Files
wolfssl/wolfcrypt/src/aes.c
2017-07-24 15:37:05 -07:00

5535 lines
187 KiB
C
Executable File
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
/* aes.c
*
* Copyright (C) 2006-2016 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
#ifndef NO_AES
#include <wolfssl/wolfcrypt/aes.h>
/* fips wrapper calls, user can call direct */
#ifdef HAVE_FIPS
int wc_AesSetKey(Aes* aes, const byte* key, word32 len, const byte* iv,
int dir)
{
if (aes == NULL || !( (len == 16) || (len == 24) || (len == 32)) ) {
return BAD_FUNC_ARG;
}
return AesSetKey_fips(aes, key, len, iv, dir);
}
int wc_AesSetIV(Aes* aes, const byte* iv)
{
if (aes == NULL) {
return BAD_FUNC_ARG;
}
return AesSetIV_fips(aes, iv);
}
#ifdef HAVE_AES_CBC
int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
if (aes == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
return AesCbcEncrypt_fips(aes, out, in, sz);
}
#ifdef HAVE_AES_DECRYPT
int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
if (aes == NULL || out == NULL || in == NULL
|| sz % AES_BLOCK_SIZE != 0) {
return BAD_FUNC_ARG;
}
return AesCbcDecrypt_fips(aes, out, in, sz);
}
#endif /* HAVE_AES_DECRYPT */
#endif /* HAVE_AES_CBC */
/* AES-CTR */
#ifdef WOLFSSL_AES_COUNTER
int wc_AesCtrEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
if (aes == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
return AesCtrEncrypt(aes, out, in, sz);
}
#endif
/* AES-DIRECT */
#if defined(WOLFSSL_AES_DIRECT)
void wc_AesEncryptDirect(Aes* aes, byte* out, const byte* in)
{
AesEncryptDirect(aes, out, in);
}
#ifdef HAVE_AES_DECRYPT
void wc_AesDecryptDirect(Aes* aes, byte* out, const byte* in)
{
AesDecryptDirect(aes, out, in);
}
#endif /* HAVE_AES_DECRYPT */
int wc_AesSetKeyDirect(Aes* aes, const byte* key, word32 len,
const byte* iv, int dir)
{
return AesSetKeyDirect(aes, key, len, iv, dir);
}
#endif /* WOLFSSL_AES_DIRECT */
/* AES-GCM */
#ifdef HAVE_AESGCM
int wc_AesGcmSetKey(Aes* aes, const byte* key, word32 len)
{
if (aes == NULL || !( (len == 16) || (len == 24) || (len == 32)) ) {
return BAD_FUNC_ARG;
}
return AesGcmSetKey_fips(aes, key, len);
}
int wc_AesGcmEncrypt(Aes* aes, byte* out, const byte* in, word32 sz,
const byte* iv, word32 ivSz,
byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
if (aes == NULL || authTagSz > AES_BLOCK_SIZE
|| ivSz != WOLFSSL_MIN_AUTH_TAG_SZ
|| authTagSz < WOLFSSL_MIN_AUTH_TAG_SZ) {
return BAD_FUNC_ARG;
}
return AesGcmEncrypt_fips(aes, out, in, sz, iv, ivSz, authTag,
authTagSz, authIn, authInSz);
}
#ifdef HAVE_AES_DECRYPT
int wc_AesGcmDecrypt(Aes* aes, byte* out, const byte* in, word32 sz,
const byte* iv, word32 ivSz,
const byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
if (aes == NULL || out == NULL || in == NULL || sz == 0
|| iv == NULL || authTag == NULL
|| ivSz != WOLFSSL_MIN_AUTH_TAG_SZ
||authTagSz > AES_BLOCK_SIZE) {
return BAD_FUNC_ARG;
}
return AesGcmDecrypt_fips(aes, out, in, sz, iv, ivSz, authTag,
authTagSz, authIn, authInSz);
}
#endif /* HAVE_AES_DECRYPT */
int wc_GmacSetKey(Gmac* gmac, const byte* key, word32 len)
{
if (gmac == NULL || key == NULL || !((len == 16) ||
(len == 24) || (len == 32)) ) {
return BAD_FUNC_ARG;
}
return GmacSetKey(gmac, key, len);
}
int wc_GmacUpdate(Gmac* gmac, const byte* iv, word32 ivSz,
const byte* authIn, word32 authInSz,
byte* authTag, word32 authTagSz)
{
if (gmac == NULL || authTagSz > AES_BLOCK_SIZE ||
authTagSz < WOLFSSL_MIN_AUTH_TAG_SZ) {
return BAD_FUNC_ARG;
}
return GmacUpdate(gmac, iv, ivSz, authIn, authInSz,
authTag, authTagSz);
}
#endif /* HAVE_AESGCM */
/* AES-CCM */
#ifdef HAVE_AESCCM
void wc_AesCcmSetKey(Aes* aes, const byte* key, word32 keySz)
{
AesCcmSetKey(aes, key, keySz);
}
int wc_AesCcmEncrypt(Aes* aes, byte* out, const byte* in, word32 inSz,
const byte* nonce, word32 nonceSz,
byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
/* sanity check on arguments */
if (aes == NULL || out == NULL || in == NULL || nonce == NULL
|| authTag == NULL || nonceSz < 7 || nonceSz > 13)
return BAD_FUNC_ARG;
AesCcmEncrypt(aes, out, in, inSz, nonce, nonceSz, authTag,
authTagSz, authIn, authInSz);
return 0;
}
#ifdef HAVE_AES_DECRYPT
int wc_AesCcmDecrypt(Aes* aes, byte* out,
const byte* in, word32 inSz,
const byte* nonce, word32 nonceSz,
const byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
if (aes == NULL || out == NULL || in == NULL || nonce == NULL
|| authTag == NULL || nonceSz < 7 || nonceSz > 13) {
return BAD_FUNC_ARG;
}
return AesCcmDecrypt(aes, out, in, inSz, nonce, nonceSz,
authTag, authTagSz, authIn, authInSz);
}
#endif /* HAVE_AES_DECRYPT */
#endif /* HAVE_AESCCM */
int wc_AesInit(Aes* aes, void* h, int i)
{
(void)aes;
(void)h;
(void)i;
/* FIPS doesn't support:
return AesInit(aes, h, i); */
return 0;
}
void wc_AesFree(Aes* aes)
{
(void)aes;
/* FIPS doesn't support:
AesFree(aes); */
}
#else /* HAVE_FIPS */
#if defined(WOLFSSL_TI_CRYPT)
#include <wolfcrypt/src/port/ti/ti-aes.c>
#else
#include <wolfssl/wolfcrypt/logging.h>
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
#ifndef WOLFSSL_ARMASM
#ifdef DEBUG_AESNI
#include <stdio.h>
#endif
#ifdef _MSC_VER
/* 4127 warning constant while(1) */
#pragma warning(disable: 4127)
#endif
/* Define AES implementation includes and functions */
#if defined(STM32F2_CRYPTO) || defined(STM32F4_CRYPTO)
/* STM32F2/F4 hardware AES support for CBC, CTR modes */
/* CRYPT_AES_GCM starts the IV with 2 */
#define STM32_GCM_IV_START 2
#if defined(WOLFSSL_AES_DIRECT) || defined(HAVE_AESGCM) || defined(HAVE_AESCCM)
static int wc_AesEncrypt(Aes* aes, const byte* inBlock, byte* outBlock)
{
int ret = 0;
#ifdef WOLFSSL_STM32_CUBEMX
CRYP_HandleTypeDef hcryp;
XMEMSET(&hcryp, 0, sizeof(CRYP_HandleTypeDef));
switch(aes->rounds) {
case 10: /* 128-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_128B;
break;
case 12: /* 192-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_192B;
break;
case 14: /* 256-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_256B;
break;
default:
break;
}
hcryp.Instance = CRYP;
hcryp.Init.DataType = CRYP_DATATYPE_8B;
hcryp.Init.pKey = (uint8_t*)aes->key;
HAL_CRYP_Init(&hcryp);
if (HAL_CRYP_AESECB_Encrypt(&hcryp, (uint8_t*)inBlock, AES_BLOCK_SIZE,
outBlock, STM32_HAL_TIMEOUT) != HAL_OK) {
ret = WC_TIMEOUT_E;
}
HAL_CRYP_DeInit(&hcryp);
#else
word32 *enc_key;
CRYP_InitTypeDef AES_CRYP_InitStructure;
CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure;
enc_key = aes->key;
/* crypto structure initialization */
CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure);
CRYP_StructInit(&AES_CRYP_InitStructure);
/* reset registers to their default values */
CRYP_DeInit();
/* load key into correct registers */
switch (aes->rounds) {
case 10: /* 128-bit key */
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b;
AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[0];
AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[1];
AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[2];
AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[3];
break;
case 12: /* 192-bit key */
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b;
AES_CRYP_KeyInitStructure.CRYP_Key1Left = enc_key[0];
AES_CRYP_KeyInitStructure.CRYP_Key1Right = enc_key[1];
AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[2];
AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[3];
AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[4];
AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[5];
break;
case 14: /* 256-bit key */
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b;
AES_CRYP_KeyInitStructure.CRYP_Key0Left = enc_key[0];
AES_CRYP_KeyInitStructure.CRYP_Key0Right = enc_key[1];
AES_CRYP_KeyInitStructure.CRYP_Key1Left = enc_key[2];
AES_CRYP_KeyInitStructure.CRYP_Key1Right = enc_key[3];
AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[4];
AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[5];
AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[6];
AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[7];
break;
default:
break;
}
CRYP_KeyInit(&AES_CRYP_KeyInitStructure);
/* set direction, mode, and datatype */
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt;
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_ECB;
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b;
CRYP_Init(&AES_CRYP_InitStructure);
/* enable crypto processor */
CRYP_Cmd(ENABLE);
/* flush IN/OUT FIFOs */
CRYP_FIFOFlush();
CRYP_DataIn(*(uint32_t*)&inBlock[0]);
CRYP_DataIn(*(uint32_t*)&inBlock[4]);
CRYP_DataIn(*(uint32_t*)&inBlock[8]);
CRYP_DataIn(*(uint32_t*)&inBlock[12]);
/* wait until the complete message has been processed */
while (CRYP_GetFlagStatus(CRYP_FLAG_BUSY) != RESET) {}
*(uint32_t*)&outBlock[0] = CRYP_DataOut();
*(uint32_t*)&outBlock[4] = CRYP_DataOut();
*(uint32_t*)&outBlock[8] = CRYP_DataOut();
*(uint32_t*)&outBlock[12] = CRYP_DataOut();
/* disable crypto processor */
CRYP_Cmd(DISABLE);
#endif /* WOLFSSL_STM32_CUBEMX */
return ret;
}
#endif /* WOLFSSL_AES_DIRECT || HAVE_AESGCM || HAVE_AESCCM */
#ifdef HAVE_AES_DECRYPT
#if defined(WOLFSSL_AES_DIRECT) || defined(HAVE_AESCCM)
static int wc_AesDecrypt(Aes* aes, const byte* inBlock, byte* outBlock)
{
int ret = 0;
#ifdef WOLFSSL_STM32_CUBEMX
CRYP_HandleTypeDef hcryp;
XMEMSET(&hcryp, 0, sizeof(CRYP_HandleTypeDef));
switch(aes->rounds) {
case 10: /* 128-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_128B;
break;
case 12: /* 192-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_192B;
break;
case 14: /* 256-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_256B;
break;
default:
break;
}
hcryp.Instance = CRYP;
hcryp.Init.DataType = CRYP_DATATYPE_8B;
hcryp.Init.pKey = (uint8_t*)aes->key;
HAL_CRYP_Init(&hcryp);
if (HAL_CRYP_AESECB_Decrypt(&hcryp, (uint8_t*)inBlock, AES_BLOCK_SIZE,
outBlock, STM32_HAL_TIMEOUT) != HAL_OK) {
ret = WC_TIMEOUT_E;
}
HAL_CRYP_DeInit(&hcryp);
#else
word32 *enc_key;
CRYP_InitTypeDef AES_CRYP_InitStructure;
CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure;
enc_key = aes->key;
/* crypto structure initialization */
CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure);
CRYP_StructInit(&AES_CRYP_InitStructure);
/* reset registers to their default values */
CRYP_DeInit();
/* load key into correct registers */
switch (aes->rounds) {
case 10: /* 128-bit key */
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b;
AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[0];
AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[1];
AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[2];
AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[3];
break;
case 12: /* 192-bit key */
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b;
AES_CRYP_KeyInitStructure.CRYP_Key1Left = enc_key[0];
AES_CRYP_KeyInitStructure.CRYP_Key1Right = enc_key[1];
AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[2];
AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[3];
AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[4];
AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[5];
break;
case 14: /* 256-bit key */
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b;
AES_CRYP_KeyInitStructure.CRYP_Key0Left = enc_key[0];
AES_CRYP_KeyInitStructure.CRYP_Key0Right = enc_key[1];
AES_CRYP_KeyInitStructure.CRYP_Key1Left = enc_key[2];
AES_CRYP_KeyInitStructure.CRYP_Key1Right = enc_key[3];
AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[4];
AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[5];
AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[6];
AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[7];
break;
default:
break;
}
CRYP_KeyInit(&AES_CRYP_KeyInitStructure);
/* set direction, mode, and datatype */
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_ECB;
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b;
CRYP_Init(&AES_CRYP_InitStructure);
/* enable crypto processor */
CRYP_Cmd(ENABLE);
/* flush IN/OUT FIFOs */
CRYP_FIFOFlush();
CRYP_DataIn(*(uint32_t*)&inBlock[0]);
CRYP_DataIn(*(uint32_t*)&inBlock[4]);
CRYP_DataIn(*(uint32_t*)&inBlock[8]);
CRYP_DataIn(*(uint32_t*)&inBlock[12]);
/* wait until the complete message has been processed */
while (CRYP_GetFlagStatus(CRYP_FLAG_BUSY) != RESET) {}
*(uint32_t*)&outBlock[0] = CRYP_DataOut();
*(uint32_t*)&outBlock[4] = CRYP_DataOut();
*(uint32_t*)&outBlock[8] = CRYP_DataOut();
*(uint32_t*)&outBlock[12] = CRYP_DataOut();
/* disable crypto processor */
CRYP_Cmd(DISABLE);
#endif /* WOLFSSL_STM32_CUBEMX */
return ret;
}
#endif /* WOLFSSL_AES_DIRECT || HAVE_AESCCM */
#endif /* HAVE_AES_DECRYPT */
#elif defined(HAVE_COLDFIRE_SEC)
/* Freescale Coldfire SEC support for CBC mode.
* NOTE: no support for AES-CTR/GCM/CCM/Direct */
#include <wolfssl/wolfcrypt/types.h>
#include "sec.h"
#include "mcf5475_sec.h"
#include "mcf5475_siu.h"
#elif defined(FREESCALE_LTC)
#include "fsl_ltc.h"
#if defined(FREESCALE_LTC_AES_GCM)
#undef NEED_AES_TABLES
#undef GCM_TABLE
#else
/* if LTC doesn't have GCM, use software with LTC AES ECB mode */
static int wc_AesEncrypt(Aes* aes, const byte* inBlock, byte* outBlock)
{
wc_AesEncryptDirect(aes, outBlock, inBlock);
return 0;
}
static int wc_AesDecrypt(Aes* aes, const byte* inBlock, byte* outBlock)
{
wc_AesDecryptDirect(aes, outBlock, inBlock);
return 0;
}
#endif
#elif defined(FREESCALE_MMCAU)
/* Freescale mmCAU hardware AES support for Direct, CBC, CCM, GCM modes
* through the CAU/mmCAU library. Documentation located in
* ColdFire/ColdFire+ CAU and Kinetis mmCAU Software Library User
* Guide (See note in README). */
#ifdef FREESCALE_MMCAU_CLASSIC
/* MMCAU 1.4 library used with non-KSDK / classic MQX builds */
#include "cau_api.h"
#else
#include "fsl_mmcau.h"
#endif
static int wc_AesEncrypt(Aes* aes, const byte* inBlock, byte* outBlock)
{
int ret;
#ifdef FREESCALE_MMCAU_CLASSIC
if ((wolfssl_word)outBlock % WOLFSSL_MMCAU_ALIGNMENT) {
WOLFSSL_MSG("Bad cau_aes_encrypt alignment");
return BAD_ALIGN_E;
}
#endif
ret = wolfSSL_CryptHwMutexLock();
if(ret == 0) {
#ifdef FREESCALE_MMCAU_CLASSIC
cau_aes_encrypt(inBlock, (byte*)aes->key, aes->rounds, outBlock);
#else
MMCAU_AES_EncryptEcb(inBlock, (byte*)aes->key, aes->rounds,
outBlock);
#endif
wolfSSL_CryptHwMutexUnLock();
}
return ret;
}
#ifdef HAVE_AES_DECRYPT
static int wc_AesDecrypt(Aes* aes, const byte* inBlock, byte* outBlock)
{
int ret;
#ifdef FREESCALE_MMCAU_CLASSIC
if ((wolfssl_word)outBlock % WOLFSSL_MMCAU_ALIGNMENT) {
WOLFSSL_MSG("Bad cau_aes_decrypt alignment");
return BAD_ALIGN_E;
}
#endif
ret = wolfSSL_CryptHwMutexLock();
if(ret == 0) {
#ifdef FREESCALE_MMCAU_CLASSIC
cau_aes_decrypt(inBlock, (byte*)aes->key, aes->rounds, outBlock);
#else
MMCAU_AES_DecryptEcb(inBlock, (byte*)aes->key, aes->rounds,
outBlock);
#endif
wolfSSL_CryptHwMutexUnLock();
}
return ret;
}
#endif /* HAVE_AES_DECRYPT */
#elif defined(WOLFSSL_PIC32MZ_CRYPT)
/* NOTE: no support for AES-CCM/Direct */
#define DEBUG_WOLFSSL
#include "wolfssl/wolfcrypt/port/pic32/pic32mz-crypt.h"
#elif defined(WOLFSSL_NRF51_AES)
/* Use built-in AES hardware - AES 128 ECB Encrypt Only */
#include "wolfssl/wolfcrypt/port/nrf51.h"
static int wc_AesEncrypt(Aes* aes, const byte* inBlock, byte* outBlock)
{
return nrf51_aes_encrypt(inBlock, (byte*)aes->key, aes->rounds, outBlock);
}
#ifdef HAVE_AES_DECRYPT
#error nRF51 AES Hardware does not support decrypt
#endif /* HAVE_AES_DECRYPT */
#elif defined(WOLFSSL_AESNI)
#define NEED_AES_TABLES
/* Each platform needs to query info type 1 from cpuid to see if aesni is
* supported. Also, let's setup a macro for proper linkage w/o ABI conflicts
*/
#ifndef AESNI_ALIGN
#define AESNI_ALIGN 16
#endif
#ifndef _MSC_VER
#define cpuid(reg, func)\
__asm__ __volatile__ ("cpuid":\
"=a" (reg[0]), "=b" (reg[1]), "=c" (reg[2]), "=d" (reg[3]) :\
"a" (func));
#define XASM_LINK(f) asm(f)
#else
#include <intrin.h>
#define cpuid(a,b) __cpuid((int*)a,b)
#define XASM_LINK(f)
#endif /* _MSC_VER */
static int Check_CPU_support_AES(void)
{
unsigned int reg[4]; /* put a,b,c,d into 0,1,2,3 */
cpuid(reg, 1); /* query info 1 */
if (reg[2] & 0x2000000)
return 1;
return 0;
}
static int checkAESNI = 0;
static int haveAESNI = 0;
/* tell C compiler these are asm functions in case any mix up of ABI underscore
prefix between clang/gcc/llvm etc */
#ifdef HAVE_AES_CBC
void AES_CBC_encrypt(const unsigned char* in, unsigned char* out,
unsigned char* ivec, unsigned long length,
const unsigned char* KS, int nr)
XASM_LINK("AES_CBC_encrypt");
#ifdef HAVE_AES_DECRYPT
#if defined(WOLFSSL_AESNI_BY4)
void AES_CBC_decrypt_by4(const unsigned char* in, unsigned char* out,
unsigned char* ivec, unsigned long length,
const unsigned char* KS, int nr)
XASM_LINK("AES_CBC_decrypt_by4");
#elif defined(WOLFSSL_AESNI_BY6)
void AES_CBC_decrypt_by6(const unsigned char* in, unsigned char* out,
unsigned char* ivec, unsigned long length,
const unsigned char* KS, int nr)
XASM_LINK("AES_CBC_decrypt_by6");
#else /* WOLFSSL_AESNI_BYx */
void AES_CBC_decrypt_by8(const unsigned char* in, unsigned char* out,
unsigned char* ivec, unsigned long length,
const unsigned char* KS, int nr)
XASM_LINK("AES_CBC_decrypt_by8");
#endif /* WOLFSSL_AESNI_BYx */
#endif /* HAVE_AES_DECRYPT */
#endif /* HAVE_AES_CBC */
void AES_ECB_encrypt(const unsigned char* in, unsigned char* out,
unsigned long length, const unsigned char* KS, int nr)
XASM_LINK("AES_ECB_encrypt");
#ifdef HAVE_AES_DECRYPT
void AES_ECB_decrypt(const unsigned char* in, unsigned char* out,
unsigned long length, const unsigned char* KS, int nr)
XASM_LINK("AES_ECB_decrypt");
#endif
void AES_128_Key_Expansion(const unsigned char* userkey,
unsigned char* key_schedule)
XASM_LINK("AES_128_Key_Expansion");
void AES_192_Key_Expansion(const unsigned char* userkey,
unsigned char* key_schedule)
XASM_LINK("AES_192_Key_Expansion");
void AES_256_Key_Expansion(const unsigned char* userkey,
unsigned char* key_schedule)
XASM_LINK("AES_256_Key_Expansion");
static int AES_set_encrypt_key(const unsigned char *userKey, const int bits,
Aes* aes)
{
int ret;
if (!userKey || !aes)
return BAD_FUNC_ARG;
switch (bits) {
case 128:
AES_128_Key_Expansion (userKey,(byte*)aes->key); aes->rounds = 10;
return 0;
case 192:
AES_192_Key_Expansion (userKey,(byte*)aes->key); aes->rounds = 12;
return 0;
case 256:
AES_256_Key_Expansion (userKey,(byte*)aes->key); aes->rounds = 14;
return 0;
default:
ret = BAD_FUNC_ARG;
}
return ret;
}
#ifdef HAVE_AES_DECRYPT
static int AES_set_decrypt_key(const unsigned char* userKey,
const int bits, Aes* aes)
{
int nr;
Aes temp_key;
__m128i *Key_Schedule = (__m128i*)aes->key;
__m128i *Temp_Key_Schedule = (__m128i*)temp_key.key;
if (!userKey || !aes)
return BAD_FUNC_ARG;
if (AES_set_encrypt_key(userKey,bits,&temp_key) == BAD_FUNC_ARG)
return BAD_FUNC_ARG;
nr = temp_key.rounds;
aes->rounds = nr;
Key_Schedule[nr] = Temp_Key_Schedule[0];
Key_Schedule[nr-1] = _mm_aesimc_si128(Temp_Key_Schedule[1]);
Key_Schedule[nr-2] = _mm_aesimc_si128(Temp_Key_Schedule[2]);
Key_Schedule[nr-3] = _mm_aesimc_si128(Temp_Key_Schedule[3]);
Key_Schedule[nr-4] = _mm_aesimc_si128(Temp_Key_Schedule[4]);
Key_Schedule[nr-5] = _mm_aesimc_si128(Temp_Key_Schedule[5]);
Key_Schedule[nr-6] = _mm_aesimc_si128(Temp_Key_Schedule[6]);
Key_Schedule[nr-7] = _mm_aesimc_si128(Temp_Key_Schedule[7]);
Key_Schedule[nr-8] = _mm_aesimc_si128(Temp_Key_Schedule[8]);
Key_Schedule[nr-9] = _mm_aesimc_si128(Temp_Key_Schedule[9]);
if (nr>10) {
Key_Schedule[nr-10] = _mm_aesimc_si128(Temp_Key_Schedule[10]);
Key_Schedule[nr-11] = _mm_aesimc_si128(Temp_Key_Schedule[11]);
}
if (nr>12) {
Key_Schedule[nr-12] = _mm_aesimc_si128(Temp_Key_Schedule[12]);
Key_Schedule[nr-13] = _mm_aesimc_si128(Temp_Key_Schedule[13]);
}
Key_Schedule[0] = Temp_Key_Schedule[nr];
return 0;
}
#endif /* HAVE_AES_DECRYPT */
#else
/* using wolfCrypt software AES implementation */
#define NEED_AES_TABLES
#endif
#ifdef NEED_AES_TABLES
static const word32 rcon[] = {
0x01000000, 0x02000000, 0x04000000, 0x08000000,
0x10000000, 0x20000000, 0x40000000, 0x80000000,
0x1B000000, 0x36000000,
/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
};
static const word32 Te[4][256] = {
{
0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU,
0xfff2f20dU, 0xd66b6bbdU, 0xde6f6fb1U, 0x91c5c554U,
0x60303050U, 0x02010103U, 0xce6767a9U, 0x562b2b7dU,
0xe7fefe19U, 0xb5d7d762U, 0x4dababe6U, 0xec76769aU,
0x8fcaca45U, 0x1f82829dU, 0x89c9c940U, 0xfa7d7d87U,
0xeffafa15U, 0xb25959ebU, 0x8e4747c9U, 0xfbf0f00bU,
0x41adadecU, 0xb3d4d467U, 0x5fa2a2fdU, 0x45afafeaU,
0x239c9cbfU, 0x53a4a4f7U, 0xe4727296U, 0x9bc0c05bU,
0x75b7b7c2U, 0xe1fdfd1cU, 0x3d9393aeU, 0x4c26266aU,
0x6c36365aU, 0x7e3f3f41U, 0xf5f7f702U, 0x83cccc4fU,
0x6834345cU, 0x51a5a5f4U, 0xd1e5e534U, 0xf9f1f108U,
0xe2717193U, 0xabd8d873U, 0x62313153U, 0x2a15153fU,
0x0804040cU, 0x95c7c752U, 0x46232365U, 0x9dc3c35eU,
0x30181828U, 0x379696a1U, 0x0a05050fU, 0x2f9a9ab5U,
0x0e070709U, 0x24121236U, 0x1b80809bU, 0xdfe2e23dU,
0xcdebeb26U, 0x4e272769U, 0x7fb2b2cdU, 0xea75759fU,
0x1209091bU, 0x1d83839eU, 0x582c2c74U, 0x341a1a2eU,
0x361b1b2dU, 0xdc6e6eb2U, 0xb45a5aeeU, 0x5ba0a0fbU,
0xa45252f6U, 0x763b3b4dU, 0xb7d6d661U, 0x7db3b3ceU,
0x5229297bU, 0xdde3e33eU, 0x5e2f2f71U, 0x13848497U,
0xa65353f5U, 0xb9d1d168U, 0x00000000U, 0xc1eded2cU,
0x40202060U, 0xe3fcfc1fU, 0x79b1b1c8U, 0xb65b5bedU,
0xd46a6abeU, 0x8dcbcb46U, 0x67bebed9U, 0x7239394bU,
0x944a4adeU, 0x984c4cd4U, 0xb05858e8U, 0x85cfcf4aU,
0xbbd0d06bU, 0xc5efef2aU, 0x4faaaae5U, 0xedfbfb16U,
0x864343c5U, 0x9a4d4dd7U, 0x66333355U, 0x11858594U,
0x8a4545cfU, 0xe9f9f910U, 0x04020206U, 0xfe7f7f81U,
0xa05050f0U, 0x783c3c44U, 0x259f9fbaU, 0x4ba8a8e3U,
0xa25151f3U, 0x5da3a3feU, 0x804040c0U, 0x058f8f8aU,
0x3f9292adU, 0x219d9dbcU, 0x70383848U, 0xf1f5f504U,
0x63bcbcdfU, 0x77b6b6c1U, 0xafdada75U, 0x42212163U,
0x20101030U, 0xe5ffff1aU, 0xfdf3f30eU, 0xbfd2d26dU,
0x81cdcd4cU, 0x180c0c14U, 0x26131335U, 0xc3ecec2fU,
0xbe5f5fe1U, 0x359797a2U, 0x884444ccU, 0x2e171739U,
0x93c4c457U, 0x55a7a7f2U, 0xfc7e7e82U, 0x7a3d3d47U,
0xc86464acU, 0xba5d5de7U, 0x3219192bU, 0xe6737395U,
0xc06060a0U, 0x19818198U, 0x9e4f4fd1U, 0xa3dcdc7fU,
0x44222266U, 0x542a2a7eU, 0x3b9090abU, 0x0b888883U,
0x8c4646caU, 0xc7eeee29U, 0x6bb8b8d3U, 0x2814143cU,
0xa7dede79U, 0xbc5e5ee2U, 0x160b0b1dU, 0xaddbdb76U,
0xdbe0e03bU, 0x64323256U, 0x743a3a4eU, 0x140a0a1eU,
0x924949dbU, 0x0c06060aU, 0x4824246cU, 0xb85c5ce4U,
0x9fc2c25dU, 0xbdd3d36eU, 0x43acacefU, 0xc46262a6U,
0x399191a8U, 0x319595a4U, 0xd3e4e437U, 0xf279798bU,
0xd5e7e732U, 0x8bc8c843U, 0x6e373759U, 0xda6d6db7U,
0x018d8d8cU, 0xb1d5d564U, 0x9c4e4ed2U, 0x49a9a9e0U,
0xd86c6cb4U, 0xac5656faU, 0xf3f4f407U, 0xcfeaea25U,
0xca6565afU, 0xf47a7a8eU, 0x47aeaee9U, 0x10080818U,
0x6fbabad5U, 0xf0787888U, 0x4a25256fU, 0x5c2e2e72U,
0x381c1c24U, 0x57a6a6f1U, 0x73b4b4c7U, 0x97c6c651U,
0xcbe8e823U, 0xa1dddd7cU, 0xe874749cU, 0x3e1f1f21U,
0x964b4bddU, 0x61bdbddcU, 0x0d8b8b86U, 0x0f8a8a85U,
0xe0707090U, 0x7c3e3e42U, 0x71b5b5c4U, 0xcc6666aaU,
0x904848d8U, 0x06030305U, 0xf7f6f601U, 0x1c0e0e12U,
0xc26161a3U, 0x6a35355fU, 0xae5757f9U, 0x69b9b9d0U,
0x17868691U, 0x99c1c158U, 0x3a1d1d27U, 0x279e9eb9U,
0xd9e1e138U, 0xebf8f813U, 0x2b9898b3U, 0x22111133U,
0xd26969bbU, 0xa9d9d970U, 0x078e8e89U, 0x339494a7U,
0x2d9b9bb6U, 0x3c1e1e22U, 0x15878792U, 0xc9e9e920U,
0x87cece49U, 0xaa5555ffU, 0x50282878U, 0xa5dfdf7aU,
0x038c8c8fU, 0x59a1a1f8U, 0x09898980U, 0x1a0d0d17U,
0x65bfbfdaU, 0xd7e6e631U, 0x844242c6U, 0xd06868b8U,
0x824141c3U, 0x299999b0U, 0x5a2d2d77U, 0x1e0f0f11U,
0x7bb0b0cbU, 0xa85454fcU, 0x6dbbbbd6U, 0x2c16163aU,
},
{
0xa5c66363U, 0x84f87c7cU, 0x99ee7777U, 0x8df67b7bU,
0x0dfff2f2U, 0xbdd66b6bU, 0xb1de6f6fU, 0x5491c5c5U,
0x50603030U, 0x03020101U, 0xa9ce6767U, 0x7d562b2bU,
0x19e7fefeU, 0x62b5d7d7U, 0xe64dababU, 0x9aec7676U,
0x458fcacaU, 0x9d1f8282U, 0x4089c9c9U, 0x87fa7d7dU,
0x15effafaU, 0xebb25959U, 0xc98e4747U, 0x0bfbf0f0U,
0xec41adadU, 0x67b3d4d4U, 0xfd5fa2a2U, 0xea45afafU,
0xbf239c9cU, 0xf753a4a4U, 0x96e47272U, 0x5b9bc0c0U,
0xc275b7b7U, 0x1ce1fdfdU, 0xae3d9393U, 0x6a4c2626U,
0x5a6c3636U, 0x417e3f3fU, 0x02f5f7f7U, 0x4f83ccccU,
0x5c683434U, 0xf451a5a5U, 0x34d1e5e5U, 0x08f9f1f1U,
0x93e27171U, 0x73abd8d8U, 0x53623131U, 0x3f2a1515U,
0x0c080404U, 0x5295c7c7U, 0x65462323U, 0x5e9dc3c3U,
0x28301818U, 0xa1379696U, 0x0f0a0505U, 0xb52f9a9aU,
0x090e0707U, 0x36241212U, 0x9b1b8080U, 0x3ddfe2e2U,
0x26cdebebU, 0x694e2727U, 0xcd7fb2b2U, 0x9fea7575U,
0x1b120909U, 0x9e1d8383U, 0x74582c2cU, 0x2e341a1aU,
0x2d361b1bU, 0xb2dc6e6eU, 0xeeb45a5aU, 0xfb5ba0a0U,
0xf6a45252U, 0x4d763b3bU, 0x61b7d6d6U, 0xce7db3b3U,
0x7b522929U, 0x3edde3e3U, 0x715e2f2fU, 0x97138484U,
0xf5a65353U, 0x68b9d1d1U, 0x00000000U, 0x2cc1ededU,
0x60402020U, 0x1fe3fcfcU, 0xc879b1b1U, 0xedb65b5bU,
0xbed46a6aU, 0x468dcbcbU, 0xd967bebeU, 0x4b723939U,
0xde944a4aU, 0xd4984c4cU, 0xe8b05858U, 0x4a85cfcfU,
0x6bbbd0d0U, 0x2ac5efefU, 0xe54faaaaU, 0x16edfbfbU,
0xc5864343U, 0xd79a4d4dU, 0x55663333U, 0x94118585U,
0xcf8a4545U, 0x10e9f9f9U, 0x06040202U, 0x81fe7f7fU,
0xf0a05050U, 0x44783c3cU, 0xba259f9fU, 0xe34ba8a8U,
0xf3a25151U, 0xfe5da3a3U, 0xc0804040U, 0x8a058f8fU,
0xad3f9292U, 0xbc219d9dU, 0x48703838U, 0x04f1f5f5U,
0xdf63bcbcU, 0xc177b6b6U, 0x75afdadaU, 0x63422121U,
0x30201010U, 0x1ae5ffffU, 0x0efdf3f3U, 0x6dbfd2d2U,
0x4c81cdcdU, 0x14180c0cU, 0x35261313U, 0x2fc3ececU,
0xe1be5f5fU, 0xa2359797U, 0xcc884444U, 0x392e1717U,
0x5793c4c4U, 0xf255a7a7U, 0x82fc7e7eU, 0x477a3d3dU,
0xacc86464U, 0xe7ba5d5dU, 0x2b321919U, 0x95e67373U,
0xa0c06060U, 0x98198181U, 0xd19e4f4fU, 0x7fa3dcdcU,
0x66442222U, 0x7e542a2aU, 0xab3b9090U, 0x830b8888U,
0xca8c4646U, 0x29c7eeeeU, 0xd36bb8b8U, 0x3c281414U,
0x79a7dedeU, 0xe2bc5e5eU, 0x1d160b0bU, 0x76addbdbU,
0x3bdbe0e0U, 0x56643232U, 0x4e743a3aU, 0x1e140a0aU,
0xdb924949U, 0x0a0c0606U, 0x6c482424U, 0xe4b85c5cU,
0x5d9fc2c2U, 0x6ebdd3d3U, 0xef43acacU, 0xa6c46262U,
0xa8399191U, 0xa4319595U, 0x37d3e4e4U, 0x8bf27979U,
0x32d5e7e7U, 0x438bc8c8U, 0x596e3737U, 0xb7da6d6dU,
0x8c018d8dU, 0x64b1d5d5U, 0xd29c4e4eU, 0xe049a9a9U,
0xb4d86c6cU, 0xfaac5656U, 0x07f3f4f4U, 0x25cfeaeaU,
0xafca6565U, 0x8ef47a7aU, 0xe947aeaeU, 0x18100808U,
0xd56fbabaU, 0x88f07878U, 0x6f4a2525U, 0x725c2e2eU,
0x24381c1cU, 0xf157a6a6U, 0xc773b4b4U, 0x5197c6c6U,
0x23cbe8e8U, 0x7ca1ddddU, 0x9ce87474U, 0x213e1f1fU,
0xdd964b4bU, 0xdc61bdbdU, 0x860d8b8bU, 0x850f8a8aU,
0x90e07070U, 0x427c3e3eU, 0xc471b5b5U, 0xaacc6666U,
0xd8904848U, 0x05060303U, 0x01f7f6f6U, 0x121c0e0eU,
0xa3c26161U, 0x5f6a3535U, 0xf9ae5757U, 0xd069b9b9U,
0x91178686U, 0x5899c1c1U, 0x273a1d1dU, 0xb9279e9eU,
0x38d9e1e1U, 0x13ebf8f8U, 0xb32b9898U, 0x33221111U,
0xbbd26969U, 0x70a9d9d9U, 0x89078e8eU, 0xa7339494U,
0xb62d9b9bU, 0x223c1e1eU, 0x92158787U, 0x20c9e9e9U,
0x4987ceceU, 0xffaa5555U, 0x78502828U, 0x7aa5dfdfU,
0x8f038c8cU, 0xf859a1a1U, 0x80098989U, 0x171a0d0dU,
0xda65bfbfU, 0x31d7e6e6U, 0xc6844242U, 0xb8d06868U,
0xc3824141U, 0xb0299999U, 0x775a2d2dU, 0x111e0f0fU,
0xcb7bb0b0U, 0xfca85454U, 0xd66dbbbbU, 0x3a2c1616U,
},
{
0x63a5c663U, 0x7c84f87cU, 0x7799ee77U, 0x7b8df67bU,
0xf20dfff2U, 0x6bbdd66bU, 0x6fb1de6fU, 0xc55491c5U,
0x30506030U, 0x01030201U, 0x67a9ce67U, 0x2b7d562bU,
0xfe19e7feU, 0xd762b5d7U, 0xabe64dabU, 0x769aec76U,
0xca458fcaU, 0x829d1f82U, 0xc94089c9U, 0x7d87fa7dU,
0xfa15effaU, 0x59ebb259U, 0x47c98e47U, 0xf00bfbf0U,
0xadec41adU, 0xd467b3d4U, 0xa2fd5fa2U, 0xafea45afU,
0x9cbf239cU, 0xa4f753a4U, 0x7296e472U, 0xc05b9bc0U,
0xb7c275b7U, 0xfd1ce1fdU, 0x93ae3d93U, 0x266a4c26U,
0x365a6c36U, 0x3f417e3fU, 0xf702f5f7U, 0xcc4f83ccU,
0x345c6834U, 0xa5f451a5U, 0xe534d1e5U, 0xf108f9f1U,
0x7193e271U, 0xd873abd8U, 0x31536231U, 0x153f2a15U,
0x040c0804U, 0xc75295c7U, 0x23654623U, 0xc35e9dc3U,
0x18283018U, 0x96a13796U, 0x050f0a05U, 0x9ab52f9aU,
0x07090e07U, 0x12362412U, 0x809b1b80U, 0xe23ddfe2U,
0xeb26cdebU, 0x27694e27U, 0xb2cd7fb2U, 0x759fea75U,
0x091b1209U, 0x839e1d83U, 0x2c74582cU, 0x1a2e341aU,
0x1b2d361bU, 0x6eb2dc6eU, 0x5aeeb45aU, 0xa0fb5ba0U,
0x52f6a452U, 0x3b4d763bU, 0xd661b7d6U, 0xb3ce7db3U,
0x297b5229U, 0xe33edde3U, 0x2f715e2fU, 0x84971384U,
0x53f5a653U, 0xd168b9d1U, 0x00000000U, 0xed2cc1edU,
0x20604020U, 0xfc1fe3fcU, 0xb1c879b1U, 0x5bedb65bU,
0x6abed46aU, 0xcb468dcbU, 0xbed967beU, 0x394b7239U,
0x4ade944aU, 0x4cd4984cU, 0x58e8b058U, 0xcf4a85cfU,
0xd06bbbd0U, 0xef2ac5efU, 0xaae54faaU, 0xfb16edfbU,
0x43c58643U, 0x4dd79a4dU, 0x33556633U, 0x85941185U,
0x45cf8a45U, 0xf910e9f9U, 0x02060402U, 0x7f81fe7fU,
0x50f0a050U, 0x3c44783cU, 0x9fba259fU, 0xa8e34ba8U,
0x51f3a251U, 0xa3fe5da3U, 0x40c08040U, 0x8f8a058fU,
0x92ad3f92U, 0x9dbc219dU, 0x38487038U, 0xf504f1f5U,
0xbcdf63bcU, 0xb6c177b6U, 0xda75afdaU, 0x21634221U,
0x10302010U, 0xff1ae5ffU, 0xf30efdf3U, 0xd26dbfd2U,
0xcd4c81cdU, 0x0c14180cU, 0x13352613U, 0xec2fc3ecU,
0x5fe1be5fU, 0x97a23597U, 0x44cc8844U, 0x17392e17U,
0xc45793c4U, 0xa7f255a7U, 0x7e82fc7eU, 0x3d477a3dU,
0x64acc864U, 0x5de7ba5dU, 0x192b3219U, 0x7395e673U,
0x60a0c060U, 0x81981981U, 0x4fd19e4fU, 0xdc7fa3dcU,
0x22664422U, 0x2a7e542aU, 0x90ab3b90U, 0x88830b88U,
0x46ca8c46U, 0xee29c7eeU, 0xb8d36bb8U, 0x143c2814U,
0xde79a7deU, 0x5ee2bc5eU, 0x0b1d160bU, 0xdb76addbU,
0xe03bdbe0U, 0x32566432U, 0x3a4e743aU, 0x0a1e140aU,
0x49db9249U, 0x060a0c06U, 0x246c4824U, 0x5ce4b85cU,
0xc25d9fc2U, 0xd36ebdd3U, 0xacef43acU, 0x62a6c462U,
0x91a83991U, 0x95a43195U, 0xe437d3e4U, 0x798bf279U,
0xe732d5e7U, 0xc8438bc8U, 0x37596e37U, 0x6db7da6dU,
0x8d8c018dU, 0xd564b1d5U, 0x4ed29c4eU, 0xa9e049a9U,
0x6cb4d86cU, 0x56faac56U, 0xf407f3f4U, 0xea25cfeaU,
0x65afca65U, 0x7a8ef47aU, 0xaee947aeU, 0x08181008U,
0xbad56fbaU, 0x7888f078U, 0x256f4a25U, 0x2e725c2eU,
0x1c24381cU, 0xa6f157a6U, 0xb4c773b4U, 0xc65197c6U,
0xe823cbe8U, 0xdd7ca1ddU, 0x749ce874U, 0x1f213e1fU,
0x4bdd964bU, 0xbddc61bdU, 0x8b860d8bU, 0x8a850f8aU,
0x7090e070U, 0x3e427c3eU, 0xb5c471b5U, 0x66aacc66U,
0x48d89048U, 0x03050603U, 0xf601f7f6U, 0x0e121c0eU,
0x61a3c261U, 0x355f6a35U, 0x57f9ae57U, 0xb9d069b9U,
0x86911786U, 0xc15899c1U, 0x1d273a1dU, 0x9eb9279eU,
0xe138d9e1U, 0xf813ebf8U, 0x98b32b98U, 0x11332211U,
0x69bbd269U, 0xd970a9d9U, 0x8e89078eU, 0x94a73394U,
0x9bb62d9bU, 0x1e223c1eU, 0x87921587U, 0xe920c9e9U,
0xce4987ceU, 0x55ffaa55U, 0x28785028U, 0xdf7aa5dfU,
0x8c8f038cU, 0xa1f859a1U, 0x89800989U, 0x0d171a0dU,
0xbfda65bfU, 0xe631d7e6U, 0x42c68442U, 0x68b8d068U,
0x41c38241U, 0x99b02999U, 0x2d775a2dU, 0x0f111e0fU,
0xb0cb7bb0U, 0x54fca854U, 0xbbd66dbbU, 0x163a2c16U,
},
{
0x6363a5c6U, 0x7c7c84f8U, 0x777799eeU, 0x7b7b8df6U,
0xf2f20dffU, 0x6b6bbdd6U, 0x6f6fb1deU, 0xc5c55491U,
0x30305060U, 0x01010302U, 0x6767a9ceU, 0x2b2b7d56U,
0xfefe19e7U, 0xd7d762b5U, 0xababe64dU, 0x76769aecU,
0xcaca458fU, 0x82829d1fU, 0xc9c94089U, 0x7d7d87faU,
0xfafa15efU, 0x5959ebb2U, 0x4747c98eU, 0xf0f00bfbU,
0xadadec41U, 0xd4d467b3U, 0xa2a2fd5fU, 0xafafea45U,
0x9c9cbf23U, 0xa4a4f753U, 0x727296e4U, 0xc0c05b9bU,
0xb7b7c275U, 0xfdfd1ce1U, 0x9393ae3dU, 0x26266a4cU,
0x36365a6cU, 0x3f3f417eU, 0xf7f702f5U, 0xcccc4f83U,
0x34345c68U, 0xa5a5f451U, 0xe5e534d1U, 0xf1f108f9U,
0x717193e2U, 0xd8d873abU, 0x31315362U, 0x15153f2aU,
0x04040c08U, 0xc7c75295U, 0x23236546U, 0xc3c35e9dU,
0x18182830U, 0x9696a137U, 0x05050f0aU, 0x9a9ab52fU,
0x0707090eU, 0x12123624U, 0x80809b1bU, 0xe2e23ddfU,
0xebeb26cdU, 0x2727694eU, 0xb2b2cd7fU, 0x75759feaU,
0x09091b12U, 0x83839e1dU, 0x2c2c7458U, 0x1a1a2e34U,
0x1b1b2d36U, 0x6e6eb2dcU, 0x5a5aeeb4U, 0xa0a0fb5bU,
0x5252f6a4U, 0x3b3b4d76U, 0xd6d661b7U, 0xb3b3ce7dU,
0x29297b52U, 0xe3e33eddU, 0x2f2f715eU, 0x84849713U,
0x5353f5a6U, 0xd1d168b9U, 0x00000000U, 0xeded2cc1U,
0x20206040U, 0xfcfc1fe3U, 0xb1b1c879U, 0x5b5bedb6U,
0x6a6abed4U, 0xcbcb468dU, 0xbebed967U, 0x39394b72U,
0x4a4ade94U, 0x4c4cd498U, 0x5858e8b0U, 0xcfcf4a85U,
0xd0d06bbbU, 0xefef2ac5U, 0xaaaae54fU, 0xfbfb16edU,
0x4343c586U, 0x4d4dd79aU, 0x33335566U, 0x85859411U,
0x4545cf8aU, 0xf9f910e9U, 0x02020604U, 0x7f7f81feU,
0x5050f0a0U, 0x3c3c4478U, 0x9f9fba25U, 0xa8a8e34bU,
0x5151f3a2U, 0xa3a3fe5dU, 0x4040c080U, 0x8f8f8a05U,
0x9292ad3fU, 0x9d9dbc21U, 0x38384870U, 0xf5f504f1U,
0xbcbcdf63U, 0xb6b6c177U, 0xdada75afU, 0x21216342U,
0x10103020U, 0xffff1ae5U, 0xf3f30efdU, 0xd2d26dbfU,
0xcdcd4c81U, 0x0c0c1418U, 0x13133526U, 0xecec2fc3U,
0x5f5fe1beU, 0x9797a235U, 0x4444cc88U, 0x1717392eU,
0xc4c45793U, 0xa7a7f255U, 0x7e7e82fcU, 0x3d3d477aU,
0x6464acc8U, 0x5d5de7baU, 0x19192b32U, 0x737395e6U,
0x6060a0c0U, 0x81819819U, 0x4f4fd19eU, 0xdcdc7fa3U,
0x22226644U, 0x2a2a7e54U, 0x9090ab3bU, 0x8888830bU,
0x4646ca8cU, 0xeeee29c7U, 0xb8b8d36bU, 0x14143c28U,
0xdede79a7U, 0x5e5ee2bcU, 0x0b0b1d16U, 0xdbdb76adU,
0xe0e03bdbU, 0x32325664U, 0x3a3a4e74U, 0x0a0a1e14U,
0x4949db92U, 0x06060a0cU, 0x24246c48U, 0x5c5ce4b8U,
0xc2c25d9fU, 0xd3d36ebdU, 0xacacef43U, 0x6262a6c4U,
0x9191a839U, 0x9595a431U, 0xe4e437d3U, 0x79798bf2U,
0xe7e732d5U, 0xc8c8438bU, 0x3737596eU, 0x6d6db7daU,
0x8d8d8c01U, 0xd5d564b1U, 0x4e4ed29cU, 0xa9a9e049U,
0x6c6cb4d8U, 0x5656faacU, 0xf4f407f3U, 0xeaea25cfU,
0x6565afcaU, 0x7a7a8ef4U, 0xaeaee947U, 0x08081810U,
0xbabad56fU, 0x787888f0U, 0x25256f4aU, 0x2e2e725cU,
0x1c1c2438U, 0xa6a6f157U, 0xb4b4c773U, 0xc6c65197U,
0xe8e823cbU, 0xdddd7ca1U, 0x74749ce8U, 0x1f1f213eU,
0x4b4bdd96U, 0xbdbddc61U, 0x8b8b860dU, 0x8a8a850fU,
0x707090e0U, 0x3e3e427cU, 0xb5b5c471U, 0x6666aaccU,
0x4848d890U, 0x03030506U, 0xf6f601f7U, 0x0e0e121cU,
0x6161a3c2U, 0x35355f6aU, 0x5757f9aeU, 0xb9b9d069U,
0x86869117U, 0xc1c15899U, 0x1d1d273aU, 0x9e9eb927U,
0xe1e138d9U, 0xf8f813ebU, 0x9898b32bU, 0x11113322U,
0x6969bbd2U, 0xd9d970a9U, 0x8e8e8907U, 0x9494a733U,
0x9b9bb62dU, 0x1e1e223cU, 0x87879215U, 0xe9e920c9U,
0xcece4987U, 0x5555ffaaU, 0x28287850U, 0xdfdf7aa5U,
0x8c8c8f03U, 0xa1a1f859U, 0x89898009U, 0x0d0d171aU,
0xbfbfda65U, 0xe6e631d7U, 0x4242c684U, 0x6868b8d0U,
0x4141c382U, 0x9999b029U, 0x2d2d775aU, 0x0f0f111eU,
0xb0b0cb7bU, 0x5454fca8U, 0xbbbbd66dU, 0x16163a2cU,
}
};
#ifdef HAVE_AES_DECRYPT
static const word32 Td[4][256] = {
{
0x51f4a750U, 0x7e416553U, 0x1a17a4c3U, 0x3a275e96U,
0x3bab6bcbU, 0x1f9d45f1U, 0xacfa58abU, 0x4be30393U,
0x2030fa55U, 0xad766df6U, 0x88cc7691U, 0xf5024c25U,
0x4fe5d7fcU, 0xc52acbd7U, 0x26354480U, 0xb562a38fU,
0xdeb15a49U, 0x25ba1b67U, 0x45ea0e98U, 0x5dfec0e1U,
0xc32f7502U, 0x814cf012U, 0x8d4697a3U, 0x6bd3f9c6U,
0x038f5fe7U, 0x15929c95U, 0xbf6d7aebU, 0x955259daU,
0xd4be832dU, 0x587421d3U, 0x49e06929U, 0x8ec9c844U,
0x75c2896aU, 0xf48e7978U, 0x99583e6bU, 0x27b971ddU,
0xbee14fb6U, 0xf088ad17U, 0xc920ac66U, 0x7dce3ab4U,
0x63df4a18U, 0xe51a3182U, 0x97513360U, 0x62537f45U,
0xb16477e0U, 0xbb6bae84U, 0xfe81a01cU, 0xf9082b94U,
0x70486858U, 0x8f45fd19U, 0x94de6c87U, 0x527bf8b7U,
0xab73d323U, 0x724b02e2U, 0xe31f8f57U, 0x6655ab2aU,
0xb2eb2807U, 0x2fb5c203U, 0x86c57b9aU, 0xd33708a5U,
0x302887f2U, 0x23bfa5b2U, 0x02036abaU, 0xed16825cU,
0x8acf1c2bU, 0xa779b492U, 0xf307f2f0U, 0x4e69e2a1U,
0x65daf4cdU, 0x0605bed5U, 0xd134621fU, 0xc4a6fe8aU,
0x342e539dU, 0xa2f355a0U, 0x058ae132U, 0xa4f6eb75U,
0x0b83ec39U, 0x4060efaaU, 0x5e719f06U, 0xbd6e1051U,
0x3e218af9U, 0x96dd063dU, 0xdd3e05aeU, 0x4de6bd46U,
0x91548db5U, 0x71c45d05U, 0x0406d46fU, 0x605015ffU,
0x1998fb24U, 0xd6bde997U, 0x894043ccU, 0x67d99e77U,
0xb0e842bdU, 0x07898b88U, 0xe7195b38U, 0x79c8eedbU,
0xa17c0a47U, 0x7c420fe9U, 0xf8841ec9U, 0x00000000U,
0x09808683U, 0x322bed48U, 0x1e1170acU, 0x6c5a724eU,
0xfd0efffbU, 0x0f853856U, 0x3daed51eU, 0x362d3927U,
0x0a0fd964U, 0x685ca621U, 0x9b5b54d1U, 0x24362e3aU,
0x0c0a67b1U, 0x9357e70fU, 0xb4ee96d2U, 0x1b9b919eU,
0x80c0c54fU, 0x61dc20a2U, 0x5a774b69U, 0x1c121a16U,
0xe293ba0aU, 0xc0a02ae5U, 0x3c22e043U, 0x121b171dU,
0x0e090d0bU, 0xf28bc7adU, 0x2db6a8b9U, 0x141ea9c8U,
0x57f11985U, 0xaf75074cU, 0xee99ddbbU, 0xa37f60fdU,
0xf701269fU, 0x5c72f5bcU, 0x44663bc5U, 0x5bfb7e34U,
0x8b432976U, 0xcb23c6dcU, 0xb6edfc68U, 0xb8e4f163U,
0xd731dccaU, 0x42638510U, 0x13972240U, 0x84c61120U,
0x854a247dU, 0xd2bb3df8U, 0xaef93211U, 0xc729a16dU,
0x1d9e2f4bU, 0xdcb230f3U, 0x0d8652ecU, 0x77c1e3d0U,
0x2bb3166cU, 0xa970b999U, 0x119448faU, 0x47e96422U,
0xa8fc8cc4U, 0xa0f03f1aU, 0x567d2cd8U, 0x223390efU,
0x87494ec7U, 0xd938d1c1U, 0x8ccaa2feU, 0x98d40b36U,
0xa6f581cfU, 0xa57ade28U, 0xdab78e26U, 0x3fadbfa4U,
0x2c3a9de4U, 0x5078920dU, 0x6a5fcc9bU, 0x547e4662U,
0xf68d13c2U, 0x90d8b8e8U, 0x2e39f75eU, 0x82c3aff5U,
0x9f5d80beU, 0x69d0937cU, 0x6fd52da9U, 0xcf2512b3U,
0xc8ac993bU, 0x10187da7U, 0xe89c636eU, 0xdb3bbb7bU,
0xcd267809U, 0x6e5918f4U, 0xec9ab701U, 0x834f9aa8U,
0xe6956e65U, 0xaaffe67eU, 0x21bccf08U, 0xef15e8e6U,
0xbae79bd9U, 0x4a6f36ceU, 0xea9f09d4U, 0x29b07cd6U,
0x31a4b2afU, 0x2a3f2331U, 0xc6a59430U, 0x35a266c0U,
0x744ebc37U, 0xfc82caa6U, 0xe090d0b0U, 0x33a7d815U,
0xf104984aU, 0x41ecdaf7U, 0x7fcd500eU, 0x1791f62fU,
0x764dd68dU, 0x43efb04dU, 0xccaa4d54U, 0xe49604dfU,
0x9ed1b5e3U, 0x4c6a881bU, 0xc12c1fb8U, 0x4665517fU,
0x9d5eea04U, 0x018c355dU, 0xfa877473U, 0xfb0b412eU,
0xb3671d5aU, 0x92dbd252U, 0xe9105633U, 0x6dd64713U,
0x9ad7618cU, 0x37a10c7aU, 0x59f8148eU, 0xeb133c89U,
0xcea927eeU, 0xb761c935U, 0xe11ce5edU, 0x7a47b13cU,
0x9cd2df59U, 0x55f2733fU, 0x1814ce79U, 0x73c737bfU,
0x53f7cdeaU, 0x5ffdaa5bU, 0xdf3d6f14U, 0x7844db86U,
0xcaaff381U, 0xb968c43eU, 0x3824342cU, 0xc2a3405fU,
0x161dc372U, 0xbce2250cU, 0x283c498bU, 0xff0d9541U,
0x39a80171U, 0x080cb3deU, 0xd8b4e49cU, 0x6456c190U,
0x7bcb8461U, 0xd532b670U, 0x486c5c74U, 0xd0b85742U,
},
{
0x5051f4a7U, 0x537e4165U, 0xc31a17a4U, 0x963a275eU,
0xcb3bab6bU, 0xf11f9d45U, 0xabacfa58U, 0x934be303U,
0x552030faU, 0xf6ad766dU, 0x9188cc76U, 0x25f5024cU,
0xfc4fe5d7U, 0xd7c52acbU, 0x80263544U, 0x8fb562a3U,
0x49deb15aU, 0x6725ba1bU, 0x9845ea0eU, 0xe15dfec0U,
0x02c32f75U, 0x12814cf0U, 0xa38d4697U, 0xc66bd3f9U,
0xe7038f5fU, 0x9515929cU, 0xebbf6d7aU, 0xda955259U,
0x2dd4be83U, 0xd3587421U, 0x2949e069U, 0x448ec9c8U,
0x6a75c289U, 0x78f48e79U, 0x6b99583eU, 0xdd27b971U,
0xb6bee14fU, 0x17f088adU, 0x66c920acU, 0xb47dce3aU,
0x1863df4aU, 0x82e51a31U, 0x60975133U, 0x4562537fU,
0xe0b16477U, 0x84bb6baeU, 0x1cfe81a0U, 0x94f9082bU,
0x58704868U, 0x198f45fdU, 0x8794de6cU, 0xb7527bf8U,
0x23ab73d3U, 0xe2724b02U, 0x57e31f8fU, 0x2a6655abU,
0x07b2eb28U, 0x032fb5c2U, 0x9a86c57bU, 0xa5d33708U,
0xf2302887U, 0xb223bfa5U, 0xba02036aU, 0x5ced1682U,
0x2b8acf1cU, 0x92a779b4U, 0xf0f307f2U, 0xa14e69e2U,
0xcd65daf4U, 0xd50605beU, 0x1fd13462U, 0x8ac4a6feU,
0x9d342e53U, 0xa0a2f355U, 0x32058ae1U, 0x75a4f6ebU,
0x390b83ecU, 0xaa4060efU, 0x065e719fU, 0x51bd6e10U,
0xf93e218aU, 0x3d96dd06U, 0xaedd3e05U, 0x464de6bdU,
0xb591548dU, 0x0571c45dU, 0x6f0406d4U, 0xff605015U,
0x241998fbU, 0x97d6bde9U, 0xcc894043U, 0x7767d99eU,
0xbdb0e842U, 0x8807898bU, 0x38e7195bU, 0xdb79c8eeU,
0x47a17c0aU, 0xe97c420fU, 0xc9f8841eU, 0x00000000U,
0x83098086U, 0x48322bedU, 0xac1e1170U, 0x4e6c5a72U,
0xfbfd0effU, 0x560f8538U, 0x1e3daed5U, 0x27362d39U,
0x640a0fd9U, 0x21685ca6U, 0xd19b5b54U, 0x3a24362eU,
0xb10c0a67U, 0x0f9357e7U, 0xd2b4ee96U, 0x9e1b9b91U,
0x4f80c0c5U, 0xa261dc20U, 0x695a774bU, 0x161c121aU,
0x0ae293baU, 0xe5c0a02aU, 0x433c22e0U, 0x1d121b17U,
0x0b0e090dU, 0xadf28bc7U, 0xb92db6a8U, 0xc8141ea9U,
0x8557f119U, 0x4caf7507U, 0xbbee99ddU, 0xfda37f60U,
0x9ff70126U, 0xbc5c72f5U, 0xc544663bU, 0x345bfb7eU,
0x768b4329U, 0xdccb23c6U, 0x68b6edfcU, 0x63b8e4f1U,
0xcad731dcU, 0x10426385U, 0x40139722U, 0x2084c611U,
0x7d854a24U, 0xf8d2bb3dU, 0x11aef932U, 0x6dc729a1U,
0x4b1d9e2fU, 0xf3dcb230U, 0xec0d8652U, 0xd077c1e3U,
0x6c2bb316U, 0x99a970b9U, 0xfa119448U, 0x2247e964U,
0xc4a8fc8cU, 0x1aa0f03fU, 0xd8567d2cU, 0xef223390U,
0xc787494eU, 0xc1d938d1U, 0xfe8ccaa2U, 0x3698d40bU,
0xcfa6f581U, 0x28a57adeU, 0x26dab78eU, 0xa43fadbfU,
0xe42c3a9dU, 0x0d507892U, 0x9b6a5fccU, 0x62547e46U,
0xc2f68d13U, 0xe890d8b8U, 0x5e2e39f7U, 0xf582c3afU,
0xbe9f5d80U, 0x7c69d093U, 0xa96fd52dU, 0xb3cf2512U,
0x3bc8ac99U, 0xa710187dU, 0x6ee89c63U, 0x7bdb3bbbU,
0x09cd2678U, 0xf46e5918U, 0x01ec9ab7U, 0xa8834f9aU,
0x65e6956eU, 0x7eaaffe6U, 0x0821bccfU, 0xe6ef15e8U,
0xd9bae79bU, 0xce4a6f36U, 0xd4ea9f09U, 0xd629b07cU,
0xaf31a4b2U, 0x312a3f23U, 0x30c6a594U, 0xc035a266U,
0x37744ebcU, 0xa6fc82caU, 0xb0e090d0U, 0x1533a7d8U,
0x4af10498U, 0xf741ecdaU, 0x0e7fcd50U, 0x2f1791f6U,
0x8d764dd6U, 0x4d43efb0U, 0x54ccaa4dU, 0xdfe49604U,
0xe39ed1b5U, 0x1b4c6a88U, 0xb8c12c1fU, 0x7f466551U,
0x049d5eeaU, 0x5d018c35U, 0x73fa8774U, 0x2efb0b41U,
0x5ab3671dU, 0x5292dbd2U, 0x33e91056U, 0x136dd647U,
0x8c9ad761U, 0x7a37a10cU, 0x8e59f814U, 0x89eb133cU,
0xeecea927U, 0x35b761c9U, 0xede11ce5U, 0x3c7a47b1U,
0x599cd2dfU, 0x3f55f273U, 0x791814ceU, 0xbf73c737U,
0xea53f7cdU, 0x5b5ffdaaU, 0x14df3d6fU, 0x867844dbU,
0x81caaff3U, 0x3eb968c4U, 0x2c382434U, 0x5fc2a340U,
0x72161dc3U, 0x0cbce225U, 0x8b283c49U, 0x41ff0d95U,
0x7139a801U, 0xde080cb3U, 0x9cd8b4e4U, 0x906456c1U,
0x617bcb84U, 0x70d532b6U, 0x74486c5cU, 0x42d0b857U,
},
{
0xa75051f4U, 0x65537e41U, 0xa4c31a17U, 0x5e963a27U,
0x6bcb3babU, 0x45f11f9dU, 0x58abacfaU, 0x03934be3U,
0xfa552030U, 0x6df6ad76U, 0x769188ccU, 0x4c25f502U,
0xd7fc4fe5U, 0xcbd7c52aU, 0x44802635U, 0xa38fb562U,
0x5a49deb1U, 0x1b6725baU, 0x0e9845eaU, 0xc0e15dfeU,
0x7502c32fU, 0xf012814cU, 0x97a38d46U, 0xf9c66bd3U,
0x5fe7038fU, 0x9c951592U, 0x7aebbf6dU, 0x59da9552U,
0x832dd4beU, 0x21d35874U, 0x692949e0U, 0xc8448ec9U,
0x896a75c2U, 0x7978f48eU, 0x3e6b9958U, 0x71dd27b9U,
0x4fb6bee1U, 0xad17f088U, 0xac66c920U, 0x3ab47dceU,
0x4a1863dfU, 0x3182e51aU, 0x33609751U, 0x7f456253U,
0x77e0b164U, 0xae84bb6bU, 0xa01cfe81U, 0x2b94f908U,
0x68587048U, 0xfd198f45U, 0x6c8794deU, 0xf8b7527bU,
0xd323ab73U, 0x02e2724bU, 0x8f57e31fU, 0xab2a6655U,
0x2807b2ebU, 0xc2032fb5U, 0x7b9a86c5U, 0x08a5d337U,
0x87f23028U, 0xa5b223bfU, 0x6aba0203U, 0x825ced16U,
0x1c2b8acfU, 0xb492a779U, 0xf2f0f307U, 0xe2a14e69U,
0xf4cd65daU, 0xbed50605U, 0x621fd134U, 0xfe8ac4a6U,
0x539d342eU, 0x55a0a2f3U, 0xe132058aU, 0xeb75a4f6U,
0xec390b83U, 0xefaa4060U, 0x9f065e71U, 0x1051bd6eU,
0x8af93e21U, 0x063d96ddU, 0x05aedd3eU, 0xbd464de6U,
0x8db59154U, 0x5d0571c4U, 0xd46f0406U, 0x15ff6050U,
0xfb241998U, 0xe997d6bdU, 0x43cc8940U, 0x9e7767d9U,
0x42bdb0e8U, 0x8b880789U, 0x5b38e719U, 0xeedb79c8U,
0x0a47a17cU, 0x0fe97c42U, 0x1ec9f884U, 0x00000000U,
0x86830980U, 0xed48322bU, 0x70ac1e11U, 0x724e6c5aU,
0xfffbfd0eU, 0x38560f85U, 0xd51e3daeU, 0x3927362dU,
0xd9640a0fU, 0xa621685cU, 0x54d19b5bU, 0x2e3a2436U,
0x67b10c0aU, 0xe70f9357U, 0x96d2b4eeU, 0x919e1b9bU,
0xc54f80c0U, 0x20a261dcU, 0x4b695a77U, 0x1a161c12U,
0xba0ae293U, 0x2ae5c0a0U, 0xe0433c22U, 0x171d121bU,
0x0d0b0e09U, 0xc7adf28bU, 0xa8b92db6U, 0xa9c8141eU,
0x198557f1U, 0x074caf75U, 0xddbbee99U, 0x60fda37fU,
0x269ff701U, 0xf5bc5c72U, 0x3bc54466U, 0x7e345bfbU,
0x29768b43U, 0xc6dccb23U, 0xfc68b6edU, 0xf163b8e4U,
0xdccad731U, 0x85104263U, 0x22401397U, 0x112084c6U,
0x247d854aU, 0x3df8d2bbU, 0x3211aef9U, 0xa16dc729U,
0x2f4b1d9eU, 0x30f3dcb2U, 0x52ec0d86U, 0xe3d077c1U,
0x166c2bb3U, 0xb999a970U, 0x48fa1194U, 0x642247e9U,
0x8cc4a8fcU, 0x3f1aa0f0U, 0x2cd8567dU, 0x90ef2233U,
0x4ec78749U, 0xd1c1d938U, 0xa2fe8ccaU, 0x0b3698d4U,
0x81cfa6f5U, 0xde28a57aU, 0x8e26dab7U, 0xbfa43fadU,
0x9de42c3aU, 0x920d5078U, 0xcc9b6a5fU, 0x4662547eU,
0x13c2f68dU, 0xb8e890d8U, 0xf75e2e39U, 0xaff582c3U,
0x80be9f5dU, 0x937c69d0U, 0x2da96fd5U, 0x12b3cf25U,
0x993bc8acU, 0x7da71018U, 0x636ee89cU, 0xbb7bdb3bU,
0x7809cd26U, 0x18f46e59U, 0xb701ec9aU, 0x9aa8834fU,
0x6e65e695U, 0xe67eaaffU, 0xcf0821bcU, 0xe8e6ef15U,
0x9bd9bae7U, 0x36ce4a6fU, 0x09d4ea9fU, 0x7cd629b0U,
0xb2af31a4U, 0x23312a3fU, 0x9430c6a5U, 0x66c035a2U,
0xbc37744eU, 0xcaa6fc82U, 0xd0b0e090U, 0xd81533a7U,
0x984af104U, 0xdaf741ecU, 0x500e7fcdU, 0xf62f1791U,
0xd68d764dU, 0xb04d43efU, 0x4d54ccaaU, 0x04dfe496U,
0xb5e39ed1U, 0x881b4c6aU, 0x1fb8c12cU, 0x517f4665U,
0xea049d5eU, 0x355d018cU, 0x7473fa87U, 0x412efb0bU,
0x1d5ab367U, 0xd25292dbU, 0x5633e910U, 0x47136dd6U,
0x618c9ad7U, 0x0c7a37a1U, 0x148e59f8U, 0x3c89eb13U,
0x27eecea9U, 0xc935b761U, 0xe5ede11cU, 0xb13c7a47U,
0xdf599cd2U, 0x733f55f2U, 0xce791814U, 0x37bf73c7U,
0xcdea53f7U, 0xaa5b5ffdU, 0x6f14df3dU, 0xdb867844U,
0xf381caafU, 0xc43eb968U, 0x342c3824U, 0x405fc2a3U,
0xc372161dU, 0x250cbce2U, 0x498b283cU, 0x9541ff0dU,
0x017139a8U, 0xb3de080cU, 0xe49cd8b4U, 0xc1906456U,
0x84617bcbU, 0xb670d532U, 0x5c74486cU, 0x5742d0b8U,
},
{
0xf4a75051U, 0x4165537eU, 0x17a4c31aU, 0x275e963aU,
0xab6bcb3bU, 0x9d45f11fU, 0xfa58abacU, 0xe303934bU,
0x30fa5520U, 0x766df6adU, 0xcc769188U, 0x024c25f5U,
0xe5d7fc4fU, 0x2acbd7c5U, 0x35448026U, 0x62a38fb5U,
0xb15a49deU, 0xba1b6725U, 0xea0e9845U, 0xfec0e15dU,
0x2f7502c3U, 0x4cf01281U, 0x4697a38dU, 0xd3f9c66bU,
0x8f5fe703U, 0x929c9515U, 0x6d7aebbfU, 0x5259da95U,
0xbe832dd4U, 0x7421d358U, 0xe0692949U, 0xc9c8448eU,
0xc2896a75U, 0x8e7978f4U, 0x583e6b99U, 0xb971dd27U,
0xe14fb6beU, 0x88ad17f0U, 0x20ac66c9U, 0xce3ab47dU,
0xdf4a1863U, 0x1a3182e5U, 0x51336097U, 0x537f4562U,
0x6477e0b1U, 0x6bae84bbU, 0x81a01cfeU, 0x082b94f9U,
0x48685870U, 0x45fd198fU, 0xde6c8794U, 0x7bf8b752U,
0x73d323abU, 0x4b02e272U, 0x1f8f57e3U, 0x55ab2a66U,
0xeb2807b2U, 0xb5c2032fU, 0xc57b9a86U, 0x3708a5d3U,
0x2887f230U, 0xbfa5b223U, 0x036aba02U, 0x16825cedU,
0xcf1c2b8aU, 0x79b492a7U, 0x07f2f0f3U, 0x69e2a14eU,
0xdaf4cd65U, 0x05bed506U, 0x34621fd1U, 0xa6fe8ac4U,
0x2e539d34U, 0xf355a0a2U, 0x8ae13205U, 0xf6eb75a4U,
0x83ec390bU, 0x60efaa40U, 0x719f065eU, 0x6e1051bdU,
0x218af93eU, 0xdd063d96U, 0x3e05aeddU, 0xe6bd464dU,
0x548db591U, 0xc45d0571U, 0x06d46f04U, 0x5015ff60U,
0x98fb2419U, 0xbde997d6U, 0x4043cc89U, 0xd99e7767U,
0xe842bdb0U, 0x898b8807U, 0x195b38e7U, 0xc8eedb79U,
0x7c0a47a1U, 0x420fe97cU, 0x841ec9f8U, 0x00000000U,
0x80868309U, 0x2bed4832U, 0x1170ac1eU, 0x5a724e6cU,
0x0efffbfdU, 0x8538560fU, 0xaed51e3dU, 0x2d392736U,
0x0fd9640aU, 0x5ca62168U, 0x5b54d19bU, 0x362e3a24U,
0x0a67b10cU, 0x57e70f93U, 0xee96d2b4U, 0x9b919e1bU,
0xc0c54f80U, 0xdc20a261U, 0x774b695aU, 0x121a161cU,
0x93ba0ae2U, 0xa02ae5c0U, 0x22e0433cU, 0x1b171d12U,
0x090d0b0eU, 0x8bc7adf2U, 0xb6a8b92dU, 0x1ea9c814U,
0xf1198557U, 0x75074cafU, 0x99ddbbeeU, 0x7f60fda3U,
0x01269ff7U, 0x72f5bc5cU, 0x663bc544U, 0xfb7e345bU,
0x4329768bU, 0x23c6dccbU, 0xedfc68b6U, 0xe4f163b8U,
0x31dccad7U, 0x63851042U, 0x97224013U, 0xc6112084U,
0x4a247d85U, 0xbb3df8d2U, 0xf93211aeU, 0x29a16dc7U,
0x9e2f4b1dU, 0xb230f3dcU, 0x8652ec0dU, 0xc1e3d077U,
0xb3166c2bU, 0x70b999a9U, 0x9448fa11U, 0xe9642247U,
0xfc8cc4a8U, 0xf03f1aa0U, 0x7d2cd856U, 0x3390ef22U,
0x494ec787U, 0x38d1c1d9U, 0xcaa2fe8cU, 0xd40b3698U,
0xf581cfa6U, 0x7ade28a5U, 0xb78e26daU, 0xadbfa43fU,
0x3a9de42cU, 0x78920d50U, 0x5fcc9b6aU, 0x7e466254U,
0x8d13c2f6U, 0xd8b8e890U, 0x39f75e2eU, 0xc3aff582U,
0x5d80be9fU, 0xd0937c69U, 0xd52da96fU, 0x2512b3cfU,
0xac993bc8U, 0x187da710U, 0x9c636ee8U, 0x3bbb7bdbU,
0x267809cdU, 0x5918f46eU, 0x9ab701ecU, 0x4f9aa883U,
0x956e65e6U, 0xffe67eaaU, 0xbccf0821U, 0x15e8e6efU,
0xe79bd9baU, 0x6f36ce4aU, 0x9f09d4eaU, 0xb07cd629U,
0xa4b2af31U, 0x3f23312aU, 0xa59430c6U, 0xa266c035U,
0x4ebc3774U, 0x82caa6fcU, 0x90d0b0e0U, 0xa7d81533U,
0x04984af1U, 0xecdaf741U, 0xcd500e7fU, 0x91f62f17U,
0x4dd68d76U, 0xefb04d43U, 0xaa4d54ccU, 0x9604dfe4U,
0xd1b5e39eU, 0x6a881b4cU, 0x2c1fb8c1U, 0x65517f46U,
0x5eea049dU, 0x8c355d01U, 0x877473faU, 0x0b412efbU,
0x671d5ab3U, 0xdbd25292U, 0x105633e9U, 0xd647136dU,
0xd7618c9aU, 0xa10c7a37U, 0xf8148e59U, 0x133c89ebU,
0xa927eeceU, 0x61c935b7U, 0x1ce5ede1U, 0x47b13c7aU,
0xd2df599cU, 0xf2733f55U, 0x14ce7918U, 0xc737bf73U,
0xf7cdea53U, 0xfdaa5b5fU, 0x3d6f14dfU, 0x44db8678U,
0xaff381caU, 0x68c43eb9U, 0x24342c38U, 0xa3405fc2U,
0x1dc37216U, 0xe2250cbcU, 0x3c498b28U, 0x0d9541ffU,
0xa8017139U, 0x0cb3de08U, 0xb4e49cd8U, 0x56c19064U,
0xcb84617bU, 0x32b670d5U, 0x6c5c7448U, 0xb85742d0U,
}
};
static const byte Td4[256] =
{
0x52U, 0x09U, 0x6aU, 0xd5U, 0x30U, 0x36U, 0xa5U, 0x38U,
0xbfU, 0x40U, 0xa3U, 0x9eU, 0x81U, 0xf3U, 0xd7U, 0xfbU,
0x7cU, 0xe3U, 0x39U, 0x82U, 0x9bU, 0x2fU, 0xffU, 0x87U,
0x34U, 0x8eU, 0x43U, 0x44U, 0xc4U, 0xdeU, 0xe9U, 0xcbU,
0x54U, 0x7bU, 0x94U, 0x32U, 0xa6U, 0xc2U, 0x23U, 0x3dU,
0xeeU, 0x4cU, 0x95U, 0x0bU, 0x42U, 0xfaU, 0xc3U, 0x4eU,
0x08U, 0x2eU, 0xa1U, 0x66U, 0x28U, 0xd9U, 0x24U, 0xb2U,
0x76U, 0x5bU, 0xa2U, 0x49U, 0x6dU, 0x8bU, 0xd1U, 0x25U,
0x72U, 0xf8U, 0xf6U, 0x64U, 0x86U, 0x68U, 0x98U, 0x16U,
0xd4U, 0xa4U, 0x5cU, 0xccU, 0x5dU, 0x65U, 0xb6U, 0x92U,
0x6cU, 0x70U, 0x48U, 0x50U, 0xfdU, 0xedU, 0xb9U, 0xdaU,
0x5eU, 0x15U, 0x46U, 0x57U, 0xa7U, 0x8dU, 0x9dU, 0x84U,
0x90U, 0xd8U, 0xabU, 0x00U, 0x8cU, 0xbcU, 0xd3U, 0x0aU,
0xf7U, 0xe4U, 0x58U, 0x05U, 0xb8U, 0xb3U, 0x45U, 0x06U,
0xd0U, 0x2cU, 0x1eU, 0x8fU, 0xcaU, 0x3fU, 0x0fU, 0x02U,
0xc1U, 0xafU, 0xbdU, 0x03U, 0x01U, 0x13U, 0x8aU, 0x6bU,
0x3aU, 0x91U, 0x11U, 0x41U, 0x4fU, 0x67U, 0xdcU, 0xeaU,
0x97U, 0xf2U, 0xcfU, 0xceU, 0xf0U, 0xb4U, 0xe6U, 0x73U,
0x96U, 0xacU, 0x74U, 0x22U, 0xe7U, 0xadU, 0x35U, 0x85U,
0xe2U, 0xf9U, 0x37U, 0xe8U, 0x1cU, 0x75U, 0xdfU, 0x6eU,
0x47U, 0xf1U, 0x1aU, 0x71U, 0x1dU, 0x29U, 0xc5U, 0x89U,
0x6fU, 0xb7U, 0x62U, 0x0eU, 0xaaU, 0x18U, 0xbeU, 0x1bU,
0xfcU, 0x56U, 0x3eU, 0x4bU, 0xc6U, 0xd2U, 0x79U, 0x20U,
0x9aU, 0xdbU, 0xc0U, 0xfeU, 0x78U, 0xcdU, 0x5aU, 0xf4U,
0x1fU, 0xddU, 0xa8U, 0x33U, 0x88U, 0x07U, 0xc7U, 0x31U,
0xb1U, 0x12U, 0x10U, 0x59U, 0x27U, 0x80U, 0xecU, 0x5fU,
0x60U, 0x51U, 0x7fU, 0xa9U, 0x19U, 0xb5U, 0x4aU, 0x0dU,
0x2dU, 0xe5U, 0x7aU, 0x9fU, 0x93U, 0xc9U, 0x9cU, 0xefU,
0xa0U, 0xe0U, 0x3bU, 0x4dU, 0xaeU, 0x2aU, 0xf5U, 0xb0U,
0xc8U, 0xebU, 0xbbU, 0x3cU, 0x83U, 0x53U, 0x99U, 0x61U,
0x17U, 0x2bU, 0x04U, 0x7eU, 0xbaU, 0x77U, 0xd6U, 0x26U,
0xe1U, 0x69U, 0x14U, 0x63U, 0x55U, 0x21U, 0x0cU, 0x7dU,
};
#endif /* HAVE_AES_DECRYPT */
#define GETBYTE(x, y) (word32)((byte)((x) >> (8 * (y))))
#if defined(HAVE_AES_CBC) || defined(WOLFSSL_AES_DIRECT) || defined(HAVE_AESGCM)
#ifndef WC_CACHE_LINE_SZ
#if defined(__x86_64__) || defined(_M_X64) || \
(defined(__ILP32__) && (__ILP32__ >= 1))
#define WC_CACHE_LINE_SZ 64
#else
/* default cache line size */
#define WC_CACHE_LINE_SZ 32
#endif
#endif
/* load 4 Te Tables into cache by cache line stride */
static INLINE word32 PreFetchTe(void)
{
word32 x = 0;
int i,j;
for (i = 0; i < 4; i++) {
/* 256 elements, each one is 4 bytes */
for (j = 0; j < 256; j += WC_CACHE_LINE_SZ/4) {
x &= Te[i][j];
}
}
return x;
}
static void wc_AesEncrypt(Aes* aes, const byte* inBlock, byte* outBlock)
{
word32 s0, s1, s2, s3;
word32 t0, t1, t2, t3;
word32 r = aes->rounds >> 1;
const word32* rk = aes->key;
if (r > 7 || r == 0) {
WOLFSSL_MSG("AesEncrypt encountered improper key, set it up");
return; /* stop instead of segfaulting, set up your keys! */
}
#ifdef WOLFSSL_AESNI
if (haveAESNI && aes->use_aesni) {
#ifdef DEBUG_AESNI
printf("about to aes encrypt\n");
printf("in = %p\n", inBlock);
printf("out = %p\n", outBlock);
printf("aes->key = %p\n", aes->key);
printf("aes->rounds = %d\n", aes->rounds);
printf("sz = %d\n", AES_BLOCK_SIZE);
#endif
/* check alignment, decrypt doesn't need alignment */
if ((wolfssl_word)inBlock % AESNI_ALIGN) {
#ifndef NO_WOLFSSL_ALLOC_ALIGN
byte* tmp = (byte*)XMALLOC(AES_BLOCK_SIZE, aes->heap,
DYNAMIC_TYPE_TMP_BUFFER);
byte* tmp_align;
if (tmp == NULL) return;
tmp_align = tmp + (AESNI_ALIGN - ((size_t)tmp % AESNI_ALIGN));
XMEMCPY(tmp_align, inBlock, AES_BLOCK_SIZE);
AES_ECB_encrypt(tmp_align, tmp_align, AES_BLOCK_SIZE, (byte*)aes->key,
aes->rounds);
XMEMCPY(outBlock, tmp_align, AES_BLOCK_SIZE);
XFREE(tmp, aes->heap, DYNAMIC_TYPE_TMP_BUFFER);
return;
#else
WOLFSSL_MSG("AES-ECB encrypt with bad alignment");
return;
#endif
}
AES_ECB_encrypt(inBlock, outBlock, AES_BLOCK_SIZE, (byte*)aes->key,
aes->rounds);
return;
}
else {
#ifdef DEBUG_AESNI
printf("Skipping AES-NI\n");
#endif
}
#endif
/*
* map byte array block to cipher state
* and add initial round key:
*/
XMEMCPY(&s0, inBlock, sizeof(s0));
XMEMCPY(&s1, inBlock + sizeof(s0), sizeof(s1));
XMEMCPY(&s2, inBlock + 2 * sizeof(s0), sizeof(s2));
XMEMCPY(&s3, inBlock + 3 * sizeof(s0), sizeof(s3));
#ifdef LITTLE_ENDIAN_ORDER
s0 = ByteReverseWord32(s0);
s1 = ByteReverseWord32(s1);
s2 = ByteReverseWord32(s2);
s3 = ByteReverseWord32(s3);
#endif
s0 ^= rk[0];
s1 ^= rk[1];
s2 ^= rk[2];
s3 ^= rk[3];
s0 |= PreFetchTe();
/*
* Nr - 1 full rounds:
*/
for (;;) {
t0 =
Te[0][GETBYTE(s0, 3)] ^
Te[1][GETBYTE(s1, 2)] ^
Te[2][GETBYTE(s2, 1)] ^
Te[3][GETBYTE(s3, 0)] ^
rk[4];
t1 =
Te[0][GETBYTE(s1, 3)] ^
Te[1][GETBYTE(s2, 2)] ^
Te[2][GETBYTE(s3, 1)] ^
Te[3][GETBYTE(s0, 0)] ^
rk[5];
t2 =
Te[0][GETBYTE(s2, 3)] ^
Te[1][GETBYTE(s3, 2)] ^
Te[2][GETBYTE(s0, 1)] ^
Te[3][GETBYTE(s1, 0)] ^
rk[6];
t3 =
Te[0][GETBYTE(s3, 3)] ^
Te[1][GETBYTE(s0, 2)] ^
Te[2][GETBYTE(s1, 1)] ^
Te[3][GETBYTE(s2, 0)] ^
rk[7];
rk += 8;
if (--r == 0) {
break;
}
s0 =
Te[0][GETBYTE(t0, 3)] ^
Te[1][GETBYTE(t1, 2)] ^
Te[2][GETBYTE(t2, 1)] ^
Te[3][GETBYTE(t3, 0)] ^
rk[0];
s1 =
Te[0][GETBYTE(t1, 3)] ^
Te[1][GETBYTE(t2, 2)] ^
Te[2][GETBYTE(t3, 1)] ^
Te[3][GETBYTE(t0, 0)] ^
rk[1];
s2 =
Te[0][GETBYTE(t2, 3)] ^
Te[1][GETBYTE(t3, 2)] ^
Te[2][GETBYTE(t0, 1)] ^
Te[3][GETBYTE(t1, 0)] ^
rk[2];
s3 =
Te[0][GETBYTE(t3, 3)] ^
Te[1][GETBYTE(t0, 2)] ^
Te[2][GETBYTE(t1, 1)] ^
Te[3][GETBYTE(t2, 0)] ^
rk[3];
}
/*
* apply last round and
* map cipher state to byte array block:
*/
s0 =
(Te[2][GETBYTE(t0, 3)] & 0xff000000) ^
(Te[3][GETBYTE(t1, 2)] & 0x00ff0000) ^
(Te[0][GETBYTE(t2, 1)] & 0x0000ff00) ^
(Te[1][GETBYTE(t3, 0)] & 0x000000ff) ^
rk[0];
s1 =
(Te[2][GETBYTE(t1, 3)] & 0xff000000) ^
(Te[3][GETBYTE(t2, 2)] & 0x00ff0000) ^
(Te[0][GETBYTE(t3, 1)] & 0x0000ff00) ^
(Te[1][GETBYTE(t0, 0)] & 0x000000ff) ^
rk[1];
s2 =
(Te[2][GETBYTE(t2, 3)] & 0xff000000) ^
(Te[3][GETBYTE(t3, 2)] & 0x00ff0000) ^
(Te[0][GETBYTE(t0, 1)] & 0x0000ff00) ^
(Te[1][GETBYTE(t1, 0)] & 0x000000ff) ^
rk[2];
s3 =
(Te[2][GETBYTE(t3, 3)] & 0xff000000) ^
(Te[3][GETBYTE(t0, 2)] & 0x00ff0000) ^
(Te[0][GETBYTE(t1, 1)] & 0x0000ff00) ^
(Te[1][GETBYTE(t2, 0)] & 0x000000ff) ^
rk[3];
/* write out */
#ifdef LITTLE_ENDIAN_ORDER
s0 = ByteReverseWord32(s0);
s1 = ByteReverseWord32(s1);
s2 = ByteReverseWord32(s2);
s3 = ByteReverseWord32(s3);
#endif
XMEMCPY(outBlock, &s0, sizeof(s0));
XMEMCPY(outBlock + sizeof(s0), &s1, sizeof(s1));
XMEMCPY(outBlock + 2 * sizeof(s0), &s2, sizeof(s2));
XMEMCPY(outBlock + 3 * sizeof(s0), &s3, sizeof(s3));
}
#endif /* HAVE_AES_CBC || WOLFSSL_AES_DIRECT || HAVE_AESGCM */
#ifdef HAVE_AES_DECRYPT
#if defined(HAVE_AES_CBC) || defined(WOLFSSL_AES_DIRECT)
/* load 4 Td Tables into cache by cache line stride */
static INLINE word32 PreFetchTd(void)
{
word32 x = 0;
int i,j;
for (i = 0; i < 4; i++) {
/* 256 elements, each one is 4 bytes */
for (j = 0; j < 256; j += WC_CACHE_LINE_SZ/4) {
x &= Td[i][j];
}
}
return x;
}
/* load Td Table4 into cache by cache line stride */
static INLINE word32 PreFetchTd4(void)
{
word32 x = 0;
int i;
for (i = 0; i < 256; i += WC_CACHE_LINE_SZ) {
x &= (word32)Td4[i];
}
return x;
}
static void wc_AesDecrypt(Aes* aes, const byte* inBlock, byte* outBlock)
{
word32 s0, s1, s2, s3;
word32 t0, t1, t2, t3;
word32 r = aes->rounds >> 1;
const word32* rk = aes->key;
if (r > 7 || r == 0) {
WOLFSSL_MSG("AesDecrypt encountered improper key, set it up");
return; /* stop instead of segfaulting, set up your keys! */
}
#ifdef WOLFSSL_AESNI
if (haveAESNI && aes->use_aesni) {
#ifdef DEBUG_AESNI
printf("about to aes decrypt\n");
printf("in = %p\n", inBlock);
printf("out = %p\n", outBlock);
printf("aes->key = %p\n", aes->key);
printf("aes->rounds = %d\n", aes->rounds);
printf("sz = %d\n", AES_BLOCK_SIZE);
#endif
/* if input and output same will overwrite input iv */
XMEMCPY(aes->tmp, inBlock, AES_BLOCK_SIZE);
AES_ECB_decrypt(inBlock, outBlock, AES_BLOCK_SIZE, (byte*)aes->key,
aes->rounds);
return;
}
else {
#ifdef DEBUG_AESNI
printf("Skipping AES-NI\n");
#endif
}
#endif /* WOLFSSL_AESNI */
/*
* map byte array block to cipher state
* and add initial round key:
*/
XMEMCPY(&s0, inBlock, sizeof(s0));
XMEMCPY(&s1, inBlock + sizeof(s0), sizeof(s1));
XMEMCPY(&s2, inBlock + 2 * sizeof(s0), sizeof(s2));
XMEMCPY(&s3, inBlock + 3 * sizeof(s0), sizeof(s3));
#ifdef LITTLE_ENDIAN_ORDER
s0 = ByteReverseWord32(s0);
s1 = ByteReverseWord32(s1);
s2 = ByteReverseWord32(s2);
s3 = ByteReverseWord32(s3);
#endif
s0 ^= rk[0];
s1 ^= rk[1];
s2 ^= rk[2];
s3 ^= rk[3];
s0 |= PreFetchTd();
/*
* Nr - 1 full rounds:
*/
for (;;) {
t0 =
Td[0][GETBYTE(s0, 3)] ^
Td[1][GETBYTE(s3, 2)] ^
Td[2][GETBYTE(s2, 1)] ^
Td[3][GETBYTE(s1, 0)] ^
rk[4];
t1 =
Td[0][GETBYTE(s1, 3)] ^
Td[1][GETBYTE(s0, 2)] ^
Td[2][GETBYTE(s3, 1)] ^
Td[3][GETBYTE(s2, 0)] ^
rk[5];
t2 =
Td[0][GETBYTE(s2, 3)] ^
Td[1][GETBYTE(s1, 2)] ^
Td[2][GETBYTE(s0, 1)] ^
Td[3][GETBYTE(s3, 0)] ^
rk[6];
t3 =
Td[0][GETBYTE(s3, 3)] ^
Td[1][GETBYTE(s2, 2)] ^
Td[2][GETBYTE(s1, 1)] ^
Td[3][GETBYTE(s0, 0)] ^
rk[7];
rk += 8;
if (--r == 0) {
break;
}
s0 =
Td[0][GETBYTE(t0, 3)] ^
Td[1][GETBYTE(t3, 2)] ^
Td[2][GETBYTE(t2, 1)] ^
Td[3][GETBYTE(t1, 0)] ^
rk[0];
s1 =
Td[0][GETBYTE(t1, 3)] ^
Td[1][GETBYTE(t0, 2)] ^
Td[2][GETBYTE(t3, 1)] ^
Td[3][GETBYTE(t2, 0)] ^
rk[1];
s2 =
Td[0][GETBYTE(t2, 3)] ^
Td[1][GETBYTE(t1, 2)] ^
Td[2][GETBYTE(t0, 1)] ^
Td[3][GETBYTE(t3, 0)] ^
rk[2];
s3 =
Td[0][GETBYTE(t3, 3)] ^
Td[1][GETBYTE(t2, 2)] ^
Td[2][GETBYTE(t1, 1)] ^
Td[3][GETBYTE(t0, 0)] ^
rk[3];
}
/*
* apply last round and
* map cipher state to byte array block:
*/
t0 |= PreFetchTd4();
s0 =
((word32)Td4[GETBYTE(t0, 3)] << 24) ^
((word32)Td4[GETBYTE(t3, 2)] << 16) ^
((word32)Td4[GETBYTE(t2, 1)] << 8) ^
((word32)Td4[GETBYTE(t1, 0)]) ^
rk[0];
s1 =
((word32)Td4[GETBYTE(t1, 3)] << 24) ^
((word32)Td4[GETBYTE(t0, 2)] << 16) ^
((word32)Td4[GETBYTE(t3, 1)] << 8) ^
((word32)Td4[GETBYTE(t2, 0)]) ^
rk[1];
s2 =
((word32)Td4[GETBYTE(t2, 3)] << 24) ^
((word32)Td4[GETBYTE(t1, 2)] << 16) ^
((word32)Td4[GETBYTE(t0, 1)] << 8) ^
((word32)Td4[GETBYTE(t3, 0)]) ^
rk[2];
s3 =
((word32)Td4[GETBYTE(t3, 3)] << 24) ^
((word32)Td4[GETBYTE(t2, 2)] << 16) ^
((word32)Td4[GETBYTE(t1, 1)] << 8) ^
((word32)Td4[GETBYTE(t0, 0)]) ^
rk[3];
/* write out */
#ifdef LITTLE_ENDIAN_ORDER
s0 = ByteReverseWord32(s0);
s1 = ByteReverseWord32(s1);
s2 = ByteReverseWord32(s2);
s3 = ByteReverseWord32(s3);
#endif
XMEMCPY(outBlock, &s0, sizeof(s0));
XMEMCPY(outBlock + sizeof(s0), &s1, sizeof(s1));
XMEMCPY(outBlock + 2 * sizeof(s0), &s2, sizeof(s2));
XMEMCPY(outBlock + 3 * sizeof(s0), &s3, sizeof(s3));
}
#endif /* HAVE_AES_DECRYPT */
#endif /* HAVE_AES_CBC || WOLFSSL_AES_DIRECT */
#endif /* NEED_AES_TABLES */
/* wc_AesSetKey */
#if defined(STM32F2_CRYPTO) || defined(STM32F4_CRYPTO)
int wc_AesSetKey(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
word32 *rk = aes->key;
(void)dir;
if (!((keylen == 16) || (keylen == 24) || (keylen == 32)))
return BAD_FUNC_ARG;
aes->keylen = keylen;
aes->rounds = keylen/4 + 6;
XMEMCPY(rk, userKey, keylen);
#ifndef WOLFSSL_STM32_CUBEMX
ByteReverseWords(rk, rk, keylen);
#endif
return wc_AesSetIV(aes, iv);
}
#if defined(WOLFSSL_AES_DIRECT)
int wc_AesSetKeyDirect(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
return wc_AesSetKey(aes, userKey, keylen, iv, dir);
}
#endif
#elif defined(HAVE_COLDFIRE_SEC)
#if defined (HAVE_THREADX)
#include "memory_pools.h"
extern TX_BYTE_POOL mp_ncached; /* Non Cached memory pool */
#endif
#define AES_BUFFER_SIZE (AES_BLOCK_SIZE * 64)
static unsigned char *AESBuffIn = NULL;
static unsigned char *AESBuffOut = NULL;
static byte *secReg;
static byte *secKey;
static volatile SECdescriptorType *secDesc;
static wolfSSL_Mutex Mutex_AesSEC;
#define SEC_DESC_AES_CBC_ENCRYPT 0x60300010
#define SEC_DESC_AES_CBC_DECRYPT 0x60200010
extern volatile unsigned char __MBAR[];
int wc_AesSetKey(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
if (AESBuffIn == NULL) {
#if defined (HAVE_THREADX)
int s1, s2, s3, s4, s5;
s5 = tx_byte_allocate(&mp_ncached,(void *)&secDesc,
sizeof(SECdescriptorType), TX_NO_WAIT);
s1 = tx_byte_allocate(&mp_ncached, (void *)&AESBuffIn,
AES_BUFFER_SIZE, TX_NO_WAIT);
s2 = tx_byte_allocate(&mp_ncached, (void *)&AESBuffOut,
AES_BUFFER_SIZE, TX_NO_WAIT);
s3 = tx_byte_allocate(&mp_ncached, (void *)&secKey,
AES_BLOCK_SIZE*2, TX_NO_WAIT);
s4 = tx_byte_allocate(&mp_ncached, (void *)&secReg,
AES_BLOCK_SIZE, TX_NO_WAIT);
if (s1 || s2 || s3 || s4 || s5)
return BAD_FUNC_ARG;
#else
#warning "Allocate non-Cache buffers"
#endif
wc_InitMutex(&Mutex_AesSEC);
}
if (!((keylen == 16) || (keylen == 24) || (keylen == 32)))
return BAD_FUNC_ARG;
if (aes == NULL)
return BAD_FUNC_ARG;
aes->keylen = keylen;
aes->rounds = keylen/4 + 6;
XMEMCPY(aes->key, userKey, keylen);
if (iv)
XMEMCPY(aes->reg, iv, AES_BLOCK_SIZE);
return 0;
}
#elif defined(FREESCALE_LTC)
int wc_AesSetKey(Aes* aes, const byte* userKey, word32 keylen, const byte* iv,
int dir)
{
if (!((keylen == 16) || (keylen == 24) || (keylen == 32)))
return BAD_FUNC_ARG;
aes->rounds = keylen/4 + 6;
XMEMCPY(aes->key, userKey, keylen);
#ifdef WOLFSSL_AES_COUNTER
aes->left = 0;
#endif /* WOLFSSL_AES_COUNTER */
return wc_AesSetIV(aes, iv);
}
int wc_AesSetKeyDirect(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
return wc_AesSetKey(aes, userKey, keylen, iv, dir);
}
#elif defined(FREESCALE_MMCAU)
int wc_AesSetKey(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
int ret;
byte *rk = (byte*)aes->key;
(void)dir;
if (!((keylen == 16) || (keylen == 24) || (keylen == 32)))
return BAD_FUNC_ARG;
if (rk == NULL)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_AES_COUNTER
aes->left = 0;
#endif /* WOLFSSL_AES_COUNTER */
aes->keylen = keylen;
aes->rounds = keylen/4 + 6;
ret = wolfSSL_CryptHwMutexLock();
if(ret == 0) {
#ifdef FREESCALE_MMCAU_CLASSIC
cau_aes_set_key(userKey, keylen*8, rk);
#else
MMCAU_AES_SetKey(userKey, keylen, rk);
#endif
wolfSSL_CryptHwMutexUnLock();
ret = wc_AesSetIV(aes, iv);
}
return ret;
}
int wc_AesSetKeyDirect(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
return wc_AesSetKey(aes, userKey, keylen, iv, dir);
}
#elif defined(WOLFSSL_NRF51_AES)
int wc_AesSetKey(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
int ret;
(void)dir;
(void)iv;
if (keylen != 16)
return BAD_FUNC_ARG;
aes->keylen = keylen;
aes->rounds = keylen/4 + 6;
ret = nrf51_aes_set_key(userKey);
return ret;
}
int wc_AesSetKeyDirect(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
return wc_AesSetKey(aes, userKey, keylen, iv, dir);
}
#else
static int wc_AesSetKeyLocal(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
word32 temp, *rk = aes->key;
unsigned int i = 0;
#ifdef WOLFSSL_AESNI
aes->use_aesni = 0;
#endif /* WOLFSSL_AESNI */
#ifdef WOLFSSL_AES_COUNTER
aes->left = 0;
#endif /* WOLFSSL_AES_COUNTER */
aes->keylen = keylen;
aes->rounds = keylen/4 + 6;
XMEMCPY(rk, userKey, keylen);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords(rk, rk, keylen);
#endif
#ifdef WOLFSSL_PIC32MZ_CRYPT
{
word32 *akey1 = aes->key_ce;
word32 *areg = aes->iv_ce;
XMEMCPY(akey1, userKey, keylen);
if (iv)
XMEMCPY(areg, iv, AES_BLOCK_SIZE);
else
XMEMSET(areg, 0, AES_BLOCK_SIZE);
}
#endif
switch(keylen)
{
#if defined(AES_MAX_KEY_SIZE) && AES_MAX_KEY_SIZE >= 128
case 16:
while (1)
{
temp = rk[3];
rk[4] = rk[0] ^
(Te[2][GETBYTE(temp, 2)] & 0xff000000) ^
(Te[3][GETBYTE(temp, 1)] & 0x00ff0000) ^
(Te[0][GETBYTE(temp, 0)] & 0x0000ff00) ^
(Te[1][GETBYTE(temp, 3)] & 0x000000ff) ^
rcon[i];
rk[5] = rk[1] ^ rk[4];
rk[6] = rk[2] ^ rk[5];
rk[7] = rk[3] ^ rk[6];
if (++i == 10)
break;
rk += 4;
}
break;
#endif /* 128 */
#if defined(AES_MAX_KEY_SIZE) && AES_MAX_KEY_SIZE >= 192
case 24:
/* for (;;) here triggers a bug in VC60 SP4 w/ Pro Pack */
while (1)
{
temp = rk[ 5];
rk[ 6] = rk[ 0] ^
(Te[2][GETBYTE(temp, 2)] & 0xff000000) ^
(Te[3][GETBYTE(temp, 1)] & 0x00ff0000) ^
(Te[0][GETBYTE(temp, 0)] & 0x0000ff00) ^
(Te[1][GETBYTE(temp, 3)] & 0x000000ff) ^
rcon[i];
rk[ 7] = rk[ 1] ^ rk[ 6];
rk[ 8] = rk[ 2] ^ rk[ 7];
rk[ 9] = rk[ 3] ^ rk[ 8];
if (++i == 8)
break;
rk[10] = rk[ 4] ^ rk[ 9];
rk[11] = rk[ 5] ^ rk[10];
rk += 6;
}
break;
#endif /* 192 */
#if defined(AES_MAX_KEY_SIZE) && AES_MAX_KEY_SIZE >= 256
case 32:
while (1)
{
temp = rk[ 7];
rk[ 8] = rk[ 0] ^
(Te[2][GETBYTE(temp, 2)] & 0xff000000) ^
(Te[3][GETBYTE(temp, 1)] & 0x00ff0000) ^
(Te[0][GETBYTE(temp, 0)] & 0x0000ff00) ^
(Te[1][GETBYTE(temp, 3)] & 0x000000ff) ^
rcon[i];
rk[ 9] = rk[ 1] ^ rk[ 8];
rk[10] = rk[ 2] ^ rk[ 9];
rk[11] = rk[ 3] ^ rk[10];
if (++i == 7)
break;
temp = rk[11];
rk[12] = rk[ 4] ^
(Te[2][GETBYTE(temp, 3)] & 0xff000000) ^
(Te[3][GETBYTE(temp, 2)] & 0x00ff0000) ^
(Te[0][GETBYTE(temp, 1)] & 0x0000ff00) ^
(Te[1][GETBYTE(temp, 0)] & 0x000000ff);
rk[13] = rk[ 5] ^ rk[12];
rk[14] = rk[ 6] ^ rk[13];
rk[15] = rk[ 7] ^ rk[14];
rk += 8;
}
break;
#endif /* 256 */
default:
return BAD_FUNC_ARG;
}
#ifdef HAVE_AES_DECRYPT
if (dir == AES_DECRYPTION)
{
unsigned int j;
rk = aes->key;
/* invert the order of the round keys: */
for (i = 0, j = 4* aes->rounds; i < j; i += 4, j -= 4) {
temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp;
temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp;
temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp;
temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp;
}
/* apply the inverse MixColumn transform to all round keys but the
first and the last: */
for (i = 1; i < aes->rounds; i++) {
rk += 4;
rk[0] =
Td[0][Te[1][GETBYTE(rk[0], 3)] & 0xff] ^
Td[1][Te[1][GETBYTE(rk[0], 2)] & 0xff] ^
Td[2][Te[1][GETBYTE(rk[0], 1)] & 0xff] ^
Td[3][Te[1][GETBYTE(rk[0], 0)] & 0xff];
rk[1] =
Td[0][Te[1][GETBYTE(rk[1], 3)] & 0xff] ^
Td[1][Te[1][GETBYTE(rk[1], 2)] & 0xff] ^
Td[2][Te[1][GETBYTE(rk[1], 1)] & 0xff] ^
Td[3][Te[1][GETBYTE(rk[1], 0)] & 0xff];
rk[2] =
Td[0][Te[1][GETBYTE(rk[2], 3)] & 0xff] ^
Td[1][Te[1][GETBYTE(rk[2], 2)] & 0xff] ^
Td[2][Te[1][GETBYTE(rk[2], 1)] & 0xff] ^
Td[3][Te[1][GETBYTE(rk[2], 0)] & 0xff];
rk[3] =
Td[0][Te[1][GETBYTE(rk[3], 3)] & 0xff] ^
Td[1][Te[1][GETBYTE(rk[3], 2)] & 0xff] ^
Td[2][Te[1][GETBYTE(rk[3], 1)] & 0xff] ^
Td[3][Te[1][GETBYTE(rk[3], 0)] & 0xff];
}
}
#else
(void)dir;
#endif /* HAVE_AES_DECRYPT */
return wc_AesSetIV(aes, iv);
}
int wc_AesSetKey(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
#if defined(AES_MAX_KEY_SIZE)
const word32 max_key_len = (AES_MAX_KEY_SIZE / 8);
#endif
if (aes == NULL ||
!((keylen == 16) || (keylen == 24) || (keylen == 32))) {
return BAD_FUNC_ARG;
}
#if defined(AES_MAX_KEY_SIZE)
/* Check key length */
if (keylen > max_key_len) {
return BAD_FUNC_ARG;
}
#endif
aes->keylen = keylen;
aes->rounds = keylen/4 + 6;
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES)
if (aes->asyncDev.marker == WOLFSSL_ASYNC_MARKER_AES) {
XMEMCPY(aes->asyncKey, userKey, keylen);
XMEMCPY(aes->asyncIv, iv, AES_BLOCK_SIZE);
}
#endif /* WOLFSSL_ASYNC_CRYPT */
#ifdef WOLFSSL_AESNI
if (checkAESNI == 0) {
haveAESNI = Check_CPU_support_AES();
checkAESNI = 1;
}
if (haveAESNI) {
#ifdef WOLFSSL_AES_COUNTER
aes->left = 0;
#endif /* WOLFSSL_AES_COUNTER */
aes->use_aesni = 1;
if (iv)
XMEMCPY(aes->reg, iv, AES_BLOCK_SIZE);
if (dir == AES_ENCRYPTION)
return AES_set_encrypt_key(userKey, keylen * 8, aes);
#ifdef HAVE_AES_DECRYPT
else
return AES_set_decrypt_key(userKey, keylen * 8, aes);
#endif
}
#endif /* WOLFSSL_AESNI */
return wc_AesSetKeyLocal(aes, userKey, keylen, iv, dir);
}
#if defined(WOLFSSL_AES_DIRECT) || defined(WOLFSSL_AES_COUNTER)
/* AES-CTR and AES-DIRECT need to use this for key setup, no aesni yet */
int wc_AesSetKeyDirect(Aes* aes, const byte* userKey, word32 keylen,
const byte* iv, int dir)
{
return wc_AesSetKeyLocal(aes, userKey, keylen, iv, dir);
}
#endif /* WOLFSSL_AES_DIRECT || WOLFSSL_AES_COUNTER */
#endif /* wc_AesSetKey block */
/* wc_AesSetIV is shared between software and hardware */
int wc_AesSetIV(Aes* aes, const byte* iv)
{
if (aes == NULL)
return BAD_FUNC_ARG;
if (iv)
XMEMCPY(aes->reg, iv, AES_BLOCK_SIZE);
else
XMEMSET(aes->reg, 0, AES_BLOCK_SIZE);
return 0;
}
/* AES-DIRECT */
#if defined(WOLFSSL_AES_DIRECT)
#if defined(HAVE_COLDFIRE_SEC)
#error "Coldfire SEC doesn't yet support AES direct"
#elif defined(WOLFSSL_PIC32MZ_CRYPT)
#error "PIC32MZ doesn't yet support AES direct"
#elif defined(FREESCALE_LTC)
/* Allow direct access to one block encrypt */
void wc_AesEncryptDirect(Aes* aes, byte* out, const byte* in)
{
byte *key;
uint32_t keySize;
key = (byte*)aes->key;
wc_AesGetKeySize(aes, &keySize);
LTC_AES_EncryptEcb(LTC_BASE, in, out, AES_BLOCK_SIZE,
key, keySize);
}
/* Allow direct access to one block decrypt */
void wc_AesDecryptDirect(Aes* aes, byte* out, const byte* in)
{
byte *key;
uint32_t keySize;
key = (byte*)aes->key;
wc_AesGetKeySize(aes, &keySize);
LTC_AES_DecryptEcb(LTC_BASE, in, out, AES_BLOCK_SIZE,
key, keySize, kLTC_EncryptKey);
}
#else
/* Allow direct access to one block encrypt */
void wc_AesEncryptDirect(Aes* aes, byte* out, const byte* in)
{
wc_AesEncrypt(aes, in, out);
}
#ifdef HAVE_AES_DECRYPT
/* Allow direct access to one block decrypt */
void wc_AesDecryptDirect(Aes* aes, byte* out, const byte* in)
{
wc_AesDecrypt(aes, in, out);
}
#endif /* HAVE_AES_DECRYPT */
#endif /* AES direct block */
#endif /* WOLFSSL_AES_DIRECT */
/* AES-CBC */
#ifdef HAVE_AES_CBC
#if defined(STM32F2_CRYPTO) || defined(STM32F4_CRYPTO)
#ifdef WOLFSSL_STM32_CUBEMX
int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
int ret = 0;
word32 blocks = (sz / AES_BLOCK_SIZE);
CRYP_HandleTypeDef hcryp;
XMEMSET(&hcryp, 0, sizeof(CRYP_HandleTypeDef));
switch (aes->rounds) {
case 10: /* 128-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_128B;
break;
case 12: /* 192-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_192B;
break;
case 14: /* 256-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_256B;
break;
default:
break;
}
hcryp.Instance = CRYP;
hcryp.Init.DataType = CRYP_DATATYPE_8B;
hcryp.Init.pKey = (uint8_t*)aes->key;
hcryp.Init.pInitVect = (uint8_t*)aes->reg;
HAL_CRYP_Init(&hcryp);
while (blocks--) {
if (HAL_CRYP_AESCBC_Encrypt(&hcryp, (uint8_t*)in, AES_BLOCK_SIZE,
out, STM32_HAL_TIMEOUT) != HAL_OK) {
ret = WC_TIMEOUT_E;
break;
}
/* store iv for next call */
XMEMCPY(aes->reg, out + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
sz -= AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
HAL_CRYP_DeInit(&hcryp);
return ret;
}
#ifdef HAVE_AES_DECRYPT
int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
int ret = 0;
word32 blocks = (sz / AES_BLOCK_SIZE);
CRYP_HandleTypeDef hcryp;
XMEMSET(&hcryp, 0, sizeof(CRYP_HandleTypeDef));
switch (aes->rounds) {
case 10: /* 128-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_128B;
break;
case 12: /* 192-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_192B;
break;
case 14: /* 256-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_256B;
break;
default:
break;
}
hcryp.Instance = CRYP;
hcryp.Init.DataType = CRYP_DATATYPE_8B;
hcryp.Init.pKey = (uint8_t*)aes->key;
hcryp.Init.pInitVect = (uint8_t*)aes->reg;
HAL_CRYP_Init(&hcryp);
while (blocks--) {
if (HAL_CRYP_AESCBC_Decrypt(&hcryp, (uint8_t*)in, AES_BLOCK_SIZE,
out, STM32_HAL_TIMEOUT) != HAL_OK) {
ret = WC_TIMEOUT_E;
}
/* store iv for next call */
XMEMCPY(aes->reg, aes->tmp, AES_BLOCK_SIZE);
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
HAL_CRYP_DeInit(&hcryp);
return ret;
}
#endif /* HAVE_AES_DECRYPT */
#else
int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
word32 *enc_key, *iv;
word32 blocks = (sz / AES_BLOCK_SIZE);
CRYP_InitTypeDef AES_CRYP_InitStructure;
CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure;
CRYP_IVInitTypeDef AES_CRYP_IVInitStructure;
enc_key = aes->key;
iv = aes->reg;
/* crypto structure initialization */
CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure);
CRYP_StructInit(&AES_CRYP_InitStructure);
CRYP_IVStructInit(&AES_CRYP_IVInitStructure);
/* reset registers to their default values */
CRYP_DeInit();
/* load key into correct registers */
switch (aes->rounds) {
case 10: /* 128-bit key */
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b;
AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[0];
AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[1];
AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[2];
AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[3];
break;
case 12: /* 192-bit key */
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b;
AES_CRYP_KeyInitStructure.CRYP_Key1Left = enc_key[0];
AES_CRYP_KeyInitStructure.CRYP_Key1Right = enc_key[1];
AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[2];
AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[3];
AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[4];
AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[5];
break;
case 14: /* 256-bit key */
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b;
AES_CRYP_KeyInitStructure.CRYP_Key0Left = enc_key[0];
AES_CRYP_KeyInitStructure.CRYP_Key0Right = enc_key[1];
AES_CRYP_KeyInitStructure.CRYP_Key1Left = enc_key[2];
AES_CRYP_KeyInitStructure.CRYP_Key1Right = enc_key[3];
AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[4];
AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[5];
AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[6];
AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[7];
break;
default:
break;
}
CRYP_KeyInit(&AES_CRYP_KeyInitStructure);
/* set iv */
ByteReverseWords(iv, iv, AES_BLOCK_SIZE);
AES_CRYP_IVInitStructure.CRYP_IV0Left = iv[0];
AES_CRYP_IVInitStructure.CRYP_IV0Right = iv[1];
AES_CRYP_IVInitStructure.CRYP_IV1Left = iv[2];
AES_CRYP_IVInitStructure.CRYP_IV1Right = iv[3];
CRYP_IVInit(&AES_CRYP_IVInitStructure);
/* set direction, mode, and datatype */
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt;
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_CBC;
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b;
CRYP_Init(&AES_CRYP_InitStructure);
/* enable crypto processor */
CRYP_Cmd(ENABLE);
while (blocks--) {
/* flush IN/OUT FIFOs */
CRYP_FIFOFlush();
CRYP_DataIn(*(uint32_t*)&in[0]);
CRYP_DataIn(*(uint32_t*)&in[4]);
CRYP_DataIn(*(uint32_t*)&in[8]);
CRYP_DataIn(*(uint32_t*)&in[12]);
/* wait until the complete message has been processed */
while (CRYP_GetFlagStatus(CRYP_FLAG_BUSY) != RESET) {}
*(uint32_t*)&out[0] = CRYP_DataOut();
*(uint32_t*)&out[4] = CRYP_DataOut();
*(uint32_t*)&out[8] = CRYP_DataOut();
*(uint32_t*)&out[12] = CRYP_DataOut();
/* store iv for next call */
XMEMCPY(aes->reg, out + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
sz -= AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
/* disable crypto processor */
CRYP_Cmd(DISABLE);
return 0;
}
#ifdef HAVE_AES_DECRYPT
int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
word32 *dec_key, *iv;
word32 blocks = (sz / AES_BLOCK_SIZE);
CRYP_InitTypeDef AES_CRYP_InitStructure;
CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure;
CRYP_IVInitTypeDef AES_CRYP_IVInitStructure;
dec_key = aes->key;
iv = aes->reg;
/* crypto structure initialization */
CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure);
CRYP_StructInit(&AES_CRYP_InitStructure);
CRYP_IVStructInit(&AES_CRYP_IVInitStructure);
/* if input and output same will overwrite input iv */
XMEMCPY(aes->tmp, in + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
/* reset registers to their default values */
CRYP_DeInit();
/* load key into correct registers */
switch (aes->rounds) {
case 10: /* 128-bit key */
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b;
AES_CRYP_KeyInitStructure.CRYP_Key2Left = dec_key[0];
AES_CRYP_KeyInitStructure.CRYP_Key2Right = dec_key[1];
AES_CRYP_KeyInitStructure.CRYP_Key3Left = dec_key[2];
AES_CRYP_KeyInitStructure.CRYP_Key3Right = dec_key[3];
break;
case 12: /* 192-bit key */
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b;
AES_CRYP_KeyInitStructure.CRYP_Key1Left = dec_key[0];
AES_CRYP_KeyInitStructure.CRYP_Key1Right = dec_key[1];
AES_CRYP_KeyInitStructure.CRYP_Key2Left = dec_key[2];
AES_CRYP_KeyInitStructure.CRYP_Key2Right = dec_key[3];
AES_CRYP_KeyInitStructure.CRYP_Key3Left = dec_key[4];
AES_CRYP_KeyInitStructure.CRYP_Key3Right = dec_key[5];
break;
case 14: /* 256-bit key */
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b;
AES_CRYP_KeyInitStructure.CRYP_Key0Left = dec_key[0];
AES_CRYP_KeyInitStructure.CRYP_Key0Right = dec_key[1];
AES_CRYP_KeyInitStructure.CRYP_Key1Left = dec_key[2];
AES_CRYP_KeyInitStructure.CRYP_Key1Right = dec_key[3];
AES_CRYP_KeyInitStructure.CRYP_Key2Left = dec_key[4];
AES_CRYP_KeyInitStructure.CRYP_Key2Right = dec_key[5];
AES_CRYP_KeyInitStructure.CRYP_Key3Left = dec_key[6];
AES_CRYP_KeyInitStructure.CRYP_Key3Right = dec_key[7];
break;
default:
break;
}
/* set direction, mode, and datatype for key preparation */
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_Key;
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_32b;
CRYP_Init(&AES_CRYP_InitStructure);
CRYP_KeyInit(&AES_CRYP_KeyInitStructure);
/* enable crypto processor */
CRYP_Cmd(ENABLE);
/* wait until key has been prepared */
while (CRYP_GetFlagStatus(CRYP_FLAG_BUSY) != RESET) {}
/* set direction, mode, and datatype for decryption */
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_CBC;
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b;
CRYP_Init(&AES_CRYP_InitStructure);
/* set iv */
ByteReverseWords(iv, iv, AES_BLOCK_SIZE);
AES_CRYP_IVInitStructure.CRYP_IV0Left = iv[0];
AES_CRYP_IVInitStructure.CRYP_IV0Right = iv[1];
AES_CRYP_IVInitStructure.CRYP_IV1Left = iv[2];
AES_CRYP_IVInitStructure.CRYP_IV1Right = iv[3];
CRYP_IVInit(&AES_CRYP_IVInitStructure);
/* enable crypto processor */
CRYP_Cmd(ENABLE);
while (blocks--) {
/* flush IN/OUT FIFOs */
CRYP_FIFOFlush();
CRYP_DataIn(*(uint32_t*)&in[0]);
CRYP_DataIn(*(uint32_t*)&in[4]);
CRYP_DataIn(*(uint32_t*)&in[8]);
CRYP_DataIn(*(uint32_t*)&in[12]);
/* wait until the complete message has been processed */
while (CRYP_GetFlagStatus(CRYP_FLAG_BUSY) != RESET) {}
*(uint32_t*)&out[0] = CRYP_DataOut();
*(uint32_t*)&out[4] = CRYP_DataOut();
*(uint32_t*)&out[8] = CRYP_DataOut();
*(uint32_t*)&out[12] = CRYP_DataOut();
/* store iv for next call */
XMEMCPY(aes->reg, aes->tmp, AES_BLOCK_SIZE);
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
/* disable crypto processor */
CRYP_Cmd(DISABLE);
return 0;
}
#endif /* HAVE_AES_DECRYPT */
#endif /* WOLFSSL_STM32_CUBEMX */
#elif defined(HAVE_COLDFIRE_SEC)
static int wc_AesCbcCrypt(Aes* aes, byte* po, const byte* pi, word32 sz,
word32 descHeader)
{
#ifdef DEBUG_WOLFSSL
int i; int stat1, stat2; int ret;
#endif
int size;
volatile int v;
if ((pi == NULL) || (po == NULL))
return BAD_FUNC_ARG; /*wrong pointer*/
wc_LockMutex(&Mutex_AesSEC);
/* Set descriptor for SEC */
secDesc->length1 = 0x0;
secDesc->pointer1 = NULL;
secDesc->length2 = AES_BLOCK_SIZE;
secDesc->pointer2 = (byte *)secReg; /* Initial Vector */
switch(aes->rounds) {
case 10: secDesc->length3 = 16; break;
case 12: secDesc->length3 = 24; break;
case 14: secDesc->length3 = 32; break;
}
XMEMCPY(secKey, aes->key, secDesc->length3);
secDesc->pointer3 = (byte *)secKey;
secDesc->pointer4 = AESBuffIn;
secDesc->pointer5 = AESBuffOut;
secDesc->length6 = 0x0;
secDesc->pointer6 = NULL;
secDesc->length7 = 0x0;
secDesc->pointer7 = NULL;
secDesc->nextDescriptorPtr = NULL;
while (sz) {
secDesc->header = descHeader;
XMEMCPY(secReg, aes->reg, AES_BLOCK_SIZE);
if ((sz % AES_BUFFER_SIZE) == sz) {
size = sz;
sz = 0;
} else {
size = AES_BUFFER_SIZE;
sz -= AES_BUFFER_SIZE;
}
secDesc->length4 = size;
secDesc->length5 = size;
XMEMCPY(AESBuffIn, pi, size);
if(descHeader == SEC_DESC_AES_CBC_DECRYPT) {
XMEMCPY((void*)aes->tmp, (void*)&(pi[size-AES_BLOCK_SIZE]),
AES_BLOCK_SIZE);
}
/* Point SEC to the location of the descriptor */
MCF_SEC_FR0 = (uint32)secDesc;
/* Initialize SEC and wait for encryption to complete */
MCF_SEC_CCCR0 = 0x0000001a;
/* poll SISR to determine when channel is complete */
v=0;
while ((secDesc->header>> 24) != 0xff) v++;
#ifdef DEBUG_WOLFSSL
ret = MCF_SEC_SISRH;
stat1 = MCF_SEC_AESSR;
stat2 = MCF_SEC_AESISR;
if (ret & 0xe0000000) {
db_printf("Aes_Cbc(i=%d):ISRH=%08x, AESSR=%08x, "
"AESISR=%08x\n", i, ret, stat1, stat2);
}
#endif
XMEMCPY(po, AESBuffOut, size);
if (descHeader == SEC_DESC_AES_CBC_ENCRYPT) {
XMEMCPY((void*)aes->reg, (void*)&(po[size-AES_BLOCK_SIZE]),
AES_BLOCK_SIZE);
} else {
XMEMCPY((void*)aes->reg, (void*)aes->tmp, AES_BLOCK_SIZE);
}
pi += size;
po += size;
}
wc_UnLockMutex(&Mutex_AesSEC);
return 0;
}
int wc_AesCbcEncrypt(Aes* aes, byte* po, const byte* pi, word32 sz)
{
return (wc_AesCbcCrypt(aes, po, pi, sz, SEC_DESC_AES_CBC_ENCRYPT));
}
#ifdef HAVE_AES_DECRYPT
int wc_AesCbcDecrypt(Aes* aes, byte* po, const byte* pi, word32 sz)
{
return (wc_AesCbcCrypt(aes, po, pi, sz, SEC_DESC_AES_CBC_DECRYPT));
}
#endif /* HAVE_AES_DECRYPT */
#elif defined(FREESCALE_LTC)
int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
uint32_t keySize;
status_t status;
byte *iv, *enc_key;
word32 blocks = (sz / AES_BLOCK_SIZE);
iv = (byte*)aes->reg;
enc_key = (byte*)aes->key;
status = wc_AesGetKeySize(aes, &keySize);
if (status != 0) {
return status;
}
status = LTC_AES_EncryptCbc(LTC_BASE, in, out, blocks * AES_BLOCK_SIZE,
iv, enc_key, keySize);
return (status == kStatus_Success) ? 0 : -1;
}
#ifdef HAVE_AES_DECRYPT
int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
uint32_t keySize;
status_t status;
byte* iv, *dec_key;
word32 blocks = (sz / AES_BLOCK_SIZE);
iv = (byte*)aes->reg;
dec_key = (byte*)aes->key;
status = wc_AesGetKeySize(aes, &keySize);
if (status != 0) {
return status;
}
status = LTC_AES_DecryptCbc(LTC_BASE, in, out, blocks * AES_BLOCK_SIZE,
iv, dec_key, keySize, kLTC_EncryptKey);
return (status == kStatus_Success) ? 0 : -1;
}
#endif /* HAVE_AES_DECRYPT */
#elif defined(FREESCALE_MMCAU)
int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
int i;
int offset = 0;
word32 blocks = (sz / AES_BLOCK_SIZE);
byte *iv;
byte temp_block[AES_BLOCK_SIZE];
iv = (byte*)aes->reg;
while (blocks--) {
XMEMCPY(temp_block, in + offset, AES_BLOCK_SIZE);
/* XOR block with IV for CBC */
for (i = 0; i < AES_BLOCK_SIZE; i++)
temp_block[i] ^= iv[i];
wc_AesEncrypt(aes, temp_block, out + offset);
offset += AES_BLOCK_SIZE;
/* store IV for next block */
XMEMCPY(iv, out + offset - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
}
return 0;
}
#ifdef HAVE_AES_DECRYPT
int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
int i;
int offset = 0;
word32 blocks = (sz / AES_BLOCK_SIZE);
byte* iv;
byte temp_block[AES_BLOCK_SIZE];
iv = (byte*)aes->reg;
while (blocks--) {
XMEMCPY(temp_block, in + offset, AES_BLOCK_SIZE);
wc_AesDecrypt(aes, in + offset, out + offset);
/* XOR block with IV for CBC */
for (i = 0; i < AES_BLOCK_SIZE; i++)
(out + offset)[i] ^= iv[i];
/* store IV for next block */
XMEMCPY(iv, temp_block, AES_BLOCK_SIZE);
offset += AES_BLOCK_SIZE;
}
return 0;
}
#endif /* HAVE_AES_DECRYPT */
#elif defined(WOLFSSL_PIC32MZ_CRYPT)
/* core hardware crypt engine driver */
static void wc_AesCrypt(Aes *aes, byte* out, const byte* in, word32 sz,
int dir, int algo, int cryptoalgo)
{
securityAssociation *sa_p;
bufferDescriptor *bd_p;
volatile securityAssociation sa __attribute__((aligned (8)));
volatile bufferDescriptor bd __attribute__((aligned (8)));
volatile int k;
/* get uncached address */
sa_p = KVA0_TO_KVA1(&sa);
bd_p = KVA0_TO_KVA1(&bd);
/* Sync cache and physical memory */
if (PIC32MZ_IF_RAM(in)) {
XMEMCPY((void *)KVA0_TO_KVA1(in), (void *)in, sz);
}
XMEMSET((void *)KVA0_TO_KVA1(out), 0, sz);
/* Set up the Security Association */
XMEMSET((byte *)KVA0_TO_KVA1(&sa), 0, sizeof(sa));
sa_p->SA_CTRL.ALGO = algo; /* AES */
sa_p->SA_CTRL.LNC = 1;
sa_p->SA_CTRL.LOADIV = 1;
sa_p->SA_CTRL.FB = 1;
sa_p->SA_CTRL.ENCTYPE = dir; /* Encryption/Decryption */
sa_p->SA_CTRL.CRYPTOALGO = cryptoalgo;
if (cryptoalgo == PIC32_CRYPTOALGO_AES_GCM) {
switch(aes->keylen) {
case 32:
sa_p->SA_CTRL.KEYSIZE = PIC32_AES_KEYSIZE_256;
break;
case 24:
sa_p->SA_CTRL.KEYSIZE = PIC32_AES_KEYSIZE_192;
break;
case 16:
sa_p->SA_CTRL.KEYSIZE = PIC32_AES_KEYSIZE_128;
break;
}
} else
sa_p->SA_CTRL.KEYSIZE = PIC32_AES_KEYSIZE_128;
ByteReverseWords(
(word32 *)KVA0_TO_KVA1(sa.SA_ENCKEY + 8 - aes->keylen/sizeof(word32)),
(word32 *)aes->key_ce, aes->keylen);
ByteReverseWords(
(word32*)KVA0_TO_KVA1(sa.SA_ENCIV), (word32 *)aes->iv_ce, 16);
XMEMSET((byte *)KVA0_TO_KVA1(&bd), 0, sizeof(bd));
/* Set up the Buffer Descriptor */
bd_p->BD_CTRL.BUFLEN = sz;
if (cryptoalgo == PIC32_CRYPTOALGO_AES_GCM) {
if(sz % 0x10)
bd_p->BD_CTRL.BUFLEN = (sz/0x10 + 1) * 0x10;
}
bd_p->BD_CTRL.LIFM = 1;
bd_p->BD_CTRL.SA_FETCH_EN = 1;
bd_p->BD_CTRL.LAST_BD = 1;
bd_p->BD_CTRL.DESC_EN = 1;
bd_p->SA_ADDR = (unsigned int)KVA_TO_PA(&sa);
bd_p->SRCADDR = (unsigned int)KVA_TO_PA(in);
bd_p->DSTADDR = (unsigned int)KVA_TO_PA(out);
bd_p->MSGLEN = sz;
CECON = 1 << 6;
while (CECON);
/* Run the engine */
CEBDPADDR = (unsigned int)KVA_TO_PA(&bd);
CEINTEN = 0x07;
CECON = 0x27;
WAIT_ENGINE;
if((cryptoalgo == PIC32_CRYPTOALGO_CBC) ||
(cryptoalgo == PIC32_CRYPTOALGO_TCBC)||
(cryptoalgo == PIC32_CRYPTOALGO_RCBC)) {
/* set iv for the next call */
if (dir == PIC32_ENCRYPTION) {
XMEMCPY((void *)aes->iv_ce,
(void*)KVA0_TO_KVA1(out + sz - AES_BLOCK_SIZE),
AES_BLOCK_SIZE);
} else {
ByteReverseWords((word32*)aes->iv_ce,
(word32 *)KVA0_TO_KVA1(in + sz - AES_BLOCK_SIZE),
AES_BLOCK_SIZE);
}
}
XMEMCPY((byte *)out, (byte *)KVA0_TO_KVA1(out), sz);
ByteReverseWords((word32*)out, (word32 *)out, sz);
}
int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
wc_AesCrypt(aes, out, in, sz, PIC32_ENCRYPTION, PIC32_ALGO_AES,
PIC32_CRYPTOALGO_RCBC );
return 0;
}
#ifdef HAVE_AES_DECRYPT
int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
wc_AesCrypt(aes, out, in, sz, PIC32_DECRYPTION, PIC32_ALGO_AES,
PIC32_CRYPTOALGO_RCBC);
return 0;
}
#endif /* HAVE_AES_DECRYPT */
#else
int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
word32 blocks = (sz / AES_BLOCK_SIZE);
if (aes == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES)
/* if async and byte count above threshold */
if (aes->asyncDev.marker == WOLFSSL_ASYNC_MARKER_AES &&
sz >= WC_ASYNC_THRESH_AES_CBC) {
#if defined(HAVE_CAVIUM)
return NitroxAesCbcEncrypt(aes, out, in, sz);
#elif defined(HAVE_INTEL_QA)
return IntelQaSymAesCbcEncrypt(&aes->asyncDev, out, in, sz,
(const byte*)aes->asyncKey, aes->keylen,
(const byte*)aes->asyncIv, AES_BLOCK_SIZE);
#else /* WOLFSSL_ASYNC_CRYPT_TEST */
WC_ASYNC_TEST* testDev = &aes->asyncDev.test;
if (testDev->type == ASYNC_TEST_NONE) {
testDev->type = ASYNC_TEST_AES_CBC_ENCRYPT;
testDev->aes.aes = aes;
testDev->aes.out = out;
testDev->aes.in = in;
testDev->aes.sz = sz;
return WC_PENDING_E;
}
#endif
}
#endif /* WOLFSSL_ASYNC_CRYPT */
#ifdef WOLFSSL_AESNI
if (haveAESNI) {
#ifdef DEBUG_AESNI
printf("about to aes cbc encrypt\n");
printf("in = %p\n", in);
printf("out = %p\n", out);
printf("aes->key = %p\n", aes->key);
printf("aes->reg = %p\n", aes->reg);
printf("aes->rounds = %d\n", aes->rounds);
printf("sz = %d\n", sz);
#endif
/* check alignment, decrypt doesn't need alignment */
if ((wolfssl_word)in % AESNI_ALIGN) {
#ifndef NO_WOLFSSL_ALLOC_ALIGN
byte* tmp = (byte*)XMALLOC(sz + AESNI_ALIGN, aes->heap,
DYNAMIC_TYPE_TMP_BUFFER);
byte* tmp_align;
if (tmp == NULL) return MEMORY_E;
tmp_align = tmp + (AESNI_ALIGN - ((size_t)tmp % AESNI_ALIGN));
XMEMCPY(tmp_align, in, sz);
AES_CBC_encrypt(tmp_align, tmp_align, (byte*)aes->reg, sz, (byte*)aes->key,
aes->rounds);
/* store iv for next call */
XMEMCPY(aes->reg, tmp_align + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
XMEMCPY(out, tmp_align, sz);
XFREE(tmp, aes->heap, DYNAMIC_TYPE_TMP_BUFFER);
return 0;
#else
WOLFSSL_MSG("AES-CBC encrypt with bad alignment");
return BAD_ALIGN_E;
#endif
}
AES_CBC_encrypt(in, out, (byte*)aes->reg, sz, (byte*)aes->key,
aes->rounds);
/* store iv for next call */
XMEMCPY(aes->reg, out + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
return 0;
}
#endif
while (blocks--) {
xorbuf((byte*)aes->reg, in, AES_BLOCK_SIZE);
wc_AesEncrypt(aes, (byte*)aes->reg, (byte*)aes->reg);
XMEMCPY(out, aes->reg, AES_BLOCK_SIZE);
out += AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
}
return 0;
}
#ifdef HAVE_AES_DECRYPT
int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
word32 blocks;
if (aes == NULL || out == NULL || in == NULL
|| sz % AES_BLOCK_SIZE != 0) {
return BAD_FUNC_ARG;
}
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES)
/* if async and byte count above threshold */
if (aes->asyncDev.marker == WOLFSSL_ASYNC_MARKER_AES &&
sz >= WC_ASYNC_THRESH_AES_CBC) {
#if defined(HAVE_CAVIUM)
return NitroxAesCbcDecrypt(aes, out, in, sz);
#elif defined(HAVE_INTEL_QA)
return IntelQaSymAesCbcDecrypt(&aes->asyncDev, out, in, sz,
(const byte*)aes->asyncKey, aes->keylen,
(const byte*)aes->asyncIv, AES_BLOCK_SIZE);
#else /* WOLFSSL_ASYNC_CRYPT_TEST */
WC_ASYNC_TEST* testDev = &aes->asyncDev.test;
if (testDev->type == ASYNC_TEST_NONE) {
testDev->type = ASYNC_TEST_AES_CBC_DECRYPT;
testDev->aes.aes = aes;
testDev->aes.out = out;
testDev->aes.in = in;
testDev->aes.sz = sz;
return WC_PENDING_E;
}
#endif
}
#endif
#ifdef WOLFSSL_AESNI
if (haveAESNI) {
#ifdef DEBUG_AESNI
printf("about to aes cbc decrypt\n");
printf("in = %p\n", in);
printf("out = %p\n", out);
printf("aes->key = %p\n", aes->key);
printf("aes->reg = %p\n", aes->reg);
printf("aes->rounds = %d\n", aes->rounds);
printf("sz = %d\n", sz);
#endif
/* if input and output same will overwrite input iv */
XMEMCPY(aes->tmp, in + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
#if defined(WOLFSSL_AESNI_BY4)
AES_CBC_decrypt_by4(in, out, (byte*)aes->reg, sz, (byte*)aes->key,
aes->rounds);
#elif defined(WOLFSSL_AESNI_BY6)
AES_CBC_decrypt_by6(in, out, (byte*)aes->reg, sz, (byte*)aes->key,
aes->rounds);
#else /* WOLFSSL_AESNI_BYx */
AES_CBC_decrypt_by8(in, out, (byte*)aes->reg, sz, (byte*)aes->key,
aes->rounds);
#endif /* WOLFSSL_AESNI_BYx */
/* store iv for next call */
XMEMCPY(aes->reg, aes->tmp, AES_BLOCK_SIZE);
return 0;
}
#endif
blocks = sz / AES_BLOCK_SIZE;
while (blocks--) {
XMEMCPY(aes->tmp, in, AES_BLOCK_SIZE);
wc_AesDecrypt(aes, (byte*)aes->tmp, out);
xorbuf(out, (byte*)aes->reg, AES_BLOCK_SIZE);
XMEMCPY(aes->reg, aes->tmp, AES_BLOCK_SIZE);
out += AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
}
return 0;
}
#endif
#endif /* AES-CBC block */
#endif /* HAVE_AES_CBC */
#ifdef HAVE_AES_ECB
int wc_AesEcbEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
if ((in == NULL) || (out == NULL) || (aes == NULL))
return BAD_FUNC_ARG;
while (sz>0) {
wc_AesEncryptDirect(aes, out, in);
out += AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
sz -= AES_BLOCK_SIZE;
}
return 0;
}
int wc_AesEcbDecrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
if ((in == NULL) || (out == NULL) || (aes == NULL))
return BAD_FUNC_ARG;
while (sz>0) {
wc_AesDecryptDirect(aes, out, in);
out += AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
sz -= AES_BLOCK_SIZE;
}
return 0;
}
#endif
/* AES-CTR */
#if defined(WOLFSSL_AES_COUNTER) || (defined(HAVE_AESGCM_DECRYPT) && defined(STM32F4_CRYPTO))
#if defined(STM32F2_CRYPTO) || defined(STM32F4_CRYPTO)
#ifdef WOLFSSL_STM32_CUBEMX
int wc_AesCtrEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
if (aes == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
CRYP_HandleTypeDef hcryp;
XMEMSET(&hcryp, 0, sizeof(CRYP_HandleTypeDef));
switch (aes->rounds) {
case 10: /* 128-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_128B;
break;
case 12: /* 192-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_192B;
break;
case 14: /* 256-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_256B;
break;
default:
break;
}
hcryp.Instance = CRYP;
hcryp.Init.DataType = CRYP_DATATYPE_8B;
hcryp.Init.pKey = (byte*)aes->key;
hcryp.Init.pInitVect = (byte*)aes->reg;
HAL_CRYP_Init(&hcryp);
if (HAL_CRYP_AESCTR_Encrypt(&hcryp, (byte*)in, sz, out,
STM32_HAL_TIMEOUT) != HAL_OK) {
/* failed */
}
HAL_CRYP_DeInit(&hcryp);
return 0;
}
#else
int wc_AesCtrEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
if (aes == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
word32 *enc_key, *iv;
int len = (int)sz;
CRYP_InitTypeDef AES_CRYP_InitStructure;
CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure;
CRYP_IVInitTypeDef AES_CRYP_IVInitStructure;
enc_key = aes->key;
iv = aes->reg;
/* crypto structure initialization */
CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure);
CRYP_StructInit(&AES_CRYP_InitStructure);
CRYP_IVStructInit(&AES_CRYP_IVInitStructure);
/* reset registers to their default values */
CRYP_DeInit();
/* load key into correct registers */
switch (aes->rounds) {
case 10: /* 128-bit key */
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b;
AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[0];
AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[1];
AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[2];
AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[3];
break;
case 12: /* 192-bit key */
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b;
AES_CRYP_KeyInitStructure.CRYP_Key1Left = enc_key[0];
AES_CRYP_KeyInitStructure.CRYP_Key1Right = enc_key[1];
AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[2];
AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[3];
AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[4];
AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[5];
break;
case 14: /* 256-bit key */
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b;
AES_CRYP_KeyInitStructure.CRYP_Key0Left = enc_key[0];
AES_CRYP_KeyInitStructure.CRYP_Key0Right = enc_key[1];
AES_CRYP_KeyInitStructure.CRYP_Key1Left = enc_key[2];
AES_CRYP_KeyInitStructure.CRYP_Key1Right = enc_key[3];
AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[4];
AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[5];
AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[6];
AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[7];
break;
default:
break;
}
CRYP_KeyInit(&AES_CRYP_KeyInitStructure);
/* set iv */
ByteReverseWords(iv, iv, AES_BLOCK_SIZE);
AES_CRYP_IVInitStructure.CRYP_IV0Left = iv[0];
AES_CRYP_IVInitStructure.CRYP_IV0Right = iv[1];
AES_CRYP_IVInitStructure.CRYP_IV1Left = iv[2];
AES_CRYP_IVInitStructure.CRYP_IV1Right = iv[3];
CRYP_IVInit(&AES_CRYP_IVInitStructure);
/* set direction, mode, and datatype */
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt;
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_CTR;
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b;
CRYP_Init(&AES_CRYP_InitStructure);
/* enable crypto processor */
CRYP_Cmd(ENABLE);
while (len > 0) {
/* flush IN/OUT FIFOs */
CRYP_FIFOFlush();
CRYP_DataIn(*(uint32_t*)&in[0]);
CRYP_DataIn(*(uint32_t*)&in[4]);
CRYP_DataIn(*(uint32_t*)&in[8]);
CRYP_DataIn(*(uint32_t*)&in[12]);
/* wait until the complete message has been processed */
while (CRYP_GetFlagStatus(CRYP_FLAG_BUSY) != RESET) {}
*(uint32_t*)&out[0] = CRYP_DataOut();
*(uint32_t*)&out[4] = CRYP_DataOut();
*(uint32_t*)&out[8] = CRYP_DataOut();
*(uint32_t*)&out[12] = CRYP_DataOut();
/* store iv for next call */
XMEMCPY(aes->reg, out + len - AES_BLOCK_SIZE, AES_BLOCK_SIZE);
len -= AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
/* disable crypto processor */
CRYP_Cmd(DISABLE);
}
#endif /* WOLFSSL_STM32_CUBEMX */
#elif defined(WOLFSSL_PIC32MZ_CRYPT)
int wc_AesCtrEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
if (aes == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
int i;
char out_block[AES_BLOCK_SIZE];
int odd;
int even;
char *tmp; /* (char *)aes->tmp, for short */
tmp = (char *)aes->tmp;
if(aes->left) {
if((aes->left + sz) >= AES_BLOCK_SIZE){
odd = AES_BLOCK_SIZE - aes->left;
} else {
odd = sz;
}
XMEMCPY(tmp+aes->left, in, odd);
if((odd+aes->left) == AES_BLOCK_SIZE){
wc_AesCrypt(aes, out_block, tmp, AES_BLOCK_SIZE,
PIC32_ENCRYPTION, PIC32_ALGO_AES, PIC32_CRYPTOALGO_RCTR);
XMEMCPY(out, out_block+aes->left, odd);
aes->left = 0;
XMEMSET(tmp, 0x0, AES_BLOCK_SIZE);
/* Increment IV */
for (i = AES_BLOCK_SIZE - 1; i >= 0; i--) {
if (++((byte *)aes->iv_ce)[i])
break;
}
}
in += odd;
out+= odd;
sz -= odd;
}
odd = sz % AES_BLOCK_SIZE; /* if there is tail fragment */
if(sz / AES_BLOCK_SIZE) {
even = (sz/AES_BLOCK_SIZE)*AES_BLOCK_SIZE;
wc_AesCrypt(aes, out, in, even, PIC32_ENCRYPTION, PIC32_ALGO_AES,
PIC32_CRYPTOALGO_RCTR);
out += even;
in += even;
do { /* Increment IV */
for (i = AES_BLOCK_SIZE - 1; i >= 0; i--) {
if (++((byte *)aes->iv_ce)[i])
break;
}
even -= AES_BLOCK_SIZE;
} while((int)even > 0);
}
if(odd) {
XMEMSET(tmp+aes->left, 0x0, AES_BLOCK_SIZE - aes->left);
XMEMCPY(tmp+aes->left, in, odd);
wc_AesCrypt(aes, out_block, tmp, AES_BLOCK_SIZE,
PIC32_ENCRYPTION, PIC32_ALGO_AES, PIC32_CRYPTOALGO_RCTR);
XMEMCPY(out, out_block+aes->left,odd);
aes->left += odd;
}
return 0;
}
#elif defined(HAVE_COLDFIRE_SEC)
#error "Coldfire SEC doesn't currently support AES-CTR mode"
#elif defined(FREESCALE_LTC)
int wc_AesCtrEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
if (aes == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
uint32_t keySize;
byte *iv, *enc_key;
byte* tmp = (byte*)aes->tmp + AES_BLOCK_SIZE - aes->left;
/* consume any unused bytes left in aes->tmp */
while (aes->left && sz) {
*(out++) = *(in++) ^ *(tmp++);
aes->left--;
sz--;
}
if (sz) {
iv = (byte*)aes->reg;
enc_key = (byte*)aes->key;
wc_AesGetKeySize(aes, &keySize);
LTC_AES_CryptCtr(LTC_BASE, in, out, sz,
iv, enc_key, keySize, (byte*)aes->tmp,
(uint32_t*)&(aes->left));
}
return 0;
}
#else
/* Increment AES counter */
static INLINE void IncrementAesCounter(byte* inOutCtr)
{
int i;
/* in network byte order so start at end and work back */
for (i = AES_BLOCK_SIZE - 1; i >= 0; i--) {
if (++inOutCtr[i]) /* we're done unless we overflow */
return;
}
}
int wc_AesCtrEncrypt(Aes* aes, byte* out, const byte* in, word32 sz)
{
if (aes == NULL || out == NULL || in == NULL) {
return BAD_FUNC_ARG;
}
byte* tmp = (byte*)aes->tmp + AES_BLOCK_SIZE - aes->left;
/* consume any unused bytes left in aes->tmp */
while (aes->left && sz) {
*(out++) = *(in++) ^ *(tmp++);
aes->left--;
sz--;
}
/* do as many block size ops as possible */
while (sz >= AES_BLOCK_SIZE) {
wc_AesEncrypt(aes, (byte*)aes->reg, out);
IncrementAesCounter((byte*)aes->reg);
xorbuf(out, in, AES_BLOCK_SIZE);
out += AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
sz -= AES_BLOCK_SIZE;
aes->left = 0;
}
/* handle non block size remaining and store unused byte count in left */
if (sz) {
wc_AesEncrypt(aes, (byte*)aes->reg, (byte*)aes->tmp);
IncrementAesCounter((byte*)aes->reg);
aes->left = AES_BLOCK_SIZE;
tmp = (byte*)aes->tmp;
while (sz--) {
*(out++) = *(in++) ^ *(tmp++);
aes->left--;
}
}
return 0;
}
#endif /* AES-CTR block */
#endif /* WOLFSSL_AES_COUNTER */
#ifdef HAVE_AESGCM
/*
* The IV for AES GCM, stored in struct Aes's member reg, is comprised of
* three parts in order:
* 1. The implicit IV. This is generated from the PRF using the shared
* secrets between endpoints. It is 4 bytes long.
* 2. The explicit IV. This is set by the user of the AES. It needs to be
* unique for each call to encrypt. The explicit IV is shared with the
* other end of the transaction in the clear.
* 3. The counter. Each block of data is encrypted with its own sequence
* number counter.
*/
#if defined(HAVE_COLDFIRE_SEC)
#error "Coldfire SEC doesn't currently support AES-GCM mode"
#elif defined(WOLFSSL_NRF51_AES)
#error "nRF51 doesn't currently support AES-GCM mode"
#endif
enum {
NONCE_SZ = 12,
CTR_SZ = 4
};
#if !defined(FREESCALE_LTC_AES_GCM)
static INLINE void IncrementGcmCounter(byte* inOutCtr)
{
int i;
/* in network byte order so start at end and work back */
for (i = AES_BLOCK_SIZE - 1; i >= AES_BLOCK_SIZE - CTR_SZ; i--) {
if (++inOutCtr[i]) /* we're done unless we overflow */
return;
}
}
#endif /* !FREESCALE_LTC_AES_GCM */
#if defined(GCM_SMALL) || defined(GCM_TABLE)
static INLINE void FlattenSzInBits(byte* buf, word32 sz)
{
/* Multiply the sz by 8 */
word32 szHi = (sz >> (8*sizeof(sz) - 3));
sz <<= 3;
/* copy over the words of the sz into the destination buffer */
buf[0] = (szHi >> 24) & 0xff;
buf[1] = (szHi >> 16) & 0xff;
buf[2] = (szHi >> 8) & 0xff;
buf[3] = szHi & 0xff;
buf[4] = (sz >> 24) & 0xff;
buf[5] = (sz >> 16) & 0xff;
buf[6] = (sz >> 8) & 0xff;
buf[7] = sz & 0xff;
}
static INLINE void RIGHTSHIFTX(byte* x)
{
int i;
int carryOut = 0;
int carryIn = 0;
int borrow = x[15] & 0x01;
for (i = 0; i < AES_BLOCK_SIZE; i++) {
carryOut = x[i] & 0x01;
x[i] = (x[i] >> 1) | (carryIn ? 0x80 : 0);
carryIn = carryOut;
}
if (borrow) x[0] ^= 0xE1;
}
#endif /* defined(GCM_SMALL) || defined(GCM_TABLE) */
#ifdef GCM_TABLE
static void GenerateM0(Aes* aes)
{
int i, j;
byte (*m)[AES_BLOCK_SIZE] = aes->M0;
XMEMCPY(m[128], aes->H, AES_BLOCK_SIZE);
for (i = 64; i > 0; i /= 2) {
XMEMCPY(m[i], m[i*2], AES_BLOCK_SIZE);
RIGHTSHIFTX(m[i]);
}
for (i = 2; i < 256; i *= 2) {
for (j = 1; j < i; j++) {
XMEMCPY(m[i+j], m[i], AES_BLOCK_SIZE);
xorbuf(m[i+j], m[j], AES_BLOCK_SIZE);
}
}
XMEMSET(m[0], 0, AES_BLOCK_SIZE);
}
#endif /* GCM_TABLE */
int wc_AesGcmSetKey(Aes* aes, const byte* key, word32 len)
{
int ret;
byte iv[AES_BLOCK_SIZE];
if (!((len == 16) || (len == 24) || (len == 32)))
return BAD_FUNC_ARG;
XMEMSET(iv, 0, AES_BLOCK_SIZE);
ret = wc_AesSetKey(aes, key, len, iv, AES_ENCRYPTION);
#ifdef WOLFSSL_AESNI
/* AES-NI code generates its own H value. */
if (haveAESNI)
return ret;
#endif /* WOLFSSL_AESNI */
#if !defined(FREESCALE_LTC_AES_GCM)
if (ret == 0) {
wc_AesEncrypt(aes, iv, aes->H);
#ifdef GCM_TABLE
GenerateM0(aes);
#endif /* GCM_TABLE */
}
#endif /* FREESCALE_LTC_AES_GCM */
#if defined(WOLFSSL_XILINX_CRYPT)
wc_AesGcmSetKey_ex(aes, key, len, XSECURE_CSU_AES_KEY_SRC_KUP);
#endif
return ret;
}
#ifdef WOLFSSL_AESNI
void gfmul(__m128i a, __m128i b, __m128i* out) XASM_LINK("gfmul");
/* See Intel® Carry-Less Multiplication Instruction
* and its Usage for Computing the GCM Mode White Paper
* by Shay Gueron, Intel Mobility Group, Israel Development Center;
* and Michael E. Kounavis, Intel Labs, Circuits and Systems Research */
/* Figure 9. AES-GCM Encrypt With Single Block Ghash at a Time */
static void AES_GCM_encrypt(const unsigned char *in,
unsigned char *out,
const unsigned char* addt,
const unsigned char* ivec,
unsigned char *tag,
int nbytes, int abytes, int ibytes,
const unsigned char* key, int nr)
{
int i, j ,k;
__m128i tmp1, tmp2, tmp3, tmp4;
__m128i H, Y, T;
__m128i *KEY = (__m128i*)key;
__m128i ctr1, ctr2, ctr3, ctr4;
__m128i last_block = _mm_setzero_si128();
__m128i ONE = _mm_set_epi32(0, 1, 0, 0);
__m128i FOUR = _mm_set_epi32(0, 4, 0, 0);
__m128i BSWAP_EPI64 = _mm_set_epi8(8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7);
__m128i BSWAP_MASK = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);
__m128i X = _mm_setzero_si128();
if(ibytes == 96/8) {
Y = _mm_setzero_si128();
for(j=0; j < ibytes%16; j++)
((unsigned char*)&Y)[j] = ivec[j];
Y = _mm_insert_epi32(Y, 0x1000000, 3);
/* (Compute E[ZERO, KS] and E[Y0, KS] together */
tmp1 = _mm_xor_si128(X, KEY[0]);
tmp2 = _mm_xor_si128(Y, KEY[0]);
for(j=1; j < nr-1; j+=2) {
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
tmp2 = _mm_aesenc_si128(tmp2, KEY[j]);
tmp1 = _mm_aesenc_si128(tmp1, KEY[j+1]);
tmp2 = _mm_aesenc_si128(tmp2, KEY[j+1]);
}
tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]);
tmp2 = _mm_aesenc_si128(tmp2, KEY[nr-1]);
H = _mm_aesenclast_si128(tmp1, KEY[nr]);
T = _mm_aesenclast_si128(tmp2, KEY[nr]);
H = _mm_shuffle_epi8(H, BSWAP_MASK);
}
else {
tmp1 = _mm_xor_si128(X, KEY[0]);
for(j=1; j <nr; j++)
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
H = _mm_aesenclast_si128(tmp1, KEY[nr]);
H = _mm_shuffle_epi8(H, BSWAP_MASK);
Y = _mm_setzero_si128();
for(i=0; i < ibytes/16; i++) {
tmp1 = _mm_loadu_si128(&((__m128i*)ivec)[i]);
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
Y = _mm_xor_si128(Y, tmp1);
gfmul(Y, H, &Y);
}
if(ibytes%16) {
for(j=0; j < ibytes%16; j++)
((unsigned char*)&last_block)[j] = ivec[i*16+j];
tmp1 = last_block;
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
Y = _mm_xor_si128(Y, tmp1);
gfmul(Y, H, &Y);
}
tmp1 = _mm_insert_epi64(tmp1, ibytes*8, 0);
tmp1 = _mm_insert_epi64(tmp1, 0, 1);
Y = _mm_xor_si128(Y, tmp1);
gfmul(Y, H, &Y);
Y = _mm_shuffle_epi8(Y, BSWAP_MASK); /* Compute E(K, Y0) */
tmp1 = _mm_xor_si128(Y, KEY[0]);
for(j=1; j < nr; j++)
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
T = _mm_aesenclast_si128(tmp1, KEY[nr]);
}
for(i=0; i<abytes/16; i++){
tmp1 = _mm_loadu_si128(&((__m128i*)addt)[i]);
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
X = _mm_xor_si128(X, tmp1);
gfmul(X, H, &X);
}
if(abytes%16){
last_block = _mm_setzero_si128();
for(j=0; j<abytes%16; j++)
((unsigned char*)&last_block)[j] = addt[i*16+j];
tmp1 = last_block;
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
X = _mm_xor_si128(X, tmp1);
gfmul(X, H, &X);
}
ctr1 = _mm_shuffle_epi8(Y, BSWAP_EPI64);
ctr1 = _mm_add_epi32(ctr1, ONE);
ctr2 = _mm_add_epi32(ctr1, ONE);
ctr3 = _mm_add_epi32(ctr2, ONE);
ctr4 = _mm_add_epi32(ctr3, ONE);
for(i=0; i < nbytes/16/4; i++){
tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
tmp2 = _mm_shuffle_epi8(ctr2, BSWAP_EPI64);
tmp3 = _mm_shuffle_epi8(ctr3, BSWAP_EPI64);
tmp4 = _mm_shuffle_epi8(ctr4, BSWAP_EPI64);
ctr1 = _mm_add_epi32(ctr1, FOUR);
ctr2 = _mm_add_epi32(ctr2, FOUR);
ctr3 = _mm_add_epi32(ctr3, FOUR);
ctr4 = _mm_add_epi32(ctr4, FOUR);
tmp1 =_mm_xor_si128(tmp1, KEY[0]);
tmp2 =_mm_xor_si128(tmp2, KEY[0]);
tmp3 =_mm_xor_si128(tmp3, KEY[0]);
tmp4 =_mm_xor_si128(tmp4, KEY[0]);
for(j=1; j < nr-1; j+=2){
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
tmp2 = _mm_aesenc_si128(tmp2, KEY[j]);
tmp3 = _mm_aesenc_si128(tmp3, KEY[j]);
tmp4 = _mm_aesenc_si128(tmp4, KEY[j]);
tmp1 = _mm_aesenc_si128(tmp1, KEY[j+1]);
tmp2 = _mm_aesenc_si128(tmp2, KEY[j+1]);
tmp3 = _mm_aesenc_si128(tmp3, KEY[j+1]);
tmp4 = _mm_aesenc_si128(tmp4, KEY[j+1]);
}
tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]);
tmp2 = _mm_aesenc_si128(tmp2, KEY[nr-1]);
tmp3 = _mm_aesenc_si128(tmp3, KEY[nr-1]);
tmp4 = _mm_aesenc_si128(tmp4, KEY[nr-1]);
tmp1 =_mm_aesenclast_si128(tmp1, KEY[nr]);
tmp2 =_mm_aesenclast_si128(tmp2, KEY[nr]);
tmp3 =_mm_aesenclast_si128(tmp3, KEY[nr]);
tmp4 =_mm_aesenclast_si128(tmp4, KEY[nr]);
tmp1 = _mm_xor_si128(tmp1, _mm_loadu_si128(&((__m128i*)in)[i*4+0]));
tmp2 = _mm_xor_si128(tmp2, _mm_loadu_si128(&((__m128i*)in)[i*4+1]));
tmp3 = _mm_xor_si128(tmp3, _mm_loadu_si128(&((__m128i*)in)[i*4+2]));
tmp4 = _mm_xor_si128(tmp4, _mm_loadu_si128(&((__m128i*)in)[i*4+3]));
_mm_storeu_si128(&((__m128i*)out)[i*4+0], tmp1);
_mm_storeu_si128(&((__m128i*)out)[i*4+1], tmp2);
_mm_storeu_si128(&((__m128i*)out)[i*4+2], tmp3);
_mm_storeu_si128(&((__m128i*)out)[i*4+3], tmp4);
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
tmp2 = _mm_shuffle_epi8(tmp2, BSWAP_MASK);
tmp3 = _mm_shuffle_epi8(tmp3, BSWAP_MASK);
tmp4 = _mm_shuffle_epi8(tmp4, BSWAP_MASK);
X = _mm_xor_si128(X, tmp1);
gfmul(X, H, &X);
X = _mm_xor_si128(X, tmp2);
gfmul(X, H, &X);
X = _mm_xor_si128(X, tmp3);
gfmul(X, H, &X);
X = _mm_xor_si128(X, tmp4);
gfmul(X, H, &X);
}
for(k = i*4; k < nbytes/16; k++){
tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
ctr1 = _mm_add_epi32(ctr1, ONE);
tmp1 = _mm_xor_si128(tmp1, KEY[0]);
for(j=1; j<nr-1; j+=2){
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
tmp1 = _mm_aesenc_si128(tmp1, KEY[j+1]);
}
tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]);
tmp1 = _mm_aesenclast_si128(tmp1, KEY[nr]);
tmp1 = _mm_xor_si128(tmp1, _mm_loadu_si128(&((__m128i*)in)[k]));
_mm_storeu_si128(&((__m128i*)out)[k], tmp1);
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
X =_mm_xor_si128(X, tmp1);
gfmul(X, H, &X);
}
/* If one partial block remains */
if(nbytes%16){
tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
tmp1 = _mm_xor_si128(tmp1, KEY[0]);
for(j=1; j<nr-1; j+=2){
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
tmp1 = _mm_aesenc_si128(tmp1, KEY[j+1]);
}
tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]);
tmp1 = _mm_aesenclast_si128(tmp1, KEY[nr]);
for(j=0; j < nbytes%16; j++)
((unsigned char*)&last_block)[j]= in[k*16+j];
tmp1 = _mm_xor_si128(tmp1, last_block);
last_block = tmp1;
for(j=0; j < nbytes%16; j++)
out[k*16+j]=((unsigned char*)&last_block)[j];
for(; j<16; j++)
((unsigned char*)&last_block)[j]=0;
tmp1 = last_block;
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
X =_mm_xor_si128(X, tmp1);
gfmul(X, H, &X);
}
tmp1 = _mm_insert_epi64(tmp1, nbytes*8, 0);
tmp1 = _mm_insert_epi64(tmp1, abytes*8, 1);
X = _mm_xor_si128(X, tmp1);
gfmul(X, H, &X);
X = _mm_shuffle_epi8(X, BSWAP_MASK);
T = _mm_xor_si128(X, T);
_mm_storeu_si128((__m128i*)tag, T);
}
#ifdef HAVE_AES_DECRYPT
/* Figure 10. AES-GCM Decrypt With Single Block Ghash at a Time */
static int AES_GCM_decrypt(const unsigned char *in,
unsigned char *out,
const unsigned char* addt,
const unsigned char* ivec,
const unsigned char *tag, int nbytes, int abytes,
int ibytes, const unsigned char* key, int nr)
{
int i, j ,k;
__m128i tmp1, tmp2, tmp3, tmp4;
__m128i H, Y, T;
__m128i *KEY = (__m128i*)key;
__m128i ctr1, ctr2, ctr3, ctr4;
__m128i last_block = _mm_setzero_si128();
__m128i ONE = _mm_set_epi32(0, 1, 0, 0);
__m128i FOUR = _mm_set_epi32(0, 4, 0, 0);
__m128i BSWAP_EPI64 = _mm_set_epi8(8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7);
__m128i BSWAP_MASK = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);
__m128i X = _mm_setzero_si128();
if (ibytes == 96/8) {
Y = _mm_setzero_si128();
for(j=0; j < ibytes%16; j++)
((unsigned char*)&Y)[j] = ivec[j];
Y = _mm_insert_epi32(Y, 0x1000000, 3);
/* (Compute E[ZERO, KS] and E[Y0, KS] together */
tmp1 = _mm_xor_si128(X, KEY[0]);
tmp2 = _mm_xor_si128(Y, KEY[0]);
for (j = 1; j < nr - 1; j += 2) {
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
tmp2 = _mm_aesenc_si128(tmp2, KEY[j]);
tmp1 = _mm_aesenc_si128(tmp1, KEY[j+1]);
tmp2 = _mm_aesenc_si128(tmp2, KEY[j+1]);
}
tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]);
tmp2 = _mm_aesenc_si128(tmp2, KEY[nr-1]);
H = _mm_aesenclast_si128(tmp1, KEY[nr]);
T = _mm_aesenclast_si128(tmp2, KEY[nr]);
H = _mm_shuffle_epi8(H, BSWAP_MASK);
}
else {
tmp1 = _mm_xor_si128(X, KEY[0]);
for (j = 1; j < nr; j++)
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
H = _mm_aesenclast_si128(tmp1, KEY[nr]);
H = _mm_shuffle_epi8(H, BSWAP_MASK);
Y = _mm_setzero_si128();
for (i = 0; i < ibytes / 16; i++) {
tmp1 = _mm_loadu_si128(&((__m128i*)ivec)[i]);
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
Y = _mm_xor_si128(Y, tmp1);
gfmul(Y, H, &Y);
}
if (ibytes % 16) {
for(j = 0; j < ibytes % 16; j++)
((unsigned char*)&last_block)[j] = ivec[i*16+j];
tmp1 = last_block;
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
Y = _mm_xor_si128(Y, tmp1);
gfmul(Y, H, &Y);
}
tmp1 = _mm_insert_epi64(tmp1, ibytes*8, 0);
tmp1 = _mm_insert_epi64(tmp1, 0, 1);
Y = _mm_xor_si128(Y, tmp1);
gfmul(Y, H, &Y);
Y = _mm_shuffle_epi8(Y, BSWAP_MASK);
/* Compute E(K, Y0) */
tmp1 = _mm_xor_si128(Y, KEY[0]);
for(j=1; j < nr; j++)
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
T = _mm_aesenclast_si128(tmp1, KEY[nr]);
}
for (i = 0; i < abytes / 16; i++) {
tmp1 = _mm_loadu_si128(&((__m128i*)addt)[i]);
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
X = _mm_xor_si128(X, tmp1);
gfmul(X, H, &X);
}
if (abytes % 16) {
last_block = _mm_setzero_si128();
for (j = 0;j < abytes % 16; j++)
((unsigned char*)&last_block)[j] = addt[i*16+j];
tmp1 = last_block;
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
X =_mm_xor_si128(X, tmp1);
gfmul(X, H, &X);
}
for (i = 0; i < nbytes / 16; i++) {
tmp1 = _mm_loadu_si128(&((__m128i*)in)[i]);
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
X = _mm_xor_si128(X, tmp1);
gfmul(X, H, &X);
}
if (nbytes % 16) {
last_block = _mm_setzero_si128();
for(j = 0; j < nbytes % 16; j++)
((unsigned char*)&last_block)[j] = in[i*16+j];
tmp1 = last_block;
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
X = _mm_xor_si128(X, tmp1);
gfmul(X, H, &X);
}
tmp1 = _mm_insert_epi64(tmp1, nbytes * 8, 0);
tmp1 = _mm_insert_epi64(tmp1, abytes * 8, 1);
X = _mm_xor_si128(X, tmp1);
gfmul(X, H, &X);
X = _mm_shuffle_epi8(X, BSWAP_MASK);
T = _mm_xor_si128(X, T);
if (0xffff !=
_mm_movemask_epi8(_mm_cmpeq_epi8(T, _mm_loadu_si128((__m128i*)tag))))
return 0; /* in case the authentication failed */
ctr1 = _mm_shuffle_epi8(Y, BSWAP_EPI64);
ctr1 = _mm_add_epi32(ctr1, ONE);
ctr2 = _mm_add_epi32(ctr1, ONE);
ctr3 = _mm_add_epi32(ctr2, ONE);
ctr4 = _mm_add_epi32(ctr3, ONE);
for (i=0; i < nbytes/16/4; i++) {
tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
tmp2 = _mm_shuffle_epi8(ctr2, BSWAP_EPI64);
tmp3 = _mm_shuffle_epi8(ctr3, BSWAP_EPI64);
tmp4 = _mm_shuffle_epi8(ctr4, BSWAP_EPI64);
ctr1 = _mm_add_epi32(ctr1, FOUR);
ctr2 = _mm_add_epi32(ctr2, FOUR);
ctr3 = _mm_add_epi32(ctr3, FOUR);
ctr4 = _mm_add_epi32(ctr4, FOUR);
tmp1 =_mm_xor_si128(tmp1, KEY[0]);
tmp2 =_mm_xor_si128(tmp2, KEY[0]);
tmp3 =_mm_xor_si128(tmp3, KEY[0]);
tmp4 =_mm_xor_si128(tmp4, KEY[0]);
for (j = 1; j < nr - 1; j += 2) {
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
tmp2 = _mm_aesenc_si128(tmp2, KEY[j]);
tmp3 = _mm_aesenc_si128(tmp3, KEY[j]);
tmp4 = _mm_aesenc_si128(tmp4, KEY[j]);
tmp1 = _mm_aesenc_si128(tmp1, KEY[j+1]);
tmp2 = _mm_aesenc_si128(tmp2, KEY[j+1]);
tmp3 = _mm_aesenc_si128(tmp3, KEY[j+1]);
tmp4 = _mm_aesenc_si128(tmp4, KEY[j+1]);
}
tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]);
tmp2 = _mm_aesenc_si128(tmp2, KEY[nr-1]);
tmp3 = _mm_aesenc_si128(tmp3, KEY[nr-1]);
tmp4 = _mm_aesenc_si128(tmp4, KEY[nr-1]);
tmp1 =_mm_aesenclast_si128(tmp1, KEY[nr]);
tmp2 =_mm_aesenclast_si128(tmp2, KEY[nr]);
tmp3 =_mm_aesenclast_si128(tmp3, KEY[nr]);
tmp4 =_mm_aesenclast_si128(tmp4, KEY[nr]);
tmp1 = _mm_xor_si128(tmp1, _mm_loadu_si128(&((__m128i*)in)[i*4+0]));
tmp2 = _mm_xor_si128(tmp2, _mm_loadu_si128(&((__m128i*)in)[i*4+1]));
tmp3 = _mm_xor_si128(tmp3, _mm_loadu_si128(&((__m128i*)in)[i*4+2]));
tmp4 = _mm_xor_si128(tmp4, _mm_loadu_si128(&((__m128i*)in)[i*4+3]));
_mm_storeu_si128(&((__m128i*)out)[i*4+0], tmp1);
_mm_storeu_si128(&((__m128i*)out)[i*4+1], tmp2);
_mm_storeu_si128(&((__m128i*)out)[i*4+2], tmp3);
_mm_storeu_si128(&((__m128i*)out)[i*4+3], tmp4);
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
tmp2 = _mm_shuffle_epi8(tmp2, BSWAP_MASK);
tmp3 = _mm_shuffle_epi8(tmp3, BSWAP_MASK);
tmp4 = _mm_shuffle_epi8(tmp4, BSWAP_MASK);
}
/* Acknowledge the dead store and continue */
(void) tmp1;
(void) tmp2;
(void) tmp3;
(void) tmp4;
for (k = i*4; k < nbytes/16; k++) {
tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
ctr1 = _mm_add_epi32(ctr1, ONE);
tmp1 = _mm_xor_si128(tmp1, KEY[0]);
for (j = 1; j < nr-1; j += 2) {
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
tmp1 = _mm_aesenc_si128(tmp1, KEY[j+1]);
}
tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]);
tmp1 = _mm_aesenclast_si128(tmp1, KEY[nr]);
tmp1 = _mm_xor_si128(tmp1, _mm_loadu_si128(&((__m128i*)in)[k]));
_mm_storeu_si128(&((__m128i*)out)[k], tmp1);
}
/* If one partial block remains */
if (nbytes % 16) {
tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
tmp1 = _mm_xor_si128(tmp1, KEY[0]);
for (j = 1; j < nr-1; j += 2) {
tmp1 =_mm_aesenc_si128(tmp1, KEY[j]);
tmp1 =_mm_aesenc_si128(tmp1, KEY[j+1]);
}
tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]);
tmp1 = _mm_aesenclast_si128(tmp1, KEY[nr]);
for(j=0; j < nbytes%16; j++)
((unsigned char*)&last_block)[j]= in[k*16+j];
tmp1 = _mm_xor_si128(tmp1, last_block);
last_block = tmp1;
for (j = 0; j < nbytes % 16; j++)
out[k*16+j]=((unsigned char*)&last_block)[j];
}
return 1; /* when successful returns 1 */
}
#endif /* HAVE_AES_DECRYPT */
#endif /* WOLFSSL_AESNI */
#if defined(GCM_SMALL)
static void GMULT(byte* X, byte* Y)
{
byte Z[AES_BLOCK_SIZE];
byte V[AES_BLOCK_SIZE];
int i, j;
XMEMSET(Z, 0, AES_BLOCK_SIZE);
XMEMCPY(V, X, AES_BLOCK_SIZE);
for (i = 0; i < AES_BLOCK_SIZE; i++)
{
byte y = Y[i];
for (j = 0; j < 8; j++)
{
if (y & 0x80) {
xorbuf(Z, V, AES_BLOCK_SIZE);
}
RIGHTSHIFTX(V);
y = y << 1;
}
}
XMEMCPY(X, Z, AES_BLOCK_SIZE);
}
void GHASH(Aes* aes, const byte* a, word32 aSz, const byte* c,
word32 cSz, byte* s, word32 sSz)
{
byte x[AES_BLOCK_SIZE];
byte scratch[AES_BLOCK_SIZE];
word32 blocks, partial;
byte* h = aes->H;
XMEMSET(x, 0, AES_BLOCK_SIZE);
/* Hash in A, the Additional Authentication Data */
if (aSz != 0 && a != NULL) {
blocks = aSz / AES_BLOCK_SIZE;
partial = aSz % AES_BLOCK_SIZE;
while (blocks--) {
xorbuf(x, a, AES_BLOCK_SIZE);
GMULT(x, h);
a += AES_BLOCK_SIZE;
}
if (partial != 0) {
XMEMSET(scratch, 0, AES_BLOCK_SIZE);
XMEMCPY(scratch, a, partial);
xorbuf(x, scratch, AES_BLOCK_SIZE);
GMULT(x, h);
}
}
/* Hash in C, the Ciphertext */
if (cSz != 0 && c != NULL) {
blocks = cSz / AES_BLOCK_SIZE;
partial = cSz % AES_BLOCK_SIZE;
while (blocks--) {
xorbuf(x, c, AES_BLOCK_SIZE);
GMULT(x, h);
c += AES_BLOCK_SIZE;
}
if (partial != 0) {
XMEMSET(scratch, 0, AES_BLOCK_SIZE);
XMEMCPY(scratch, c, partial);
xorbuf(x, scratch, AES_BLOCK_SIZE);
GMULT(x, h);
}
}
/* Hash in the lengths of A and C in bits */
FlattenSzInBits(&scratch[0], aSz);
FlattenSzInBits(&scratch[8], cSz);
xorbuf(x, scratch, AES_BLOCK_SIZE);
GMULT(x, h);
/* Copy the result into s. */
XMEMCPY(s, x, sSz);
}
/* end GCM_SMALL */
#elif defined(GCM_TABLE)
static const byte R[256][2] = {
{0x00, 0x00}, {0x01, 0xc2}, {0x03, 0x84}, {0x02, 0x46},
{0x07, 0x08}, {0x06, 0xca}, {0x04, 0x8c}, {0x05, 0x4e},
{0x0e, 0x10}, {0x0f, 0xd2}, {0x0d, 0x94}, {0x0c, 0x56},
{0x09, 0x18}, {0x08, 0xda}, {0x0a, 0x9c}, {0x0b, 0x5e},
{0x1c, 0x20}, {0x1d, 0xe2}, {0x1f, 0xa4}, {0x1e, 0x66},
{0x1b, 0x28}, {0x1a, 0xea}, {0x18, 0xac}, {0x19, 0x6e},
{0x12, 0x30}, {0x13, 0xf2}, {0x11, 0xb4}, {0x10, 0x76},
{0x15, 0x38}, {0x14, 0xfa}, {0x16, 0xbc}, {0x17, 0x7e},
{0x38, 0x40}, {0x39, 0x82}, {0x3b, 0xc4}, {0x3a, 0x06},
{0x3f, 0x48}, {0x3e, 0x8a}, {0x3c, 0xcc}, {0x3d, 0x0e},
{0x36, 0x50}, {0x37, 0x92}, {0x35, 0xd4}, {0x34, 0x16},
{0x31, 0x58}, {0x30, 0x9a}, {0x32, 0xdc}, {0x33, 0x1e},
{0x24, 0x60}, {0x25, 0xa2}, {0x27, 0xe4}, {0x26, 0x26},
{0x23, 0x68}, {0x22, 0xaa}, {0x20, 0xec}, {0x21, 0x2e},
{0x2a, 0x70}, {0x2b, 0xb2}, {0x29, 0xf4}, {0x28, 0x36},
{0x2d, 0x78}, {0x2c, 0xba}, {0x2e, 0xfc}, {0x2f, 0x3e},
{0x70, 0x80}, {0x71, 0x42}, {0x73, 0x04}, {0x72, 0xc6},
{0x77, 0x88}, {0x76, 0x4a}, {0x74, 0x0c}, {0x75, 0xce},
{0x7e, 0x90}, {0x7f, 0x52}, {0x7d, 0x14}, {0x7c, 0xd6},
{0x79, 0x98}, {0x78, 0x5a}, {0x7a, 0x1c}, {0x7b, 0xde},
{0x6c, 0xa0}, {0x6d, 0x62}, {0x6f, 0x24}, {0x6e, 0xe6},
{0x6b, 0xa8}, {0x6a, 0x6a}, {0x68, 0x2c}, {0x69, 0xee},
{0x62, 0xb0}, {0x63, 0x72}, {0x61, 0x34}, {0x60, 0xf6},
{0x65, 0xb8}, {0x64, 0x7a}, {0x66, 0x3c}, {0x67, 0xfe},
{0x48, 0xc0}, {0x49, 0x02}, {0x4b, 0x44}, {0x4a, 0x86},
{0x4f, 0xc8}, {0x4e, 0x0a}, {0x4c, 0x4c}, {0x4d, 0x8e},
{0x46, 0xd0}, {0x47, 0x12}, {0x45, 0x54}, {0x44, 0x96},
{0x41, 0xd8}, {0x40, 0x1a}, {0x42, 0x5c}, {0x43, 0x9e},
{0x54, 0xe0}, {0x55, 0x22}, {0x57, 0x64}, {0x56, 0xa6},
{0x53, 0xe8}, {0x52, 0x2a}, {0x50, 0x6c}, {0x51, 0xae},
{0x5a, 0xf0}, {0x5b, 0x32}, {0x59, 0x74}, {0x58, 0xb6},
{0x5d, 0xf8}, {0x5c, 0x3a}, {0x5e, 0x7c}, {0x5f, 0xbe},
{0xe1, 0x00}, {0xe0, 0xc2}, {0xe2, 0x84}, {0xe3, 0x46},
{0xe6, 0x08}, {0xe7, 0xca}, {0xe5, 0x8c}, {0xe4, 0x4e},
{0xef, 0x10}, {0xee, 0xd2}, {0xec, 0x94}, {0xed, 0x56},
{0xe8, 0x18}, {0xe9, 0xda}, {0xeb, 0x9c}, {0xea, 0x5e},
{0xfd, 0x20}, {0xfc, 0xe2}, {0xfe, 0xa4}, {0xff, 0x66},
{0xfa, 0x28}, {0xfb, 0xea}, {0xf9, 0xac}, {0xf8, 0x6e},
{0xf3, 0x30}, {0xf2, 0xf2}, {0xf0, 0xb4}, {0xf1, 0x76},
{0xf4, 0x38}, {0xf5, 0xfa}, {0xf7, 0xbc}, {0xf6, 0x7e},
{0xd9, 0x40}, {0xd8, 0x82}, {0xda, 0xc4}, {0xdb, 0x06},
{0xde, 0x48}, {0xdf, 0x8a}, {0xdd, 0xcc}, {0xdc, 0x0e},
{0xd7, 0x50}, {0xd6, 0x92}, {0xd4, 0xd4}, {0xd5, 0x16},
{0xd0, 0x58}, {0xd1, 0x9a}, {0xd3, 0xdc}, {0xd2, 0x1e},
{0xc5, 0x60}, {0xc4, 0xa2}, {0xc6, 0xe4}, {0xc7, 0x26},
{0xc2, 0x68}, {0xc3, 0xaa}, {0xc1, 0xec}, {0xc0, 0x2e},
{0xcb, 0x70}, {0xca, 0xb2}, {0xc8, 0xf4}, {0xc9, 0x36},
{0xcc, 0x78}, {0xcd, 0xba}, {0xcf, 0xfc}, {0xce, 0x3e},
{0x91, 0x80}, {0x90, 0x42}, {0x92, 0x04}, {0x93, 0xc6},
{0x96, 0x88}, {0x97, 0x4a}, {0x95, 0x0c}, {0x94, 0xce},
{0x9f, 0x90}, {0x9e, 0x52}, {0x9c, 0x14}, {0x9d, 0xd6},
{0x98, 0x98}, {0x99, 0x5a}, {0x9b, 0x1c}, {0x9a, 0xde},
{0x8d, 0xa0}, {0x8c, 0x62}, {0x8e, 0x24}, {0x8f, 0xe6},
{0x8a, 0xa8}, {0x8b, 0x6a}, {0x89, 0x2c}, {0x88, 0xee},
{0x83, 0xb0}, {0x82, 0x72}, {0x80, 0x34}, {0x81, 0xf6},
{0x84, 0xb8}, {0x85, 0x7a}, {0x87, 0x3c}, {0x86, 0xfe},
{0xa9, 0xc0}, {0xa8, 0x02}, {0xaa, 0x44}, {0xab, 0x86},
{0xae, 0xc8}, {0xaf, 0x0a}, {0xad, 0x4c}, {0xac, 0x8e},
{0xa7, 0xd0}, {0xa6, 0x12}, {0xa4, 0x54}, {0xa5, 0x96},
{0xa0, 0xd8}, {0xa1, 0x1a}, {0xa3, 0x5c}, {0xa2, 0x9e},
{0xb5, 0xe0}, {0xb4, 0x22}, {0xb6, 0x64}, {0xb7, 0xa6},
{0xb2, 0xe8}, {0xb3, 0x2a}, {0xb1, 0x6c}, {0xb0, 0xae},
{0xbb, 0xf0}, {0xba, 0x32}, {0xb8, 0x74}, {0xb9, 0xb6},
{0xbc, 0xf8}, {0xbd, 0x3a}, {0xbf, 0x7c}, {0xbe, 0xbe} };
static void GMULT(byte *x, byte m[256][AES_BLOCK_SIZE])
{
int i, j;
byte Z[AES_BLOCK_SIZE];
byte a;
XMEMSET(Z, 0, sizeof(Z));
for (i = 15; i > 0; i--) {
xorbuf(Z, m[x[i]], AES_BLOCK_SIZE);
a = Z[15];
for (j = 15; j > 0; j--) {
Z[j] = Z[j-1];
}
Z[0] = R[a][0];
Z[1] ^= R[a][1];
}
xorbuf(Z, m[x[0]], AES_BLOCK_SIZE);
XMEMCPY(x, Z, AES_BLOCK_SIZE);
}
void GHASH(Aes* aes, const byte* a, word32 aSz, const byte* c,
word32 cSz, byte* s, word32 sSz)
{
byte x[AES_BLOCK_SIZE];
byte scratch[AES_BLOCK_SIZE];
word32 blocks, partial;
XMEMSET(x, 0, AES_BLOCK_SIZE);
/* Hash in A, the Additional Authentication Data */
if (aSz != 0 && a != NULL) {
blocks = aSz / AES_BLOCK_SIZE;
partial = aSz % AES_BLOCK_SIZE;
while (blocks--) {
xorbuf(x, a, AES_BLOCK_SIZE);
GMULT(x, aes->M0);
a += AES_BLOCK_SIZE;
}
if (partial != 0) {
XMEMSET(scratch, 0, AES_BLOCK_SIZE);
XMEMCPY(scratch, a, partial);
xorbuf(x, scratch, AES_BLOCK_SIZE);
GMULT(x, aes->M0);
}
}
/* Hash in C, the Ciphertext */
if (cSz != 0 && c != NULL) {
blocks = cSz / AES_BLOCK_SIZE;
partial = cSz % AES_BLOCK_SIZE;
while (blocks--) {
xorbuf(x, c, AES_BLOCK_SIZE);
GMULT(x, aes->M0);
c += AES_BLOCK_SIZE;
}
if (partial != 0) {
XMEMSET(scratch, 0, AES_BLOCK_SIZE);
XMEMCPY(scratch, c, partial);
xorbuf(x, scratch, AES_BLOCK_SIZE);
GMULT(x, aes->M0);
}
}
/* Hash in the lengths of A and C in bits */
FlattenSzInBits(&scratch[0], aSz);
FlattenSzInBits(&scratch[8], cSz);
xorbuf(x, scratch, AES_BLOCK_SIZE);
GMULT(x, aes->M0);
/* Copy the result into s. */
XMEMCPY(s, x, sSz);
}
/* end GCM_TABLE */
#elif defined(WORD64_AVAILABLE) && !defined(GCM_WORD32)
#if !defined(FREESCALE_LTC_AES_GCM)
static void GMULT(word64* X, word64* Y)
{
word64 Z[2] = {0,0};
word64 V[2];
int i, j;
V[0] = X[0]; V[1] = X[1];
for (i = 0; i < 2; i++)
{
word64 y = Y[i];
for (j = 0; j < 64; j++)
{
if (y & 0x8000000000000000ULL) {
Z[0] ^= V[0];
Z[1] ^= V[1];
}
if (V[1] & 0x0000000000000001) {
V[1] >>= 1;
V[1] |= ((V[0] & 0x0000000000000001) ?
0x8000000000000000ULL : 0);
V[0] >>= 1;
V[0] ^= 0xE100000000000000ULL;
}
else {
V[1] >>= 1;
V[1] |= ((V[0] & 0x0000000000000001) ?
0x8000000000000000ULL : 0);
V[0] >>= 1;
}
y <<= 1;
}
}
X[0] = Z[0];
X[1] = Z[1];
}
void GHASH(Aes* aes, const byte* a, word32 aSz, const byte* c,
word32 cSz, byte* s, word32 sSz)
{
word64 x[2] = {0,0};
word32 blocks, partial;
word64 bigH[2];
XMEMCPY(bigH, aes->H, AES_BLOCK_SIZE);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords64(bigH, bigH, AES_BLOCK_SIZE);
#endif
/* Hash in A, the Additional Authentication Data */
if (aSz != 0 && a != NULL) {
word64 bigA[2];
blocks = aSz / AES_BLOCK_SIZE;
partial = aSz % AES_BLOCK_SIZE;
while (blocks--) {
XMEMCPY(bigA, a, AES_BLOCK_SIZE);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords64(bigA, bigA, AES_BLOCK_SIZE);
#endif
x[0] ^= bigA[0];
x[1] ^= bigA[1];
GMULT(x, bigH);
a += AES_BLOCK_SIZE;
}
if (partial != 0) {
XMEMSET(bigA, 0, AES_BLOCK_SIZE);
XMEMCPY(bigA, a, partial);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords64(bigA, bigA, AES_BLOCK_SIZE);
#endif
x[0] ^= bigA[0];
x[1] ^= bigA[1];
GMULT(x, bigH);
}
}
/* Hash in C, the Ciphertext */
if (cSz != 0 && c != NULL) {
word64 bigC[2];
blocks = cSz / AES_BLOCK_SIZE;
partial = cSz % AES_BLOCK_SIZE;
while (blocks--) {
XMEMCPY(bigC, c, AES_BLOCK_SIZE);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords64(bigC, bigC, AES_BLOCK_SIZE);
#endif
x[0] ^= bigC[0];
x[1] ^= bigC[1];
GMULT(x, bigH);
c += AES_BLOCK_SIZE;
}
if (partial != 0) {
XMEMSET(bigC, 0, AES_BLOCK_SIZE);
XMEMCPY(bigC, c, partial);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords64(bigC, bigC, AES_BLOCK_SIZE);
#endif
x[0] ^= bigC[0];
x[1] ^= bigC[1];
GMULT(x, bigH);
}
}
/* Hash in the lengths in bits of A and C */
{
word64 len[2];
len[0] = aSz; len[1] = cSz;
/* Lengths are in bytes. Convert to bits. */
len[0] *= 8;
len[1] *= 8;
x[0] ^= len[0];
x[1] ^= len[1];
GMULT(x, bigH);
}
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords64(x, x, AES_BLOCK_SIZE);
#endif
XMEMCPY(s, x, sSz);
}
#endif /* !FREESCALE_LTC_AES_GCM */
/* end defined(WORD64_AVAILABLE) && !defined(GCM_WORD32) */
#else /* GCM_WORD32 */
static void GMULT(word32* X, word32* Y)
{
word32 Z[4] = {0,0,0,0};
word32 V[4];
int i, j;
V[0] = X[0]; V[1] = X[1]; V[2] = X[2]; V[3] = X[3];
for (i = 0; i < 4; i++)
{
word32 y = Y[i];
for (j = 0; j < 32; j++)
{
if (y & 0x80000000) {
Z[0] ^= V[0];
Z[1] ^= V[1];
Z[2] ^= V[2];
Z[3] ^= V[3];
}
if (V[3] & 0x00000001) {
V[3] >>= 1;
V[3] |= ((V[2] & 0x00000001) ? 0x80000000 : 0);
V[2] >>= 1;
V[2] |= ((V[1] & 0x00000001) ? 0x80000000 : 0);
V[1] >>= 1;
V[1] |= ((V[0] & 0x00000001) ? 0x80000000 : 0);
V[0] >>= 1;
V[0] ^= 0xE1000000;
} else {
V[3] >>= 1;
V[3] |= ((V[2] & 0x00000001) ? 0x80000000 : 0);
V[2] >>= 1;
V[2] |= ((V[1] & 0x00000001) ? 0x80000000 : 0);
V[1] >>= 1;
V[1] |= ((V[0] & 0x00000001) ? 0x80000000 : 0);
V[0] >>= 1;
}
y <<= 1;
}
}
X[0] = Z[0];
X[1] = Z[1];
X[2] = Z[2];
X[3] = Z[3];
}
void GHASH(Aes* aes, const byte* a, word32 aSz, const byte* c,
word32 cSz, byte* s, word32 sSz)
{
word32 x[4] = {0,0,0,0};
word32 blocks, partial;
word32 bigH[4];
XMEMCPY(bigH, aes->H, AES_BLOCK_SIZE);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords(bigH, bigH, AES_BLOCK_SIZE);
#endif
/* Hash in A, the Additional Authentication Data */
if (aSz != 0 && a != NULL) {
word32 bigA[4];
blocks = aSz / AES_BLOCK_SIZE;
partial = aSz % AES_BLOCK_SIZE;
while (blocks--) {
XMEMCPY(bigA, a, AES_BLOCK_SIZE);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords(bigA, bigA, AES_BLOCK_SIZE);
#endif
x[0] ^= bigA[0];
x[1] ^= bigA[1];
x[2] ^= bigA[2];
x[3] ^= bigA[3];
GMULT(x, bigH);
a += AES_BLOCK_SIZE;
}
if (partial != 0) {
XMEMSET(bigA, 0, AES_BLOCK_SIZE);
XMEMCPY(bigA, a, partial);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords(bigA, bigA, AES_BLOCK_SIZE);
#endif
x[0] ^= bigA[0];
x[1] ^= bigA[1];
x[2] ^= bigA[2];
x[3] ^= bigA[3];
GMULT(x, bigH);
}
}
/* Hash in C, the Ciphertext */
if (cSz != 0 && c != NULL) {
word32 bigC[4];
blocks = cSz / AES_BLOCK_SIZE;
partial = cSz % AES_BLOCK_SIZE;
while (blocks--) {
XMEMCPY(bigC, c, AES_BLOCK_SIZE);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords(bigC, bigC, AES_BLOCK_SIZE);
#endif
x[0] ^= bigC[0];
x[1] ^= bigC[1];
x[2] ^= bigC[2];
x[3] ^= bigC[3];
GMULT(x, bigH);
c += AES_BLOCK_SIZE;
}
if (partial != 0) {
XMEMSET(bigC, 0, AES_BLOCK_SIZE);
XMEMCPY(bigC, c, partial);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords(bigC, bigC, AES_BLOCK_SIZE);
#endif
x[0] ^= bigC[0];
x[1] ^= bigC[1];
x[2] ^= bigC[2];
x[3] ^= bigC[3];
GMULT(x, bigH);
}
}
/* Hash in the lengths in bits of A and C */
{
word32 len[4];
/* Lengths are in bytes. Convert to bits. */
len[0] = (aSz >> (8*sizeof(aSz) - 3));
len[1] = aSz << 3;
len[2] = (cSz >> (8*sizeof(cSz) - 3));
len[3] = cSz << 3;
x[0] ^= len[0];
x[1] ^= len[1];
x[2] ^= len[2];
x[3] ^= len[3];
GMULT(x, bigH);
}
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords(x, x, AES_BLOCK_SIZE);
#endif
XMEMCPY(s, x, sSz);
}
#endif /* end GCM_WORD32 */
#if !defined(WOLFSSL_XILINX_CRYPT)
int wc_AesGcmEncrypt(Aes* aes, byte* out, const byte* in, word32 sz,
const byte* iv, word32 ivSz,
byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
int ret = 0;
word32 keySize;
#ifdef FREESCALE_LTC_AES_GCM
status_t status;
#else
word32 blocks = sz / AES_BLOCK_SIZE;
word32 partial = sz % AES_BLOCK_SIZE;
const byte* p = in;
byte* c = out;
byte counter[AES_BLOCK_SIZE];
byte initialCounter[AES_BLOCK_SIZE];
byte *ctr;
byte scratch[AES_BLOCK_SIZE];
#if defined(STM32F2_CRYPTO) || defined(STM32F4_CRYPTO)
#ifdef WOLFSSL_STM32_CUBEMX
CRYP_HandleTypeDef hcryp;
#else
byte keyCopy[AES_BLOCK_SIZE * 2];
#endif /* WOLFSSL_STM32_CUBEMX */
int status = 0;
byte* authInPadded = NULL;
byte tag[AES_BLOCK_SIZE];
int authPadSz;
#endif /* STM32F2_CRYPTO || STM32F4_CRYPTO */
#endif /* FREESCALE_LTC_AES_GCM */
/* argument checks */
if (aes == NULL || authTagSz > AES_BLOCK_SIZE) {
return BAD_FUNC_ARG;
}
if (authTagSz < WOLFSSL_MIN_AUTH_TAG_SZ) {
WOLFSSL_MSG("GcmEncrypt authTagSz too small error");
return BAD_FUNC_ARG;
}
ret = wc_AesGetKeySize(aes, &keySize);
if (ret != 0)
return ret;
#ifdef FREESCALE_LTC_AES_GCM
status = LTC_AES_EncryptTagGcm(LTC_BASE, in, out, sz, iv, ivSz,
authIn, authInSz, (byte*)aes->key, keySize, authTag, authTagSz);
ret = (status == kStatus_Success) ? 0 : AES_GCM_AUTH_E;
#else
#if defined(STM32F2_CRYPTO) || defined(STM32F4_CRYPTO)
/* additional argument checks - STM32 HW only supports 12 byte IV */
if (ivSz != NONCE_SZ) {
return BAD_FUNC_ARG;
}
XMEMSET(initialCounter, 0, AES_BLOCK_SIZE);
XMEMCPY(initialCounter, iv, ivSz);
initialCounter[AES_BLOCK_SIZE - 1] = STM32_GCM_IV_START;
/* STM32 HW AES-GCM requires / assumes inputs are a multiple of block size.
* We can avoid this by zero padding (authIn) AAD, but zero-padded plaintext
* will be encrypted and output incorrectly, causing a bad authTag.
* We will use HW accelerated AES-GCM if plain%AES_BLOCK_SZ==0.
* Otherwise, we will use accelerated AES_CTR for encrypt, and then
* perform GHASH in software.
* See NIST SP 800-38D */
/* Plain text is a multiple of block size, so use HW-Accelerated AES_GCM */
if (!partial) {
/* pad authIn if it is not a block multiple */
if ((authInSz % AES_BLOCK_SIZE) != 0) {
authPadSz = ((authInSz / AES_BLOCK_SIZE) + 1) * AES_BLOCK_SIZE;
/* Need to pad the AAD to a full block with zeros. */
authInPadded = XMALLOC(authPadSz, aes->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (authInPadded == NULL) {
return MEMORY_E;
}
XMEMSET(authInPadded, 0, authPadSz);
XMEMCPY(authInPadded, authIn, authInSz);
} else {
authPadSz = authInSz;
authInPadded = (byte*)authIn;
}
#ifdef WOLFSSL_STM32_CUBEMX
XMEMSET(&hcryp, 0, sizeof(CRYP_HandleTypeDef));
switch (keySize) {
case 16: /* 128-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_128B;
break;
case 24: /* 192-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_192B;
break;
case 32: /* 256-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_256B;
break;
default:
break;
}
hcryp.Instance = CRYP;
hcryp.Init.DataType = CRYP_DATATYPE_8B;
hcryp.Init.pKey = (byte*)aes->key;
hcryp.Init.pInitVect = initialCounter;
hcryp.Init.Header = authInPadded;
hcryp.Init.HeaderSize = authInSz;
HAL_CRYP_Init(&hcryp);
status = HAL_CRYPEx_AESGCM_Encrypt(&hcryp, (byte*)in, sz,
out, STM32_HAL_TIMEOUT);
/* Compute the authTag */
if (status == HAL_OK)
status = HAL_CRYPEx_AESGCM_Finish(&hcryp, sz, tag, STM32_HAL_TIMEOUT);
if (status != HAL_OK)
ret = AES_GCM_AUTH_E;
HAL_CRYP_DeInit(&hcryp);
#else
ByteReverseWords((word32*)keyCopy, (word32*)aes->key, keySize);
status = CRYP_AES_GCM(MODE_ENCRYPT, (uint8_t*)initialCounter,
(uint8_t*)keyCopy, keySize * 8,
(uint8_t*)in, sz,
(uint8_t*)authInPadded,authInSz,
(uint8_t*)out, tag);
if (status != SUCCESS)
ret = AES_GCM_AUTH_E;
#endif /* WOLFSSL_STM32_CUBEMX */
/* authTag may be shorter than AES_BLOCK_SZ, store separately */
if (ret == 0)
XMEMCPY(authTag, tag, authTagSz);
/* We only allocate extra memory if authInPadded is not a multiple of AES_BLOCK_SZ */
if (authInPadded != NULL && authInSz != authPadSz) {
XFREE(authInPadded, aes->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
return ret;
}
#endif
/* Software AES-GCM */
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES)
/* if async and byte count above threshold */
if (aes->asyncDev.marker == WOLFSSL_ASYNC_MARKER_AES &&
sz >= WC_ASYNC_THRESH_AES_GCM) {
#if defined(HAVE_CAVIUM)
/* Not yet supported, contact wolfSSL if interested in using */
#elif defined(HAVE_INTEL_QA)
return IntelQaSymAesGcmEncrypt(&aes->asyncDev, out, in, sz,
(const byte*)aes->asyncKey, aes->keylen, iv, ivSz,
authTag, authTagSz, authIn, authInSz);
#else /* WOLFSSL_ASYNC_CRYPT_TEST */
WC_ASYNC_TEST* testDev = &aes->asyncDev.test;
if (testDev->type == ASYNC_TEST_NONE) {
testDev->type = ASYNC_TEST_AES_GCM_ENCRYPT;
testDev->aes.aes = aes;
testDev->aes.out = out;
testDev->aes.in = in;
testDev->aes.sz = sz;
testDev->aes.iv = iv;
testDev->aes.ivSz = ivSz;
testDev->aes.authTag = authTag;
testDev->aes.authTagSz = authTagSz;
testDev->aes.authIn = authIn;
testDev->aes.authInSz = authInSz;
}
#endif
}
#endif /* WOLFSSL_ASYNC_CRYPT */
#ifdef WOLFSSL_AESNI
if (haveAESNI) {
AES_GCM_encrypt(in, out, authIn, iv, authTag,
sz, authInSz, ivSz, (const byte*)aes->key, aes->rounds);
return 0;
}
#endif
#ifdef WOLFSSL_PIC32MZ_CRYPT
ctr = (char *)aes->iv_ce;
#else
ctr = counter;
#endif
XMEMSET(initialCounter, 0, AES_BLOCK_SIZE);
if (ivSz == NONCE_SZ) {
XMEMCPY(initialCounter, iv, ivSz);
initialCounter[AES_BLOCK_SIZE - 1] = 1;
}
else {
GHASH(aes, NULL, 0, iv, ivSz, initialCounter, AES_BLOCK_SIZE);
}
XMEMCPY(ctr, initialCounter, AES_BLOCK_SIZE);
#ifdef WOLFSSL_PIC32MZ_CRYPT
if (blocks) {
wc_AesCrypt(aes, out, in, blocks * AES_BLOCK_SIZE,
PIC32_ENCRYPTION, PIC32_ALGO_AES, PIC32_CRYPTOALGO_AES_GCM);
}
/* process remainder using partial handling */
#endif
while (blocks--) {
IncrementGcmCounter(ctr);
#ifndef WOLFSSL_PIC32MZ_CRYPT
wc_AesEncrypt(aes, ctr, scratch);
xorbuf(scratch, p, AES_BLOCK_SIZE);
XMEMCPY(c, scratch, AES_BLOCK_SIZE);
#endif
p += AES_BLOCK_SIZE;
c += AES_BLOCK_SIZE;
}
if (partial != 0) {
IncrementGcmCounter(ctr);
wc_AesEncrypt(aes, ctr, scratch);
xorbuf(scratch, p, partial);
XMEMCPY(c, scratch, partial);
}
GHASH(aes, authIn, authInSz, out, sz, authTag, authTagSz);
wc_AesEncrypt(aes, initialCounter, scratch);
xorbuf(authTag, scratch, authTagSz);
#endif /* FREESCALE_LTC_AES_GCM */
return ret;
}
#if defined(HAVE_AES_DECRYPT) || defined(HAVE_AESGCM_DECRYPT)
int wc_AesGcmDecrypt(Aes* aes, byte* out, const byte* in, word32 sz,
const byte* iv, word32 ivSz,
const byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
int ret = 0;
word32 keySize;
#ifdef FREESCALE_LTC_AES_GCM
status_t status;
#elif defined(STM32F2_CRYPTO) || defined(STM32F4_CRYPTO)
#ifdef WOLFSSL_STM32_CUBEMX
CRYP_HandleTypeDef hcryp;
#else
byte keyCopy[AES_BLOCK_SIZE * 2];
#endif /* WOLFSSL_STM32_CUBEMX */
int status;
int inPadSz, authPadSz;
byte tag[AES_BLOCK_SIZE];
byte *inPadded = NULL;
byte *authInPadded = NULL;
byte initialCounter[AES_BLOCK_SIZE];
#else /* software AES-GCM */
word32 blocks = sz / AES_BLOCK_SIZE;
word32 partial = sz % AES_BLOCK_SIZE;
const byte* c = in;
byte* p = out;
byte counter[AES_BLOCK_SIZE];
byte initialCounter[AES_BLOCK_SIZE];
byte *ctr;
byte scratch[AES_BLOCK_SIZE];
byte Tprime[AES_BLOCK_SIZE];
byte EKY0[AES_BLOCK_SIZE];
#endif
/* argument checks */
if (aes == NULL || out == NULL || in == NULL || sz == 0 || iv == NULL ||
authTag == NULL || authTagSz > AES_BLOCK_SIZE) {
return BAD_FUNC_ARG;
}
ret = wc_AesGetKeySize(aes, &keySize);
if (ret != 0) {
return ret;
}
#ifdef FREESCALE_LTC_AES_GCM
status = LTC_AES_DecryptTagGcm(LTC_BASE, in, out, sz, iv, ivSz,
authIn, authInSz, (byte*)aes->key, keySize, authTag, authTagSz);
ret = (status == kStatus_Success) ? 0 : AES_GCM_AUTH_E;
#elif defined(STM32F2_CRYPTO) || defined(STM32F4_CRYPTO)
/* additional argument checks - STM32 HW only supports 12 byte IV */
if (ivSz != NONCE_SZ) {
return BAD_FUNC_ARG;
}
XMEMSET(initialCounter, 0, AES_BLOCK_SIZE);
XMEMCPY(initialCounter, iv, ivSz);
initialCounter[AES_BLOCK_SIZE - 1] = STM32_GCM_IV_START;
/* Need to pad the AAD and input cipher text to a full block size since
* CRYP_AES_GCM will assume these are a multiple of AES_BLOCK_SIZE.
* It is okay to pad with zeros because GCM does this before GHASH already.
* See NIST SP 800-38D */
if ((sz % AES_BLOCK_SIZE) > 0) {
inPadSz = ((sz / AES_BLOCK_SIZE) + 1) * AES_BLOCK_SIZE;
inPadded = XMALLOC(inPadSz, aes->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (inPadded == NULL) {
return MEMORY_E;
}
XMEMSET(inPadded, 0, inPadSz);
XMEMCPY(inPadded, in, sz);
} else {
inPadSz = sz;
inPadded = (byte*)in;
}
if ((authInSz % AES_BLOCK_SIZE) > 0) {
authPadSz = ((authInSz / AES_BLOCK_SIZE) + 1) * AES_BLOCK_SIZE;
authInPadded = XMALLOC(authPadSz, aes->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (authInPadded == NULL) {
if (inPadded != NULL && inPadSz != sz)
XFREE(inPadded , aes->heap, DYNAMIC_TYPE_TMP_BUFFER);
return MEMORY_E;
}
XMEMSET(authInPadded, 0, authPadSz);
XMEMCPY(authInPadded, authIn, authInSz);
} else {
authPadSz = authInSz;
authInPadded = (byte*)authIn;
}
#ifdef WOLFSSL_STM32_CUBEMX
XMEMSET(&hcryp, 0, sizeof(CRYP_HandleTypeDef));
switch(keySize) {
case 16: /* 128-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_128B;
break;
case 24: /* 192-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_192B;
break;
case 32: /* 256-bit key */
hcryp.Init.KeySize = CRYP_KEYSIZE_256B;
break;
default:
break;
}
hcryp.Instance = CRYP;
hcryp.Init.DataType = CRYP_DATATYPE_8B;
hcryp.Init.pKey = (byte*)aes->key;
hcryp.Init.pInitVect = initialCounter;
hcryp.Init.Header = authInPadded;
hcryp.Init.HeaderSize = authInSz;
HAL_CRYP_Init(&hcryp);
/* Use inPadded for output buffer instead of
* out so that we don't overflow our size. */
status = HAL_CRYPEx_AESGCM_Decrypt(&hcryp, (byte*)inPadded,
sz, inPadded, STM32_HAL_TIMEOUT);
/* Compute the authTag */
if (status == HAL_OK)
status = HAL_CRYPEx_AESGCM_Finish(&hcryp, sz, tag, STM32_HAL_TIMEOUT);
if (status != HAL_OK)
ret = AES_GCM_AUTH_E;
HAL_CRYP_DeInit(&hcryp);
#else
ByteReverseWords((word32*)keyCopy, (word32*)aes->key, keySize);
/* Input size and auth size need to be the actual sizes, even though
* they are not block aligned, because this length (in bits) is used
* in the final GHASH. Use inPadded for output buffer instead of
* out so that we don't overflow our size. */
status = CRYP_AES_GCM(MODE_DECRYPT, (uint8_t*)initialCounter,
(uint8_t*)keyCopy, keySize * 8,
(uint8_t*)inPadded, sz,
(uint8_t*)authInPadded,authInSz,
(uint8_t*)inPadded, tag);
if (status != SUCCESS)
ret = AES_GCM_AUTH_E;
#endif /* WOLFSSL_STM32_CUBEMX */
if (ret == 0 && ConstantCompare(authTag, tag, authTagSz) == 0) {
/* Only keep the decrypted data if authTag success. */
XMEMCPY(out, inPadded, sz);
ret = 0; /* success */
}
/* only allocate padding buffers if the inputs are not a multiple of block sz */
if (inPadded != NULL && inPadSz != sz)
XFREE(inPadded , aes->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (authInPadded != NULL && authPadSz != authInSz)
XFREE(authInPadded, aes->heap, DYNAMIC_TYPE_TMP_BUFFER);
#else
/* software AES GCM */
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES)
/* if async and byte count above threshold */
if (aes->asyncDev.marker == WOLFSSL_ASYNC_MARKER_AES &&
sz >= WC_ASYNC_THRESH_AES_GCM) {
#if defined(HAVE_CAVIUM)
/* Not yet supported, contact wolfSSL if interested in using */
#elif defined(HAVE_INTEL_QA)
return IntelQaSymAesGcmDecrypt(&aes->asyncDev, out, in, sz,
(const byte*)aes->asyncKey, aes->keylen, iv, ivSz,
authTag, authTagSz, authIn, authInSz);
#else /* WOLFSSL_ASYNC_CRYPT_TEST */
WC_ASYNC_TEST* testDev = &aes->asyncDev.test;
if (testDev->type == ASYNC_TEST_NONE) {
testDev->type = ASYNC_TEST_AES_GCM_DECRYPT;
testDev->aes.aes = aes;
testDev->aes.out = out;
testDev->aes.in = in;
testDev->aes.sz = sz;
testDev->aes.iv = iv;
testDev->aes.ivSz = ivSz;
testDev->aes.authTag = (byte*)authTag;
testDev->aes.authTagSz = authTagSz;
testDev->aes.authIn = authIn;
testDev->aes.authInSz = authInSz;
return WC_PENDING_E;
}
#endif
}
#endif /* WOLFSSL_ASYNC_CRYPT */
#ifdef WOLFSSL_AESNI
if (haveAESNI) {
if (AES_GCM_decrypt(in, out, authIn, iv, authTag,
sz, authInSz, ivSz, (byte*)aes->key, aes->rounds) == 0)
return AES_GCM_AUTH_E;
return 0;
}
#endif
#ifdef WOLFSSL_PIC32MZ_CRYPT
ctr = (char *)aes->iv_ce;
#else
ctr = counter;
#endif
XMEMSET(initialCounter, 0, AES_BLOCK_SIZE);
if (ivSz == NONCE_SZ) {
XMEMCPY(initialCounter, iv, ivSz);
initialCounter[AES_BLOCK_SIZE - 1] = 1;
}
else {
GHASH(aes, NULL, 0, iv, ivSz, initialCounter, AES_BLOCK_SIZE);
}
XMEMCPY(ctr, initialCounter, AES_BLOCK_SIZE);
/* Calc the authTag again using the received auth data and the cipher text */
GHASH(aes, authIn, authInSz, in, sz, Tprime, sizeof(Tprime));
wc_AesEncrypt(aes, ctr, EKY0);
xorbuf(Tprime, EKY0, sizeof(Tprime));
if (ConstantCompare(authTag, Tprime, authTagSz) != 0) {
return AES_GCM_AUTH_E;
}
#ifdef WOLFSSL_PIC32MZ_CRYPT
if (blocks) {
wc_AesCrypt(aes, out, in, blocks * AES_BLOCK_SIZE,
PIC32_DECRYPTION, PIC32_ALGO_AES, PIC32_CRYPTOALGO_AES_GCM);
}
/* process remainder using partial handling */
#endif
while (blocks--) {
IncrementGcmCounter(ctr);
#ifndef WOLFSSL_PIC32MZ_CRYPT
wc_AesEncrypt(aes, ctr, scratch);
xorbuf(scratch, c, AES_BLOCK_SIZE);
XMEMCPY(p, scratch, AES_BLOCK_SIZE);
#endif
p += AES_BLOCK_SIZE;
c += AES_BLOCK_SIZE;
}
if (partial != 0) {
IncrementGcmCounter(ctr);
wc_AesEncrypt(aes, ctr, scratch);
xorbuf(scratch, c, partial);
XMEMCPY(p, scratch, partial);
}
#endif
return ret;
}
#endif /* HAVE_AES_DECRYPT || HAVE_AESGCM_DECRYPT */
#endif /* (WOLFSSL_XILINX_CRYPT) */
WOLFSSL_API int wc_GmacSetKey(Gmac* gmac, const byte* key, word32 len)
{
if (gmac == NULL || key == NULL) {
return BAD_FUNC_ARG;
}
return wc_AesGcmSetKey(&gmac->aes, key, len);
}
WOLFSSL_API int wc_GmacUpdate(Gmac* gmac, const byte* iv, word32 ivSz,
const byte* authIn, word32 authInSz,
byte* authTag, word32 authTagSz)
{
return wc_AesGcmEncrypt(&gmac->aes, NULL, NULL, 0, iv, ivSz,
authTag, authTagSz, authIn, authInSz);
}
#endif /* HAVE_AESGCM */
#ifdef HAVE_AESCCM
#if defined(HAVE_COLDFIRE_SEC)
#error "Coldfire SEC doesn't currently support AES-CCM mode"
#elif defined(WOLFSSL_PIC32MZ_CRYPT)
#error "PIC32MZ doesn't currently support AES-CCM mode"
#endif
int wc_AesCcmSetKey(Aes* aes, const byte* key, word32 keySz)
{
byte nonce[AES_BLOCK_SIZE];
if (!((keySz == 16) || (keySz == 24) || (keySz == 32)))
return BAD_FUNC_ARG;
XMEMSET(nonce, 0, sizeof(nonce));
return wc_AesSetKey(aes, key, keySz, nonce, AES_ENCRYPTION);
}
#ifndef FREESCALE_LTC
static void roll_x(Aes* aes, const byte* in, word32 inSz, byte* out)
{
/* process the bulk of the data */
while (inSz >= AES_BLOCK_SIZE) {
xorbuf(out, in, AES_BLOCK_SIZE);
in += AES_BLOCK_SIZE;
inSz -= AES_BLOCK_SIZE;
wc_AesEncrypt(aes, out, out);
}
/* process remainder of the data */
if (inSz > 0) {
xorbuf(out, in, inSz);
wc_AesEncrypt(aes, out, out);
}
}
static void roll_auth(Aes* aes, const byte* in, word32 inSz, byte* out)
{
word32 authLenSz;
word32 remainder;
/* encode the length in */
if (inSz <= 0xFEFF) {
authLenSz = 2;
out[0] ^= ((inSz & 0xFF00) >> 8);
out[1] ^= (inSz & 0x00FF);
}
else if (inSz <= 0xFFFFFFFF) {
authLenSz = 6;
out[0] ^= 0xFF; out[1] ^= 0xFE;
out[2] ^= ((inSz & 0xFF000000) >> 24);
out[3] ^= ((inSz & 0x00FF0000) >> 16);
out[4] ^= ((inSz & 0x0000FF00) >> 8);
out[5] ^= (inSz & 0x000000FF);
}
/* Note, the protocol handles auth data up to 2^64, but we are
* using 32-bit sizes right now, so the bigger data isn't handled
* else if (inSz <= 0xFFFFFFFFFFFFFFFF) {} */
else
return;
/* start fill out the rest of the first block */
remainder = AES_BLOCK_SIZE - authLenSz;
if (inSz >= remainder) {
/* plenty of bulk data to fill the remainder of this block */
xorbuf(out + authLenSz, in, remainder);
inSz -= remainder;
in += remainder;
}
else {
/* not enough bulk data, copy what is available, and pad zero */
xorbuf(out + authLenSz, in, inSz);
inSz = 0;
}
wc_AesEncrypt(aes, out, out);
if (inSz > 0)
roll_x(aes, in, inSz, out);
}
static INLINE void AesCcmCtrInc(byte* B, word32 lenSz)
{
word32 i;
for (i = 0; i < lenSz; i++) {
if (++B[AES_BLOCK_SIZE - 1 - i] != 0) return;
}
}
#endif /* !FREESCALE_LTC */
/* return 0 on success */
int wc_AesCcmEncrypt(Aes* aes, byte* out, const byte* in, word32 inSz,
const byte* nonce, word32 nonceSz,
byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
#ifdef FREESCALE_LTC
byte *key;
uint32_t keySize;
status_t status;
key = (byte*)aes->key;
status = wc_AesGetKeySize(aes, &keySize);
if (status != 0) {
return status;
}
status = LTC_AES_EncryptTagCcm(LTC_BASE, in, out, inSz,
nonce, nonceSz, authIn, authInSz, key, keySize, authTag, authTagSz);
return (kStatus_Success == status) ? 0 : BAD_FUNC_ARG;
#else
byte A[AES_BLOCK_SIZE];
byte B[AES_BLOCK_SIZE];
byte lenSz;
word32 i;
byte mask = 0xFF;
word32 wordSz = (word32)sizeof(word32);
/* sanity check on arguments */
if (aes == NULL || out == NULL || in == NULL || nonce == NULL
|| authTag == NULL || nonceSz < 7 || nonceSz > 13)
return BAD_FUNC_ARG;
XMEMCPY(B+1, nonce, nonceSz);
lenSz = AES_BLOCK_SIZE - 1 - (byte)nonceSz;
B[0] = (authInSz > 0 ? 64 : 0)
+ (8 * (((byte)authTagSz - 2) / 2))
+ (lenSz - 1);
for (i = 0; i < lenSz; i++) {
if (mask && i >= wordSz)
mask = 0x00;
B[AES_BLOCK_SIZE - 1 - i] = (inSz >> ((8 * i) & mask)) & mask;
}
wc_AesEncrypt(aes, B, A);
if (authInSz > 0)
roll_auth(aes, authIn, authInSz, A);
if (inSz > 0)
roll_x(aes, in, inSz, A);
XMEMCPY(authTag, A, authTagSz);
B[0] = lenSz - 1;
for (i = 0; i < lenSz; i++)
B[AES_BLOCK_SIZE - 1 - i] = 0;
wc_AesEncrypt(aes, B, A);
xorbuf(authTag, A, authTagSz);
B[15] = 1;
while (inSz >= AES_BLOCK_SIZE) {
wc_AesEncrypt(aes, B, A);
xorbuf(A, in, AES_BLOCK_SIZE);
XMEMCPY(out, A, AES_BLOCK_SIZE);
AesCcmCtrInc(B, lenSz);
inSz -= AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
if (inSz > 0) {
wc_AesEncrypt(aes, B, A);
xorbuf(A, in, inSz);
XMEMCPY(out, A, inSz);
}
ForceZero(A, AES_BLOCK_SIZE);
ForceZero(B, AES_BLOCK_SIZE);
return 0;
#endif /* FREESCALE_LTC */
}
#ifdef HAVE_AES_DECRYPT
int wc_AesCcmDecrypt(Aes* aes, byte* out, const byte* in, word32 inSz,
const byte* nonce, word32 nonceSz,
const byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz)
{
#ifdef FREESCALE_LTC
byte *key;
uint32_t keySize;
status_t status;
key = (byte*)aes->key;
status = wc_AesGetKeySize(aes, &keySize);
if (status != 0) {
return status;
}
status = LTC_AES_DecryptTagCcm(LTC_BASE, in, out, inSz,
nonce, nonceSz, authIn, authInSz, key, keySize, authTag, authTagSz);
if (status == kStatus_Success) {
return 0;
}
else {
XMEMSET(out, 0, inSz);
return AES_CCM_AUTH_E;
}
#else /* FREESCALE_LTC */
byte A[AES_BLOCK_SIZE];
byte B[AES_BLOCK_SIZE];
byte* o;
byte lenSz;
word32 i, oSz;
int result = 0;
byte mask = 0xFF;
word32 wordSz = (word32)sizeof(word32);
/* sanity check on arguments */
if (aes == NULL || out == NULL || in == NULL || nonce == NULL
|| authTag == NULL || nonceSz < 7 || nonceSz > 13)
return BAD_FUNC_ARG;
o = out;
oSz = inSz;
XMEMCPY(B+1, nonce, nonceSz);
lenSz = AES_BLOCK_SIZE - 1 - (byte)nonceSz;
B[0] = lenSz - 1;
for (i = 0; i < lenSz; i++)
B[AES_BLOCK_SIZE - 1 - i] = 0;
B[15] = 1;
while (oSz >= AES_BLOCK_SIZE) {
wc_AesEncrypt(aes, B, A);
xorbuf(A, in, AES_BLOCK_SIZE);
XMEMCPY(o, A, AES_BLOCK_SIZE);
AesCcmCtrInc(B, lenSz);
oSz -= AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
o += AES_BLOCK_SIZE;
}
if (inSz > 0) {
wc_AesEncrypt(aes, B, A);
xorbuf(A, in, oSz);
XMEMCPY(o, A, oSz);
}
for (i = 0; i < lenSz; i++)
B[AES_BLOCK_SIZE - 1 - i] = 0;
wc_AesEncrypt(aes, B, A);
o = out;
oSz = inSz;
B[0] = (authInSz > 0 ? 64 : 0)
+ (8 * (((byte)authTagSz - 2) / 2))
+ (lenSz - 1);
for (i = 0; i < lenSz; i++) {
if (mask && i >= wordSz)
mask = 0x00;
B[AES_BLOCK_SIZE - 1 - i] = (inSz >> ((8 * i) & mask)) & mask;
}
wc_AesEncrypt(aes, B, A);
if (authInSz > 0)
roll_auth(aes, authIn, authInSz, A);
if (inSz > 0)
roll_x(aes, o, oSz, A);
B[0] = lenSz - 1;
for (i = 0; i < lenSz; i++)
B[AES_BLOCK_SIZE - 1 - i] = 0;
wc_AesEncrypt(aes, B, B);
xorbuf(A, B, authTagSz);
if (ConstantCompare(A, authTag, authTagSz) != 0) {
/* If the authTag check fails, don't keep the decrypted data.
* Unfortunately, you need the decrypted data to calculate the
* check value. */
XMEMSET(out, 0, inSz);
result = AES_CCM_AUTH_E;
}
ForceZero(A, AES_BLOCK_SIZE);
ForceZero(B, AES_BLOCK_SIZE);
o = NULL;
return result;
#endif /* FREESCALE_LTC */
}
#endif /* HAVE_AES_DECRYPT */
#endif /* HAVE_AESCCM */
/* Initialize Aes for use with async hardware */
int wc_AesInit(Aes* aes, void* heap, int devId)
{
int ret = 0;
if (aes == NULL)
return BAD_FUNC_ARG;
aes->heap = heap;
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES)
ret = wolfAsync_DevCtxInit(&aes->asyncDev, WOLFSSL_ASYNC_MARKER_AES,
aes->heap, devId);
#else
(void)devId;
#endif /* WOLFSSL_ASYNC_CRYPT */
return ret;
}
/* Free Aes from use with async hardware */
void wc_AesFree(Aes* aes)
{
if (aes == NULL)
return;
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES)
wolfAsync_DevCtxFree(&aes->asyncDev, WOLFSSL_ASYNC_MARKER_AES);
#endif /* WOLFSSL_ASYNC_CRYPT */
}
int wc_AesGetKeySize(Aes* aes, word32* keySize)
{
int ret = 0;
if (aes == NULL || keySize == NULL) {
return BAD_FUNC_ARG;
}
switch (aes->rounds) {
case 10:
*keySize = 16;
break;
case 12:
*keySize = 24;
break;
case 14:
*keySize = 32;
break;
default:
*keySize = 0;
ret = BAD_FUNC_ARG;
}
return ret;
}
#endif /* !WOLFSSL_ARMASM */
#endif /* !WOLFSSL_TI_CRYPT */
#ifdef HAVE_AES_KEYWRAP
/* Initialize key wrap counter with value */
static INLINE void InitKeyWrapCounter(byte* inOutCtr, word32 value)
{
int i;
word32 bytes;
bytes = sizeof(word32);
for (i = 0; i < (int)sizeof(word32); i++) {
inOutCtr[i+sizeof(word32)] = (value >> ((bytes - 1) * 8)) & 0xFF;
bytes--;
}
}
/* Increment key wrap counter */
static INLINE void IncrementKeyWrapCounter(byte* inOutCtr)
{
int i;
/* in network byte order so start at end and work back */
for (i = KEYWRAP_BLOCK_SIZE - 1; i >= 0; i--) {
if (++inOutCtr[i]) /* we're done unless we overflow */
return;
}
}
/* Decrement key wrap counter */
static INLINE void DecrementKeyWrapCounter(byte* inOutCtr)
{
int i;
for (i = KEYWRAP_BLOCK_SIZE - 1; i >= 0; i--) {
if (--inOutCtr[i] != 0xFF) /* we're done unless we underflow */
return;
}
}
/* perform AES key wrap (RFC3394), return out sz on success, negative on err */
int wc_AesKeyWrap(const byte* key, word32 keySz, const byte* in, word32 inSz,
byte* out, word32 outSz, const byte* iv)
{
Aes aes;
byte* r;
word32 i;
int ret, j;
byte t[KEYWRAP_BLOCK_SIZE];
byte tmp[AES_BLOCK_SIZE];
/* n must be at least 2, output size is n + 8 bytes */
if (key == NULL || in == NULL || inSz < 2 ||
out == NULL || outSz < (inSz + KEYWRAP_BLOCK_SIZE))
return BAD_FUNC_ARG;
/* input must be multiple of 64-bits */
if (inSz % KEYWRAP_BLOCK_SIZE != 0)
return BAD_FUNC_ARG;
/* user IV is optional */
if (iv == NULL) {
XMEMSET(tmp, 0xA6, KEYWRAP_BLOCK_SIZE);
} else {
XMEMCPY(tmp, iv, KEYWRAP_BLOCK_SIZE);
}
r = out + 8;
XMEMCPY(r, in, inSz);
XMEMSET(t, 0, sizeof(t));
ret = wc_AesSetKey(&aes, key, keySz, NULL, AES_ENCRYPTION);
if (ret != 0)
return ret;
for (j = 0; j <= 5; j++) {
for (i = 1; i <= inSz / KEYWRAP_BLOCK_SIZE; i++) {
/* load R[i] */
XMEMCPY(tmp + KEYWRAP_BLOCK_SIZE, r, KEYWRAP_BLOCK_SIZE);
wc_AesEncryptDirect(&aes, tmp, tmp);
/* calculate new A */
IncrementKeyWrapCounter(t);
xorbuf(tmp, t, KEYWRAP_BLOCK_SIZE);
/* save R[i] */
XMEMCPY(r, tmp + KEYWRAP_BLOCK_SIZE, KEYWRAP_BLOCK_SIZE);
r += KEYWRAP_BLOCK_SIZE;
}
r = out + KEYWRAP_BLOCK_SIZE;
}
/* C[0] = A */
XMEMCPY(out, tmp, KEYWRAP_BLOCK_SIZE);
return inSz + KEYWRAP_BLOCK_SIZE;
}
int wc_AesKeyUnWrap(const byte* key, word32 keySz, const byte* in, word32 inSz,
byte* out, word32 outSz, const byte* iv)
{
Aes aes;
byte* r;
word32 i, n;
int ret, j;
byte t[KEYWRAP_BLOCK_SIZE];
byte tmp[AES_BLOCK_SIZE];
const byte* expIv;
const byte defaultIV[] = {
0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6
};
(void)iv;
if (key == NULL || in == NULL || inSz < 3 ||
out == NULL || outSz < (inSz - KEYWRAP_BLOCK_SIZE))
return BAD_FUNC_ARG;
/* input must be multiple of 64-bits */
if (inSz % KEYWRAP_BLOCK_SIZE != 0)
return BAD_FUNC_ARG;
/* user IV optional */
if (iv != NULL) {
expIv = iv;
} else {
expIv = defaultIV;
}
/* A = C[0], R[i] = C[i] */
XMEMCPY(tmp, in, KEYWRAP_BLOCK_SIZE);
XMEMCPY(out, in + KEYWRAP_BLOCK_SIZE, inSz - KEYWRAP_BLOCK_SIZE);
XMEMSET(t, 0, sizeof(t));
ret = wc_AesSetKey(&aes, key, keySz, NULL, AES_DECRYPTION);
if (ret != 0)
return ret;
/* initialize counter to 6n */
n = (inSz - 1) / KEYWRAP_BLOCK_SIZE;
InitKeyWrapCounter(t, 6 * n);
for (j = 5; j >= 0; j--) {
for (i = n; i >= 1; i--) {
/* calculate A */
xorbuf(tmp, t, KEYWRAP_BLOCK_SIZE);
DecrementKeyWrapCounter(t);
/* load R[i], starting at end of R */
r = out + ((i - 1) * KEYWRAP_BLOCK_SIZE);
XMEMCPY(tmp + KEYWRAP_BLOCK_SIZE, r, KEYWRAP_BLOCK_SIZE);
wc_AesDecryptDirect(&aes, tmp, tmp);
/* save R[i] */
XMEMCPY(r, tmp + KEYWRAP_BLOCK_SIZE, KEYWRAP_BLOCK_SIZE);
}
}
/* verify IV */
if (XMEMCMP(tmp, expIv, KEYWRAP_BLOCK_SIZE) != 0)
return BAD_KEYWRAP_IV_E;
return inSz - KEYWRAP_BLOCK_SIZE;
}
#endif /* HAVE_AES_KEYWRAP */
#endif /* HAVE_FIPS */
#endif /* !NO_AES */