.
*/
POLY1305_NOINLINE static void poly1305_blocks_avx(Poly1305* ctx,
const unsigned char* m, size_t bytes)
{
__asm__ __volatile__ (
"movq (%[ctx]), %%r15\n\t"
"movq 24(%[ctx]), %%r8\n\t"
"movq 32(%[ctx]), %%r9\n\t"
"movq 40(%[ctx]), %%r10\n"
"L_avx_start:\n\t"
"# h += m\n\t"
"movq (%[m]), %%r11\n\t"
"movq 8(%[m]), %%r12\n\t"
"addq %%r11, %%r8\n\t"
"adcq %%r12, %%r9\n\t"
"movq 8(%[ctx]), %%rax\n\t"
"adcq $0, %%r10\n\t"
"# r[1] * h[0] => rdx, rax ==> t2, t1\n\t"
"mulq %%r8\n\t"
"movq %%rax, %%r12\n\t"
"movq %%rdx, %%r13\n\t"
"# r[0] * h[1] => rdx, rax ++> t2, t1\n\t"
"movq %%r15, %%rax\n\t"
"mulq %%r9\n\t"
"addq %%rax, %%r12\n\t"
"movq %%r15, %%rax\n\t"
"adcq %%rdx, %%r13\n\t"
"# r[0] * h[0] => rdx, rax ==> t4, t0\n\t"
"mulq %%r8\n\t"
"movq %%rax, %%r11\n\t"
"movq %%rdx, %%r8\n\t"
"# r[1] * h[1] => rdx, rax =+> t3, t2\n\t"
"movq 8(%[ctx]), %%rax\n\t"
"mulq %%r9\n\t"
"# r[0] * h[2] +> t2\n\t"
"addq 360(%[ctx],%%r10,8), %%r13\n\t"
"movq %%rdx, %%r14\n\t"
"addq %%r8, %%r12\n\t"
"adcq %%rax, %%r13\n\t"
"# r[1] * h[2] +> t3\n\t"
"adcq 416(%[ctx],%%r10,8), %%r14\n\t"
"# r * h in r14, r13, r12, r11 \n\t"
"# h = (r * h) mod 2^130 - 5\n\t"
"movq %%r13, %%r10\n\t"
"andq $-4, %%r13\n\t"
"andq $3, %%r10\n\t"
"addq %%r13, %%r11\n\t"
"movq %%r13, %%r8\n\t"
"adcq %%r14, %%r12\n\t"
"adcq $0, %%r10\n\t"
"shrdq $2, %%r14, %%r8\n\t"
"shrq $2, %%r14\n\t"
"addq %%r11, %%r8\n\t"
"adcq %%r14, %%r12\n\t"
"movq %%r12, %%r9\n\t"
"adcq $0, %%r10\n\t"
"# h in r10, r9, r8 \n\t"
"# Next block from message\n\t"
"addq $16, %[m]\n\t"
"subq $16, %[bytes]\n\t"
"cmp $16, %[bytes]\n\t"
"jge L_avx_start\n\t"
"# Store h to ctx\n\t"
"movq %%r8, 24(%[ctx])\n\t"
"movq %%r9, 32(%[ctx])\n\t"
"movq %%r10, 40(%[ctx])\n\t"
: [m] "+r" (m), [bytes] "+r" (bytes)
: [ctx] "r" (ctx)
: "rax", "rdx", "r11", "r12", "r13", "r14", "r15",
"r8", "r9", "r10", "memory"
);
}
/* Set the key to use when processing data.
* Initialize the context.
*
* ctx Poly1305 context.
* key The key data (16 bytes).
*/
static void poly1305_setkey_avx(Poly1305* ctx, const byte* key)
{
int i;
ctx->r[0] = *(word64*)(key + 0) & 0x0ffffffc0fffffffL;
ctx->r[1] = *(word64*)(key + 8) & 0x0ffffffc0ffffffcL;
for (i=0; i<7; i++) {
ctx->hm[i + 0] = ctx->r[0] * i;
ctx->hm[i + 7] = ctx->r[1] * i;
}
/* h (accumulator) = 0 */
ctx->h[0] = 0;
ctx->h[1] = 0;
ctx->h[2] = 0;
/* save pad for later */
ctx->pad[0] = *(word64*)(key + 16);
ctx->pad[1] = *(word64*)(key + 24);
ctx->leftover = 0;
ctx->finished = 1;
}
/* Calculate the final result - authentication data.
* Zeros out the private data in the context.
*
* ctx Poly1305 context.
* mac Buffer to hold 16 bytes.
*/
static void poly1305_final_avx(Poly1305* ctx, byte* mac)
{
word64 h0, h1, h2;
/* process the remaining block */
if (ctx->leftover) {
size_t i = ctx->leftover;
ctx->buffer[i] = 1;
for (i = i + 1; i < POLY1305_BLOCK_SIZE; i++)
ctx->buffer[i] = 0;
ctx->finished = 0;
poly1305_block_avx(ctx, ctx->buffer);
}
h0 = ctx->h[0];
h1 = ctx->h[1];
h2 = ctx->h[2];
/* h %= p */
/* h = (h + pad) */
__asm__ __volatile__ (
"# mod 2^130 - 5\n\t"
"movq %[h2], %%r13\n\t"
"andq $0x3, %[h2]\n\t"
"shrq $0x2, %%r13\n\t"
"leaq (%%r13, %%r13, 4), %%r13\n\t"
"add %%r13, %[h0]\n\t"
"adc $0, %[h1]\n\t"
"adc $0, %[h2]\n\t"
"# Fixup when between (1 << 130) - 1 and (1 << 130) - 5\n\t"
"movq %[h0], %%r13\n\t"
"movq %[h1], %%r14\n\t"
"movq %[h2], %%r15\n\t"
"addq $5, %%r13\n\t"
"adcq $0, %%r14\n\t"
"adcq $0, %%r15\n\t"
"movq %%r15, %%r12\n\t"
"andq $3, %%r15\n\t"
"cmpq $4, %%r12\n\t"
"cmove %%r13, %[h0]\n\t"
"cmove %%r14, %[h1]\n\t"
"cmove %%r15, %[h2]\n\t"
"# h += pad\n\t"
"add %[p0], %[h0]\n\t"
"adc %[p1], %[h1]\n\t"
"movq %[h0], (%[m])\n\t"
"movq %[h1], 8(%[m])\n\t"
: [h0] "+r" (h0), [h1] "+r" (h1), [h2] "+r" (h2),
[p0] "+r" (ctx->pad[0]), [p1] "+r" (ctx->pad[1])
: [m] "r" (mac)
: "memory", "r15", "r14", "r13", "r12"
);
/* zero out the state */
ctx->h[0] = 0;
ctx->h[1] = 0;
ctx->h[2] = 0;
ctx->r[0] = 0;
ctx->r[1] = 0;
ctx->pad[0] = 0;
ctx->pad[1] = 0;
}
#endif
#ifdef HAVE_INTEL_AVX2
#if defined(_MSC_VER)
#define POLY1305_NOINLINE __declspec(noinline)
#elif defined(__GNUC__)
#define POLY1305_NOINLINE __attribute__((noinline))
#else
#define POLY1305_NOINLINE
#endif
/* Load H into five 256-bit registers.
*
* h is the memory location of the data - 26 of 32 bits.
* h0-h4 the 4 H values with 26 bits stored in 64 for multiply.
*/
#define LOAD_H(h, h0, h1, h2, h3, h4) \
"vmovdqu ("#h"), "#h0"\n\t" \
"vmovdqu 32("#h"), "#h1"\n\t" \
"vmovdqu 64("#h"), "#h2"\n\t" \
"vmovdqu 96("#h"), "#h3"\n\t" \
"vmovdqu 128("#h"), "#h4"\n\t"
/* Store H, five 256-bit registers, packed.
*
* h is the memory location of the data - 26 bits in 32.
* h0-h4 the 4 H values with 26 bits stored in 64.
* x4 is the xmm register of h4.
*/
#define STORE_H(h, h0, h1, h2, h3, h4, x4) \
"vmovdqu "#h0", ("#h")\n\t" \
"vmovdqu "#h1", 32("#h")\n\t" \
"vmovdqu "#h2", 64("#h")\n\t" \
"vmovdqu "#h3", 96("#h")\n\t" \
"vmovdqu "#h4", 128("#h")\n\t"
/* Load four powers of r into position to be multiplied by the 4 H values.
*
* r0-r4 holds the loaded values with 26 bits stored in 64 for multiply.
* t0-t3 are temporary registers.
*/
#define LOAD_Rx4(r0, r1, r2, r3, r4, \
t0, t1, t2, t3) \
"vmovdqu 224(%[ctx]), "#r3"\n\t" \
"vmovdqu 256(%[ctx]), "#r2"\n\t" \
"vmovdqu 288(%[ctx]), "#r1"\n\t" \
"vmovdqu 320(%[ctx]), "#r0"\n\t" \
"vpermq $0xd8, "#r0", "#r0"\n\t" \
"vpermq $0xd8, "#r1", "#r1"\n\t" \
"vpermq $0xd8, "#r2", "#r2"\n\t" \
"vpermq $0xd8, "#r3", "#r3"\n\t" \
"vpunpcklqdq "#r1", "#r0", "#t0"\n\t" \
"vpunpckhqdq "#r1", "#r0", "#t1"\n\t" \
"vpunpcklqdq "#r3", "#r2", "#t2"\n\t" \
"vpunpckhqdq "#r3", "#r2", "#t3"\n\t" \
"vperm2i128 $0x20, "#t2", "#t0", "#r0"\n\t" \
"vperm2i128 $0x31, "#t2", "#t0", "#r2"\n\t" \
"vperm2i128 $0x20, "#t3", "#t1", "#r4"\n\t" \
"vpsrlq $32, "#r0", "#r1"\n\t" \
"vpsrlq $32, "#r2", "#r3"\n\t"
/* Load the r^4 value into position to be multiplied by all 4 H values.
*
* r4 holds r^4 as five 26 bits each in 32.
* r0-r4 holds the loaded values with 26 bits stored in 64 for multiply.
* t0-t1 are temporary registers.
*/
#define LOAD_R4(r4, r40, r41, r42, r43, r44, \
t0, t1) \
"vmovdqu "#r4", "#t0"\n\t" \
"vpermq $0x0, "#t0", "#r40"\n\t" \
"vpsrlq $32, "#t0", "#t1"\n\t" \
"vpermq $0x55, "#t0", "#r42"\n\t" \
"vpermq $0xaa, "#t0", "#r44"\n\t" \
"vpermq $0x0, "#t1", "#r41"\n\t" \
"vpermq $0x55, "#t1", "#r43"\n\t"
/* Multiply the top 4 26-bit values in 64 bits of each H by 5 for reduction in
* multiply.
*
* s1-s4 are each 64 bit value in r1-r4 multiplied by 5.
* r1-r4 are the top 4
*/
#define MUL5(s1, s2, s3, s4, r1, r2, r3, r4) \
"vpslld $2, "#r1", "#s1"\n\t" \
"vpslld $2, "#r2", "#s2"\n\t" \
"vpslld $2, "#r3", "#s3"\n\t" \
"vpslld $2, "#r4", "#s4"\n\t" \
"vpaddq "#s1", "#r1", "#s1"\n\t" \
"vpaddq "#s2", "#r2", "#s2"\n\t" \
"vpaddq "#s3", "#r3", "#s3"\n\t" \
"vpaddq "#s4", "#r4", "#s4"\n\t"
/* Add the 4 H values together.
* Each 64 bits in a register is 26 bits of one of the H values.
*
* h0-h4 contains the 4 H values.
* t1-t4 are temporary registers.
*/
#define FINALIZE_H(h0, h1, h2, h3, h4, \
t0, t1, t2, t3, t4) \
"vpsrldq $8, "#h0", "#t0"\n\t" \
"vpsrldq $8, "#h1", "#t1"\n\t" \
"vpsrldq $8, "#h2", "#t2"\n\t" \
"vpsrldq $8, "#h3", "#t3"\n\t" \
"vpsrldq $8, "#h4", "#t4"\n\t" \
"vpaddq "#h0", "#t0", "#h0"\n\t" \
"vpaddq "#h1", "#t1", "#h1"\n\t" \
"vpaddq "#h2", "#t2", "#h2"\n\t" \
"vpaddq "#h3", "#t3", "#h3"\n\t" \
"vpaddq "#h4", "#t4", "#h4"\n\t" \
"vpermq $0x02, "#h0", "#t0"\n\t" \
"vpermq $0x02, "#h1", "#t1"\n\t" \
"vpermq $0x02, "#h2", "#t2"\n\t" \
"vpermq $0x02, "#h3", "#t3"\n\t" \
"vpermq $0x02, "#h4", "#t4"\n\t" \
"vpaddq "#h0", "#t0", "#h0"\n\t" \
"vpaddq "#h1", "#t1", "#h1"\n\t" \
"vpaddq "#h2", "#t2", "#h2"\n\t" \
"vpaddq "#h3", "#t3", "#h3"\n\t" \
"vpaddq "#h4", "#t4", "#h4"\n\t"
/* Move 32 bits from each xmm register to a 32 bit register.
*
* x0-x4 are the xmm version of the ymm registers used.
* t0-t4 are the 32-bit registers to store data in.
*/
#define MOVE_TO_32(x0, x1, x2, x3, x4, \
t0, t1, t2, t3, t4) \
"vmovd "#x0", "#t0"\n\t" \
"vmovd "#x1", "#t1"\n\t" \
"vmovd "#x2", "#t2"\n\t" \
"vmovd "#x3", "#t3"\n\t" \
"vmovd "#x4", "#t4"\n\t"
/* Multiply using AVX2 instructions.
* Each register contains up to 32 bits of data in 64 bits.
* This is a 4 way parallel multiply.
*
* h0-h4 contain 4 H values with the 32 bits of each per register.
* r0-r4 contain the 4 powers of r.
* s1-s4 contain r1-r4 times 5.
* t0-t4 and v0-v3 are temporary registers.
*/
#define MUL_AVX2(h0, h1, h2, h3, h4, \
r0, r1, r2, r3, r4, \
s1, s2, s3, s4, \
t0, t1, t2, t3, t4, \
v0, v1, v2, v3) \
"vpmuludq "#s1", "#h4", "#t0"\n\t" \
"vpmuludq "#s2", "#h3", "#v0"\n\t" \
"vpmuludq "#s2", "#h4", "#t1"\n\t" \
"vpmuludq "#s3", "#h3", "#v1"\n\t" \
"vpmuludq "#s3", "#h4", "#t2"\n\t" \
"vpaddq "#t0", "#v0", "#t0"\n\t" \
"vpmuludq "#s3", "#h2", "#v2"\n\t" \
"vpmuludq "#s4", "#h4", "#t3"\n\t" \
"vpaddq "#t1", "#v1", "#t1"\n\t" \
"vpmuludq "#s4", "#h1", "#v3"\n\t" \
"vpmuludq "#s4", "#h2", "#v0"\n\t" \
"vpaddq "#t0", "#v2", "#t0"\n\t" \
"vpmuludq "#s4", "#h3", "#v1"\n\t" \
"vpmuludq "#r0", "#h3", "#v2"\n\t" \
"vpaddq "#t0", "#v3", "#t0"\n\t" \
"vpmuludq "#r0", "#h4", "#t4"\n\t" \
"vpaddq "#t1", "#v0", "#t1"\n\t" \
"vpmuludq "#r0", "#h0", "#v3"\n\t" \
"vpaddq "#t2", "#v1", "#t2"\n\t" \
"vpmuludq "#r0", "#h1", "#v0"\n\t" \
"vpaddq "#t3", "#v2", "#t3"\n\t" \
"vpmuludq "#r0", "#h2", "#v1"\n\t" \
"vpmuludq "#r1", "#h2", "#v2"\n\t" \
"vpaddq "#t0", "#v3", "#t0"\n\t" \
"vpmuludq "#r1", "#h3", "#v3"\n\t" \
"vpaddq "#t1", "#v0", "#t1"\n\t" \
"vpmuludq "#r1", "#h0", "#v0"\n\t" \
"vpaddq "#t2", "#v1", "#t2"\n\t" \
"vpmuludq "#r1", "#h1", "#v1"\n\t" \
"vpaddq "#t3", "#v2", "#t3"\n\t" \
"vpmuludq "#r2", "#h1", "#v2"\n\t" \
"vpaddq "#t4", "#v3", "#t4"\n\t" \
"vpmuludq "#r2", "#h2", "#v3"\n\t" \
"vpaddq "#t1", "#v0", "#t1"\n\t" \
"vpmuludq "#r2", "#h0", "#v0"\n\t" \
"vpaddq "#t2", "#v1", "#t2"\n\t" \
"vpmuludq "#r3", "#h0", "#v1"\n\t" \
"vpaddq "#t3", "#v2", "#t3"\n\t" \
"vpmuludq "#r3", "#h1", "#v2"\n\t" \
"vpaddq "#t4", "#v3", "#t4"\n\t" \
"vpmuludq "#r4", "#h0", "#v3"\n\t" \
"vpaddq "#t2", "#v0", "#t2"\n\t" \
"vpaddq "#t3", "#v1", "#t3"\n\t" \
"vpaddq "#t4", "#v2", "#t4"\n\t" \
"vpaddq "#t4", "#v3", "#t4"\n\t"
/* Load the 4 blocks of the message.
*
* m the address of the message to load.
* m0-m4 is the loaded message with 32 bits in 64. Loaded so data is parallel.
* hi is the high bits of the 4 m (1 << 128 as not final block).
* z is zero.
*/
#define LOAD_M(m, m0, m1, m2, m3, m4, hi, z) \
"vmovdqu (%[m]), "#m0"\n\t" \
"vmovdqu 32(%[m]), "#m1"\n\t" \
"vperm2i128 $0x20, "#m1", "#m0", "#m2"\n\t" \
"vperm2i128 $0x31, "#m1", "#m0", "#m0"\n\t" \
"vpunpckldq "#m0", "#m2", "#m1"\n\t" \
"vpunpckhdq "#m0", "#m2", "#m3"\n\t" \
"vpunpckldq "#z", "#m1", "#m0"\n\t" \
"vpunpckhdq "#z", "#m1", "#m1"\n\t" \
"vpunpckldq "#z", "#m3", "#m2"\n\t" \
"vpunpckhdq "#z", "#m3", "#m3"\n\t" \
"vmovdqu "#hi", "#m4"\n\t" \
"vpsllq $6, "#m1", "#m1"\n\t" \
"vpsllq $12, "#m2", "#m2"\n\t" \
"vpsllq $18, "#m3", "#m3"\n\t"
/* Multiply using AVX2 instructions - adding with message.
* Each register contains up to 32 bits of data in 64 bits.
* This is a 4 way parallel multiply.
* The message data is loaded first and the multiplication adds into it.
*
* h0-h4 contain 4 H values with the 32 bits of each per register.
* r0-r4 contain the 4 powers of r.
* s1-s4 contain r1-r4 times 5.
* t0-t4 and v0-v3 are temporary registers.
* hi is the high bits of the 4 m (1 << 128 as not final block).
* z is zero.
*/
#define MUL_ADD_AVX2(h0, h1, h2, h3, h4, \
r0, r1, r2, r3, r4, \
s1, s2, s3, s4, \
t0, t1, t2, t3, t4, \
v0, v1, v2, v3, \
hi, z) \
"vmovdqu (%[m]), "#t0"\n\t" \
"vmovdqu 32(%[m]), "#t1"\n\t" \
"vperm2i128 $0x20, "#t1", "#t0", "#t2"\n\t" \
"vperm2i128 $0x31, "#t1", "#t0", "#t0"\n\t" \
"vpunpckldq "#t0", "#t2", "#t1"\n\t" \
"vpunpckhdq "#t0", "#t2", "#t3"\n\t" \
"vpunpckldq "#z", "#t1", "#t0"\n\t" \
"vpunpckhdq "#z", "#t1", "#t1"\n\t" \
"vpunpckldq "#z", "#t3", "#t2"\n\t" \
"vpunpckhdq "#z", "#t3", "#t3"\n\t" \
"vmovdqu "#hi", "#t4"\n\t" \
"vpsllq $6, "#t1", "#t1"\n\t" \
"vpsllq $12, "#t2", "#t2"\n\t" \
"vpsllq $18, "#t3", "#t3"\n\t" \
"vpmuludq "#s1", "#h4", "#v0"\n\t" \
"vpaddq "#t0", "#v0", "#t0"\n\t" \
"vpmuludq "#s2", "#h3", "#v0"\n\t" \
"vpmuludq "#s2", "#h4", "#v1"\n\t" \
"vpaddq "#t1", "#v1", "#t1"\n\t" \
"vpmuludq "#s3", "#h3", "#v1"\n\t" \
"vpmuludq "#s3", "#h4", "#v2"\n\t" \
"vpaddq "#t2", "#v2", "#t2"\n\t" \
"vpaddq "#t0", "#v0", "#t0"\n\t" \
"vpmuludq "#s3", "#h2", "#v2"\n\t" \
"vpmuludq "#s4", "#h4", "#v3"\n\t" \
"vpaddq "#t3", "#v3", "#t3"\n\t" \
"vpaddq "#t1", "#v1", "#t1"\n\t" \
"vpmuludq "#s4", "#h1", "#v3"\n\t" \
"vpmuludq "#s4", "#h2", "#v0"\n\t" \
"vpaddq "#t0", "#v2", "#t0"\n\t" \
"vpmuludq "#s4", "#h3", "#v1"\n\t" \
"vpmuludq "#r0", "#h3", "#v2"\n\t" \
"vpaddq "#t0", "#v3", "#t0"\n\t" \
"vpmuludq "#r0", "#h4", "#v3"\n\t" \
"vpaddq "#t4", "#v3", "#t4"\n\t" \
"vpaddq "#t1", "#v0", "#t1"\n\t" \
"vpmuludq "#r0", "#h0", "#v3"\n\t" \
"vpaddq "#t2", "#v1", "#t2"\n\t" \
"vpmuludq "#r0", "#h1", "#v0"\n\t" \
"vpaddq "#t3", "#v2", "#t3"\n\t" \
"vpmuludq "#r0", "#h2", "#v1"\n\t" \
"vpmuludq "#r1", "#h2", "#v2"\n\t" \
"vpaddq "#t0", "#v3", "#t0"\n\t" \
"vpmuludq "#r1", "#h3", "#v3"\n\t" \
"vpaddq "#t1", "#v0", "#t1"\n\t" \
"vpmuludq "#r1", "#h0", "#v0"\n\t" \
"vpaddq "#t2", "#v1", "#t2"\n\t" \
"vpmuludq "#r1", "#h1", "#v1"\n\t" \
"vpaddq "#t3", "#v2", "#t3"\n\t" \
"vpmuludq "#r2", "#h1", "#v2"\n\t" \
"vpaddq "#t4", "#v3", "#t4"\n\t" \
"vpmuludq "#r2", "#h2", "#v3"\n\t" \
"vpaddq "#t1", "#v0", "#t1"\n\t" \
"vpmuludq "#r2", "#h0", "#v0"\n\t" \
"vpaddq "#t2", "#v1", "#t2"\n\t" \
"vpmuludq "#r3", "#h0", "#v1"\n\t" \
"vpaddq "#t3", "#v2", "#t3"\n\t" \
"vpmuludq "#r3", "#h1", "#v2"\n\t" \
"vpaddq "#t4", "#v3", "#t4"\n\t" \
"vpmuludq "#r4", "#h0", "#v3"\n\t" \
"vpaddq "#t2", "#v0", "#t2"\n\t" \
"vpaddq "#t3", "#v1", "#t3"\n\t" \
"vpaddq "#t4", "#v2", "#t4"\n\t" \
"vpaddq "#t4", "#v3", "#t4"\n\t"
/* Reduce the 64 bits of data to 26 bits.
*
* h0-h4 contain the reduced H values.
* m0-m4 contain the 4 H values to reduce.
* t0-t2 are temporaries.
* mask contains the 26-bit mask for each 64 bit value in the 256 bit register.
*/
#define REDUCE(h0, h1, h2, h3, h4, \
m0, m1, m2, m3, m4, \
t0, t1, t2, mask) \
"vpsrlq $26, "#m0", "#t0"\n\t" \
"vpsrlq $26, "#m3", "#t1"\n\t" \
"vpand "#mask", "#m0", "#m0"\n\t" \
"vpand "#mask", "#m3", "#m3"\n\t" \
"vpaddq "#m1", "#t0", "#m1"\n\t" \
"vpaddq "#m4", "#t1", "#m4"\n\t" \
\
"vpsrlq $26, "#m1", "#t0"\n\t" \
"vpsrlq $26, "#m4", "#t1"\n\t" \
"vpand "#mask", "#m1", "#h1"\n\t" \
"vpand "#mask", "#m4", "#h4"\n\t" \
"vpaddq "#m2", "#t0", "#m2"\n\t" \
"vpslld $2, "#t1", "#t2"\n\t" \
"vpaddd "#t2", "#t1", "#t2"\n\t" \
\
"vpsrlq $26, "#m2", "#t0"\n\t" \
"vpaddq "#m0", "#t2", "#m0"\n\t" \
"vpsrlq $26, "#m0", "#t1"\n\t" \
"vpand "#mask", "#m2", "#h2"\n\t" \
"vpand "#mask", "#m0", "#h0"\n\t" \
"vpaddq "#m3", "#t0", "#m3"\n\t" \
"vpaddq "#h1", "#t1", "#h1"\n\t" \
\
"vpsrlq $26, "#m3", "#t0"\n\t" \
"vpand "#mask", "#m3", "#h3"\n\t" \
"vpaddq "#h4", "#t0", "#h4"\n\t" \
/* Process multiple blocks (n * 16 bytes) of data.
*
* ctx Poly1305 context.
* m Blocks of message data.
* bytes The number of bytes to process.
*/
POLY1305_NOINLINE static void poly1305_blocks_avx2(Poly1305* ctx,
const unsigned char* m, size_t bytes)
{
ALIGN256 word64 r4[5][4];
ALIGN256 word64 s[4][4];
register word32 t0 asm("r8") = 0;
register word32 t1 asm("r9") = 0;
register word32 t2 asm("r10") = 0;
register word32 t3 asm("r11") = 0;
register word32 t4 asm("r12") = 0;
static const word64 mask[4] = { 0x0000000003ffffff, 0x0000000003ffffff,
0x0000000003ffffff, 0x0000000003ffffff };
static const word64 hibit[4] = { 0x1000000, 0x1000000,
0x1000000, 0x1000000 };
__asm__ __volatile__ (
"vpxor %%ymm15, %%ymm15, %%ymm15\n\t"
"cmpb $1, %[started]\n\t"
"je L_begin\n\t"
"cmpb $1, %[fin]\n\t"
"je L_begin\n\t"
"# Load the message data\n\t"
LOAD_M(m, %%ymm0, %%ymm1, %%ymm2, %%ymm3, %%ymm4, %[hibit], %%ymm15)
"vmovdqu %[mask], %%ymm14\n\t"
"# Reduce, in place, the message data\n\t"
REDUCE(%%ymm0, %%ymm1, %%ymm2, %%ymm3, %%ymm4,
%%ymm0, %%ymm1, %%ymm2, %%ymm3, %%ymm4,
%%ymm10, %%ymm11, %%ymm12, %%ymm14)
"addq $64, %[m]\n\t"
"subq $64, %[bytes]\n\t"
"jz L_store\n\t"
"jmp L_load_r4\n\t"
"\n"
"L_begin:\n\t"
"# Load the H values.\n\t"
LOAD_H(%[h], %%ymm0, %%ymm1, %%ymm2, %%ymm3, %%ymm4)
"# Check if there is a power of r to load - otherwise use r^4.\n\t"
"cmpb $0, %[fin]\n\t"
"je L_load_r4\n\t"
"\n\t"
"# Load the 4 powers of r - r^4, r^3, r^2, r^1.\n\t"
LOAD_Rx4(%%ymm5, %%ymm6, %%ymm7, %%ymm8, %%ymm9,
%%ymm10, %%ymm11, %%ymm12, %%ymm13)
"jmp L_mul_5\n\t"
"\n"
"L_load_r4:\n\t"
"# Load r^4 into all four positions.\n\t"
LOAD_R4(320(%[ctx]), %%ymm5, %%ymm6, %%ymm7, %%ymm8, %%ymm9,
%%ymm13, %%ymm14)
"\n"
"L_mul_5:\n\t"
"# Multiply top 4 26-bit values of all four H by 5\n\t"
MUL5(%%ymm10, %%ymm11, %%ymm12, %%ymm13, %%ymm6, %%ymm7, %%ymm8, %%ymm9)
"# Store powers of r and multiple of 5 for use in multiply.\n\t"
"vmovdqa %%ymm10, (%[s])\n\t"
"vmovdqa %%ymm11, 32(%[s])\n\t"
"vmovdqa %%ymm12, 64(%[s])\n\t"
"vmovdqa %%ymm13, 96(%[s])\n\t"
"vmovdqa %%ymm5 , (%[r4])\n\t"
"vmovdqa %%ymm6 , 32(%[r4])\n\t"
"vmovdqa %%ymm7 , 64(%[r4])\n\t"
"vmovdqa %%ymm8 , 96(%[r4])\n\t"
"vmovdqa %%ymm9 , 128(%[r4])\n\t"
"vmovdqu %[mask], %%ymm14\n\t"
"\n"
"# If not finished then loop over data\n\t"
"cmpb $0x1, %[fin]\n\t"
"jne L_start\n\t"
"# Do last multiply, reduce, add the four H together and move to\n\t"
"# 32-bit registers\n\t"
MUL_AVX2(%%ymm0, %%ymm1, %%ymm2, %%ymm3, %%ymm4,
(%[r4]), 32(%[r4]), 64(%[r4]), 96(%[r4]), 128(%[r4]),
(%[s]), 32(%[s]), 64(%[s]), 96(%[s]),
%%ymm5, %%ymm6, %%ymm7, %%ymm8, %%ymm9,
%%ymm10, %%ymm11, %%ymm12, %%ymm13)
REDUCE(%%ymm0, %%ymm1, %%ymm2, %%ymm3, %%ymm4,
%%ymm5, %%ymm6, %%ymm7, %%ymm8, %%ymm9,
%%ymm10, %%ymm11, %%ymm12, %%ymm14)
FINALIZE_H(%%ymm0, %%ymm1, %%ymm2, %%ymm3, %%ymm4,
%%ymm5, %%ymm6, %%ymm7, %%ymm8, %%ymm9)
MOVE_TO_32(%%xmm0, %%xmm1, %%xmm2, %%xmm3, %%xmm4,
%[t0], %[t1], %[t2], %[t3], %[t4])
"jmp L_end\n\t"
"\n"
"L_start:\n\t"
MUL_ADD_AVX2(%%ymm0, %%ymm1, %%ymm2, %%ymm3, %%ymm4,
(%[r4]), 32(%[r4]), 64(%[r4]), 96(%[r4]), 128(%[r4]),
(%[s]), 32(%[s]), 64(%[s]), 96(%[s]),
%%ymm5, %%ymm6, %%ymm7, %%ymm8, %%ymm9,
%%ymm10, %%ymm11, %%ymm12, %%ymm13,
%[hibit], %%ymm15)
REDUCE(%%ymm0, %%ymm1, %%ymm2, %%ymm3, %%ymm4,
%%ymm5, %%ymm6, %%ymm7, %%ymm8, %%ymm9,
%%ymm10, %%ymm11, %%ymm12, %%ymm14)
"addq $64, %[m]\n\t"
"subq $64, %[bytes]\n\t"
"jnz L_start\n\t"
"\n"
"L_store:\n\t"
"# Store four H values - state\n\t"
STORE_H(%[h], %%ymm0, %%ymm1, %%ymm2, %%ymm3, %%ymm4, %%xmm4)
"\n"
"L_end:\n\t"
: [m] "+r" (m), [bytes] "+r" (bytes),
[t0] "+r" (t0), [t1] "+r" (t1), [t2] "+r" (t2),
[t3] "+r" (t3), [t4] "+r" (t4)
: [ctx] "r" (ctx), [h] "r" (ctx->hh),
[r4] "r" (r4), [s] "r" (s),
[fin] "m" (ctx->finished), [started] "m" (ctx->started),
[mask] "m" (mask), [hibit] "m" (hibit)
: "ymm0", "ymm1", "ymm2", "ymm3", "ymm4", "ymm5", "ymm6", "ymm7",
"ymm8", "ymm9", "ymm10", "ymm11", "ymm12", "ymm13", "ymm14", "ymm15",
"memory"
);
if (ctx->finished)
{
word64 h0, h1, h2, c;
/* Convert to 64-bit form. */
h0 = (((word64)(t1 & 0x3FFFF)) << 26) + t0;
h1 = (((word64)(t3 & 0x3FF)) << 34) +
(((word64) t2 ) << 8) + (t1 >> 18);
h2 = (((word64) t4 ) << 16) + (t3 >> 10);
/* Perform modulur reduction. */
c = (h1 >> 44); h1 &= 0xfffffffffff;
h2 += c; c = (h2 >> 42); h2 &= 0x3ffffffffff;
h0 += c * 5; c = (h0 >> 44); h0 &= 0xfffffffffff;
h1 += c; c = (h1 >> 44); h1 &= 0xfffffffffff;
h2 += c; c = (h2 >> 42); h2 &= 0x3ffffffffff;
h0 += c * 5; c = (h0 >> 44); h0 &= 0xfffffffffff;
h1 += c;
/* Convert from 42/44/44 to 2/64/64 bits used and store result. */
ctx->h[0] = h0 | (h1 << 44);
ctx->h[1] = (h1 >> 20) | (h2 << 24);
ctx->h[2] = h2 >> 40;
}
ctx->started = 1;
}
/* Multiply two 130-bit numbers in 64-bit registers and reduce.
* 44 + 44 + 42 = 130 bits
*
* r0-r2 are the first operand and the result.
* a0-a2 are the second operand.
*/
#define MUL_64(r0, r1, r2, a0, a1, a2) \
s1 = a1 * (5 << 2); \
s2 = a2 * (5 << 2); \
MUL(d0, r0, a0); MUL(d, r1, s2); ADD(d0, d); MUL(d, r2, s1); ADD(d0, d); \
MUL(d1, r0, a1); MUL(d, r1, a0); ADD(d1, d); MUL(d, r2, s2); ADD(d1, d); \
MUL(d2, r0, a2); MUL(d, r1, a1); ADD(d2, d); MUL(d, r2, a0); ADD(d2, d); \
\
c = SHR(d0, 44); r0 = LO(d0) & 0xfffffffffff; \
ADDLO(d1, c); c = SHR(d1, 44); r1 = LO(d1) & 0xfffffffffff; \
ADDLO(d2, c); c = SHR(d2, 42); r2 = LO(d2) & 0x3ffffffffff; \
r0 += c * 5; c = (r0 >> 44); r0 = r0 & 0xfffffffffff; \
r1 += c
#define SQR_64(r0, r1, r2) \
s2 = r2 * (5 << 2); \
MUL(d0, r1, s2); ADD(d0, d0); MUL(d, r0, r0); ADD(d0, d); \
MUL(d1, r0, r1); ADD(d1, d1); MUL(d, r2, s2); ADD(d1, d); \
MUL(d2, r0, r2); ADD(d2, d2); MUL(d, r1, r1); ADD(d2, d); \
\
c = SHR(d0, 44); r0 = LO(d0) & 0xfffffffffff; \
ADDLO(d1, c); c = SHR(d1, 44); r1 = LO(d1) & 0xfffffffffff; \
ADDLO(d2, c); c = SHR(d2, 42); r2 = LO(d2) & 0x3ffffffffff; \
r0 += c * 5; c = (r0 >> 44); r0 = r0 & 0xfffffffffff; \
r1 += c
/* Store the 130-bit number in 64-bit registers as 26-bit values in 32 bits.
*
* r0-r2 contains the 130-bit number in 64-bit registers.
* r is the address of where to store the 26 of 32 bits result.
*/
#define CONV_64_TO_32(r0, r1, r2, r) \
r[0] = (word32)( r0 ) & 0x3ffffff; \
r[1] = (word32)((r0 >> 26) | (r1 << 18)) & 0x3ffffff; \
r[2] = (word32)( r1 >> 8 ) & 0x3ffffff; \
r[3] = (word32)((r1 >> 34) | (r2 << 10)) & 0x3ffffff; \
r[4] = (word32)( r2 >> 16 )
/* Calculate R^1, R^2, R^3 and R^4 and store them in the context.
*
* ctx Poly1305 context.
*/
static void poly1305_calc_powers(Poly1305* ctx)
{
word64 r0, r1, r2, t0, t1, c;
word64 r20, r21, r22;
word64 r30, r31, r32;
word64 r40, r41, r42;
word64 s1, s2;
word128 d0, d1, d2, d;
t0 = ctx->r[0];
t1 = ctx->r[1];
r0 = ( t0 ) & 0xfffffffffff;
r1 = ((t0 >> 44) | (t1 << 20)) & 0xfffffffffff;
r2 = ((t1 >> 24) ) & 0x00fffffffff;
/* Store r^1 */
CONV_64_TO_32(r0, r1, r2, ctx->r1);
/* Calc and store r^2 */
r20 = r0; r21 = r1; r22 = r2;
SQR_64(r20, r21, r22);
CONV_64_TO_32(r20, r21, r22, ctx->r2);
/* Calc and store r^3 */
r30 = r20; r31 = r21; r32 = r22;
MUL_64(r30, r31, r32, r0, r1, r2);
CONV_64_TO_32(r30, r31, r32, ctx->r3);
/* Calc and store r^4 */
r40 = r20; r41 = r21; r42 = r22;
SQR_64(r40, r41, r42);
CONV_64_TO_32(r40, r41, r42, ctx->r4);
}
/* Set the key to use when processing data.
* Initialize the context.
* Calls AVX set key function as final function calls AVX code.
*
* ctx Poly1305 context.
* key The key data (16 bytes).
*/
static void poly1305_setkey_avx2(Poly1305* ctx, const byte* key)
{
poly1305_setkey_avx(ctx, key);
__asm__ __volatile__ (
"vpxor %%ymm0, %%ymm0, %%ymm0\n\t"
"vmovdqu %%ymm0, (%[hh])\n\t"
"vmovdqu %%ymm0, 32(%[hh])\n\t"
"vmovdqu %%ymm0, 64(%[hh])\n\t"
"vmovdqu %%ymm0, 96(%[hh])\n\t"
"vmovdqu %%ymm0, 128(%[hh])\n\t"
:
: [hh] "r" (ctx->hh)
: "memory", "ymm0"
);
ctx->leftover = 0;
ctx->finished = 0;
ctx->started = 0;
}
/* Calculate the final result - authentication data.
* Zeros out the private data in the context.
* Calls AVX final function to quickly process last blocks.
*
* ctx Poly1305 context.
* mac Buffer to hold 16 bytes - authentication data.
*/
static void poly1305_final_avx2(Poly1305* ctx, byte* mac)
{
int i, j;
int l = (int)ctx->leftover;
ctx->finished = 1;
if (ctx->started)
poly1305_blocks_avx2(ctx, ctx->buffer, POLY1305_BLOCK_SIZE * 4);
i = l & ~(POLY1305_BLOCK_SIZE - 1);
if (i > 0)
poly1305_blocks_avx(ctx, ctx->buffer, i);
ctx->leftover -= i;
for (j = 0; i < l; i++, j++)
ctx->buffer[j] = ctx->buffer[i];
poly1305_final_avx(ctx, mac);
/* zero out the state */
__asm__ __volatile__ (
"vpxor %%ymm0, %%ymm0, %%ymm0\n\t"
"vmovdqu %%ymm0, (%[hh])\n\t"
"vmovdqu %%ymm0, 32(%[hh])\n\t"
"vmovdqu %%ymm0, 64(%[hh])\n\t"
"vmovdqu %%ymm0, 96(%[hh])\n\t"
"vmovdqu %%ymm0, 128(%[hh])\n\t"
"vmovdqu %%ymm0, (%[r1])\n\t"
"vmovdqu %%ymm0, (%[r2])\n\t"
"vmovdqu %%ymm0, (%[r3])\n\t"
"vmovdqu %%ymm0, (%[r4])\n\t"
:
: [hh] "r" (ctx->hh), [r1] "r" (ctx->r1), [r2] "r" (ctx->r2),
[r3] "r" (ctx->r3), [r4] "r" (ctx->r4)
: "memory", "ymm0"
);
ctx->leftover = 0;
ctx->finished = 0;
ctx->started = 0;
}
#endif
#elif defined(POLY130564)
static word64 U8TO64(const byte* p)
{
return
(((word64)(p[0] & 0xff) ) |
((word64)(p[1] & 0xff) << 8) |
((word64)(p[2] & 0xff) << 16) |
((word64)(p[3] & 0xff) << 24) |
((word64)(p[4] & 0xff) << 32) |
((word64)(p[5] & 0xff) << 40) |
((word64)(p[6] & 0xff) << 48) |
((word64)(p[7] & 0xff) << 56));
}
static void U64TO8(byte* p, word64 v) {
p[0] = (v ) & 0xff;
p[1] = (v >> 8) & 0xff;
p[2] = (v >> 16) & 0xff;
p[3] = (v >> 24) & 0xff;
p[4] = (v >> 32) & 0xff;
p[5] = (v >> 40) & 0xff;
p[6] = (v >> 48) & 0xff;
p[7] = (v >> 56) & 0xff;
}
#else /* if not 64 bit then use 32 bit */
static word32 U8TO32(const byte *p)
{
return
(((word32)(p[0] & 0xff) ) |
((word32)(p[1] & 0xff) << 8) |
((word32)(p[2] & 0xff) << 16) |
((word32)(p[3] & 0xff) << 24));
}
static void U32TO8(byte *p, word32 v) {
p[0] = (v ) & 0xff;
p[1] = (v >> 8) & 0xff;
p[2] = (v >> 16) & 0xff;
p[3] = (v >> 24) & 0xff;
}
#endif
static void U32TO64(word32 v, byte* p)
{
XMEMSET(p, 0, 8);
p[0] = (v & 0xFF);
p[1] = (v >> 8) & 0xFF;
p[2] = (v >> 16) & 0xFF;
p[3] = (v >> 24) & 0xFF;
}
static void poly1305_blocks(Poly1305* ctx, const unsigned char *m,
size_t bytes)
{
#ifdef USE_INTEL_SPEEDUP
/* AVX2 is handled in wc_Poly1305Update. */
poly1305_blocks_avx(ctx, m, bytes);
#elif defined(POLY130564)
const word64 hibit = (ctx->finished) ? 0 : ((word64)1 << 40); /* 1 << 128 */
word64 r0,r1,r2;
word64 s1,s2;
word64 h0,h1,h2;
word64 c;
word128 d0,d1,d2,d;
r0 = ctx->r[0];
r1 = ctx->r[1];
r2 = ctx->r[2];
h0 = ctx->h[0];
h1 = ctx->h[1];
h2 = ctx->h[2];
s1 = r1 * (5 << 2);
s2 = r2 * (5 << 2);
while (bytes >= POLY1305_BLOCK_SIZE) {
word64 t0,t1;
/* h += m[i] */
t0 = U8TO64(&m[0]);
t1 = U8TO64(&m[8]);
h0 += (( t0 ) & 0xfffffffffff);
h1 += (((t0 >> 44) | (t1 << 20)) & 0xfffffffffff);
h2 += (((t1 >> 24) ) & 0x3ffffffffff) | hibit;
/* h *= r */
MUL(d0, h0, r0); MUL(d, h1, s2); ADD(d0, d); MUL(d, h2, s1); ADD(d0, d);
MUL(d1, h0, r1); MUL(d, h1, r0); ADD(d1, d); MUL(d, h2, s2); ADD(d1, d);
MUL(d2, h0, r2); MUL(d, h1, r1); ADD(d2, d); MUL(d, h2, r0); ADD(d2, d);
/* (partial) h %= p */
c = SHR(d0, 44); h0 = LO(d0) & 0xfffffffffff;
ADDLO(d1, c); c = SHR(d1, 44); h1 = LO(d1) & 0xfffffffffff;
ADDLO(d2, c); c = SHR(d2, 42); h2 = LO(d2) & 0x3ffffffffff;
h0 += c * 5; c = (h0 >> 44); h0 = h0 & 0xfffffffffff;
h1 += c;
m += POLY1305_BLOCK_SIZE;
bytes -= POLY1305_BLOCK_SIZE;
}
ctx->h[0] = h0;
ctx->h[1] = h1;
ctx->h[2] = h2;
#else /* if not 64 bit then use 32 bit */
const word32 hibit = (ctx->finished) ? 0 : (1 << 24); /* 1 << 128 */
word32 r0,r1,r2,r3,r4;
word32 s1,s2,s3,s4;
word32 h0,h1,h2,h3,h4;
word64 d0,d1,d2,d3,d4;
word32 c;
r0 = ctx->r[0];
r1 = ctx->r[1];
r2 = ctx->r[2];
r3 = ctx->r[3];
r4 = ctx->r[4];
s1 = r1 * 5;
s2 = r2 * 5;
s3 = r3 * 5;
s4 = r4 * 5;
h0 = ctx->h[0];
h1 = ctx->h[1];
h2 = ctx->h[2];
h3 = ctx->h[3];
h4 = ctx->h[4];
while (bytes >= POLY1305_BLOCK_SIZE) {
/* h += m[i] */
h0 += (U8TO32(m+ 0) ) & 0x3ffffff;
h1 += (U8TO32(m+ 3) >> 2) & 0x3ffffff;
h2 += (U8TO32(m+ 6) >> 4) & 0x3ffffff;
h3 += (U8TO32(m+ 9) >> 6) & 0x3ffffff;
h4 += (U8TO32(m+12) >> 8) | hibit;
/* h *= r */
d0 = ((word64)h0 * r0) + ((word64)h1 * s4) + ((word64)h2 * s3) +
((word64)h3 * s2) + ((word64)h4 * s1);
d1 = ((word64)h0 * r1) + ((word64)h1 * r0) + ((word64)h2 * s4) +
((word64)h3 * s3) + ((word64)h4 * s2);
d2 = ((word64)h0 * r2) + ((word64)h1 * r1) + ((word64)h2 * r0) +
((word64)h3 * s4) + ((word64)h4 * s3);
d3 = ((word64)h0 * r3) + ((word64)h1 * r2) + ((word64)h2 * r1) +
((word64)h3 * r0) + ((word64)h4 * s4);
d4 = ((word64)h0 * r4) + ((word64)h1 * r3) + ((word64)h2 * r2) +
((word64)h3 * r1) + ((word64)h4 * r0);
/* (partial) h %= p */
c = (word32)(d0 >> 26); h0 = (word32)d0 & 0x3ffffff;
d1 += c; c = (word32)(d1 >> 26); h1 = (word32)d1 & 0x3ffffff;
d2 += c; c = (word32)(d2 >> 26); h2 = (word32)d2 & 0x3ffffff;
d3 += c; c = (word32)(d3 >> 26); h3 = (word32)d3 & 0x3ffffff;
d4 += c; c = (word32)(d4 >> 26); h4 = (word32)d4 & 0x3ffffff;
h0 += c * 5; c = (h0 >> 26); h0 = h0 & 0x3ffffff;
h1 += c;
m += POLY1305_BLOCK_SIZE;
bytes -= POLY1305_BLOCK_SIZE;
}
ctx->h[0] = h0;
ctx->h[1] = h1;
ctx->h[2] = h2;
ctx->h[3] = h3;
ctx->h[4] = h4;
#endif /* end of 64 bit cpu blocks or 32 bit cpu */
}
static void poly1305_block(Poly1305* ctx, const unsigned char *m)
{
#ifdef USE_INTEL_SPEEDUP
/* No call to poly1305_block when AVX2, AVX2 does 4 blocks at a time. */
poly1305_block_avx(ctx, m);
#else
poly1305_blocks(ctx, m, POLY1305_BLOCK_SIZE);
#endif
}
int wc_Poly1305SetKey(Poly1305* ctx, const byte* key, word32 keySz)
{
#if defined(POLY130564)
word64 t0,t1;
#endif
if (key == NULL)
return BAD_FUNC_ARG;
#ifdef CHACHA_AEAD_TEST
word32 k;
printf("Poly key used:\n");
for (k = 0; k < keySz; k++) {
printf("%02x", key[k]);
if ((k+1) % 8 == 0)
printf("\n");
}
printf("\n");
#endif
if (keySz != 32 || ctx == NULL)
return BAD_FUNC_ARG;
#ifdef USE_INTEL_SPEEDUP
if (!cpu_flags_set) {
intel_flags = cpuid_get_flags();
cpu_flags_set = 1;
}
#ifdef HAVE_INTEL_AVX2
if (IS_INTEL_AVX2(intel_flags))
poly1305_setkey_avx2(ctx, key);
else
#endif
poly1305_setkey_avx(ctx, key);
#elif defined(POLY130564)
/* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
t0 = U8TO64(key + 0);
t1 = U8TO64(key + 8);
ctx->r[0] = ( t0 ) & 0xffc0fffffff;
ctx->r[1] = ((t0 >> 44) | (t1 << 20)) & 0xfffffc0ffff;
ctx->r[2] = ((t1 >> 24) ) & 0x00ffffffc0f;
/* h (accumulator) = 0 */
ctx->h[0] = 0;
ctx->h[1] = 0;
ctx->h[2] = 0;
/* save pad for later */
ctx->pad[0] = U8TO64(key + 16);
ctx->pad[1] = U8TO64(key + 24);
ctx->leftover = 0;
ctx->finished = 0;
#else /* if not 64 bit then use 32 bit */
/* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
ctx->r[0] = (U8TO32(key + 0) ) & 0x3ffffff;
ctx->r[1] = (U8TO32(key + 3) >> 2) & 0x3ffff03;
ctx->r[2] = (U8TO32(key + 6) >> 4) & 0x3ffc0ff;
ctx->r[3] = (U8TO32(key + 9) >> 6) & 0x3f03fff;
ctx->r[4] = (U8TO32(key + 12) >> 8) & 0x00fffff;
/* h = 0 */
ctx->h[0] = 0;
ctx->h[1] = 0;
ctx->h[2] = 0;
ctx->h[3] = 0;
ctx->h[4] = 0;
/* save pad for later */
ctx->pad[0] = U8TO32(key + 16);
ctx->pad[1] = U8TO32(key + 20);
ctx->pad[2] = U8TO32(key + 24);
ctx->pad[3] = U8TO32(key + 28);
ctx->leftover = 0;
ctx->finished = 0;
#endif
return 0;
}
int wc_Poly1305Final(Poly1305* ctx, byte* mac)
{
#ifdef USE_INTEL_SPEEDUP
#elif defined(POLY130564)
word64 h0,h1,h2,c;
word64 g0,g1,g2;
word64 t0,t1;
#else
word32 h0,h1,h2,h3,h4,c;
word32 g0,g1,g2,g3,g4;
word64 f;
word32 mask;
#endif
if (ctx == NULL)
return BAD_FUNC_ARG;
#ifdef USE_INTEL_SPEEDUP
#ifdef HAVE_INTEL_AVX2
if (IS_INTEL_AVX2(intel_flags))
poly1305_final_avx2(ctx, mac);
else
#endif
poly1305_final_avx(ctx, mac);
#elif defined(POLY130564)
/* process the remaining block */
if (ctx->leftover) {
size_t i = ctx->leftover;
ctx->buffer[i] = 1;
for (i = i + 1; i < POLY1305_BLOCK_SIZE; i++)
ctx->buffer[i] = 0;
ctx->finished = 1;
poly1305_block(ctx, ctx->buffer);
}
/* fully carry h */
h0 = ctx->h[0];
h1 = ctx->h[1];
h2 = ctx->h[2];
c = (h1 >> 44); h1 &= 0xfffffffffff;
h2 += c; c = (h2 >> 42); h2 &= 0x3ffffffffff;
h0 += c * 5; c = (h0 >> 44); h0 &= 0xfffffffffff;
h1 += c; c = (h1 >> 44); h1 &= 0xfffffffffff;
h2 += c; c = (h2 >> 42); h2 &= 0x3ffffffffff;
h0 += c * 5; c = (h0 >> 44); h0 &= 0xfffffffffff;
h1 += c;
/* compute h + -p */
g0 = h0 + 5; c = (g0 >> 44); g0 &= 0xfffffffffff;
g1 = h1 + c; c = (g1 >> 44); g1 &= 0xfffffffffff;
g2 = h2 + c - ((word64)1 << 42);
/* select h if h < p, or h + -p if h >= p */
c = (g2 >> ((sizeof(word64) * 8) - 1)) - 1;
g0 &= c;
g1 &= c;
g2 &= c;
c = ~c;
h0 = (h0 & c) | g0;
h1 = (h1 & c) | g1;
h2 = (h2 & c) | g2;
/* h = (h + pad) */
t0 = ctx->pad[0];
t1 = ctx->pad[1];
h0 += (( t0 ) & 0xfffffffffff) ;
c = (h0 >> 44); h0 &= 0xfffffffffff;
h1 += (((t0 >> 44) | (t1 << 20)) & 0xfffffffffff) + c;
c = (h1 >> 44); h1 &= 0xfffffffffff;
h2 += (((t1 >> 24) ) & 0x3ffffffffff) + c;
h2 &= 0x3ffffffffff;
/* mac = h % (2^128) */
h0 = ((h0 ) | (h1 << 44));
h1 = ((h1 >> 20) | (h2 << 24));
U64TO8(mac + 0, h0);
U64TO8(mac + 8, h1);
/* zero out the state */
ctx->h[0] = 0;
ctx->h[1] = 0;
ctx->h[2] = 0;
ctx->r[0] = 0;
ctx->r[1] = 0;
ctx->r[2] = 0;
ctx->pad[0] = 0;
ctx->pad[1] = 0;
#else /* if not 64 bit then use 32 bit */
/* process the remaining block */
if (ctx->leftover) {
size_t i = ctx->leftover;
ctx->buffer[i++] = 1;
for (; i < POLY1305_BLOCK_SIZE; i++)
ctx->buffer[i] = 0;
ctx->finished = 1;
poly1305_block(ctx, ctx->buffer);
}
/* fully carry h */
h0 = ctx->h[0];
h1 = ctx->h[1];
h2 = ctx->h[2];
h3 = ctx->h[3];
h4 = ctx->h[4];
c = h1 >> 26; h1 = h1 & 0x3ffffff;
h2 += c; c = h2 >> 26; h2 = h2 & 0x3ffffff;
h3 += c; c = h3 >> 26; h3 = h3 & 0x3ffffff;
h4 += c; c = h4 >> 26; h4 = h4 & 0x3ffffff;
h0 += c * 5; c = h0 >> 26; h0 = h0 & 0x3ffffff;
h1 += c;
/* compute h + -p */
g0 = h0 + 5; c = g0 >> 26; g0 &= 0x3ffffff;
g1 = h1 + c; c = g1 >> 26; g1 &= 0x3ffffff;
g2 = h2 + c; c = g2 >> 26; g2 &= 0x3ffffff;
g3 = h3 + c; c = g3 >> 26; g3 &= 0x3ffffff;
g4 = h4 + c - (1 << 26);
/* select h if h < p, or h + -p if h >= p */
mask = (g4 >> ((sizeof(word32) * 8) - 1)) - 1;
g0 &= mask;
g1 &= mask;
g2 &= mask;
g3 &= mask;
g4 &= mask;
mask = ~mask;
h0 = (h0 & mask) | g0;
h1 = (h1 & mask) | g1;
h2 = (h2 & mask) | g2;
h3 = (h3 & mask) | g3;
h4 = (h4 & mask) | g4;
/* h = h % (2^128) */
h0 = ((h0 ) | (h1 << 26)) & 0xffffffff;
h1 = ((h1 >> 6) | (h2 << 20)) & 0xffffffff;
h2 = ((h2 >> 12) | (h3 << 14)) & 0xffffffff;
h3 = ((h3 >> 18) | (h4 << 8)) & 0xffffffff;
/* mac = (h + pad) % (2^128) */
f = (word64)h0 + ctx->pad[0] ; h0 = (word32)f;
f = (word64)h1 + ctx->pad[1] + (f >> 32); h1 = (word32)f;
f = (word64)h2 + ctx->pad[2] + (f >> 32); h2 = (word32)f;
f = (word64)h3 + ctx->pad[3] + (f >> 32); h3 = (word32)f;
U32TO8(mac + 0, h0);
U32TO8(mac + 4, h1);
U32TO8(mac + 8, h2);
U32TO8(mac + 12, h3);
/* zero out the state */
ctx->h[0] = 0;
ctx->h[1] = 0;
ctx->h[2] = 0;
ctx->h[3] = 0;
ctx->h[4] = 0;
ctx->r[0] = 0;
ctx->r[1] = 0;
ctx->r[2] = 0;
ctx->r[3] = 0;
ctx->r[4] = 0;
ctx->pad[0] = 0;
ctx->pad[1] = 0;
ctx->pad[2] = 0;
ctx->pad[3] = 0;
#endif
return 0;
}
int wc_Poly1305Update(Poly1305* ctx, const byte* m, word32 bytes)
{
size_t i;
#ifdef CHACHA_AEAD_TEST
word32 k;
printf("Raw input to poly:\n");
for (k = 0; k < bytes; k++) {
printf("%02x", m[k]);
if ((k+1) % 16 == 0)
printf("\n");
}
printf("\n");
#endif
if (ctx == NULL)
return BAD_FUNC_ARG;
#ifdef USE_INTEL_SPEEDUP
#ifdef HAVE_INTEL_AVX2
if (IS_INTEL_AVX2(intel_flags)) {
/* handle leftover */
if (ctx->leftover) {
size_t want = sizeof(ctx->buffer) - ctx->leftover;
if (want > bytes)
want = bytes;
for (i = 0; i < want; i++)
ctx->buffer[ctx->leftover + i] = m[i];
bytes -= (word32)want;
m += want;
ctx->leftover += want;
if (ctx->leftover < sizeof(ctx->buffer))
return 0;
if (!ctx->started)
poly1305_calc_powers(ctx);
poly1305_blocks_avx2(ctx, ctx->buffer, sizeof(ctx->buffer));
ctx->leftover = 0;
}
/* process full blocks */
if (bytes >= sizeof(ctx->buffer)) {
size_t want = bytes & ~(sizeof(ctx->buffer) - 1);
if (!ctx->started)
poly1305_calc_powers(ctx);
poly1305_blocks_avx2(ctx, m, want);
m += want;
bytes -= (word32)want;
}
/* store leftover */
if (bytes) {
for (i = 0; i < bytes; i++)
ctx->buffer[ctx->leftover + i] = m[i];
ctx->leftover += bytes;
}
}
else
#endif
#endif
{
/* handle leftover */
if (ctx->leftover) {
size_t want = (POLY1305_BLOCK_SIZE - ctx->leftover);
if (want > bytes)
want = bytes;
for (i = 0; i < want; i++)
ctx->buffer[ctx->leftover + i] = m[i];
bytes -= (word32)want;
m += want;
ctx->leftover += want;
if (ctx->leftover < POLY1305_BLOCK_SIZE)
return 0;
poly1305_block(ctx, ctx->buffer);
ctx->leftover = 0;
}
/* process full blocks */
if (bytes >= POLY1305_BLOCK_SIZE) {
size_t want = (bytes & ~(POLY1305_BLOCK_SIZE - 1));
poly1305_blocks(ctx, m, want);
m += want;
bytes -= (word32)want;
}
/* store leftover */
if (bytes) {
for (i = 0; i < bytes; i++)
ctx->buffer[ctx->leftover + i] = m[i];
ctx->leftover += bytes;
}
}
return 0;
}
/* Takes in an initialized Poly1305 struct that has a key loaded and creates
a MAC (tag) using recent TLS AEAD padding scheme.
ctx : Initialized Poly1305 struct to use
additional : Additional data to use
addSz : Size of additional buffer
input : Input buffer to create tag from
sz : Size of input buffer
tag : Buffer to hold created tag
tagSz : Size of input tag buffer (must be at least
WC_POLY1305_MAC_SZ(16))
*/
int wc_Poly1305_MAC(Poly1305* ctx, byte* additional, word32 addSz,
byte* input, word32 sz, byte* tag, word32 tagSz)
{
int ret;
byte padding[WC_POLY1305_PAD_SZ - 1];
word32 paddingLen;
byte little64[16];
XMEMSET(padding, 0, sizeof(padding));
/* sanity check on arguments */
if (ctx == NULL || input == NULL || tag == NULL ||
tagSz < WC_POLY1305_MAC_SZ) {
return BAD_FUNC_ARG;
}
/* additional allowed to be 0 */
if (addSz > 0) {
if (additional == NULL)
return BAD_FUNC_ARG;
/* additional data plus padding */
if ((ret = wc_Poly1305Update(ctx, additional, addSz)) != 0) {
return ret;
}
paddingLen = -((int)addSz) & (WC_POLY1305_PAD_SZ - 1);
if (paddingLen) {
if ((ret = wc_Poly1305Update(ctx, padding, paddingLen)) != 0) {
return ret;
}
}
}
/* input plus padding */
if ((ret = wc_Poly1305Update(ctx, input, sz)) != 0) {
return ret;
}
paddingLen = -((int)sz) & (WC_POLY1305_PAD_SZ - 1);
if (paddingLen) {
if ((ret = wc_Poly1305Update(ctx, padding, paddingLen)) != 0) {
return ret;
}
}
/* size of additional data and input as little endian 64 bit types */
U32TO64(addSz, little64);
U32TO64(sz, little64 + 8);
ret = wc_Poly1305Update(ctx, little64, sizeof(little64));
if (ret)
{
return ret;
}
/* Finalize the auth tag */
ret = wc_Poly1305Final(ctx, tag);
return ret;
}
#endif /* HAVE_POLY1305 */