Files
wolfssl/wolfcrypt/src/sha.c
David Garske c1640e8a3d Intel QuickAssist (QAT) support and async enhancements/fixes:
* Adds ./configure "--with-intelqa=../QAT1.6”, port files, memory management and README.md (see wolfcrypt/src/port/intel/).
* Added Intel QAT support for RSA public/private (CRT/non-CRT), AES CBC/GCM, ECDH/ECDSA, DH, DES3, SHA, SHA224, SHA256, SHA384, SHA512, MD5 and HMAC.
* wolfSSL async enabled all client and server: PKI, Encrypt/Decrypt, Hashing/HMAC and Certificate Sign/Verify.
* wolfSSL async support in functions: Encrypt, Decrypt, VerifyMAC, BuildMessage, ConfirmSignature, DoCertificate, ParseCertRelative, and MakeSignature.
* wolfCrypt test and benchmark async support added for all HW acceleration.
* wolfCrypt benchmark multi-threading support.
* Added QuickAssist memory overrides for XMALLOC, XFREE and XREALLOC. XREALLOC determines if existing pointer needs reallocated for NUMA.
* Refactor to make sure “heap” is available for async dev init.
* Added async support for all examples for connect, accept, read and write.
* Added new WC_BIGINT (in wolfmath.c) for async hardware support.
* Added async simulator tests for DES3 CBC, AES CBC/GCM.
* Added QAT standalone build for unit testing.
* Added int return code to SHA and MD5 functions.
* Refactor of the async stack variable handling, so async operations have generic args buffer area and cleanup function pointer.
* Combined duplicate code for async push/pop handling.
* Refactor internal.c to add AllocKey / FreeKey.
* Refactor of hash init/free in TLS to use InitHashes and FreeHashes.
* Refactor of the async event->context to use WOLF_EVENT_TYPE_ASYNC_WOLFSSL for WOLFSSL* and WOLF_EVENT_TYPE_ASYNC_WOLFCRYPT for WC_ASYNC_DEV*.
* Suppress error message for WC_PENDING_E.
* Implemented "wolfSSL_EVP_MD_CTX_init" to do memset.
* Cleanup of the openssl compat CTX sizes when async is enabled.
* Cleanup of AES, DES3, DH, SHA, MD5, DES3, DH, HMAC, MD5 for consistency and readability.
* Cleanup of the OPAQUE_LEN.
* Cleanup to use ENCRYPT_LEN instead of sizeof(ssl->arrays.preMasterSecret).
* Changed ssl->arrays.preMasterSecret to use XMALLOC (accelerates HW operations)
* Reduce verbosity with debug enabled for "GetMyVersion", "wolfSSL Using RSA OAEP padding" and "wolfSSL Using RSA PKCSV15 padding".
* Updated RSA un-padding error message so its different than one above it for better debugging.
* Added QAT async enables for each algorithm.
* Refactor of the async init to use _ex.
* Added WC_ASYNC_THRESH_NONE to allow bypass of the async thresholds for testing.
* Reformatted the benchmark results:
PKI: "RSA 2048 private HW 18522 ops took 1.003 sec, avg 0.054 ms, 18467.763 ops/sec"
Crypto/Hashing: SHA-256 SW 350 megs took 1.009 seconds, 346.946 MB/s Cycles per byte = 9.87
* Added min execution time for all benchmarks.
* Moved wc_*GetHash and wc_*RestorePos to appropriate files so use of isCopy flag is local.
* Fix for ECC sign status sometimes being invalid due to uninitialized ECC digest in benchmark.
* Added new DECLARE_VAR/FREE_VAR and DECLARE_ARRAY/FREE_ARRAY macros for helping setup test/benchmark variables to accelerate async.
* Added NO_SW_BENCH option to only run HW bench.
* Added support for PRNG to use hardware SHA256 if _wc devId provided.
* Fix to prevent curve tests from running against wrong curve sizes. Changed wc_ecc_set_curve to match on exact size.
* Added the wc_*GetHash calls to the wolfCrypt tests.
* Added async hardware start/stop to wolfSSL init/cleanup.
* Refactor to add wc_*Copy for hashing context (for async), which replaces wc_*RestorePos.
* Fixes for building with TI hashing (including: SHA224, missing new API’s and building with dummy build for non hw testing). Note: We need to add build test for this `./configure CFLAGS="-DWOLFSSL_TI_HASH -DTI_DUMMY_BUILD”`.
* Added arg checks on wc_*GetHash and wc_*Copy.
* Cleanup of the BuildMD5, BuildSHA, BuildMD5_CertVerify and BuildSHA_CertVerify functions.
* Added new ./configure --enable-asyncthreads, to allow enable/disable of the async threading support. If --enable-asynccrypt set this will be enabled by default if pthread is supported. Allows multi-threaded benchmarks with async simulator.
* Added checks for all hashing to verify valid ->buffLen.
* Fix for SHA512 scan-build warning about un-initialized “W_X”.
* Fix for valgrind un-initialized use of buffer in AllocDer (der->buffer) and BuildTlsFinished handshake_hash.
* Refactor of the benchmarking to use common function for start, check and finish of the stats.
* Fixed issue with ECC cache loading in multi-threading.
* Fix bug with AESNI not aligned code that assumes XMALLOC is 16-byte aligned.
* Added new WC_ASYNC_NO_… options to allow disabling of individual async algorithms. New defines are: WC_ASYNC_NO_CRYPT, WC_ASYNC_NO_PKI and WC_ASYNC_NO_HASH. Additionally each algorithm has a WC_ASYNC_NO_[ALGO] define.
* Added “wolfSSL_GetAllocators” API and fixed the wolfCrypt memcb_test so it restores callback pointers after test is complete (fixes issue with using custom allocators and test breaking it).
2017-04-10 14:45:05 -07:00

572 lines
16 KiB
C
Executable File

/* sha.c
*
* Copyright (C) 2006-2016 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#if !defined(NO_SHA)
#include <wolfssl/wolfcrypt/sha.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
/* fips wrapper calls, user can call direct */
#ifdef HAVE_FIPS
int wc_InitSha(Sha* sha)
{
return InitSha_fips(sha);
}
int wc_InitSha_ex(Sha* sha, void* heap, int devId)
{
(void)heap;
(void)devId;
return InitSha_fips(sha);
}
int wc_ShaUpdate(Sha* sha, const byte* data, word32 len)
{
return ShaUpdate_fips(sha, data, len);
}
int wc_ShaFinal(Sha* sha, byte* out)
{
return ShaFinal_fips(sha,out);
}
void wc_ShaFree(Sha* sha)
{
(void)sha;
/* Not supported in FIPS */
}
#else /* else build without fips */
#if defined(WOLFSSL_TI_HASH)
/* #include <wolfcrypt/src/port/ti/ti-hash.c> included by wc_port.c */
#else
#include <wolfssl/wolfcrypt/logging.h>
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
/* Hardware Acceleration */
#if defined(WOLFSSL_PIC32MZ_HASH)
#define USE_SHA_SOFTWARE_IMPL
#define wc_InitSha wc_InitSha_sw
#define wc_ShaUpdate wc_ShaUpdate_sw
#define wc_ShaFinal wc_ShaFinal_sw
#elif defined(STM32F2_HASH) || defined(STM32F4_HASH)
/*
* STM32F2/F4 hardware SHA1 support through the standard peripheral
* library. (See note in README).
*/
static int InitSha(Sha* sha)
{
/* STM32 struct notes:
* sha->buffer = first 4 bytes used to hold partial block if needed
* sha->buffLen = num bytes currently stored in sha->buffer
* sha->loLen = num bytes that have been written to STM32 FIFO
*/
XMEMSET(sha->buffer, 0, SHA_REG_SIZE);
sha->buffLen = 0;
sha->loLen = 0;
/* initialize HASH peripheral */
HASH_DeInit();
/* configure algo used, algo mode, datatype */
HASH->CR &= ~ (HASH_CR_ALGO | HASH_CR_DATATYPE | HASH_CR_MODE);
HASH->CR |= (HASH_AlgoSelection_SHA1 | HASH_AlgoMode_HASH
| HASH_DataType_8b);
/* reset HASH processor */
HASH->CR |= HASH_CR_INIT;
return 0;
}
int wc_ShaUpdate(Sha* sha, const byte* data, word32 len)
{
word32 i = 0;
word32 fill = 0;
word32 diff = 0;
/* if saved partial block is available */
if (sha->buffLen) {
fill = 4 - sha->buffLen;
/* if enough data to fill, fill and push to FIFO */
if (fill <= len) {
XMEMCPY((byte*)sha->buffer + sha->buffLen, data, fill);
HASH_DataIn(*(uint32_t*)sha->buffer);
data += fill;
len -= fill;
sha->loLen += 4;
sha->buffLen = 0;
} else {
/* append partial to existing stored block */
XMEMCPY((byte*)sha->buffer + sha->buffLen, data, len);
sha->buffLen += len;
return 0;
}
}
/* write input block in the IN FIFO */
for(i = 0; i < len; i += 4)
{
diff = len - i;
if ( diff < 4) {
/* store incomplete last block, not yet in FIFO */
XMEMSET(sha->buffer, 0, SHA_REG_SIZE);
XMEMCPY((byte*)sha->buffer, data, diff);
sha->buffLen = diff;
} else {
HASH_DataIn(*(uint32_t*)data);
data+=4;
}
}
/* keep track of total data length thus far */
sha->loLen += (len - sha->buffLen);
return 0;
}
int wc_ShaFinal(Sha* sha, byte* hash)
{
__IO uint16_t nbvalidbitsdata = 0;
/* finish reading any trailing bytes into FIFO */
if (sha->buffLen) {
HASH_DataIn(*(uint32_t*)sha->buffer);
sha->loLen += sha->buffLen;
}
/* calculate number of valid bits in last word of input data */
nbvalidbitsdata = 8 * (sha->loLen % SHA_REG_SIZE);
/* configure number of valid bits in last word of the data */
HASH_SetLastWordValidBitsNbr(nbvalidbitsdata);
/* start HASH processor */
HASH_StartDigest();
/* wait until Busy flag == RESET */
while (HASH_GetFlagStatus(HASH_FLAG_BUSY) != RESET) {}
/* read message digest */
sha->digest[0] = HASH->HR[0];
sha->digest[1] = HASH->HR[1];
sha->digest[2] = HASH->HR[2];
sha->digest[3] = HASH->HR[3];
sha->digest[4] = HASH->HR[4];
ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE);
XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE);
return wc_InitSha(sha); /* reset state */
}
#elif defined(FREESCALE_LTC_SHA)
#include "fsl_ltc.h"
static int InitSha(Sha* sha)
{
LTC_HASH_Init(LTC_BASE, &sha->ctx, kLTC_Sha1, NULL, 0);
return 0;
}
int wc_ShaUpdate(Sha* sha, const byte* data, word32 len)
{
LTC_HASH_Update(&sha->ctx, data, len);
return 0;
}
int wc_ShaFinal(Sha* sha, byte* hash)
{
uint32_t hashlen = SHA_DIGEST_SIZE;
LTC_HASH_Finish(&sha->ctx, hash, &hashlen);
return wc_InitSha(sha); /* reset state */
}
#elif defined(FREESCALE_MMCAU_SHA)
#include "fsl_mmcau.h"
#define USE_SHA_SOFTWARE_IMPL /* Only for API's, actual transform is here */
#define XSHATRANSFORM ShaTransform
static int InitSha(Sha* sha)
{
int ret = 0;
ret = wolfSSL_CryptHwMutexLock();
if(ret != 0) {
return ret;
}
MMCAU_SHA1_InitializeOutput((uint32_t*)sha->digest);
wolfSSL_CryptHwMutexUnLock();
sha->buffLen = 0;
sha->loLen = 0;
sha->hiLen = 0;
return ret;
}
static int ShaTransform(Sha* sha, byte* data)
{
int ret = wolfSSL_CryptHwMutexLock();
if(ret == 0) {
MMCAU_SHA1_HashN(data, 1, (uint32_t*)sha->digest);
wolfSSL_CryptHwMutexUnLock();
}
return ret;
}
#else
/* Software implementation */
#define USE_SHA_SOFTWARE_IMPL
static int InitSha(Sha* sha)
{
int ret = 0;
sha->digest[0] = 0x67452301L;
sha->digest[1] = 0xEFCDAB89L;
sha->digest[2] = 0x98BADCFEL;
sha->digest[3] = 0x10325476L;
sha->digest[4] = 0xC3D2E1F0L;
sha->buffLen = 0;
sha->loLen = 0;
sha->hiLen = 0;
return ret;
}
#endif /* End Hardware Acceleration */
/* Software implementation */
#ifdef USE_SHA_SOFTWARE_IMPL
/* Check if custom Sha transform is used */
#ifndef XSHATRANSFORM
#define XSHATRANSFORM ShaTransform
#define blk0(i) (W[i] = sha->buffer[i])
#define blk1(i) (W[(i)&15] = \
rotlFixed(W[((i)+13)&15]^W[((i)+8)&15]^W[((i)+2)&15]^W[(i)&15],1))
#define f1(x,y,z) ((z)^((x) &((y)^(z))))
#define f2(x,y,z) ((x)^(y)^(z))
#define f3(x,y,z) (((x)&(y))|((z)&((x)|(y))))
#define f4(x,y,z) ((x)^(y)^(z))
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) (z)+= f1((w),(x),(y)) + blk0((i)) + 0x5A827999+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
#define R1(v,w,x,y,z,i) (z)+= f1((w),(x),(y)) + blk1((i)) + 0x5A827999+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
#define R2(v,w,x,y,z,i) (z)+= f2((w),(x),(y)) + blk1((i)) + 0x6ED9EBA1+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
#define R3(v,w,x,y,z,i) (z)+= f3((w),(x),(y)) + blk1((i)) + 0x8F1BBCDC+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
#define R4(v,w,x,y,z,i) (z)+= f4((w),(x),(y)) + blk1((i)) + 0xCA62C1D6+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
static void ShaTransform(Sha* sha, byte* data)
{
word32 W[SHA_BLOCK_SIZE / sizeof(word32)];
/* Copy context->state[] to working vars */
word32 a = sha->digest[0];
word32 b = sha->digest[1];
word32 c = sha->digest[2];
word32 d = sha->digest[3];
word32 e = sha->digest[4];
#ifdef USE_SLOW_SHA
word32 t, i;
for (i = 0; i < 16; i++) {
R0(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 20; i++) {
R1(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 40; i++) {
R2(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 60; i++) {
R3(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 80; i++) {
R4(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
#else
/* nearly 1 K bigger in code size but 25% faster */
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
#endif
/* Add the working vars back into digest state[] */
sha->digest[0] += a;
sha->digest[1] += b;
sha->digest[2] += c;
sha->digest[3] += d;
sha->digest[4] += e;
(void)data; /* Not used */
}
#endif /* !USE_CUSTOM_SHA_TRANSFORM */
static INLINE void AddLength(Sha* sha, word32 len)
{
word32 tmp = sha->loLen;
if ( (sha->loLen += len) < tmp)
sha->hiLen++; /* carry low to high */
}
int wc_InitSha_ex(Sha* sha, void* heap, int devId)
{
int ret = 0;
if (sha == NULL)
return BAD_FUNC_ARG;
sha->heap = heap;
ret = InitSha(sha);
if (ret != 0)
return ret;
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
ret = wolfAsync_DevCtxInit(&sha->asyncDev, WOLFSSL_ASYNC_MARKER_SHA,
sha->heap, devId);
#else
(void)devId;
#endif /* WOLFSSL_ASYNC_CRYPT */
return ret;
}
int wc_ShaUpdate(Sha* sha, const byte* data, word32 len)
{
/* do block size increments */
byte* local = (byte*)sha->buffer;
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
if (sha->asyncDev.marker == WOLFSSL_ASYNC_MARKER_SHA) {
#if defined(HAVE_INTEL_QA)
return IntelQaSymSha(&sha->asyncDev, NULL, data, len);
#endif
}
#endif /* WOLFSSL_ASYNC_CRYPT */
/* check that internal buffLen is valid */
if (sha->buffLen > SHA_BLOCK_SIZE)
return BUFFER_E;
while (len) {
word32 add = min(len, SHA_BLOCK_SIZE - sha->buffLen);
XMEMCPY(&local[sha->buffLen], data, add);
sha->buffLen += add;
data += add;
len -= add;
if (sha->buffLen == SHA_BLOCK_SIZE) {
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE);
#endif
XSHATRANSFORM(sha, local);
AddLength(sha, SHA_BLOCK_SIZE);
sha->buffLen = 0;
}
}
return 0;
}
int wc_ShaFinal(Sha* sha, byte* hash)
{
byte* local = (byte*)sha->buffer;
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
if (sha->asyncDev.marker == WOLFSSL_ASYNC_MARKER_SHA) {
#if defined(HAVE_INTEL_QA)
return IntelQaSymSha(&sha->asyncDev, hash, NULL, SHA_DIGEST_SIZE);
#endif
}
#endif /* WOLFSSL_ASYNC_CRYPT */
AddLength(sha, sha->buffLen); /* before adding pads */
local[sha->buffLen++] = 0x80; /* add 1 */
/* pad with zeros */
if (sha->buffLen > SHA_PAD_SIZE) {
XMEMSET(&local[sha->buffLen], 0, SHA_BLOCK_SIZE - sha->buffLen);
sha->buffLen += SHA_BLOCK_SIZE - sha->buffLen;
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE);
#endif
XSHATRANSFORM(sha, local);
sha->buffLen = 0;
}
XMEMSET(&local[sha->buffLen], 0, SHA_PAD_SIZE - sha->buffLen);
/* put lengths in bits */
sha->hiLen = (sha->loLen >> (8*sizeof(sha->loLen) - 3)) +
(sha->hiLen << 3);
sha->loLen = sha->loLen << 3;
/* store lengths */
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE);
#endif
/* ! length ordering dependent on digest endian type ! */
XMEMCPY(&local[SHA_PAD_SIZE], &sha->hiLen, sizeof(word32));
XMEMCPY(&local[SHA_PAD_SIZE + sizeof(word32)], &sha->loLen, sizeof(word32));
#ifdef FREESCALE_MMCAU_SHA
/* Kinetis requires only these bytes reversed */
ByteReverseWords(&sha->buffer[SHA_PAD_SIZE/sizeof(word32)],
&sha->buffer[SHA_PAD_SIZE/sizeof(word32)],
2 * sizeof(word32));
#endif
XSHATRANSFORM(sha, local);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE);
#endif
XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE);
return InitSha(sha); /* reset state */
}
#endif /* USE_SHA_SOFTWARE_IMPL */
int wc_InitSha(Sha* sha)
{
return wc_InitSha_ex(sha, NULL, INVALID_DEVID);
}
void wc_ShaFree(Sha* sha)
{
if (sha == NULL)
return;
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
wolfAsync_DevCtxFree(&sha->asyncDev, WOLFSSL_ASYNC_MARKER_SHA);
#endif /* WOLFSSL_ASYNC_CRYPT */
}
#endif /* !WOLFSSL_TI_HASH */
#endif /* HAVE_FIPS */
#ifndef WOLFSSL_TI_HASH
int wc_ShaGetHash(Sha* sha, byte* hash)
{
int ret;
Sha tmpSha;
if (sha == NULL || hash == NULL)
return BAD_FUNC_ARG;
ret = wc_ShaCopy(sha, &tmpSha);
if (ret == 0) {
ret = wc_ShaFinal(&tmpSha, hash);
}
return ret;
}
int wc_ShaCopy(Sha* src, Sha* dst)
{
int ret = 0;
if (src == NULL || dst == NULL)
return BAD_FUNC_ARG;
XMEMCPY(dst, src, sizeof(Sha));
#ifdef WOLFSSL_ASYNC_CRYPT
ret = wolfAsync_DevCopy(&src->asyncDev, &dst->asyncDev);
#endif
return ret;
}
#endif /* !WOLFSSL_TI_HASH */
#endif /* !NO_SHA */