Files
wolfssl/src/tls.c
2025-10-17 13:51:42 +11:00

17175 lines
540 KiB
C

/* tls.c
*
* Copyright (C) 2006-2025 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#include <wolfssl/wolfcrypt/libwolfssl_sources.h>
#ifndef WOLFCRYPT_ONLY
#include <wolfssl/ssl.h>
#include <wolfssl/internal.h>
#include <wolfssl/error-ssl.h>
#include <wolfssl/wolfcrypt/hash.h>
#include <wolfssl/wolfcrypt/hmac.h>
#include <wolfssl/wolfcrypt/kdf.h>
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
#ifdef HAVE_CURVE25519
#include <wolfssl/wolfcrypt/curve25519.h>
#endif
#ifdef HAVE_CURVE448
#include <wolfssl/wolfcrypt/curve448.h>
#endif
#ifdef WOLFSSL_HAVE_MLKEM
#include <wolfssl/wolfcrypt/mlkem.h>
#ifdef WOLFSSL_WC_MLKEM
#include <wolfssl/wolfcrypt/wc_mlkem.h>
#elif defined(HAVE_LIBOQS)
#include <wolfssl/wolfcrypt/ext_mlkem.h>
#endif
#endif
#if defined(WOLFSSL_RENESAS_TSIP_TLS)
#include <wolfssl/wolfcrypt/port/Renesas/renesas_tsip_internal.h>
#endif
#include <wolfssl/wolfcrypt/hpke.h>
#ifndef NO_TLS
#if defined(WOLFSSL_TLS13) && defined(HAVE_SUPPORTED_CURVES)
static void TLSX_KeyShare_FreeAll(KeyShareEntry* list, void* heap);
#endif
#ifdef HAVE_SUPPORTED_CURVES
static int TLSX_PopulateSupportedGroups(WOLFSSL* ssl, TLSX** extensions);
#endif
/* Digest enable checks */
#ifdef NO_OLD_TLS /* TLS 1.2 only */
#if defined(NO_SHA256) && !defined(WOLFSSL_SHA384) && \
!defined(WOLFSSL_SHA512)
#error Must have SHA256, SHA384 or SHA512 enabled for TLS 1.2
#endif
#else /* TLS 1.1 or older */
#if defined(NO_MD5) && defined(NO_SHA)
#error Must have SHA1 and MD5 enabled for old TLS
#endif
#endif
#ifdef WOLFSSL_TLS13
#if !defined(NO_DH) && \
!defined(HAVE_FFDHE_2048) && !defined(HAVE_FFDHE_3072) && \
!defined(HAVE_FFDHE_4096) && !defined(HAVE_FFDHE_6144) && \
!defined(HAVE_FFDHE_8192)
#error Please configure your TLS 1.3 DH key size using either: HAVE_FFDHE_2048, HAVE_FFDHE_3072, HAVE_FFDHE_4096, HAVE_FFDHE_6144 or HAVE_FFDHE_8192
#endif
#if !defined(NO_RSA) && !defined(WC_RSA_PSS)
#error The build option WC_RSA_PSS is required for TLS 1.3 with RSA
#endif
#ifndef HAVE_TLS_EXTENSIONS
#ifndef _MSC_VER
#error "The build option HAVE_TLS_EXTENSIONS is required for TLS 1.3"
#else
#pragma message("Error: The build option HAVE_TLS_EXTENSIONS is required for TLS 1.3")
#endif
#endif
#endif
/* Warn if secrets logging is enabled */
#if (defined(SHOW_SECRETS) || defined(WOLFSSL_SSLKEYLOGFILE)) && \
!defined(WOLFSSL_KEYLOG_EXPORT_WARNED)
#ifndef _MSC_VER
#warning The SHOW_SECRETS and WOLFSSL_SSLKEYLOGFILE options should only be used for debugging and never in a production environment
#else
#pragma message("Warning: The SHOW_SECRETS and WOLFSSL_SSLKEYLOGFILE options should only be used for debugging and never in a production environment")
#endif
#endif
#ifndef WOLFSSL_NO_TLS12
#ifdef WOLFSSL_SHA384
#define HSHASH_SZ WC_SHA384_DIGEST_SIZE
#else
#define HSHASH_SZ FINISHED_SZ
#endif
int BuildTlsHandshakeHash(WOLFSSL* ssl, byte* hash, word32* hashLen)
{
int ret = 0;
word32 hashSz = FINISHED_SZ;
if (ssl == NULL || hash == NULL || hashLen == NULL || *hashLen < HSHASH_SZ)
return BAD_FUNC_ARG;
/* for constant timing perform these even if error */
#ifndef NO_OLD_TLS
ret |= wc_Md5GetHash(&ssl->hsHashes->hashMd5, hash);
ret |= wc_ShaGetHash(&ssl->hsHashes->hashSha, &hash[WC_MD5_DIGEST_SIZE]);
#endif
if (IsAtLeastTLSv1_2(ssl)) {
#ifndef NO_SHA256
if (ssl->specs.mac_algorithm <= sha256_mac ||
ssl->specs.mac_algorithm == blake2b_mac) {
ret |= wc_Sha256GetHash(&ssl->hsHashes->hashSha256, hash);
hashSz = WC_SHA256_DIGEST_SIZE;
}
#endif
#ifdef WOLFSSL_SHA384
if (ssl->specs.mac_algorithm == sha384_mac) {
ret |= wc_Sha384GetHash(&ssl->hsHashes->hashSha384, hash);
hashSz = WC_SHA384_DIGEST_SIZE;
}
#endif
#ifdef WOLFSSL_SM3
if (ssl->specs.mac_algorithm == sm3_mac) {
ret |= wc_Sm3GetHash(&ssl->hsHashes->hashSm3, hash);
hashSz = WC_SM3_DIGEST_SIZE;
}
#endif
}
*hashLen = hashSz;
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("TLS handshake hash", hash, hashSz);
#endif
if (ret != 0) {
ret = BUILD_MSG_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
return ret;
}
int BuildTlsFinished(WOLFSSL* ssl, Hashes* hashes, const byte* sender)
{
int ret;
const byte* side = NULL;
word32 hashSz = HSHASH_SZ;
#if !defined(WOLFSSL_ASYNC_CRYPT) || defined(WC_ASYNC_NO_HASH)
byte handshake_hash[HSHASH_SZ];
#else
byte* handshake_hash = NULL;
handshake_hash = XMALLOC(HSHASH_SZ, ssl->heap, DYNAMIC_TYPE_DIGEST);
if (handshake_hash == NULL)
return MEMORY_E;
#endif
XMEMSET(handshake_hash, 0, HSHASH_SZ);
ret = BuildTlsHandshakeHash(ssl, handshake_hash, &hashSz);
if (ret == 0) {
if (XSTRNCMP((const char*)sender, (const char*)kTlsClientStr,
SIZEOF_SENDER) == 0) {
side = kTlsClientFinStr;
}
else if (XSTRNCMP((const char*)sender, (const char*)kTlsServerStr,
SIZEOF_SENDER) == 0) {
side = kTlsServerFinStr;
}
else {
ret = BAD_FUNC_ARG;
WOLFSSL_MSG("Unexpected sender value");
}
}
if (ret == 0) {
#ifdef WOLFSSL_HAVE_PRF
#if !defined(NO_CERTS) && defined(HAVE_PK_CALLBACKS)
if (ssl->ctx->TlsFinishedCb) {
void* ctx = wolfSSL_GetTlsFinishedCtx(ssl);
ret = ssl->ctx->TlsFinishedCb(ssl, side, handshake_hash, hashSz,
(byte*)hashes, ctx);
}
if (!ssl->ctx->TlsFinishedCb ||
ret == WC_NO_ERR_TRACE(PROTOCOLCB_UNAVAILABLE))
#endif
{
PRIVATE_KEY_UNLOCK();
ret = wc_PRF_TLS((byte*)hashes, TLS_FINISHED_SZ,
ssl->arrays->masterSecret, SECRET_LEN, side,
FINISHED_LABEL_SZ, handshake_hash, hashSz,
IsAtLeastTLSv1_2(ssl), ssl->specs.mac_algorithm,
ssl->heap, ssl->devId);
PRIVATE_KEY_LOCK();
}
ForceZero(handshake_hash, hashSz);
#else
/* Pseudo random function must be enabled in the configuration. */
ret = PRF_MISSING;
WOLFSSL_ERROR_VERBOSE(ret);
WOLFSSL_MSG("Pseudo-random function is not enabled");
(void)side;
(void)hashes;
#endif
}
#if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_ASYNC_NO_HASH)
XFREE(handshake_hash, ssl->heap, DYNAMIC_TYPE_DIGEST);
#elif defined(WOLFSSL_CHECK_MEM_ZERO)
wc_MemZero_Check(handshake_hash, HSHASH_SZ);
#endif
return ret;
}
#endif /* !WOLFSSL_NO_TLS12 */
#ifndef NO_OLD_TLS
#ifdef WOLFSSL_ALLOW_TLSV10
ProtocolVersion MakeTLSv1(void)
{
ProtocolVersion pv;
pv.major = SSLv3_MAJOR;
pv.minor = TLSv1_MINOR;
return pv;
}
#endif /* WOLFSSL_ALLOW_TLSV10 */
ProtocolVersion MakeTLSv1_1(void)
{
ProtocolVersion pv;
pv.major = SSLv3_MAJOR;
pv.minor = TLSv1_1_MINOR;
return pv;
}
#endif /* !NO_OLD_TLS */
#ifndef WOLFSSL_NO_TLS12
ProtocolVersion MakeTLSv1_2(void)
{
ProtocolVersion pv;
pv.major = SSLv3_MAJOR;
pv.minor = TLSv1_2_MINOR;
return pv;
}
#endif /* !WOLFSSL_NO_TLS12 */
#ifdef WOLFSSL_TLS13
/* The TLS v1.3 protocol version.
*
* returns the protocol version data for TLS v1.3.
*/
ProtocolVersion MakeTLSv1_3(void)
{
ProtocolVersion pv;
pv.major = SSLv3_MAJOR;
pv.minor = TLSv1_3_MINOR;
return pv;
}
#endif
#if defined(HAVE_SUPPORTED_CURVES)
/* Sets the key exchange groups in rank order on a context.
*
* ctx SSL/TLS context object.
* groups Array of groups.
* count Number of groups in array.
* returns BAD_FUNC_ARG when ctx or groups is NULL, not using TLS v1.3 or
* count is greater than WOLFSSL_MAX_GROUP_COUNT and WOLFSSL_SUCCESS on success.
*/
int wolfSSL_CTX_set_groups(WOLFSSL_CTX* ctx, int* groups, int count)
{
int ret, i;
WOLFSSL_ENTER("wolfSSL_CTX_set_groups");
if (ctx == NULL || groups == NULL || count > WOLFSSL_MAX_GROUP_COUNT)
return BAD_FUNC_ARG;
if (!IsTLS_ex(ctx->method->version))
return BAD_FUNC_ARG;
#ifdef WOLFSSL_TLS13
ctx->numGroups = 0;
#endif
#if !defined(NO_TLS)
TLSX_Remove(&ctx->extensions, TLSX_SUPPORTED_GROUPS, ctx->heap);
#endif /* !NO_TLS */
for (i = 0; i < count; i++) {
/* Call to wolfSSL_CTX_UseSupportedCurve also checks if input groups
* are valid */
if ((ret = wolfSSL_CTX_UseSupportedCurve(ctx, (word16)groups[i]))
!= WOLFSSL_SUCCESS) {
#if !defined(NO_TLS)
TLSX_Remove(&ctx->extensions, TLSX_SUPPORTED_GROUPS, ctx->heap);
#endif /* !NO_TLS */
return ret;
}
#ifdef WOLFSSL_TLS13
ctx->group[i] = (word16)groups[i];
#endif
}
#ifdef WOLFSSL_TLS13
ctx->numGroups = (byte)count;
#endif
return WOLFSSL_SUCCESS;
}
/* Sets the key exchange groups in rank order.
*
* ssl SSL/TLS object.
* groups Array of groups.
* count Number of groups in array.
* returns BAD_FUNC_ARG when ssl or groups is NULL, not using TLS v1.3 or
* count is greater than WOLFSSL_MAX_GROUP_COUNT and WOLFSSL_SUCCESS on success.
*/
int wolfSSL_set_groups(WOLFSSL* ssl, int* groups, int count)
{
int ret, i;
WOLFSSL_ENTER("wolfSSL_set_groups");
if (ssl == NULL || groups == NULL || count > WOLFSSL_MAX_GROUP_COUNT)
return BAD_FUNC_ARG;
if (!IsTLS_ex(ssl->version))
return BAD_FUNC_ARG;
#ifdef WOLFSSL_TLS13
ssl->numGroups = 0;
#endif
#if !defined(NO_TLS)
TLSX_Remove(&ssl->extensions, TLSX_SUPPORTED_GROUPS, ssl->heap);
#endif /* !NO_TLS */
for (i = 0; i < count; i++) {
/* Call to wolfSSL_UseSupportedCurve also checks if input groups
* are valid */
if ((ret = wolfSSL_UseSupportedCurve(ssl, (word16)groups[i]))
!= WOLFSSL_SUCCESS) {
#if !defined(NO_TLS)
TLSX_Remove(&ssl->extensions, TLSX_SUPPORTED_GROUPS, ssl->heap);
#endif /* !NO_TLS */
return ret;
}
#ifdef WOLFSSL_TLS13
ssl->group[i] = (word16)groups[i];
#endif
}
#ifdef WOLFSSL_TLS13
ssl->numGroups = (byte)count;
#endif
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_SUPPORTED_CURVES */
#ifndef WOLFSSL_NO_TLS12
#ifdef HAVE_EXTENDED_MASTER
static const byte ext_master_label[EXT_MASTER_LABEL_SZ + 1] =
"extended master secret";
#endif
static const byte master_label[MASTER_LABEL_SZ + 1] = "master secret";
static const byte key_label [KEY_LABEL_SZ + 1] = "key expansion";
static int _DeriveTlsKeys(byte* key_dig, word32 key_dig_len,
const byte* ms, word32 msLen,
const byte* sr, const byte* cr,
int tls1_2, int hash_type,
void* heap, int devId)
{
int ret;
#if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_ASYNC_NO_HASH)
byte* seed = NULL;
seed = XMALLOC(SEED_LEN, heap, DYNAMIC_TYPE_SEED);
if (seed == NULL)
return MEMORY_E;
#else
byte seed[SEED_LEN];
#endif
XMEMCPY(seed, sr, RAN_LEN);
XMEMCPY(seed + RAN_LEN, cr, RAN_LEN);
#ifdef WOLFSSL_HAVE_PRF
PRIVATE_KEY_UNLOCK();
ret = wc_PRF_TLS(key_dig, key_dig_len, ms, msLen, key_label, KEY_LABEL_SZ,
seed, SEED_LEN, tls1_2, hash_type, heap, devId);
PRIVATE_KEY_LOCK();
#else
/* Pseudo random function must be enabled in the configuration. */
ret = PRF_MISSING;
WOLFSSL_ERROR_VERBOSE(ret);
WOLFSSL_MSG("Pseudo-random function is not enabled");
(void)key_dig;
(void)key_dig_len;
(void)ms;
(void)msLen;
(void)tls1_2;
(void)hash_type;
(void)heap;
(void)devId;
(void)key_label;
(void)master_label;
#ifdef HAVE_EXTENDED_MASTER
(void)ext_master_label;
#endif
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_ASYNC_NO_HASH)
XFREE(seed, heap, DYNAMIC_TYPE_SEED);
#endif
return ret;
}
/* External facing wrapper so user can call as well, 0 on success */
int wolfSSL_DeriveTlsKeys(byte* key_data, word32 keyLen,
const byte* ms, word32 msLen,
const byte* sr, const byte* cr,
int tls1_2, int hash_type)
{
return _DeriveTlsKeys(key_data, keyLen, ms, msLen, sr, cr, tls1_2,
hash_type, NULL, INVALID_DEVID);
}
int DeriveTlsKeys(WOLFSSL* ssl)
{
int ret;
int key_dig_len = 2 * ssl->specs.hash_size +
2 * ssl->specs.key_size +
2 * ssl->specs.iv_size;
WC_DECLARE_VAR(key_dig, byte, MAX_PRF_DIG, 0);
WC_ALLOC_VAR_EX(key_dig, byte, MAX_PRF_DIG, ssl->heap,
DYNAMIC_TYPE_DIGEST, return MEMORY_E);
XMEMSET(key_dig, 0, MAX_PRF_DIG);
#if !defined(NO_CERTS) && defined(HAVE_PK_CALLBACKS)
ret = PROTOCOLCB_UNAVAILABLE;
if (ssl->ctx->GenSessionKeyCb) {
void* ctx = wolfSSL_GetGenSessionKeyCtx(ssl);
ret = ssl->ctx->GenSessionKeyCb(ssl, ctx);
}
if (!ssl->ctx->GenSessionKeyCb ||
ret == WC_NO_ERR_TRACE(PROTOCOLCB_UNAVAILABLE))
#endif
ret = _DeriveTlsKeys(key_dig, (word32)key_dig_len,
ssl->arrays->masterSecret, SECRET_LEN,
ssl->arrays->serverRandom, ssl->arrays->clientRandom,
IsAtLeastTLSv1_2(ssl), ssl->specs.mac_algorithm,
ssl->heap, ssl->devId);
if (ret == 0)
ret = StoreKeys(ssl, key_dig, PROVISION_CLIENT_SERVER);
WC_FREE_VAR_EX(key_dig, ssl->heap, DYNAMIC_TYPE_DIGEST);
return ret;
}
static int _MakeTlsMasterSecret(byte* ms, word32 msLen,
const byte* pms, word32 pmsLen,
const byte* cr, const byte* sr,
int tls1_2, int hash_type,
void* heap, int devId)
{
int ret;
#if !defined(WOLFSSL_ASYNC_CRYPT) || defined(WC_ASYNC_NO_HASH)
byte seed[SEED_LEN];
#else
byte* seed = NULL;
seed = XMALLOC(SEED_LEN, heap, DYNAMIC_TYPE_SEED);
if (seed == NULL)
return MEMORY_E;
#endif
XMEMCPY(seed, cr, RAN_LEN);
XMEMCPY(seed + RAN_LEN, sr, RAN_LEN);
#ifdef WOLFSSL_HAVE_PRF
PRIVATE_KEY_UNLOCK();
ret = wc_PRF_TLS(ms, msLen, pms, pmsLen, master_label, MASTER_LABEL_SZ,
seed, SEED_LEN, tls1_2, hash_type, heap, devId);
PRIVATE_KEY_LOCK();
#else
/* Pseudo random function must be enabled in the configuration. */
ret = PRF_MISSING;
WOLFSSL_MSG("Pseudo-random function is not enabled");
(void)ms;
(void)msLen;
(void)pms;
(void)pmsLen;
(void)tls1_2;
(void)hash_type;
(void)heap;
(void)devId;
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_ASYNC_NO_HASH)
XFREE(seed, heap, DYNAMIC_TYPE_SEED);
#endif
return ret;
}
/* External facing wrapper so user can call as well, 0 on success */
int wolfSSL_MakeTlsMasterSecret(byte* ms, word32 msLen,
const byte* pms, word32 pmsLen,
const byte* cr, const byte* sr,
int tls1_2, int hash_type)
{
return _MakeTlsMasterSecret(ms, msLen, pms, pmsLen, cr, sr, tls1_2,
hash_type, NULL, INVALID_DEVID);
}
#ifdef HAVE_EXTENDED_MASTER
static int _MakeTlsExtendedMasterSecret(byte* ms, word32 msLen,
const byte* pms, word32 pmsLen,
const byte* sHash, word32 sHashLen,
int tls1_2, int hash_type,
void* heap, int devId)
{
int ret;
#ifdef WOLFSSL_HAVE_PRF
PRIVATE_KEY_UNLOCK();
ret = wc_PRF_TLS(ms, msLen, pms, pmsLen, ext_master_label, EXT_MASTER_LABEL_SZ,
sHash, sHashLen, tls1_2, hash_type, heap, devId);
PRIVATE_KEY_LOCK();
#else
/* Pseudo random function must be enabled in the configuration. */
ret = PRF_MISSING;
WOLFSSL_MSG("Pseudo-random function is not enabled");
(void)ms;
(void)msLen;
(void)pms;
(void)pmsLen;
(void)sHash;
(void)sHashLen;
(void)tls1_2;
(void)hash_type;
(void)heap;
(void)devId;
#endif
return ret;
}
/* External facing wrapper so user can call as well, 0 on success */
int wolfSSL_MakeTlsExtendedMasterSecret(byte* ms, word32 msLen,
const byte* pms, word32 pmsLen,
const byte* sHash, word32 sHashLen,
int tls1_2, int hash_type)
{
return _MakeTlsExtendedMasterSecret(ms, msLen, pms, pmsLen, sHash, sHashLen,
tls1_2, hash_type, NULL, INVALID_DEVID);
}
#endif /* HAVE_EXTENDED_MASTER */
int MakeTlsMasterSecret(WOLFSSL* ssl)
{
int ret;
#if defined(WOLFSSL_SNIFFER) && defined(WOLFSSL_SNIFFER_KEYLOGFILE)
/* If this is called from a sniffer session with keylog file support, obtain
* the master secret from the callback */
if (ssl->snifferSecretCb != NULL) {
ret = ssl->snifferSecretCb(ssl->arrays->clientRandom,
SNIFFER_SECRET_TLS12_MASTER_SECRET,
ssl->arrays->masterSecret);
if (ret != 0) {
return ret;
}
ret = DeriveTlsKeys(ssl);
return ret;
}
#endif /* WOLFSSL_SNIFFER && WOLFSSL_SNIFFER_KEYLOGFILE */
#ifdef HAVE_EXTENDED_MASTER
if (ssl->options.haveEMS) {
word32 hashSz = HSHASH_SZ;
#ifdef WOLFSSL_SMALL_STACK
byte* handshake_hash = (byte*)XMALLOC(HSHASH_SZ, ssl->heap,
DYNAMIC_TYPE_DIGEST);
if (handshake_hash == NULL)
return MEMORY_E;
#else
byte handshake_hash[HSHASH_SZ];
#endif
XMEMSET(handshake_hash, 0, HSHASH_SZ);
ret = BuildTlsHandshakeHash(ssl, handshake_hash, &hashSz);
if (ret == 0) {
#if !defined(NO_CERTS) && defined(HAVE_PK_CALLBACKS)
ret = PROTOCOLCB_UNAVAILABLE;
if (ssl->ctx->GenExtMasterCb) {
void* ctx = wolfSSL_GetGenExtMasterSecretCtx(ssl);
ret = ssl->ctx->GenExtMasterCb(ssl, handshake_hash, hashSz,
ctx);
}
if (!ssl->ctx->GenExtMasterCb ||
ret == WC_NO_ERR_TRACE(PROTOCOLCB_UNAVAILABLE))
#endif /* (HAVE_SECRET_CALLBACK) && (HAVE_EXT_SECRET_CALLBACK) */
{
ret = _MakeTlsExtendedMasterSecret(
ssl->arrays->masterSecret, SECRET_LEN,
ssl->arrays->preMasterSecret, ssl->arrays->preMasterSz,
handshake_hash, hashSz,
IsAtLeastTLSv1_2(ssl), ssl->specs.mac_algorithm,
ssl->heap, ssl->devId);
}
ForceZero(handshake_hash, hashSz);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(handshake_hash, ssl->heap, DYNAMIC_TYPE_DIGEST);
#elif defined(WOLFSSL_CHECK_MEM_ZERO)
wc_MemZero_Check(handshake_hash, HSHASH_SZ);
#endif
}
else
#endif /* HAVE_EXTENDED_MASTER */
{
#if !defined(NO_CERTS) && defined(HAVE_PK_CALLBACKS)
ret = PROTOCOLCB_UNAVAILABLE;
if (ssl->ctx->GenMasterCb) {
void* ctx = wolfSSL_GetGenMasterSecretCtx(ssl);
ret = ssl->ctx->GenMasterCb(ssl, ctx);
}
if (!ssl->ctx->GenMasterCb ||
ret == WC_NO_ERR_TRACE(PROTOCOLCB_UNAVAILABLE))
#endif
{
ret = _MakeTlsMasterSecret(ssl->arrays->masterSecret,
SECRET_LEN, ssl->arrays->preMasterSecret,
ssl->arrays->preMasterSz, ssl->arrays->clientRandom,
ssl->arrays->serverRandom, IsAtLeastTLSv1_2(ssl),
ssl->specs.mac_algorithm, ssl->heap, ssl->devId);
}
}
#ifdef HAVE_SECRET_CALLBACK
if (ret == 0 && ssl->tlsSecretCb != NULL) {
ret = ssl->tlsSecretCb(ssl, ssl->arrays->masterSecret,
SECRET_LEN, ssl->tlsSecretCtx);
}
#endif /* HAVE_SECRET_CALLBACK */
if (ret == 0) {
ret = DeriveTlsKeys(ssl);
}
return ret;
}
/* Used by EAP-TLS and EAP-TTLS to derive keying material from
* the master_secret. */
int wolfSSL_make_eap_keys(WOLFSSL* ssl, void* key, unsigned int len,
const char* label)
{
int ret;
WC_DECLARE_VAR(seed, byte, SEED_LEN, 0);
WC_ALLOC_VAR_EX(seed, byte, SEED_LEN, ssl->heap, DYNAMIC_TYPE_SEED,
return MEMORY_E);
/*
* As per RFC-5281, the order of the client and server randoms is reversed
* from that used by the TLS protocol to derive keys.
*/
XMEMCPY(seed, ssl->arrays->clientRandom, RAN_LEN);
XMEMCPY(seed + RAN_LEN, ssl->arrays->serverRandom, RAN_LEN);
#ifdef WOLFSSL_HAVE_PRF
PRIVATE_KEY_UNLOCK();
ret = wc_PRF_TLS((byte*)key, len, ssl->arrays->masterSecret, SECRET_LEN,
(const byte *)label, (word32)XSTRLEN(label), seed, SEED_LEN,
IsAtLeastTLSv1_2(ssl), ssl->specs.mac_algorithm,
ssl->heap, ssl->devId);
PRIVATE_KEY_LOCK();
#else
/* Pseudo random function must be enabled in the configuration. */
ret = PRF_MISSING;
WOLFSSL_MSG("Pseudo-random function is not enabled");
(void)key;
(void)len;
(void)label;
#endif
WC_FREE_VAR_EX(seed, ssl->heap, DYNAMIC_TYPE_SEED);
return ret;
}
/* return HMAC digest type in wolfSSL format */
int wolfSSL_GetHmacType(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return wolfSSL_GetHmacType_ex(&ssl->specs);
}
int wolfSSL_SetTlsHmacInner(WOLFSSL* ssl, byte* inner, word32 sz, int content,
int verify)
{
if (ssl == NULL || inner == NULL)
return BAD_FUNC_ARG;
if (content == dtls12_cid
#if defined(WOLFSSL_DTLS) && defined(WOLFSSL_DTLS_CID)
|| (ssl->options.dtls && DtlsGetCidTxSize(ssl) > 0)
#endif
) {
WOLFSSL_MSG("wolfSSL_SetTlsHmacInner doesn't support CID");
return BAD_FUNC_ARG;
}
XMEMSET(inner, 0, WOLFSSL_TLS_HMAC_INNER_SZ);
WriteSEQ(ssl, verify, inner);
inner[SEQ_SZ] = (byte)content;
inner[SEQ_SZ + ENUM_LEN] = ssl->version.major;
inner[SEQ_SZ + ENUM_LEN + ENUM_LEN] = ssl->version.minor;
c16toa((word16)sz, inner + SEQ_SZ + ENUM_LEN + VERSION_SZ);
return 0;
}
#ifndef WOLFSSL_AEAD_ONLY
#if !defined(WOLFSSL_NO_HASH_RAW) && !defined(HAVE_FIPS) && \
!defined(HAVE_SELFTEST)
/* Update the hash in the HMAC.
*
* hmac HMAC object.
* data Data to be hashed.
* sz Size of data to hash.
* returns 0 on success, otherwise failure.
*/
static int Hmac_HashUpdate(Hmac* hmac, const byte* data, word32 sz)
{
int ret = WC_NO_ERR_TRACE(BAD_FUNC_ARG);
switch (hmac->macType) {
#ifndef NO_SHA
case WC_SHA:
ret = wc_ShaUpdate(&hmac->hash.sha, data, sz);
break;
#endif /* !NO_SHA */
#ifndef NO_SHA256
case WC_SHA256:
ret = wc_Sha256Update(&hmac->hash.sha256, data, sz);
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
ret = wc_Sha384Update(&hmac->hash.sha384, data, sz);
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
ret = wc_Sha512Update(&hmac->hash.sha512, data, sz);
break;
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SM3
case WC_SM3:
ret = wc_Sm3Update(&hmac->hash.sm3, data, sz);
break;
#endif /* WOLFSSL_SM3 */
default:
ret = BAD_FUNC_ARG;
break;
}
return ret;
}
/* Finalize the hash but don't put the EOC, padding or length in.
*
* hmac HMAC object.
* hash Hash result.
* returns 0 on success, otherwise failure.
*/
static int Hmac_HashFinalRaw(Hmac* hmac, unsigned char* hash)
{
int ret = WC_NO_ERR_TRACE(BAD_FUNC_ARG);
switch (hmac->macType) {
#ifndef NO_SHA
case WC_SHA:
ret = wc_ShaFinalRaw(&hmac->hash.sha, hash);
break;
#endif /* !NO_SHA */
#ifndef NO_SHA256
case WC_SHA256:
ret = wc_Sha256FinalRaw(&hmac->hash.sha256, hash);
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
ret = wc_Sha384FinalRaw(&hmac->hash.sha384, hash);
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
ret = wc_Sha512FinalRaw(&hmac->hash.sha512, hash);
break;
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SM3
case WC_SM3:
ret = wc_Sm3FinalRaw(&hmac->hash.sm3, hash);
break;
#endif /* WOLFSSL_SM3 */
default:
ret = BAD_FUNC_ARG;
break;
}
return ret;
}
/* Finalize the HMAC by performing outer hash.
*
* hmac HMAC object.
* mac MAC result.
* returns 0 on success, otherwise failure.
*/
static int Hmac_OuterHash(Hmac* hmac, unsigned char* mac)
{
int ret = WC_NO_ERR_TRACE(BAD_FUNC_ARG);
wc_HashAlg hash;
enum wc_HashType hashType = (enum wc_HashType)hmac->macType;
int digestSz = wc_HashGetDigestSize(hashType);
int blockSz = wc_HashGetBlockSize(hashType);
if ((digestSz >= 0) && (blockSz >= 0)) {
ret = wc_HashInit(&hash, hashType);
}
else {
ret = BAD_FUNC_ARG;
}
if (ret == 0) {
ret = wc_HashUpdate(&hash, hashType, (byte*)hmac->opad,
(word32)blockSz);
if (ret == 0)
ret = wc_HashUpdate(&hash, hashType, (byte*)hmac->innerHash,
(word32)digestSz);
if (ret == 0)
ret = wc_HashFinal(&hash, hashType, mac);
wc_HashFree(&hash, hashType);
}
return ret;
}
/* Calculate the HMAC of the header + message data.
* Constant time implementation using wc_Sha*FinalRaw().
*
* hmac HMAC object.
* digest MAC result.
* in Message data.
* sz Size of the message data.
* header Constructed record header with length of handshake data.
* headerSz Length of header
* returns 0 on success, otherwise failure.
*/
static int Hmac_UpdateFinal_CT(Hmac* hmac, byte* digest, const byte* in,
word32 sz, int macLen, byte* header, word32 headerSz)
{
byte lenBytes[8];
int i, j;
unsigned int k;
int blockBits, blockMask;
int lastBlockLen, extraLen, eocIndex;
int blocks;
int safeBlocks;
int lenBlock;
int eocBlock;
word32 maxLen;
int blockSz, padSz;
int ret;
word32 realLen;
byte extraBlock;
switch (hmac->macType) {
#ifndef NO_SHA
case WC_SHA:
blockSz = WC_SHA_BLOCK_SIZE;
blockBits = 6;
padSz = WC_SHA_BLOCK_SIZE - WC_SHA_PAD_SIZE + 1;
break;
#endif /* !NO_SHA */
#ifndef NO_SHA256
case WC_SHA256:
blockSz = WC_SHA256_BLOCK_SIZE;
blockBits = 6;
padSz = WC_SHA256_BLOCK_SIZE - WC_SHA256_PAD_SIZE + 1;
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
blockSz = WC_SHA384_BLOCK_SIZE;
blockBits = 7;
padSz = WC_SHA384_BLOCK_SIZE - WC_SHA384_PAD_SIZE + 1;
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
blockSz = WC_SHA512_BLOCK_SIZE;
blockBits = 7;
padSz = WC_SHA512_BLOCK_SIZE - WC_SHA512_PAD_SIZE + 1;
break;
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SM3
case WC_SM3:
blockSz = WC_SM3_BLOCK_SIZE;
blockBits = 6;
padSz = WC_SM3_BLOCK_SIZE - WC_SM3_PAD_SIZE + 1;
break;
#endif /* WOLFSSL_SM3 */
default:
return BAD_FUNC_ARG;
}
blockMask = blockSz - 1;
/* Size of data to HMAC if padding length byte is zero. */
maxLen = WOLFSSL_TLS_HMAC_INNER_SZ + sz - 1 - (word32)macLen;
/* Complete data (including padding) has block for EOC and/or length. */
extraBlock = ctSetLTE(((int)maxLen + padSz) & blockMask, padSz);
/* Total number of blocks for data including padding. */
blocks = ((int)(maxLen + (word32)blockSz - 1) >> blockBits) + extraBlock;
/* Up to last 6 blocks can be hashed safely. */
safeBlocks = blocks - 6;
/* Length of message data. */
realLen = maxLen - in[sz - 1];
/* Number of message bytes in last block. */
lastBlockLen = (int)realLen & blockMask;
/* Number of padding bytes in last block. */
extraLen = ((blockSz * 2 - padSz - lastBlockLen) & blockMask) + 1;
/* Number of blocks to create for hash. */
lenBlock = ((int)realLen + extraLen) >> blockBits;
/* Block containing EOC byte. */
eocBlock = (int)(realLen >> (word32)blockBits);
/* Index of EOC byte in block. */
eocIndex = (int)(realLen & (word32)blockMask);
/* Add length of hmac's ipad to total length. */
realLen += (word32)blockSz;
/* Length as bits - 8 bytes bigendian. */
c32toa(realLen >> ((sizeof(word32) * 8) - 3), lenBytes);
c32toa(realLen << 3, lenBytes + sizeof(word32));
ret = Hmac_HashUpdate(hmac, (unsigned char*)hmac->ipad, (word32)blockSz);
if (ret != 0)
return ret;
XMEMSET(hmac->innerHash, 0, (size_t)macLen);
if (safeBlocks > 0) {
ret = Hmac_HashUpdate(hmac, header, headerSz);
if (ret != 0)
return ret;
ret = Hmac_HashUpdate(hmac, in, (word32)(safeBlocks * blockSz -
WOLFSSL_TLS_HMAC_INNER_SZ));
if (ret != 0)
return ret;
}
else
safeBlocks = 0;
XMEMSET(digest, 0, (size_t)macLen);
k = (unsigned int)(safeBlocks * blockSz);
for (i = safeBlocks; i < blocks; i++) {
unsigned char hashBlock[WC_MAX_BLOCK_SIZE];
unsigned char isEocBlock = ctMaskEq(i, eocBlock);
unsigned char isOutBlock = ctMaskEq(i, lenBlock);
for (j = 0; j < blockSz; j++) {
unsigned char atEoc = ctMaskEq(j, eocIndex) & isEocBlock;
volatile unsigned char maskPastEoc = ctMaskGT(j, eocIndex);
volatile unsigned char pastEoc = maskPastEoc & isEocBlock;
unsigned char b = 0;
if (k < headerSz)
b = header[k];
else if (k < maxLen)
b = in[k - headerSz];
k++;
b = ctMaskSel(atEoc, 0x80, b);
b &= (unsigned char)~(word32)pastEoc;
b &= ((unsigned char)~(word32)isOutBlock) | isEocBlock;
if (j >= blockSz - 8) {
b = ctMaskSel(isOutBlock, lenBytes[j - (blockSz - 8)], b);
}
hashBlock[j] = b;
}
ret = Hmac_HashUpdate(hmac, hashBlock, (word32)blockSz); /* cppcheck-suppress uninitvar */
if (ret != 0)
return ret;
ret = Hmac_HashFinalRaw(hmac, hashBlock);
if (ret != 0)
return ret;
for (j = 0; j < macLen; j++)
((unsigned char*)hmac->innerHash)[j] |= hashBlock[j] & isOutBlock;
}
ret = Hmac_OuterHash(hmac, digest);
return ret;
}
#endif
#if defined(WOLFSSL_NO_HASH_RAW) || defined(HAVE_FIPS) || \
defined(HAVE_SELFTEST) || defined(HAVE_BLAKE2)
/* Calculate the HMAC of the header + message data.
* Constant time implementation using normal hashing operations.
* Update-Final need to be constant time.
*
* hmac HMAC object.
* digest MAC result.
* in Message data.
* sz Size of the message data.
* header Constructed record header with length of handshake data.
* headerSz Length of header
* returns 0 on success, otherwise failure.
*/
static int Hmac_UpdateFinal(Hmac* hmac, byte* digest, const byte* in,
word32 sz, byte* header, word32 headerSz)
{
byte dummy[WC_MAX_BLOCK_SIZE] = {0};
int ret = 0;
word32 msgSz, blockSz, macSz, padSz, maxSz, realSz;
word32 offset = 0;
int msgBlocks, blocks, blockBits;
int i;
switch (hmac->macType) {
#ifndef NO_SHA
case WC_SHA:
blockSz = WC_SHA_BLOCK_SIZE;
blockBits = 6;
macSz = WC_SHA_DIGEST_SIZE;
padSz = WC_SHA_BLOCK_SIZE - WC_SHA_PAD_SIZE + 1;
break;
#endif /* !NO_SHA */
#ifndef NO_SHA256
case WC_SHA256:
blockSz = WC_SHA256_BLOCK_SIZE;
blockBits = 6;
macSz = WC_SHA256_DIGEST_SIZE;
padSz = WC_SHA256_BLOCK_SIZE - WC_SHA256_PAD_SIZE + 1;
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
blockSz = WC_SHA384_BLOCK_SIZE;
blockBits = 7;
macSz = WC_SHA384_DIGEST_SIZE;
padSz = WC_SHA384_BLOCK_SIZE - WC_SHA384_PAD_SIZE + 1;
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
blockSz = WC_SHA512_BLOCK_SIZE;
blockBits = 7;
macSz = WC_SHA512_DIGEST_SIZE;
padSz = WC_SHA512_BLOCK_SIZE - WC_SHA512_PAD_SIZE + 1;
break;
#endif /* WOLFSSL_SHA512 */
#ifdef HAVE_BLAKE2
case WC_HASH_TYPE_BLAKE2B:
blockSz = BLAKE2B_BLOCKBYTES;
blockBits = 7;
macSz = BLAKE2B_256;
padSz = 0;
break;
#endif /* HAVE_BLAKE2 */
#ifdef WOLFSSL_SM3
case WC_SM3:
blockSz = WC_SM3_BLOCK_SIZE;
blockBits = 6;
macSz = WC_SM3_DIGEST_SIZE;
padSz = WC_SM3_BLOCK_SIZE - WC_SM3_PAD_SIZE + 1;
break;
#endif
default:
WOLFSSL_MSG("ERROR: Hmac_UpdateFinal failed, no hmac->macType");
return BAD_FUNC_ARG;
}
msgSz = sz - (1 + in[sz - 1] + macSz);
/* Make negative result 0 */
msgSz &= ~(0 - (msgSz >> 31));
realSz = WOLFSSL_TLS_HMAC_INNER_SZ + msgSz;
maxSz = WOLFSSL_TLS_HMAC_INNER_SZ + (sz - 1) - macSz;
/* Make negative result 0 */
maxSz &= ~(0 - (maxSz >> 31));
/* Calculate #blocks processed in HMAC for max and real data. */
blocks = (int)(maxSz >> blockBits);
blocks += ((maxSz + padSz) % blockSz) < padSz;
msgBlocks = (int)(realSz >> blockBits);
/* #Extra blocks to process. */
blocks -= msgBlocks + ((((realSz + padSz) % blockSz) < padSz) ? 1 : 0);
/* Calculate whole blocks. */
msgBlocks--;
ret = wc_HmacUpdate(hmac, header, headerSz);
if (ret == 0) {
/* Fill the rest of the block with any available data. */
word32 currSz = ctMaskLT((int)msgSz, (int)blockSz) & msgSz;
currSz |= ctMaskGTE((int)msgSz, (int)blockSz) & blockSz;
currSz -= WOLFSSL_TLS_HMAC_INNER_SZ;
currSz &= ~(0 - (currSz >> 31));
ret = wc_HmacUpdate(hmac, in, currSz);
offset = currSz;
}
if (ret == 0) {
/* Do the hash operations on a block basis. */
for (i = 0; i < msgBlocks; i++, offset += blockSz) {
ret = wc_HmacUpdate(hmac, in + offset, blockSz);
if (ret != 0)
break;
}
}
if (ret == 0)
ret = wc_HmacUpdate(hmac, in + offset, msgSz - offset);
if (ret == 0)
ret = wc_HmacFinal(hmac, digest);
if (ret == 0) {
/* Do the dummy hash operations. Do at least one. */
for (i = 0; i < blocks + 1; i++) {
ret = wc_HmacUpdate(hmac, dummy, blockSz);
if (ret != 0)
break;
}
}
return ret;
}
#endif
#if defined(WOLFSSL_DTLS) && defined(WOLFSSL_DTLS_CID)
#define TLS_HMAC_CID_SZ(s, v) \
((v) ? DtlsGetCidRxSize((s)) \
: DtlsGetCidTxSize((s)))
#define TLS_HMAC_CID(s, v, b, c) \
((v) ? wolfSSL_dtls_cid_get_rx((s), (b), (c)) \
: wolfSSL_dtls_cid_get_tx((s), (b), (c)))
#endif
static int TLS_hmac_SetInner(WOLFSSL* ssl, byte* inner, word32* innerSz,
word32 sz, int content, int verify, int epochOrder)
{
#if defined(WOLFSSL_DTLS) && defined(WOLFSSL_DTLS_CID)
unsigned int cidSz = 0;
if (ssl->options.dtls && (cidSz = TLS_HMAC_CID_SZ(ssl, verify)) > 0) {
word32 idx = 0;
if (cidSz > DTLS_CID_MAX_SIZE) {
WOLFSSL_MSG("DTLS CID too large");
return DTLS_CID_ERROR;
}
XMEMSET(inner + idx, 0xFF, SEQ_SZ);
idx += SEQ_SZ;
inner[idx++] = dtls12_cid;
inner[idx++] = (byte)cidSz;
inner[idx++] = dtls12_cid;
inner[idx++] = ssl->version.major;
inner[idx++] = ssl->version.minor;
WriteSEQ(ssl, epochOrder, inner + idx);
idx += SEQ_SZ;
if (TLS_HMAC_CID(ssl, verify, inner + idx, cidSz) ==
WC_NO_ERR_TRACE(WOLFSSL_FAILURE)) {
WOLFSSL_MSG("DTLS CID write failed");
return DTLS_CID_ERROR;
}
idx += cidSz;
c16toa((word16)sz, inner + idx);
idx += LENGTH_SZ;
*innerSz = idx;
return 0;
}
#endif
*innerSz = WOLFSSL_TLS_HMAC_INNER_SZ;
return wolfSSL_SetTlsHmacInner(ssl, inner, sz, content,
!ssl->options.dtls ? verify : epochOrder);
}
#if defined(WOLFSSL_DTLS) && defined(WOLFSSL_DTLS_CID)
#define TLS_HMAC_INNER_SZ WOLFSSL_TLS_HMAC_CID_INNER_SZ
#else
#define TLS_HMAC_INNER_SZ WOLFSSL_TLS_HMAC_INNER_SZ
#endif
int TLS_hmac(WOLFSSL* ssl, byte* digest, const byte* in, word32 sz, int padSz,
int content, int verify, int epochOrder)
{
Hmac hmac;
byte myInner[TLS_HMAC_INNER_SZ];
word32 innerSz = TLS_HMAC_INNER_SZ;
int ret = 0;
const byte* macSecret = NULL;
word32 hashSz = 0;
if (ssl == NULL)
return BAD_FUNC_ARG;
#ifdef HAVE_TRUNCATED_HMAC
hashSz = ssl->truncated_hmac ? (byte)TRUNCATED_HMAC_SZ
: ssl->specs.hash_size;
#else
hashSz = ssl->specs.hash_size;
#endif
#ifdef HAVE_FUZZER
/* Fuzz "in" buffer with sz to be used in HMAC algorithm */
if (ssl->fuzzerCb) {
if (verify && padSz >= 0) {
ssl->fuzzerCb(ssl, in, sz + hashSz + padSz + 1, FUZZ_HMAC,
ssl->fuzzerCtx);
}
else {
ssl->fuzzerCb(ssl, in, sz, FUZZ_HMAC, ssl->fuzzerCtx);
}
}
#endif
ret = TLS_hmac_SetInner(ssl, myInner, &innerSz, sz, content, verify,
epochOrder);
if (ret != 0)
return ret;
ret = wc_HmacInit(&hmac, ssl->heap, ssl->devId);
if (ret != 0)
return ret;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls)
macSecret = wolfSSL_GetDtlsMacSecret(ssl, verify, epochOrder);
else
#endif
macSecret = wolfSSL_GetMacSecret(ssl, verify);
ret = wc_HmacSetKey(&hmac, wolfSSL_GetHmacType(ssl),
macSecret,
ssl->specs.hash_size);
if (ret == 0) {
/* Constant time verification required. */
if (verify && padSz >= 0) {
#if !defined(WOLFSSL_NO_HASH_RAW) && !defined(HAVE_FIPS) && \
!defined(HAVE_SELFTEST)
#ifdef HAVE_BLAKE2
if (wolfSSL_GetHmacType(ssl) == WC_HASH_TYPE_BLAKE2B) {
ret = Hmac_UpdateFinal(&hmac, digest, in,
sz + hashSz + (word32)padSz + 1, myInner, innerSz);
}
else
#endif
{
ret = Hmac_UpdateFinal_CT(&hmac, digest, in,
(sz + hashSz + (word32)padSz + 1),
(int)hashSz, myInner, innerSz);
}
#else
ret = Hmac_UpdateFinal(&hmac, digest, in, sz + hashSz +
(word32)(padSz) + 1,
myInner, innerSz);
#endif
}
else {
ret = wc_HmacUpdate(&hmac, myInner, innerSz);
if (ret == 0)
ret = wc_HmacUpdate(&hmac, in, sz); /* content */
if (ret == 0)
ret = wc_HmacFinal(&hmac, digest);
}
}
wc_HmacFree(&hmac);
return ret;
}
#endif /* WOLFSSL_AEAD_ONLY */
#endif /* !WOLFSSL_NO_TLS12 */
int wolfSSL_GetHmacType_ex(CipherSpecs* specs)
{
if (specs == NULL)
return BAD_FUNC_ARG;
switch (specs->mac_algorithm) {
#ifndef NO_MD5
case md5_mac:
{
return WC_MD5;
}
#endif
#ifndef NO_SHA256
case sha256_mac:
{
return WC_SHA256;
}
#endif
#ifdef WOLFSSL_SHA384
case sha384_mac:
{
return WC_SHA384;
}
#endif
#ifdef WOLFSSL_SM3
case sm3_mac:
{
return WC_SM3;
}
#endif
#ifndef NO_SHA
case sha_mac:
{
return WC_SHA;
}
#endif
#ifdef HAVE_BLAKE2
case blake2b_mac:
{
return BLAKE2B_ID;
}
#endif
default:
{
return WOLFSSL_FATAL_ERROR;
}
}
}
#ifdef HAVE_TLS_EXTENSIONS
/**
* The TLSX semaphore is used to calculate the size of the extensions to be sent
* from one peer to another.
*/
/** Supports up to 72 flags. Increase as needed. */
#define SEMAPHORE_SIZE 9
/**
* Converts the extension type (id) to an index in the semaphore.
*
* Official reference for TLS extension types:
* http://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xml
*
* Motivation:
* Previously, we used the extension type itself as the index of that
* extension in the semaphore as the extension types were declared
* sequentially, but maintain a semaphore as big as the number of available
* extensions is no longer an option since the release of renegotiation_info.
*
* How to update:
* Assign extension types that extrapolate the number of available semaphores
* to the first available index going backwards in the semaphore array.
* When adding a new extension type that don't extrapolate the number of
* available semaphores, check for a possible collision with with a
* 'remapped' extension type.
*
* Update TLSX_Parse for duplicate detection if more added above 62.
*/
static WC_INLINE word16 TLSX_ToSemaphore(word16 type)
{
switch (type) {
case TLSX_RENEGOTIATION_INFO: /* 0xFF01 */
return 63;
#ifdef WOLFSSL_QUIC
case TLSX_KEY_QUIC_TP_PARAMS_DRAFT: /* 0xffa5 */
return 64;
#endif
#if defined(WOLFSSL_TLS13) && defined(HAVE_ECH)
case TLSX_ECH: /* 0xfe0d */
return 65;
#endif
#ifdef WOLFSSL_DUAL_ALG_CERTS
case TLSX_CKS:
return 66;
#endif
default:
if (type > 62) {
/* This message SHOULD only happens during the adding of
new TLS extensions in which its IANA number overflows
the current semaphore's range, or if its number already
is assigned to be used by another extension.
Use this check value for the new extension and decrement
the check value by one. */
WOLFSSL_MSG("### TLSX semaphore collision or overflow detected!");
}
}
return type;
}
/** Checks if a specific light (tls extension) is not set in the semaphore. */
#define IS_OFF(semaphore, light) \
(!(((semaphore)[(light) / 8] & (byte) (0x01 << ((light) % 8)))))
/** Turn on a specific light (tls extension) in the semaphore. */
/* the semaphore marks the extensions already written to the message */
#define TURN_ON(semaphore, light) \
((semaphore)[(light) / 8] |= (byte) (0x01 << ((light) % 8)))
/** Turn off a specific light (tls extension) in the semaphore. */
#define TURN_OFF(semaphore, light) \
((semaphore)[(light) / 8] &= (byte) ~(0x01 << ((light) % 8)))
/** Creates a new extension. */
static TLSX* TLSX_New(TLSX_Type type, const void* data, void* heap)
{
TLSX* extension = (TLSX*)XMALLOC(sizeof(TLSX), heap, DYNAMIC_TYPE_TLSX);
(void)heap;
if (extension) {
extension->type = type;
extension->data = (void*)data;
extension->resp = 0;
extension->next = NULL;
}
return extension;
}
/**
* Creates a new extension and appends it to the provided list.
* Checks for duplicate extensions, keeps the newest.
*/
int TLSX_Append(TLSX** list, TLSX_Type type, const void* data, void* heap)
{
TLSX* extension = TLSX_New(type, data, heap);
TLSX* cur;
TLSX** prevNext = list;
if (extension == NULL)
return MEMORY_E;
for (cur = *list; cur != NULL;) {
if (cur->type == type) {
*prevNext = cur->next;
cur->next = NULL;
TLSX_FreeAll(cur, heap);
cur = *prevNext;
}
else {
prevNext = &cur->next;
cur = cur->next;
}
}
/* Append the extension to the list */
*prevNext = extension;
return 0;
}
/**
* Creates a new extension and pushes it to the provided list.
* Checks for duplicate extensions, keeps the newest.
*/
int TLSX_Push(TLSX** list, TLSX_Type type, const void* data, void* heap)
{
TLSX* extension = TLSX_New(type, data, heap);
if (extension == NULL)
return MEMORY_E;
/* pushes the new extension on the list. */
extension->next = *list;
*list = extension;
/* remove duplicate extensions, there should be only one of each type. */
do {
if (extension->next && extension->next->type == type) {
TLSX *next = extension->next;
extension->next = next->next;
next->next = NULL;
TLSX_FreeAll(next, heap);
/* there is no way to occur more than
* two extensions of the same type.
*/
break;
}
} while ((extension = extension->next));
return 0;
}
#ifndef NO_WOLFSSL_CLIENT
int TLSX_CheckUnsupportedExtension(WOLFSSL* ssl, TLSX_Type type);
int TLSX_CheckUnsupportedExtension(WOLFSSL* ssl, TLSX_Type type)
{
TLSX *extension = TLSX_Find(ssl->extensions, type);
if (!extension)
extension = TLSX_Find(ssl->ctx->extensions, type);
return extension == NULL;
}
int TLSX_HandleUnsupportedExtension(WOLFSSL* ssl);
int TLSX_HandleUnsupportedExtension(WOLFSSL* ssl)
{
SendAlert(ssl, alert_fatal, unsupported_extension);
WOLFSSL_ERROR_VERBOSE(UNSUPPORTED_EXTENSION);
return UNSUPPORTED_EXTENSION;
}
#else
#define TLSX_CheckUnsupportedExtension(ssl, type) 0
#define TLSX_HandleUnsupportedExtension(ssl) 0
#endif
#if !defined(NO_WOLFSSL_SERVER) || defined(WOLFSSL_TLS13)
void TLSX_SetResponse(WOLFSSL* ssl, TLSX_Type type);
/** Mark an extension to be sent back to the client. */
void TLSX_SetResponse(WOLFSSL* ssl, TLSX_Type type)
{
TLSX *extension = TLSX_Find(ssl->extensions, type);
if (extension)
extension->resp = 1;
}
#endif
/******************************************************************************/
/* Application-Layer Protocol Negotiation */
/******************************************************************************/
#ifdef HAVE_ALPN
/** Creates a new ALPN object, providing protocol name to use. */
static ALPN* TLSX_ALPN_New(char *protocol_name, word16 protocol_nameSz,
void* heap)
{
ALPN *alpn;
WOLFSSL_ENTER("TLSX_ALPN_New");
if (protocol_name == NULL ||
protocol_nameSz > WOLFSSL_MAX_ALPN_PROTO_NAME_LEN) {
WOLFSSL_MSG("Invalid arguments");
return NULL;
}
alpn = (ALPN*)XMALLOC(sizeof(ALPN), heap, DYNAMIC_TYPE_TLSX);
if (alpn == NULL) {
WOLFSSL_MSG("Memory failure");
return NULL;
}
alpn->next = NULL;
alpn->negotiated = 0;
alpn->options = 0;
alpn->protocol_name = (char*)XMALLOC(protocol_nameSz + 1,
heap, DYNAMIC_TYPE_TLSX);
if (alpn->protocol_name == NULL) {
WOLFSSL_MSG("Memory failure");
XFREE(alpn, heap, DYNAMIC_TYPE_TLSX);
return NULL;
}
XMEMCPY(alpn->protocol_name, protocol_name, protocol_nameSz);
alpn->protocol_name[protocol_nameSz] = 0;
(void)heap;
return alpn;
}
/** Releases an ALPN object. */
static void TLSX_ALPN_Free(ALPN *alpn, void* heap)
{
(void)heap;
if (alpn == NULL)
return;
XFREE(alpn->protocol_name, heap, DYNAMIC_TYPE_TLSX);
XFREE(alpn, heap, DYNAMIC_TYPE_TLSX);
}
/** Releases all ALPN objects in the provided list. */
static void TLSX_ALPN_FreeAll(ALPN *list, void* heap)
{
ALPN* alpn;
while ((alpn = list)) {
list = alpn->next;
TLSX_ALPN_Free(alpn, heap);
}
}
/** Tells the buffered size of the ALPN objects in a list. */
static word16 TLSX_ALPN_GetSize(ALPN *list)
{
ALPN* alpn;
word16 length = OPAQUE16_LEN; /* list length */
while ((alpn = list)) {
list = alpn->next;
length++; /* protocol name length is on one byte */
length += (word16)XSTRLEN(alpn->protocol_name);
}
return length;
}
/** Writes the ALPN objects of a list in a buffer. */
static word16 TLSX_ALPN_Write(ALPN *list, byte *output)
{
ALPN* alpn;
word16 length = 0;
word16 offset = OPAQUE16_LEN; /* list length offset */
while ((alpn = list)) {
list = alpn->next;
length = (word16)XSTRLEN(alpn->protocol_name);
/* protocol name length */
output[offset++] = (byte)length;
/* protocol name value */
XMEMCPY(output + offset, alpn->protocol_name, length);
offset += length;
}
/* writing list length */
c16toa(offset - OPAQUE16_LEN, output);
return offset;
}
/** Finds a protocol name in the provided ALPN list */
static ALPN* TLSX_ALPN_Find(ALPN *list, char *protocol_name, word16 size)
{
ALPN *alpn;
if (list == NULL || protocol_name == NULL)
return NULL;
alpn = list;
while (alpn != NULL && (
(word16)XSTRLEN(alpn->protocol_name) != size ||
XSTRNCMP(alpn->protocol_name, protocol_name, size)))
alpn = alpn->next;
return alpn;
}
/** Set the ALPN matching client and server requirements */
static int TLSX_SetALPN(TLSX** extensions, const void* data, word16 size,
void* heap)
{
ALPN *alpn;
int ret;
if (extensions == NULL || data == NULL)
return BAD_FUNC_ARG;
alpn = TLSX_ALPN_New((char *)data, size, heap);
if (alpn == NULL) {
WOLFSSL_MSG("Memory failure");
return MEMORY_E;
}
alpn->negotiated = 1;
ret = TLSX_Push(extensions, TLSX_APPLICATION_LAYER_PROTOCOL, (void*)alpn,
heap);
if (ret != 0) {
TLSX_ALPN_Free(alpn, heap);
return ret;
}
return WOLFSSL_SUCCESS;
}
static int ALPN_find_match(WOLFSSL *ssl, TLSX **pextension,
const byte **psel, byte *psel_len,
const byte *alpn_val, word16 alpn_val_len)
{
TLSX *extension;
ALPN *alpn, *list;
const byte *sel = NULL, *s;
byte sel_len = 0, wlen;
extension = TLSX_Find(ssl->extensions, TLSX_APPLICATION_LAYER_PROTOCOL);
if (extension == NULL)
extension = TLSX_Find(ssl->ctx->extensions,
TLSX_APPLICATION_LAYER_PROTOCOL);
/* No ALPN configured here */
if (extension == NULL || extension->data == NULL) {
*pextension = NULL;
*psel = NULL;
*psel_len = 0;
return 0;
}
list = (ALPN*)extension->data;
for (s = alpn_val;
(s - alpn_val) < alpn_val_len;
s += wlen) {
wlen = *s++; /* bounds already checked on save */
alpn = TLSX_ALPN_Find(list, (char*)s, wlen);
if (alpn != NULL) {
WOLFSSL_MSG("ALPN protocol match");
sel = s,
sel_len = wlen;
break;
}
}
if (sel == NULL) {
WOLFSSL_MSG("No ALPN protocol match");
/* do nothing if no protocol match between client and server and option
is set to continue (like OpenSSL) */
if (list->options & WOLFSSL_ALPN_CONTINUE_ON_MISMATCH) {
WOLFSSL_MSG("Continue on mismatch");
}
else {
SendAlert(ssl, alert_fatal, no_application_protocol);
WOLFSSL_ERROR_VERBOSE(UNKNOWN_ALPN_PROTOCOL_NAME_E);
return UNKNOWN_ALPN_PROTOCOL_NAME_E;
}
}
*pextension = extension;
*psel = sel;
*psel_len = sel_len;
return 0;
}
int ALPN_Select(WOLFSSL *ssl)
{
TLSX *extension;
const byte *sel = NULL;
byte sel_len = 0;
int r = 0;
WOLFSSL_ENTER("ALPN_Select");
if (ssl->alpn_peer_requested == NULL)
return 0;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY)
if (ssl->alpnSelect != NULL && ssl->options.side == WOLFSSL_SERVER_END) {
r = ssl->alpnSelect(ssl, &sel, &sel_len, ssl->alpn_peer_requested,
ssl->alpn_peer_requested_length, ssl->alpnSelectArg);
switch (r) {
case SSL_TLSEXT_ERR_OK:
WOLFSSL_MSG("ALPN protocol match");
break;
case SSL_TLSEXT_ERR_NOACK:
WOLFSSL_MSG("ALPN cb no match but not fatal");
sel = NULL;
sel_len = 0;
break;
case SSL_TLSEXT_ERR_ALERT_FATAL:
default:
WOLFSSL_MSG("ALPN cb no match and fatal");
SendAlert(ssl, alert_fatal, no_application_protocol);
WOLFSSL_ERROR_VERBOSE(UNKNOWN_ALPN_PROTOCOL_NAME_E);
return UNKNOWN_ALPN_PROTOCOL_NAME_E;
}
}
else
#endif
{
r = ALPN_find_match(ssl, &extension, &sel, &sel_len,
ssl->alpn_peer_requested,
ssl->alpn_peer_requested_length);
if (r != 0)
return r;
}
if (sel != NULL) {
/* set the matching negotiated protocol */
r = TLSX_SetALPN(&ssl->extensions, sel, sel_len, ssl->heap);
if (r != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("TLSX_SetALPN failed");
return BUFFER_ERROR;
}
/* reply to ALPN extension sent from peer */
#ifndef NO_WOLFSSL_SERVER
TLSX_SetResponse(ssl, TLSX_APPLICATION_LAYER_PROTOCOL);
#endif
}
return 0;
}
/** Parses a buffer of ALPN extensions and set the first one matching
* client and server requirements */
static int TLSX_ALPN_ParseAndSet(WOLFSSL *ssl, const byte *input, word16 length,
byte isRequest)
{
word16 size = 0, offset = 0, wlen;
int r = WC_NO_ERR_TRACE(BUFFER_ERROR);
const byte *s;
if (OPAQUE16_LEN > length)
return BUFFER_ERROR;
ato16(input, &size);
offset += OPAQUE16_LEN;
/* validating alpn list length */
if (size == 0 || length != OPAQUE16_LEN + size)
return BUFFER_ERROR;
/* validating length of entries before accepting */
for (s = input + offset; (s - input) < size; s += wlen) {
wlen = *s++;
if (wlen == 0 || (s + wlen - input) > length)
return BUFFER_ERROR;
}
if (isRequest) {
/* keep the list sent by peer, if this is from a request. We
* use it later in ALPN_Select() for evaluation. */
if (ssl->alpn_peer_requested != NULL) {
XFREE(ssl->alpn_peer_requested, ssl->heap, DYNAMIC_TYPE_ALPN);
ssl->alpn_peer_requested_length = 0;
}
ssl->alpn_peer_requested = (byte *)XMALLOC(size, ssl->heap,
DYNAMIC_TYPE_ALPN);
if (ssl->alpn_peer_requested == NULL) {
return MEMORY_ERROR;
}
ssl->alpn_peer_requested_length = size;
XMEMCPY(ssl->alpn_peer_requested, (char*)input + offset, size);
}
else {
/* a response, we should find the value in our config */
const byte *sel = NULL;
byte sel_len = 0;
TLSX *extension = NULL;
r = ALPN_find_match(ssl, &extension, &sel, &sel_len, input + offset, size);
if (r != 0)
return r;
if (sel != NULL) {
/* set the matching negotiated protocol */
r = TLSX_SetALPN(&ssl->extensions, sel, sel_len, ssl->heap);
if (r != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("TLSX_SetALPN failed");
return BUFFER_ERROR;
}
}
/* If we had nothing configured, the response is unexpected */
else if (extension == NULL) {
r = TLSX_HandleUnsupportedExtension(ssl);
if (r != 0)
return r;
}
}
return 0;
}
/** Add a protocol name to the list of accepted usable ones */
int TLSX_UseALPN(TLSX** extensions, const void* data, word16 size, byte options,
void* heap)
{
ALPN *alpn;
TLSX *extension;
int ret;
if (extensions == NULL || data == NULL)
return BAD_FUNC_ARG;
alpn = TLSX_ALPN_New((char *)data, size, heap);
if (alpn == NULL) {
WOLFSSL_MSG("Memory failure");
return MEMORY_E;
}
/* Set Options of ALPN */
alpn->options = options;
extension = TLSX_Find(*extensions, TLSX_APPLICATION_LAYER_PROTOCOL);
if (extension == NULL) {
ret = TLSX_Push(extensions, TLSX_APPLICATION_LAYER_PROTOCOL,
(void*)alpn, heap);
if (ret != 0) {
TLSX_ALPN_Free(alpn, heap);
return ret;
}
}
else {
/* push new ALPN object to extension data. */
alpn->next = (ALPN*)extension->data;
extension->data = (void*)alpn;
}
return WOLFSSL_SUCCESS;
}
/** Get the protocol name set by the server */
int TLSX_ALPN_GetRequest(TLSX* extensions, void** data, word16 *dataSz)
{
TLSX *extension;
ALPN *alpn;
if (extensions == NULL || data == NULL || dataSz == NULL)
return BAD_FUNC_ARG;
*data = NULL;
*dataSz = 0;
extension = TLSX_Find(extensions, TLSX_APPLICATION_LAYER_PROTOCOL);
if (extension == NULL) {
WOLFSSL_MSG("TLS extension not found");
WOLFSSL_ERROR_VERBOSE(WOLFSSL_ALPN_NOT_FOUND);
return WOLFSSL_ALPN_NOT_FOUND;
}
alpn = (ALPN *)extension->data;
if (alpn == NULL) {
WOLFSSL_MSG("ALPN extension not found");
WOLFSSL_ERROR_VERBOSE(WOLFSSL_FATAL_ERROR);
return WOLFSSL_FATAL_ERROR;
}
if (alpn->negotiated != 1) {
/* consider as an error */
if (alpn->options & WOLFSSL_ALPN_FAILED_ON_MISMATCH) {
WOLFSSL_MSG("No protocol match with peer -> Failed");
WOLFSSL_ERROR_VERBOSE(WOLFSSL_FATAL_ERROR);
return WOLFSSL_FATAL_ERROR;
}
/* continue without negotiated protocol */
WOLFSSL_MSG("No protocol match with peer -> Continue");
WOLFSSL_ERROR_VERBOSE(WOLFSSL_ALPN_NOT_FOUND);
return WOLFSSL_ALPN_NOT_FOUND;
}
if (alpn->next != NULL) {
WOLFSSL_MSG("Only one protocol name must be accepted");
WOLFSSL_ERROR_VERBOSE(WOLFSSL_FATAL_ERROR);
return WOLFSSL_FATAL_ERROR;
}
*data = alpn->protocol_name;
*dataSz = (word16)XSTRLEN((char*)*data);
return WOLFSSL_SUCCESS;
}
#define ALPN_FREE_ALL TLSX_ALPN_FreeAll
#define ALPN_GET_SIZE TLSX_ALPN_GetSize
#define ALPN_WRITE TLSX_ALPN_Write
#define ALPN_PARSE TLSX_ALPN_ParseAndSet
#else /* HAVE_ALPN */
#define ALPN_FREE_ALL(list, heap) WC_DO_NOTHING
#define ALPN_GET_SIZE(list) 0
#define ALPN_WRITE(a, b) 0
#define ALPN_PARSE(a, b, c, d) 0
#endif /* HAVE_ALPN */
/******************************************************************************/
/* Server Name Indication */
/******************************************************************************/
#ifdef HAVE_SNI
/** Creates a new SNI object. */
static SNI* TLSX_SNI_New(byte type, const void* data, word16 size, void* heap)
{
SNI* sni = (SNI*)XMALLOC(sizeof(SNI), heap, DYNAMIC_TYPE_TLSX);
(void)heap;
if (sni) {
sni->type = type;
sni->next = NULL;
#ifndef NO_WOLFSSL_SERVER
sni->options = 0;
sni->status = WOLFSSL_SNI_NO_MATCH;
#endif
switch (sni->type) {
case WOLFSSL_SNI_HOST_NAME:
sni->data.host_name = (char*)XMALLOC(size + 1, heap,
DYNAMIC_TYPE_TLSX);
if (sni->data.host_name) {
XSTRNCPY(sni->data.host_name, (const char*)data, size);
sni->data.host_name[size] = '\0';
} else {
XFREE(sni, heap, DYNAMIC_TYPE_TLSX);
sni = NULL;
}
break;
default: /* invalid type */
XFREE(sni, heap, DYNAMIC_TYPE_TLSX);
sni = NULL;
}
}
return sni;
}
/** Releases a SNI object. */
static void TLSX_SNI_Free(SNI* sni, void* heap)
{
if (sni) {
switch (sni->type) {
case WOLFSSL_SNI_HOST_NAME:
XFREE(sni->data.host_name, heap, DYNAMIC_TYPE_TLSX);
break;
}
XFREE(sni, heap, DYNAMIC_TYPE_TLSX);
}
(void)heap;
}
/** Releases all SNI objects in the provided list. */
static void TLSX_SNI_FreeAll(SNI* list, void* heap)
{
SNI* sni;
while ((sni = list)) {
list = sni->next;
TLSX_SNI_Free(sni, heap);
}
}
/** Tells the buffered size of the SNI objects in a list. */
static word16 TLSX_SNI_GetSize(SNI* list)
{
SNI* sni;
word16 length = OPAQUE16_LEN; /* list length */
while ((sni = list)) {
list = sni->next;
length += ENUM_LEN + OPAQUE16_LEN; /* sni type + sni length */
switch (sni->type) {
case WOLFSSL_SNI_HOST_NAME:
length += (word16)XSTRLEN((char*)sni->data.host_name);
break;
}
}
return length;
}
/** Writes the SNI objects of a list in a buffer. */
static word16 TLSX_SNI_Write(SNI* list, byte* output)
{
SNI* sni;
word16 length = 0;
word16 offset = OPAQUE16_LEN; /* list length offset */
while ((sni = list)) {
list = sni->next;
output[offset++] = sni->type; /* sni type */
switch (sni->type) {
case WOLFSSL_SNI_HOST_NAME:
length = (word16)XSTRLEN((char*)sni->data.host_name);
c16toa(length, output + offset); /* sni length */
offset += OPAQUE16_LEN;
XMEMCPY(output + offset, sni->data.host_name, length);
offset += length;
break;
}
}
c16toa(offset - OPAQUE16_LEN, output); /* writing list length */
return offset;
}
/** Finds a SNI object in the provided list. */
static SNI* TLSX_SNI_Find(SNI *list, byte type)
{
SNI* sni = list;
while (sni && sni->type != type)
sni = sni->next;
return sni;
}
#if (!defined(NO_WOLFSSL_CLIENT) || !defined(NO_WOLFSSL_SERVER))
/** Sets the status of a SNI object. */
static void TLSX_SNI_SetStatus(TLSX* extensions, byte type, byte status)
{
TLSX* extension = TLSX_Find(extensions, TLSX_SERVER_NAME);
SNI* sni = TLSX_SNI_Find(extension ? (SNI*)extension->data : NULL, type);
if (sni)
sni->status = status;
}
#endif
/** Gets the status of a SNI object. */
byte TLSX_SNI_Status(TLSX* extensions, byte type)
{
TLSX* extension = TLSX_Find(extensions, TLSX_SERVER_NAME);
SNI* sni = TLSX_SNI_Find(extension ? (SNI*)extension->data : NULL, type);
if (sni)
return sni->status;
return 0;
}
/** Parses a buffer of SNI extensions. */
static int TLSX_SNI_Parse(WOLFSSL* ssl, const byte* input, word16 length,
byte isRequest)
{
#ifndef NO_WOLFSSL_SERVER
word16 size = 0;
word16 offset = 0;
int cacheOnly = 0;
SNI *sni = NULL;
byte type;
byte matched;
#if defined(WOLFSSL_TLS13) && defined(HAVE_ECH)
WOLFSSL_ECH* ech = NULL;
WOLFSSL_EchConfig* workingConfig;
TLSX* echX;
#endif
#endif /* !NO_WOLFSSL_SERVER */
TLSX *extension = TLSX_Find(ssl->extensions, TLSX_SERVER_NAME);
if (!extension)
extension = TLSX_Find(ssl->ctx->extensions, TLSX_SERVER_NAME);
if (!isRequest) {
#ifndef NO_WOLFSSL_CLIENT
if (!extension || !extension->data)
return TLSX_HandleUnsupportedExtension(ssl);
if (length > 0)
return BUFFER_ERROR; /* SNI response MUST be empty. */
/* This call enables wolfSSL_SNI_GetRequest() to be called in the
* client side to fetch the used SNI. It will only work if the SNI
* was set at the SSL object level. Right now we only support one
* name type, WOLFSSL_SNI_HOST_NAME, but in the future, the
* inclusion of other name types will turn this method inaccurate,
* as the extension response doesn't contains information of which
* name was accepted.
*/
TLSX_SNI_SetStatus(ssl->extensions, WOLFSSL_SNI_HOST_NAME,
WOLFSSL_SNI_REAL_MATCH);
return 0;
#endif
}
#ifndef NO_WOLFSSL_SERVER
if (!extension || !extension->data) {
/* This will keep SNI even though TLSX_UseSNI has not been called.
* Enable it so that the received sni is available to functions
* that use a custom callback when SNI is received.
*/
#ifdef WOLFSSL_ALWAYS_KEEP_SNI
cacheOnly = 1;
#endif
if (ssl->ctx->sniRecvCb) {
cacheOnly = 1;
}
if (cacheOnly) {
WOLFSSL_MSG("Forcing SSL object to store SNI parameter");
}
else {
/* Skipping, SNI not enabled at server side. */
return 0;
}
}
if (OPAQUE16_LEN > length)
return BUFFER_ERROR;
ato16(input, &size);
offset += OPAQUE16_LEN;
/* validating sni list length */
if (length != OPAQUE16_LEN + size || size == 0)
return BUFFER_ERROR;
/* SNI was badly specified and only one type is now recognized and allowed.
* Only one SNI value per type (RFC6066), so, no loop. */
type = input[offset++];
if (type != WOLFSSL_SNI_HOST_NAME)
return BUFFER_ERROR;
if (offset + OPAQUE16_LEN > length)
return BUFFER_ERROR;
ato16(input + offset, &size);
offset += OPAQUE16_LEN;
if (offset + size != length || size == 0)
return BUFFER_ERROR;
if (!cacheOnly && !(sni = TLSX_SNI_Find((SNI*)extension->data, type)))
return 0; /* not using this type of SNI. */
#ifdef WOLFSSL_TLS13
/* Don't process the second ClientHello SNI extension if there
* was problems with the first.
*/
if (!cacheOnly && sni->status != 0)
return 0;
#endif
matched = cacheOnly || (XSTRLEN(sni->data.host_name) == size &&
XSTRNCMP(sni->data.host_name, (const char*)input + offset, size) == 0);
#if defined(WOLFSSL_TLS13) && defined(HAVE_ECH)
echX = TLSX_Find(ssl->extensions, TLSX_ECH);
if (echX != NULL)
ech = (WOLFSSL_ECH*)(echX->data);
if (!matched && ech != NULL) {
workingConfig = ech->echConfig;
while (workingConfig != NULL) {
matched = XSTRLEN(workingConfig->publicName) == size &&
XSTRNCMP(workingConfig->publicName,
(const char*)input + offset, size) == 0;
if (matched)
break;
workingConfig = workingConfig->next;
}
}
#endif
if (matched || sni->options & WOLFSSL_SNI_ANSWER_ON_MISMATCH) {
int matchStat;
int r = TLSX_UseSNI(&ssl->extensions, type, input + offset, size,
ssl->heap);
if (r != WOLFSSL_SUCCESS)
return r; /* throws error. */
if (cacheOnly) {
WOLFSSL_MSG("Forcing storage of SNI, Fake match");
matchStat = WOLFSSL_SNI_FORCE_KEEP;
}
else if (matched) {
WOLFSSL_MSG("SNI did match!");
matchStat = WOLFSSL_SNI_REAL_MATCH;
}
else {
WOLFSSL_MSG("fake SNI match from ANSWER_ON_MISMATCH");
matchStat = WOLFSSL_SNI_FAKE_MATCH;
}
TLSX_SNI_SetStatus(ssl->extensions, type, (byte)matchStat);
if (!cacheOnly)
TLSX_SetResponse(ssl, TLSX_SERVER_NAME);
}
else if (!(sni->options & WOLFSSL_SNI_CONTINUE_ON_MISMATCH)) {
SendAlert(ssl, alert_fatal, unrecognized_name);
WOLFSSL_ERROR_VERBOSE(UNKNOWN_SNI_HOST_NAME_E);
return UNKNOWN_SNI_HOST_NAME_E;
}
#else
(void)input;
#endif /* !NO_WOLFSSL_SERVER */
#if defined(NO_WOLFSSL_CLIENT) && defined(NO_WOLFSSL_SERVER)
(void)length;
#endif
return 0;
}
static int TLSX_SNI_VerifyParse(WOLFSSL* ssl, byte isRequest)
{
(void)ssl;
if (isRequest) {
#ifndef NO_WOLFSSL_SERVER
TLSX* ctx_ext = TLSX_Find(ssl->ctx->extensions, TLSX_SERVER_NAME);
TLSX* ssl_ext = TLSX_Find(ssl->extensions, TLSX_SERVER_NAME);
SNI* ctx_sni = ctx_ext ? (SNI*)ctx_ext->data : NULL;
SNI* ssl_sni = ssl_ext ? (SNI*)ssl_ext->data : NULL;
SNI* sni = NULL;
for (; ctx_sni; ctx_sni = ctx_sni->next) {
if (ctx_sni->options & WOLFSSL_SNI_ABORT_ON_ABSENCE) {
sni = TLSX_SNI_Find(ssl_sni, ctx_sni->type);
if (sni) {
if (sni->status != WOLFSSL_SNI_NO_MATCH)
continue;
/* if ssl level overrides ctx level, it is ok. */
if ((sni->options & WOLFSSL_SNI_ABORT_ON_ABSENCE) == 0)
continue;
}
SendAlert(ssl, alert_fatal, handshake_failure);
WOLFSSL_ERROR_VERBOSE(SNI_ABSENT_ERROR);
return SNI_ABSENT_ERROR;
}
}
for (; ssl_sni; ssl_sni = ssl_sni->next) {
if (ssl_sni->options & WOLFSSL_SNI_ABORT_ON_ABSENCE) {
if (ssl_sni->status != WOLFSSL_SNI_NO_MATCH)
continue;
SendAlert(ssl, alert_fatal, handshake_failure);
WOLFSSL_ERROR_VERBOSE(SNI_ABSENT_ERROR);
return SNI_ABSENT_ERROR;
}
}
#endif /* NO_WOLFSSL_SERVER */
}
return 0;
}
int TLSX_UseSNI(TLSX** extensions, byte type, const void* data, word16 size,
void* heap)
{
TLSX* extension;
SNI* sni = NULL;
if (extensions == NULL || data == NULL)
return BAD_FUNC_ARG;
if ((sni = TLSX_SNI_New(type, data, size, heap)) == NULL)
return MEMORY_E;
extension = TLSX_Find(*extensions, TLSX_SERVER_NAME);
if (!extension) {
int ret = TLSX_Push(extensions, TLSX_SERVER_NAME, (void*)sni, heap);
if (ret != 0) {
TLSX_SNI_Free(sni, heap);
return ret;
}
}
else {
/* push new SNI object to extension data. */
sni->next = (SNI*)extension->data;
extension->data = (void*)sni;
/* remove duplicate SNI, there should be only one of each type. */
do {
if (sni->next && sni->next->type == type) {
SNI* next = sni->next;
sni->next = next->next;
TLSX_SNI_Free(next, heap);
/* there is no way to occur more than
* two SNIs of the same type.
*/
break;
}
} while ((sni = sni->next));
}
return WOLFSSL_SUCCESS;
}
#ifndef NO_WOLFSSL_SERVER
/** Tells the SNI requested by the client. */
word16 TLSX_SNI_GetRequest(TLSX* extensions, byte type, void** data,
byte ignoreStatus)
{
TLSX* extension = TLSX_Find(extensions, TLSX_SERVER_NAME);
SNI* sni = TLSX_SNI_Find(extension ? (SNI*)extension->data : NULL, type);
if (sni && (ignoreStatus || sni->status != WOLFSSL_SNI_NO_MATCH)) {
switch (sni->type) {
case WOLFSSL_SNI_HOST_NAME:
if (data) {
*data = sni->data.host_name;
return (word16)XSTRLEN((char*)*data);
}
}
}
return 0;
}
/** Sets the options for a SNI object. */
void TLSX_SNI_SetOptions(TLSX* extensions, byte type, byte options)
{
TLSX* extension = TLSX_Find(extensions, TLSX_SERVER_NAME);
SNI* sni = TLSX_SNI_Find(extension ? (SNI*)extension->data : NULL, type);
if (sni)
sni->options = options;
}
/** Retrieves a SNI request from a client hello buffer. */
int TLSX_SNI_GetFromBuffer(const byte* clientHello, word32 helloSz,
byte type, byte* sni, word32* inOutSz)
{
word32 offset = 0;
word32 len32 = 0;
word16 len16 = 0;
if (helloSz < RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ + CLIENT_HELLO_FIRST)
return INCOMPLETE_DATA;
/* TLS record header */
if ((enum ContentType) clientHello[offset++] != handshake) {
/* checking for SSLv2.0 client hello according to: */
/* http://tools.ietf.org/html/rfc4346#appendix-E.1 */
if ((enum HandShakeType) clientHello[++offset] == client_hello) {
offset += ENUM_LEN + VERSION_SZ; /* skip version */
ato16(clientHello + offset, &len16);
offset += OPAQUE16_LEN;
if (len16 % 3) /* cipher_spec_length must be multiple of 3 */
return BUFFER_ERROR;
ato16(clientHello + offset, &len16);
/* Returning SNI_UNSUPPORTED do not increment offset here */
if (len16 != 0) /* session_id_length must be 0 */
return BUFFER_ERROR;
WOLFSSL_ERROR_VERBOSE(SNI_UNSUPPORTED);
return SNI_UNSUPPORTED;
}
return BUFFER_ERROR;
}
if (clientHello[offset++] != SSLv3_MAJOR)
return BUFFER_ERROR;
if (clientHello[offset++] < TLSv1_MINOR) {
WOLFSSL_ERROR_VERBOSE(SNI_UNSUPPORTED);
return SNI_UNSUPPORTED;
}
ato16(clientHello + offset, &len16);
offset += OPAQUE16_LEN;
if (offset + len16 > helloSz)
return INCOMPLETE_DATA;
/* Handshake header */
if ((enum HandShakeType) clientHello[offset] != client_hello)
return BUFFER_ERROR;
c24to32(clientHello + offset + 1, &len32);
offset += HANDSHAKE_HEADER_SZ;
if (offset + len32 > helloSz)
return BUFFER_ERROR;
/* client hello */
offset += VERSION_SZ + RAN_LEN; /* version, random */
if (helloSz < offset + clientHello[offset])
return BUFFER_ERROR;
offset += ENUM_LEN + clientHello[offset]; /* skip session id */
/* cypher suites */
if (helloSz < offset + OPAQUE16_LEN)
return BUFFER_ERROR;
ato16(clientHello + offset, &len16);
offset += OPAQUE16_LEN;
if (helloSz < offset + len16)
return BUFFER_ERROR;
offset += len16; /* skip cypher suites */
/* compression methods */
if (helloSz < offset + 1)
return BUFFER_ERROR;
if (helloSz < offset + clientHello[offset])
return BUFFER_ERROR;
offset += ENUM_LEN + clientHello[offset]; /* skip compression methods */
/* extensions */
if (helloSz < offset + OPAQUE16_LEN)
return 0; /* no extensions in client hello. */
ato16(clientHello + offset, &len16);
offset += OPAQUE16_LEN;
if (helloSz < offset + len16)
return BUFFER_ERROR;
while (len16 >= OPAQUE16_LEN + OPAQUE16_LEN) {
word16 extType;
word16 extLen;
ato16(clientHello + offset, &extType);
offset += OPAQUE16_LEN;
ato16(clientHello + offset, &extLen);
offset += OPAQUE16_LEN;
if (helloSz < offset + extLen)
return BUFFER_ERROR;
if (extType != TLSX_SERVER_NAME) {
offset += extLen; /* skip extension */
} else {
word16 listLen;
ato16(clientHello + offset, &listLen);
offset += OPAQUE16_LEN;
if (helloSz < offset + listLen)
return BUFFER_ERROR;
while (listLen > ENUM_LEN + OPAQUE16_LEN) {
byte sniType = clientHello[offset++];
word16 sniLen;
ato16(clientHello + offset, &sniLen);
offset += OPAQUE16_LEN;
if (helloSz < offset + sniLen)
return BUFFER_ERROR;
if (sniType != type) {
offset += sniLen;
listLen -= min(ENUM_LEN + OPAQUE16_LEN + sniLen, listLen);
continue;
}
*inOutSz = min(sniLen, *inOutSz);
XMEMCPY(sni, clientHello + offset, *inOutSz);
return WOLFSSL_SUCCESS;
}
}
len16 -= min(2 * OPAQUE16_LEN + extLen, len16);
}
return len16 ? BUFFER_ERROR : 0;
}
#endif
#define SNI_FREE_ALL TLSX_SNI_FreeAll
#define SNI_GET_SIZE TLSX_SNI_GetSize
#define SNI_WRITE TLSX_SNI_Write
#define SNI_PARSE TLSX_SNI_Parse
#define SNI_VERIFY_PARSE TLSX_SNI_VerifyParse
#else
#define SNI_FREE_ALL(list, heap) WC_DO_NOTHING
#define SNI_GET_SIZE(list) 0
#define SNI_WRITE(a, b) 0
#define SNI_PARSE(a, b, c, d) 0
#define SNI_VERIFY_PARSE(a, b) 0
#endif /* HAVE_SNI */
/******************************************************************************/
/* Trusted CA Key Indication */
/******************************************************************************/
#ifdef HAVE_TRUSTED_CA
/** Creates a new TCA object. */
static TCA* TLSX_TCA_New(byte type, const byte* id, word16 idSz, void* heap)
{
TCA* tca = (TCA*)XMALLOC(sizeof(TCA), heap, DYNAMIC_TYPE_TLSX);
if (tca) {
XMEMSET(tca, 0, sizeof(TCA));
tca->type = type;
switch (type) {
case WOLFSSL_TRUSTED_CA_PRE_AGREED:
break;
#ifndef NO_SHA
case WOLFSSL_TRUSTED_CA_KEY_SHA1:
case WOLFSSL_TRUSTED_CA_CERT_SHA1:
if (idSz == WC_SHA_DIGEST_SIZE &&
(tca->id =
(byte*)XMALLOC(idSz, heap, DYNAMIC_TYPE_TLSX))) {
XMEMCPY(tca->id, id, idSz);
tca->idSz = idSz;
}
else {
XFREE(tca, heap, DYNAMIC_TYPE_TLSX);
tca = NULL;
}
break;
#endif
case WOLFSSL_TRUSTED_CA_X509_NAME:
if (idSz > 0 &&
(tca->id =
(byte*)XMALLOC(idSz, heap, DYNAMIC_TYPE_TLSX))) {
XMEMCPY(tca->id, id, idSz);
tca->idSz = idSz;
}
else {
XFREE(tca, heap, DYNAMIC_TYPE_TLSX);
tca = NULL;
}
break;
default: /* invalid type */
XFREE(tca, heap, DYNAMIC_TYPE_TLSX);
tca = NULL;
}
}
(void)heap;
return tca;
}
/** Releases a TCA object. */
static void TLSX_TCA_Free(TCA* tca, void* heap)
{
(void)heap;
if (tca) {
XFREE(tca->id, heap, DYNAMIC_TYPE_TLSX);
XFREE(tca, heap, DYNAMIC_TYPE_TLSX);
}
}
/** Releases all TCA objects in the provided list. */
static void TLSX_TCA_FreeAll(TCA* list, void* heap)
{
TCA* tca;
while ((tca = list)) {
list = tca->next;
TLSX_TCA_Free(tca, heap);
}
}
/** Tells the buffered size of the TCA objects in a list. */
static word16 TLSX_TCA_GetSize(TCA* list)
{
TCA* tca;
word16 length = OPAQUE16_LEN; /* list length */
while ((tca = list)) {
list = tca->next;
length += ENUM_LEN; /* tca type */
switch (tca->type) {
case WOLFSSL_TRUSTED_CA_PRE_AGREED:
break;
case WOLFSSL_TRUSTED_CA_KEY_SHA1:
case WOLFSSL_TRUSTED_CA_CERT_SHA1:
length += tca->idSz;
break;
case WOLFSSL_TRUSTED_CA_X509_NAME:
length += OPAQUE16_LEN + tca->idSz;
break;
}
}
return length;
}
/** Writes the TCA objects of a list in a buffer. */
static word16 TLSX_TCA_Write(TCA* list, byte* output)
{
TCA* tca;
word16 offset = OPAQUE16_LEN; /* list length offset */
while ((tca = list)) {
list = tca->next;
output[offset++] = tca->type; /* tca type */
switch (tca->type) {
case WOLFSSL_TRUSTED_CA_PRE_AGREED:
break;
#ifndef NO_SHA
case WOLFSSL_TRUSTED_CA_KEY_SHA1:
case WOLFSSL_TRUSTED_CA_CERT_SHA1:
if (tca->id != NULL) {
XMEMCPY(output + offset, tca->id, tca->idSz);
offset += tca->idSz;
}
else {
/* ID missing. Set to an empty string. */
c16toa(0, output + offset);
offset += OPAQUE16_LEN;
}
break;
#endif
case WOLFSSL_TRUSTED_CA_X509_NAME:
if (tca->id != NULL) {
c16toa(tca->idSz, output + offset); /* tca length */
offset += OPAQUE16_LEN;
XMEMCPY(output + offset, tca->id, tca->idSz);
offset += tca->idSz;
}
else {
/* ID missing. Set to an empty string. */
c16toa(0, output + offset);
offset += OPAQUE16_LEN;
}
break;
default:
/* ID unknown. Set to an empty string. */
c16toa(0, output + offset);
offset += OPAQUE16_LEN;
}
}
c16toa(offset - OPAQUE16_LEN, output); /* writing list length */
return offset;
}
#ifndef NO_WOLFSSL_SERVER
static TCA* TLSX_TCA_Find(TCA *list, byte type, const byte* id, word16 idSz)
{
TCA* tca = list;
while (tca && tca->type != type && type != WOLFSSL_TRUSTED_CA_PRE_AGREED &&
idSz != tca->idSz && !XMEMCMP(id, tca->id, idSz))
tca = tca->next;
return tca;
}
#endif /* NO_WOLFSSL_SERVER */
/** Parses a buffer of TCA extensions. */
static int TLSX_TCA_Parse(WOLFSSL* ssl, const byte* input, word16 length,
byte isRequest)
{
#ifndef NO_WOLFSSL_SERVER
word16 size = 0;
word16 offset = 0;
#endif
TLSX *extension = TLSX_Find(ssl->extensions, TLSX_TRUSTED_CA_KEYS);
if (!extension)
extension = TLSX_Find(ssl->ctx->extensions, TLSX_TRUSTED_CA_KEYS);
if (!isRequest) {
#ifndef NO_WOLFSSL_CLIENT
if (!extension || !extension->data)
return TLSX_HandleUnsupportedExtension(ssl);
if (length > 0)
return BUFFER_ERROR; /* TCA response MUST be empty. */
/* Set the flag that we're good for keys */
TLSX_SetResponse(ssl, TLSX_TRUSTED_CA_KEYS);
return 0;
#endif
}
#ifndef NO_WOLFSSL_SERVER
if (!extension || !extension->data) {
/* Skipping, TCA not enabled at server side. */
return 0;
}
if (OPAQUE16_LEN > length)
return BUFFER_ERROR;
ato16(input, &size);
offset += OPAQUE16_LEN;
/* validating tca list length */
if (length != OPAQUE16_LEN + size)
return BUFFER_ERROR;
for (size = 0; offset < length; offset += size) {
TCA *tca = NULL;
byte type;
const byte* id = NULL;
word16 idSz = 0;
if (offset + ENUM_LEN > length)
return BUFFER_ERROR;
type = input[offset++];
switch (type) {
case WOLFSSL_TRUSTED_CA_PRE_AGREED:
break;
#ifndef NO_SHA
case WOLFSSL_TRUSTED_CA_KEY_SHA1:
case WOLFSSL_TRUSTED_CA_CERT_SHA1:
if (offset + WC_SHA_DIGEST_SIZE > length)
return BUFFER_ERROR;
idSz = WC_SHA_DIGEST_SIZE;
id = input + offset;
offset += idSz;
break;
#endif
case WOLFSSL_TRUSTED_CA_X509_NAME:
if (offset + OPAQUE16_LEN > length)
return BUFFER_ERROR;
ato16(input + offset, &idSz);
offset += OPAQUE16_LEN;
if ((offset > length) || (idSz > length - offset))
return BUFFER_ERROR;
id = input + offset;
offset += idSz;
break;
default:
WOLFSSL_ERROR_VERBOSE(TCA_INVALID_ID_TYPE);
return TCA_INVALID_ID_TYPE;
}
/* Find the type/ID in the TCA list. */
tca = TLSX_TCA_Find((TCA*)extension->data, type, id, idSz);
if (tca != NULL) {
/* Found it. Set the response flag and break out of the loop. */
TLSX_SetResponse(ssl, TLSX_TRUSTED_CA_KEYS);
break;
}
}
#else
(void)input;
#endif
return 0;
}
/* Checks to see if the server sent a response for the TCA. */
static int TLSX_TCA_VerifyParse(WOLFSSL* ssl, byte isRequest)
{
(void)ssl;
if (!isRequest) {
/* RFC 6066 section 6 states that the server responding
* to trusted_ca_keys is optional. Do not error out unless
* opted into with the define WOLFSSL_REQUIRE_TCA. */
#if !defined(NO_WOLFSSL_CLIENT) && defined(WOLFSSL_REQUIRE_TCA)
TLSX* extension = TLSX_Find(ssl->extensions, TLSX_TRUSTED_CA_KEYS);
if (extension && !extension->resp) {
SendAlert(ssl, alert_fatal, handshake_failure);
WOLFSSL_ERROR_VERBOSE(TCA_ABSENT_ERROR);
return TCA_ABSENT_ERROR;
}
#else
WOLFSSL_MSG("No response received for trusted_ca_keys. Continuing.");
#endif /* !NO_WOLFSSL_CLIENT && WOLFSSL_REQUIRE_TCA */
}
return 0;
}
int TLSX_UseTrustedCA(TLSX** extensions, byte type,
const byte* id, word16 idSz, void* heap)
{
TLSX* extension;
TCA* tca = NULL;
if (extensions == NULL)
return BAD_FUNC_ARG;
if ((tca = TLSX_TCA_New(type, id, idSz, heap)) == NULL)
return MEMORY_E;
extension = TLSX_Find(*extensions, TLSX_TRUSTED_CA_KEYS);
if (!extension) {
int ret = TLSX_Push(extensions, TLSX_TRUSTED_CA_KEYS, (void*)tca, heap);
if (ret != 0) {
TLSX_TCA_Free(tca, heap);
return ret;
}
}
else {
/* push new TCA object to extension data. */
tca->next = (TCA*)extension->data;
extension->data = (void*)tca;
}
return WOLFSSL_SUCCESS;
}
#define TCA_FREE_ALL TLSX_TCA_FreeAll
#define TCA_GET_SIZE TLSX_TCA_GetSize
#define TCA_WRITE TLSX_TCA_Write
#define TCA_PARSE TLSX_TCA_Parse
#define TCA_VERIFY_PARSE TLSX_TCA_VerifyParse
#else /* HAVE_TRUSTED_CA */
#define TCA_FREE_ALL(list, heap) WC_DO_NOTHING
#define TCA_GET_SIZE(list) 0
#define TCA_WRITE(a, b) 0
#define TCA_PARSE(a, b, c, d) 0
#define TCA_VERIFY_PARSE(a, b) 0
#endif /* HAVE_TRUSTED_CA */
/******************************************************************************/
/* Max Fragment Length Negotiation */
/******************************************************************************/
#ifdef HAVE_MAX_FRAGMENT
static word16 TLSX_MFL_Write(byte* data, byte* output)
{
output[0] = data[0];
return ENUM_LEN;
}
static int TLSX_MFL_Parse(WOLFSSL* ssl, const byte* input, word16 length,
byte isRequest)
{
if (length != ENUM_LEN)
return BUFFER_ERROR;
#ifdef WOLFSSL_OLD_UNSUPPORTED_EXTENSION
(void) isRequest;
#else
if (!isRequest)
if (TLSX_CheckUnsupportedExtension(ssl, TLSX_MAX_FRAGMENT_LENGTH))
return TLSX_HandleUnsupportedExtension(ssl);
#endif
switch (*input) {
case WOLFSSL_MFL_2_8 : ssl->max_fragment = 256; break;
case WOLFSSL_MFL_2_9 : ssl->max_fragment = 512; break;
case WOLFSSL_MFL_2_10: ssl->max_fragment = 1024; break;
case WOLFSSL_MFL_2_11: ssl->max_fragment = 2048; break;
case WOLFSSL_MFL_2_12: ssl->max_fragment = 4096; break;
case WOLFSSL_MFL_2_13: ssl->max_fragment = 8192; break;
default:
SendAlert(ssl, alert_fatal, illegal_parameter);
WOLFSSL_ERROR_VERBOSE(UNKNOWN_MAX_FRAG_LEN_E);
return UNKNOWN_MAX_FRAG_LEN_E;
}
if (ssl->session != NULL) {
ssl->session->mfl = *input;
}
#ifndef NO_WOLFSSL_SERVER
if (isRequest) {
int ret = TLSX_UseMaxFragment(&ssl->extensions, *input, ssl->heap);
if (ret != WOLFSSL_SUCCESS)
return ret; /* throw error */
TLSX_SetResponse(ssl, TLSX_MAX_FRAGMENT_LENGTH);
}
#endif
return 0;
}
int TLSX_UseMaxFragment(TLSX** extensions, byte mfl, void* heap)
{
byte* data = NULL;
int ret = 0;
if (extensions == NULL || mfl < WOLFSSL_MFL_MIN || mfl > WOLFSSL_MFL_MAX)
return BAD_FUNC_ARG;
data = (byte*)XMALLOC(ENUM_LEN, heap, DYNAMIC_TYPE_TLSX);
if (data == NULL)
return MEMORY_E;
data[0] = mfl;
ret = TLSX_Push(extensions, TLSX_MAX_FRAGMENT_LENGTH, data, heap);
if (ret != 0) {
XFREE(data, heap, DYNAMIC_TYPE_TLSX);
return ret;
}
return WOLFSSL_SUCCESS;
}
#define MFL_FREE_ALL(data, heap) XFREE(data, (heap), DYNAMIC_TYPE_TLSX)
#define MFL_GET_SIZE(data) ENUM_LEN
#define MFL_WRITE TLSX_MFL_Write
#define MFL_PARSE TLSX_MFL_Parse
#else
#define MFL_FREE_ALL(a, b) WC_DO_NOTHING
#define MFL_GET_SIZE(a) 0
#define MFL_WRITE(a, b) 0
#define MFL_PARSE(a, b, c, d) 0
#endif /* HAVE_MAX_FRAGMENT */
/******************************************************************************/
/* Truncated HMAC */
/******************************************************************************/
#ifdef HAVE_TRUNCATED_HMAC
static int TLSX_THM_Parse(WOLFSSL* ssl, const byte* input, word16 length,
byte isRequest)
{
if (length != 0 || input == NULL)
return BUFFER_ERROR;
if (!isRequest) {
#ifndef WOLFSSL_OLD_UNSUPPORTED_EXTENSION
if (TLSX_CheckUnsupportedExtension(ssl, TLSX_TRUNCATED_HMAC))
return TLSX_HandleUnsupportedExtension(ssl);
#endif
}
else {
#ifndef NO_WOLFSSL_SERVER
int ret = TLSX_UseTruncatedHMAC(&ssl->extensions, ssl->heap);
if (ret != WOLFSSL_SUCCESS)
return ret; /* throw error */
TLSX_SetResponse(ssl, TLSX_TRUNCATED_HMAC);
#endif
}
ssl->truncated_hmac = 1;
return 0;
}
int TLSX_UseTruncatedHMAC(TLSX** extensions, void* heap)
{
int ret = 0;
if (extensions == NULL)
return BAD_FUNC_ARG;
ret = TLSX_Push(extensions, TLSX_TRUNCATED_HMAC, NULL, heap);
if (ret != 0)
return ret;
return WOLFSSL_SUCCESS;
}
#define THM_PARSE TLSX_THM_Parse
#else
#define THM_PARSE(a, b, c, d) 0
#endif /* HAVE_TRUNCATED_HMAC */
/******************************************************************************/
/* Certificate Status Request */
/******************************************************************************/
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST
static void TLSX_CSR_Free(CertificateStatusRequest* csr, void* heap)
{
int i;
switch (csr->status_type) {
case WOLFSSL_CSR_OCSP:
for (i = 0; i <= csr->requests; i++) {
FreeOcspRequest(&csr->request.ocsp[i]);
}
break;
}
#ifdef WOLFSSL_TLS13
for (i = 0; i < MAX_CERT_EXTENSIONS; i++) {
if (csr->responses[i].buffer != NULL) {
XFREE(csr->responses[i].buffer, heap,
DYNAMIC_TYPE_TMP_BUFFER);
}
}
#endif
XFREE(csr, heap, DYNAMIC_TYPE_TLSX);
(void)heap;
}
word16 TLSX_CSR_GetSize_ex(CertificateStatusRequest* csr, byte isRequest,
int idx)
{
word16 size = 0;
/* shut up compiler warnings */
(void) csr; (void) isRequest;
#ifndef NO_WOLFSSL_CLIENT
if (isRequest) {
switch (csr->status_type) {
case WOLFSSL_CSR_OCSP:
size += ENUM_LEN + 2 * OPAQUE16_LEN;
if (csr->request.ocsp[0].nonceSz)
size += OCSP_NONCE_EXT_SZ;
break;
}
}
#endif
#if defined(WOLFSSL_TLS13) && !defined(NO_WOLFSSL_SERVER)
if (!isRequest && IsAtLeastTLSv1_3(csr->ssl->version)) {
if (csr->ssl != NULL && SSL_CM(csr->ssl) != NULL &&
SSL_CM(csr->ssl)->ocsp_stapling != NULL &&
SSL_CM(csr->ssl)->ocsp_stapling->statusCb != NULL) {
return OPAQUE8_LEN + OPAQUE24_LEN + csr->ssl->ocspCsrResp[idx].length;
}
return (word16)(OPAQUE8_LEN + OPAQUE24_LEN +
csr->responses[idx].length);
}
#else
(void)idx;
#endif
return size;
}
#if (defined(WOLFSSL_TLS13) && !defined(NO_WOLFSSL_SERVER))
int TLSX_CSR_SetResponseWithStatusCB(WOLFSSL *ssl)
{
WOLFSSL_OCSP *ocsp;
int ret;
if (ssl == NULL || SSL_CM(ssl) == NULL)
return BAD_FUNC_ARG;
ocsp = SSL_CM(ssl)->ocsp_stapling;
if (ocsp == NULL || ocsp->statusCb == NULL)
return BAD_FUNC_ARG;
ret = ocsp->statusCb(ssl, ocsp->statusCbArg);
switch (ret) {
case WOLFSSL_OCSP_STATUS_CB_OK: {
size_t i;
for (i = 0; i < XELEM_CNT(ssl->ocspCsrResp); i++) {
if (ssl->ocspCsrResp[i].length > 0) {
/* ack the extension, status cb provided the response in
* ssl->ocspCsrResp */
TLSX_SetResponse(ssl, TLSX_STATUS_REQUEST);
ssl->status_request = WOLFSSL_CSR_OCSP;
break;
}
}
ret = 0;
break;
}
case WOLFSSL_OCSP_STATUS_CB_NOACK:
/* suppressing as not critical */
ret = 0;
break;
case WOLFSSL_OCSP_STATUS_CB_ALERT_FATAL:
default:
ret = WOLFSSL_FATAL_ERROR;
break;
}
return ret;
}
static int TLSX_CSR_WriteWithStatusCB(CertificateStatusRequest* csr,
byte* output, int idx)
{
WOLFSSL *ssl = csr->ssl;
WOLFSSL_OCSP *ocsp;
word16 offset = 0;
byte *response;
int respSz;
if (ssl == NULL || SSL_CM(ssl) == NULL)
return BAD_FUNC_ARG;
ocsp = SSL_CM(ssl)->ocsp_stapling;
if (ocsp == NULL || ocsp->statusCb == NULL)
return BAD_FUNC_ARG;
response = ssl->ocspCsrResp[idx].buffer;
respSz = ssl->ocspCsrResp[idx].length;
if (response == NULL || respSz == 0)
return BAD_FUNC_ARG;
output[offset++] = WOLFSSL_CSR_OCSP;
c32to24(respSz, output + offset);
offset += OPAQUE24_LEN;
XMEMCPY(output + offset, response, respSz);
return offset + respSz;
}
#endif /* (TLS13 && !NO_WOLFSLL_SERVER) */
static word16 TLSX_CSR_GetSize(CertificateStatusRequest* csr, byte isRequest)
{
return TLSX_CSR_GetSize_ex(csr, isRequest, 0);
}
int TLSX_CSR_Write_ex(CertificateStatusRequest* csr, byte* output,
byte isRequest, int idx)
{
/* shut up compiler warnings */
(void) csr; (void) output; (void) isRequest;
#ifndef NO_WOLFSSL_CLIENT
if (isRequest) {
int ret = 0;
word16 offset = 0;
word16 length = 0;
/* type */
output[offset++] = csr->status_type;
switch (csr->status_type) {
case WOLFSSL_CSR_OCSP:
/* responder id list */
c16toa(0, output + offset);
offset += OPAQUE16_LEN;
/* request extensions */
if (csr->request.ocsp[0].nonceSz) {
ret = (int)EncodeOcspRequestExtensions(&csr->request.ocsp[0],
output + offset + OPAQUE16_LEN,
OCSP_NONCE_EXT_SZ);
if (ret > 0) {
length = (word16)ret;
}
else {
return ret;
}
}
c16toa(length, output + offset);
offset += OPAQUE16_LEN + length;
break;
}
return (int)offset;
}
#endif
#if defined(WOLFSSL_TLS13) && !defined(NO_WOLFSSL_SERVER)
if (!isRequest && IsAtLeastTLSv1_3(csr->ssl->version)) {
word16 offset = 0;
if (csr->ssl != NULL && SSL_CM(csr->ssl) != NULL &&
SSL_CM(csr->ssl)->ocsp_stapling != NULL &&
SSL_CM(csr->ssl)->ocsp_stapling->statusCb != NULL) {
return TLSX_CSR_WriteWithStatusCB(csr, output, idx);
}
output[offset++] = csr->status_type;
c32to24(csr->responses[idx].length, output + offset);
offset += OPAQUE24_LEN;
XMEMCPY(output + offset, csr->responses[idx].buffer,
csr->responses[idx].length);
offset += (word16)csr->responses[idx].length;
return offset;
}
#else
(void)idx;
#endif
return 0;
}
static int TLSX_CSR_Write(CertificateStatusRequest* csr, byte* output,
byte isRequest)
{
return TLSX_CSR_Write_ex(csr, output, isRequest, 0);
}
#if !defined(NO_WOLFSSL_SERVER) && defined(WOLFSSL_TLS13) && \
defined(WOLFSSL_TLS_OCSP_MULTI)
/* Process OCSP request certificate chain
*
* ssl SSL/TLS object.
* returns 0 on success, otherwise failure.
*/
int ProcessChainOCSPRequest(WOLFSSL* ssl)
{
DecodedCert* cert;
OcspRequest* request;
TLSX* extension;
CertificateStatusRequest* csr;
DerBuffer* chain;
word32 pos = 0;
buffer der;
int i = 1;
int ret = 0;
byte ctxOwnsRequest = 0;
/* use certChain if available, otherwise use peer certificate */
chain = ssl->buffers.certChain;
if (chain == NULL) {
chain = ssl->buffers.certificate;
}
extension = TLSX_Find(ssl->extensions, TLSX_STATUS_REQUEST);
csr = extension ?
(CertificateStatusRequest*)extension->data : NULL;
if (csr == NULL)
return MEMORY_ERROR;
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), ssl->heap,
DYNAMIC_TYPE_DCERT);
if (cert == NULL) {
return MEMORY_E;
}
if (chain && chain->buffer) {
while (ret == 0 && pos + OPAQUE24_LEN < chain->length) {
c24to32(chain->buffer + pos, &der.length);
pos += OPAQUE24_LEN;
der.buffer = chain->buffer + pos;
pos += der.length;
if (pos > chain->length)
break;
request = &csr->request.ocsp[i];
if (ret == 0) {
ret = CreateOcspRequest(ssl, request, cert,
der.buffer, der.length, &ctxOwnsRequest);
if (ctxOwnsRequest) {
wolfSSL_Mutex* ocspLock =
&SSL_CM(ssl)->ocsp_stapling->ocspLock;
if (wc_LockMutex(ocspLock) == 0) {
/* the request is ours */
ssl->ctx->certOcspRequest = NULL;
}
wc_UnLockMutex(ocspLock);
}
}
if (ret == 0) {
request->ssl = ssl;
ret = CheckOcspRequest(SSL_CM(ssl)->ocsp_stapling,
request, &csr->responses[i], ssl->heap);
/* Suppressing, not critical */
if (ret == WC_NO_ERR_TRACE(OCSP_CERT_REVOKED) ||
ret == WC_NO_ERR_TRACE(OCSP_CERT_UNKNOWN) ||
ret == WC_NO_ERR_TRACE(OCSP_LOOKUP_FAIL)) {
ret = 0;
}
i++;
csr->requests++;
}
}
}
XFREE(cert, ssl->heap, DYNAMIC_TYPE_DCERT);
return ret;
}
#endif
static int TLSX_CSR_Parse(WOLFSSL* ssl, const byte* input, word16 length,
byte isRequest)
{
int ret;
#if !defined(NO_WOLFSSL_SERVER)
byte status_type;
word16 size = 0;
#endif
#if !defined(NO_WOLFSSL_CLIENT) || !defined(NO_WOLFSSL_SERVER) \
&& defined(WOLFSSL_TLS13)
OcspRequest* request;
TLSX* extension;
CertificateStatusRequest* csr;
#endif
#if !defined(NO_WOLFSSL_CLIENT) && defined(WOLFSSL_TLS13) \
|| !defined(NO_WOLFSSL_SERVER)
word32 offset = 0;
#endif
#if !defined(NO_WOLFSSL_CLIENT) && defined(WOLFSSL_TLS13)
word32 resp_length = 0;
#endif
/* shut up compiler warnings */
(void) ssl; (void) input;
if (!isRequest) {
#ifndef NO_WOLFSSL_CLIENT
extension = TLSX_Find(ssl->extensions, TLSX_STATUS_REQUEST);
csr = extension ? (CertificateStatusRequest*)extension->data : NULL;
if (!csr) {
/* look at context level */
extension = TLSX_Find(ssl->ctx->extensions, TLSX_STATUS_REQUEST);
csr = extension ? (CertificateStatusRequest*)extension->data : NULL;
if (!csr) /* unexpected extension */
return TLSX_HandleUnsupportedExtension(ssl);
/* enable extension at ssl level */
ret = TLSX_UseCertificateStatusRequest(&ssl->extensions,
csr->status_type, csr->options, ssl,
ssl->heap, ssl->devId);
if (ret != WOLFSSL_SUCCESS)
return ret == 0 ? -1 : ret;
switch (csr->status_type) {
case WOLFSSL_CSR_OCSP:
/* propagate nonce */
if (csr->request.ocsp[0].nonceSz) {
request =
(OcspRequest*)TLSX_CSR_GetRequest(ssl->extensions);
if (request) {
XMEMCPY(request->nonce, csr->request.ocsp[0].nonce,
(size_t)csr->request.ocsp[0].nonceSz);
request->nonceSz = csr->request.ocsp[0].nonceSz;
}
}
break;
}
}
ssl->status_request = 1;
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3) {
/* Get the new extension potentially created above. */
extension = TLSX_Find(ssl->extensions, TLSX_STATUS_REQUEST);
csr = extension ? (CertificateStatusRequest*)extension->data : NULL;
if (csr == NULL)
return MEMORY_ERROR;
ret = 0;
if (OPAQUE8_LEN + OPAQUE24_LEN > length)
ret = BUFFER_ERROR;
if (ret == 0 && input[offset++] != WOLFSSL_CSR_OCSP) {
ret = BAD_CERTIFICATE_STATUS_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
if (ret == 0) {
c24to32(input + offset, &resp_length);
offset += OPAQUE24_LEN;
if (offset + resp_length != length)
ret = BUFFER_ERROR;
}
if (ret == 0) {
if (ssl->response_idx < (1 + MAX_CHAIN_DEPTH))
csr->responses[ssl->response_idx].buffer =
(byte*)XMALLOC(resp_length, ssl->heap,
DYNAMIC_TYPE_TMP_BUFFER);
else
ret = BAD_FUNC_ARG;
if (ret == 0 &&
csr->responses[ssl->response_idx].buffer == NULL)
ret = MEMORY_ERROR;
}
if (ret == 0) {
XMEMCPY(csr->responses[ssl->response_idx].buffer,
input + offset, resp_length);
csr->responses[ssl->response_idx].length = resp_length;
}
return ret;
}
else
#endif
{
/* extension_data MUST be empty. */
return length ? BUFFER_ERROR : 0;
}
#endif
}
else {
#ifndef NO_WOLFSSL_SERVER
if (length == 0)
return 0;
status_type = input[offset++];
switch (status_type) {
case WOLFSSL_CSR_OCSP: {
/* skip responder_id_list */
if ((int)(length - offset) < OPAQUE16_LEN)
return BUFFER_ERROR;
ato16(input + offset, &size);
offset += OPAQUE16_LEN + size;
/* skip request_extensions */
if ((int)(length - offset) < OPAQUE16_LEN)
return BUFFER_ERROR;
ato16(input + offset, &size);
offset += OPAQUE16_LEN + size;
if (offset > length)
return BUFFER_ERROR;
/* is able to send OCSP response? */
if (SSL_CM(ssl) == NULL || !SSL_CM(ssl)->ocspStaplingEnabled)
return 0;
}
break;
/* unknown status type */
default:
return 0;
}
/* if using status_request and already sending it, skip this one */
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST_V2
if (ssl->status_request_v2)
return 0;
#endif
/* accept the first good status_type and return */
ret = TLSX_UseCertificateStatusRequest(&ssl->extensions, status_type,
0, ssl, ssl->heap, ssl->devId);
if (ret != WOLFSSL_SUCCESS)
return ret == 0 ? -1 : ret; /* throw error */
TLSX_SetResponse(ssl, TLSX_STATUS_REQUEST);
ssl->status_request = status_type;
#endif
}
return 0;
}
int TLSX_CSR_InitRequest_ex(TLSX* extensions, DecodedCert* cert,
void* heap, int idx)
{
TLSX* extension = TLSX_Find(extensions, TLSX_STATUS_REQUEST);
CertificateStatusRequest* csr = extension ?
(CertificateStatusRequest*)extension->data : NULL;
int ret = 0;
if (csr) {
switch (csr->status_type) {
case WOLFSSL_CSR_OCSP: {
byte nonce[MAX_OCSP_NONCE_SZ];
int req_cnt = idx == -1 ? csr->requests : idx;
int nonceSz = csr->request.ocsp[0].nonceSz;
OcspRequest* request;
request = &csr->request.ocsp[req_cnt];
if (request->serial != NULL) {
/* clear request contents before reuse */
FreeOcspRequest(request);
if (csr->requests > 0)
csr->requests--;
}
/* preserve nonce */
XMEMCPY(nonce, csr->request.ocsp->nonce, (size_t)nonceSz);
if (req_cnt < MAX_CERT_EXTENSIONS) {
if ((ret = InitOcspRequest(request, cert, 0, heap)) != 0)
return ret;
/* restore nonce */
XMEMCPY(csr->request.ocsp->nonce, nonce, (size_t)nonceSz);
request->nonceSz = nonceSz;
csr->requests++;
}
else {
WOLFSSL_ERROR_VERBOSE(MAX_CERT_EXTENSIONS_ERR);
return MAX_CERT_EXTENSIONS_ERR;
}
}
break;
}
}
return ret;
}
int TLSX_CSR_InitRequest(TLSX* extensions, DecodedCert* cert, void* heap)
{
return TLSX_CSR_InitRequest_ex(extensions, cert, heap, -1);
}
void* TLSX_CSR_GetRequest_ex(TLSX* extensions, int idx)
{
TLSX* extension = TLSX_Find(extensions, TLSX_STATUS_REQUEST);
CertificateStatusRequest* csr = extension ?
(CertificateStatusRequest*)extension->data : NULL;
if (csr && csr->ssl) {
switch (csr->status_type) {
case WOLFSSL_CSR_OCSP:
if (IsAtLeastTLSv1_3(csr->ssl->version)) {
return idx < csr->requests ? &csr->request.ocsp[idx] : NULL;
}
else {
return idx == 0 ? &csr->request.ocsp[0] : NULL;
}
}
}
return NULL;
}
void* TLSX_CSR_GetRequest(TLSX* extensions)
{
return TLSX_CSR_GetRequest_ex(extensions, 0);
}
int TLSX_CSR_ForceRequest(WOLFSSL* ssl)
{
TLSX* extension = TLSX_Find(ssl->extensions, TLSX_STATUS_REQUEST);
CertificateStatusRequest* csr = extension ?
(CertificateStatusRequest*)extension->data : NULL;
if (csr) {
switch (csr->status_type) {
case WOLFSSL_CSR_OCSP:
if (SSL_CM(ssl)->ocspEnabled) {
csr->request.ocsp[0].ssl = ssl;
return CheckOcspRequest(SSL_CM(ssl)->ocsp,
&csr->request.ocsp[0], NULL, NULL);
}
else {
WOLFSSL_ERROR_VERBOSE(OCSP_LOOKUP_FAIL);
return OCSP_LOOKUP_FAIL;
}
}
}
return 0;
}
int TLSX_UseCertificateStatusRequest(TLSX** extensions, byte status_type,
byte options, WOLFSSL* ssl, void* heap,
int devId)
{
CertificateStatusRequest* csr = NULL;
int ret = 0;
if (!extensions || status_type != WOLFSSL_CSR_OCSP)
return BAD_FUNC_ARG;
csr = (CertificateStatusRequest*)
XMALLOC(sizeof(CertificateStatusRequest), heap, DYNAMIC_TYPE_TLSX);
if (!csr)
return MEMORY_E;
ForceZero(csr, sizeof(CertificateStatusRequest));
#if defined(WOLFSSL_TLS13)
XMEMSET(csr->responses, 0, sizeof(csr->responses));
#endif
csr->status_type = status_type;
csr->options = options;
csr->ssl = ssl;
switch (csr->status_type) {
case WOLFSSL_CSR_OCSP:
if (options & WOLFSSL_CSR_OCSP_USE_NONCE) {
WC_RNG rng;
#ifndef HAVE_FIPS
ret = wc_InitRng_ex(&rng, heap, devId);
#else
ret = wc_InitRng(&rng);
(void)devId;
#endif
if (ret == 0) {
if (wc_RNG_GenerateBlock(&rng, csr->request.ocsp[0].nonce,
MAX_OCSP_NONCE_SZ) == 0)
csr->request.ocsp[0].nonceSz = MAX_OCSP_NONCE_SZ;
wc_FreeRng(&rng);
}
}
break;
}
if ((ret = TLSX_Push(extensions, TLSX_STATUS_REQUEST, csr, heap)) != 0) {
XFREE(csr, heap, DYNAMIC_TYPE_TLSX);
return ret;
}
return WOLFSSL_SUCCESS;
}
#define CSR_FREE_ALL TLSX_CSR_Free
#define CSR_GET_SIZE TLSX_CSR_GetSize
#define CSR_WRITE TLSX_CSR_Write
#define CSR_PARSE TLSX_CSR_Parse
#else
#define CSR_FREE_ALL(data, heap) WC_DO_NOTHING
#define CSR_GET_SIZE(a, b) 0
#define CSR_WRITE(a, b, c) 0
#define CSR_PARSE(a, b, c, d) 0
#endif /* HAVE_CERTIFICATE_STATUS_REQUEST */
/******************************************************************************/
/* Certificate Status Request v2 */
/******************************************************************************/
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST_V2
static void TLSX_CSR2_FreePendingSigners(Signer *s, void* heap)
{
Signer* next;
while(s) {
next = s->next;
FreeSigner(s, heap);
s = next;
}
}
static void TLSX_CSR2_FreeAll(CertificateStatusRequestItemV2* csr2, void* heap)
{
CertificateStatusRequestItemV2* next;
TLSX_CSR2_FreePendingSigners(csr2->pendingSigners, heap);
for (; csr2; csr2 = next) {
next = csr2->next;
switch (csr2->status_type) {
case WOLFSSL_CSR2_OCSP:
case WOLFSSL_CSR2_OCSP_MULTI:
while(csr2->requests--)
FreeOcspRequest(&csr2->request.ocsp[csr2->requests]);
break;
}
XFREE(csr2, heap, DYNAMIC_TYPE_TLSX);
}
(void)heap;
}
static word16 TLSX_CSR2_GetSize(CertificateStatusRequestItemV2* csr2,
byte isRequest)
{
word16 size = 0;
/* shut up compiler warnings */
(void) csr2; (void) isRequest;
#ifndef NO_WOLFSSL_CLIENT
if (isRequest) {
CertificateStatusRequestItemV2* next;
for (size = OPAQUE16_LEN; csr2; csr2 = next) {
next = csr2->next;
switch (csr2->status_type) {
case WOLFSSL_CSR2_OCSP:
case WOLFSSL_CSR2_OCSP_MULTI:
size += ENUM_LEN + 3 * OPAQUE16_LEN;
if (csr2->request.ocsp[0].nonceSz)
size += OCSP_NONCE_EXT_SZ;
break;
}
}
}
#endif
return size;
}
static int TLSX_CSR2_Write(CertificateStatusRequestItemV2* csr2,
byte* output, byte isRequest)
{
/* shut up compiler warnings */
(void) csr2; (void) output; (void) isRequest;
#ifndef NO_WOLFSSL_CLIENT
if (isRequest) {
int ret = 0;
word16 offset;
word16 length;
for (offset = OPAQUE16_LEN; csr2 != NULL; csr2 = csr2->next) {
/* status_type */
output[offset++] = csr2->status_type;
/* request */
switch (csr2->status_type) {
case WOLFSSL_CSR2_OCSP:
case WOLFSSL_CSR2_OCSP_MULTI:
/* request_length */
length = 2 * OPAQUE16_LEN;
if (csr2->request.ocsp[0].nonceSz)
length += OCSP_NONCE_EXT_SZ;
c16toa(length, output + offset);
offset += OPAQUE16_LEN;
/* responder id list */
c16toa(0, output + offset);
offset += OPAQUE16_LEN;
/* request extensions */
length = 0;
if (csr2->request.ocsp[0].nonceSz) {
ret = (int)EncodeOcspRequestExtensions(
&csr2->request.ocsp[0],
output + offset + OPAQUE16_LEN,
OCSP_NONCE_EXT_SZ);
if (ret > 0) {
length = (word16)ret;
}
else {
return ret;
}
}
c16toa(length, output + offset);
offset += OPAQUE16_LEN + length;
break;
}
}
/* list size */
c16toa(offset - OPAQUE16_LEN, output);
return (int)offset;
}
#endif
return 0;
}
static int TLSX_CSR2_Parse(WOLFSSL* ssl, const byte* input, word16 length,
byte isRequest)
{
int ret;
/* shut up compiler warnings */
(void) ssl; (void) input;
if (!isRequest) {
#ifndef NO_WOLFSSL_CLIENT
TLSX* extension = TLSX_Find(ssl->extensions, TLSX_STATUS_REQUEST_V2);
CertificateStatusRequestItemV2* csr2 = extension ?
(CertificateStatusRequestItemV2*)extension->data : NULL;
if (!csr2) {
/* look at context level */
extension = TLSX_Find(ssl->ctx->extensions, TLSX_STATUS_REQUEST_V2);
csr2 = extension ?
(CertificateStatusRequestItemV2*)extension->data : NULL;
if (!csr2) /* unexpected extension */
return TLSX_HandleUnsupportedExtension(ssl);
/* enable extension at ssl level */
for (; csr2; csr2 = csr2->next) {
ret = TLSX_UseCertificateStatusRequestV2(&ssl->extensions,
csr2->status_type, csr2->options, ssl->heap,
ssl->devId);
if (ret != WOLFSSL_SUCCESS)
return ret;
switch (csr2->status_type) {
case WOLFSSL_CSR2_OCSP:
/* followed by */
case WOLFSSL_CSR2_OCSP_MULTI:
/* propagate nonce */
if (csr2->request.ocsp[0].nonceSz) {
OcspRequest* request =
(OcspRequest*)TLSX_CSR2_GetRequest(ssl->extensions,
csr2->status_type, 0);
if (request) {
XMEMCPY(request->nonce,
csr2->request.ocsp[0].nonce,
(size_t)csr2->request.ocsp[0].nonceSz);
request->nonceSz =
csr2->request.ocsp[0].nonceSz;
}
}
break;
}
}
}
ssl->status_request_v2 = 1;
return length ? BUFFER_ERROR : 0; /* extension_data MUST be empty. */
#endif
}
else {
#ifndef NO_WOLFSSL_SERVER
byte status_type;
word16 request_length;
word16 offset = 0;
word16 size = 0;
/* list size */
if (offset + OPAQUE16_LEN >= length) {
return BUFFER_E;
}
ato16(input + offset, &request_length);
offset += OPAQUE16_LEN;
if (length - OPAQUE16_LEN != request_length)
return BUFFER_ERROR;
while (length > offset) {
if ((int)(length - offset) < ENUM_LEN + OPAQUE16_LEN)
return BUFFER_ERROR;
status_type = input[offset++];
ato16(input + offset, &request_length);
offset += OPAQUE16_LEN;
if (length - offset < request_length)
return BUFFER_ERROR;
switch (status_type) {
case WOLFSSL_CSR2_OCSP:
case WOLFSSL_CSR2_OCSP_MULTI:
/* skip responder_id_list */
if ((int)(length - offset) < OPAQUE16_LEN)
return BUFFER_ERROR;
ato16(input + offset, &size);
if (length - offset < size)
return BUFFER_ERROR;
offset += OPAQUE16_LEN + size;
/* skip request_extensions */
if ((int)(length - offset) < OPAQUE16_LEN)
return BUFFER_ERROR;
ato16(input + offset, &size);
if (length - offset < size)
return BUFFER_ERROR;
offset += OPAQUE16_LEN + size;
if (offset > length)
return BUFFER_ERROR;
/* is able to send OCSP response? */
if (SSL_CM(ssl) == NULL
|| !SSL_CM(ssl)->ocspStaplingEnabled)
continue;
break;
default:
/* unknown status type, skipping! */
offset += request_length;
continue;
}
/* if using status_request and already sending it, remove it
* and prefer to use the v2 version */
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST
if (ssl->status_request) {
ssl->status_request = 0;
TLSX_Remove(&ssl->extensions, TLSX_STATUS_REQUEST, ssl->heap);
}
#endif
/* TLS 1.3 servers MUST NOT act upon presence or information in
* this extension (RFC 8448 Section 4.4.2.1).
*/
if (!IsAtLeastTLSv1_3(ssl->version)) {
/* accept the first good status_type and return */
ret = TLSX_UseCertificateStatusRequestV2(&ssl->extensions,
status_type, 0, ssl->heap, ssl->devId);
if (ret != WOLFSSL_SUCCESS)
return ret; /* throw error */
TLSX_SetResponse(ssl, TLSX_STATUS_REQUEST_V2);
ssl->status_request_v2 = status_type;
}
return 0;
}
#endif
}
return 0;
}
static CertificateStatusRequestItemV2* TLSX_CSR2_GetMulti(TLSX *extensions)
{
TLSX* extension = TLSX_Find(extensions, TLSX_STATUS_REQUEST_V2);
CertificateStatusRequestItemV2* csr2 = extension ?
(CertificateStatusRequestItemV2*)extension->data : NULL;
for (; csr2; csr2 = csr2->next) {
if (csr2->status_type == WOLFSSL_CSR2_OCSP_MULTI)
return csr2;
}
return NULL;
}
int TLSX_CSR2_IsMulti(TLSX *extensions)
{
return TLSX_CSR2_GetMulti(extensions) != NULL;
}
int TLSX_CSR2_AddPendingSigner(TLSX *extensions, Signer *s)
{
CertificateStatusRequestItemV2* csr2;
csr2 = TLSX_CSR2_GetMulti(extensions);
if (!csr2)
return WOLFSSL_FATAL_ERROR;
s->next = csr2->pendingSigners;
csr2->pendingSigners = s;
return 0;
}
Signer* TLSX_CSR2_GetPendingSigners(TLSX *extensions)
{
CertificateStatusRequestItemV2* csr2;
csr2 = TLSX_CSR2_GetMulti(extensions);
if (!csr2)
return NULL;
return csr2->pendingSigners;
}
int TLSX_CSR2_ClearPendingCA(WOLFSSL *ssl)
{
CertificateStatusRequestItemV2* csr2;
csr2 = TLSX_CSR2_GetMulti(ssl->extensions);
if (csr2 == NULL)
return 0;
TLSX_CSR2_FreePendingSigners(csr2->pendingSigners, SSL_CM(ssl)->heap);
csr2->pendingSigners = NULL;
return 0;
}
int TLSX_CSR2_MergePendingCA(WOLFSSL* ssl)
{
CertificateStatusRequestItemV2* csr2;
Signer *s, *next;
int r = 0;
csr2 = TLSX_CSR2_GetMulti(ssl->extensions);
if (csr2 == NULL)
return 0;
s = csr2->pendingSigners;
while (s != NULL) {
next = s->next;
r = AddSigner(SSL_CM(ssl), s);
if (r != 0)
FreeSigner(s, SSL_CM(ssl)->heap);
s = next;
}
csr2->pendingSigners = NULL;
return r;
}
int TLSX_CSR2_InitRequests(TLSX* extensions, DecodedCert* cert, byte isPeer,
void* heap)
{
TLSX* extension = TLSX_Find(extensions, TLSX_STATUS_REQUEST_V2);
CertificateStatusRequestItemV2* csr2 = extension ?
(CertificateStatusRequestItemV2*)extension->data : NULL;
int ret = 0;
for (; csr2; csr2 = csr2->next) {
switch (csr2->status_type) {
case WOLFSSL_CSR2_OCSP:
if (!isPeer || csr2->requests != 0)
break;
FALL_THROUGH; /* followed by */
case WOLFSSL_CSR2_OCSP_MULTI: {
if (csr2->requests < 1 + MAX_CHAIN_DEPTH) {
byte nonce[MAX_OCSP_NONCE_SZ];
int nonceSz = csr2->request.ocsp[0].nonceSz;
/* preserve nonce, replicating nonce of ocsp[0] */
XMEMCPY(nonce, csr2->request.ocsp[0].nonce,
(size_t)nonceSz);
if ((ret = InitOcspRequest(
&csr2->request.ocsp[csr2->requests], cert,
0, heap)) != 0)
return ret;
/* restore nonce */
XMEMCPY(csr2->request.ocsp[csr2->requests].nonce,
nonce, (size_t)nonceSz);
csr2->request.ocsp[csr2->requests].nonceSz = nonceSz;
csr2->requests++;
}
}
break;
}
}
(void)cert;
return ret;
}
void* TLSX_CSR2_GetRequest(TLSX* extensions, byte status_type, byte idx)
{
TLSX* extension = TLSX_Find(extensions, TLSX_STATUS_REQUEST_V2);
CertificateStatusRequestItemV2* csr2 = extension ?
(CertificateStatusRequestItemV2*)extension->data : NULL;
for (; csr2; csr2 = csr2->next) {
if (csr2->status_type == status_type) {
switch (csr2->status_type) {
case WOLFSSL_CSR2_OCSP:
/* followed by */
case WOLFSSL_CSR2_OCSP_MULTI:
/* requests are initialized in the reverse order */
return idx < csr2->requests
? &csr2->request.ocsp[csr2->requests - idx - 1]
: NULL;
}
}
}
return NULL;
}
int TLSX_CSR2_ForceRequest(WOLFSSL* ssl)
{
TLSX* extension = TLSX_Find(ssl->extensions, TLSX_STATUS_REQUEST_V2);
CertificateStatusRequestItemV2* csr2 = extension ?
(CertificateStatusRequestItemV2*)extension->data : NULL;
/* forces only the first one */
if (csr2) {
switch (csr2->status_type) {
case WOLFSSL_CSR2_OCSP:
/* followed by */
case WOLFSSL_CSR2_OCSP_MULTI:
if (SSL_CM(ssl)->ocspEnabled && csr2->requests >= 1) {
csr2->request.ocsp[csr2->requests-1].ssl = ssl;
return CheckOcspRequest(SSL_CM(ssl)->ocsp,
&csr2->request.ocsp[csr2->requests-1], NULL, NULL);
}
else {
WOLFSSL_ERROR_VERBOSE(OCSP_LOOKUP_FAIL);
return OCSP_LOOKUP_FAIL;
}
}
}
return 0;
}
int TLSX_UseCertificateStatusRequestV2(TLSX** extensions, byte status_type,
byte options, void* heap, int devId)
{
TLSX* extension = NULL;
CertificateStatusRequestItemV2* csr2 = NULL;
int ret = 0;
if (!extensions)
return BAD_FUNC_ARG;
if (status_type != WOLFSSL_CSR2_OCSP
&& status_type != WOLFSSL_CSR2_OCSP_MULTI)
return BAD_FUNC_ARG;
csr2 = (CertificateStatusRequestItemV2*)
XMALLOC(sizeof(CertificateStatusRequestItemV2), heap, DYNAMIC_TYPE_TLSX);
if (!csr2)
return MEMORY_E;
ForceZero(csr2, sizeof(CertificateStatusRequestItemV2));
csr2->status_type = status_type;
csr2->options = options;
csr2->next = NULL;
switch (csr2->status_type) {
case WOLFSSL_CSR2_OCSP:
case WOLFSSL_CSR2_OCSP_MULTI:
if (options & WOLFSSL_CSR2_OCSP_USE_NONCE) {
WC_RNG rng;
#ifndef HAVE_FIPS
ret = wc_InitRng_ex(&rng, heap, devId);
#else
ret = wc_InitRng(&rng);
(void)devId;
#endif
if (ret == 0) {
if (wc_RNG_GenerateBlock(&rng, csr2->request.ocsp[0].nonce,
MAX_OCSP_NONCE_SZ) == 0)
csr2->request.ocsp[0].nonceSz = MAX_OCSP_NONCE_SZ;
wc_FreeRng(&rng);
}
}
break;
}
/* append new item */
if ((extension = TLSX_Find(*extensions, TLSX_STATUS_REQUEST_V2))) {
CertificateStatusRequestItemV2* last =
(CertificateStatusRequestItemV2*)extension->data;
if (last == NULL) {
XFREE(csr2, heap, DYNAMIC_TYPE_TLSX);
return BAD_FUNC_ARG;
}
for (; last->next; last = last->next);
last->next = csr2;
}
else if ((ret = TLSX_Push(extensions, TLSX_STATUS_REQUEST_V2, csr2,heap))) {
XFREE(csr2, heap, DYNAMIC_TYPE_TLSX);
return ret;
}
return WOLFSSL_SUCCESS;
}
#define CSR2_FREE_ALL TLSX_CSR2_FreeAll
#define CSR2_GET_SIZE TLSX_CSR2_GetSize
#define CSR2_WRITE TLSX_CSR2_Write
#define CSR2_PARSE TLSX_CSR2_Parse
#else
#define CSR2_FREE_ALL(data, heap) WC_DO_NOTHING
#define CSR2_GET_SIZE(a, b) 0
#define CSR2_WRITE(a, b, c) 0
#define CSR2_PARSE(a, b, c, d) 0
#endif /* HAVE_CERTIFICATE_STATUS_REQUEST_V2 */
#if defined(HAVE_SUPPORTED_CURVES) || \
(defined(WOLFSSL_TLS13) && defined(HAVE_SUPPORTED_CURVES))
/* Functions needed by TLSX_IsGroupSupported */
#ifdef HAVE_LIBOQS
static int mlkem_id2type(int id, int *type);
static void findEccPqc(int *ecc, int *pqc, int *pqc_first, int group);
#endif
/* Returns whether this group is supported.
*
* namedGroup The named group to check.
* returns 1 when supported or 0 otherwise.
*/
static int TLSX_IsGroupSupported(int namedGroup)
{
switch (namedGroup) {
#ifdef HAVE_FFDHE_2048
case WOLFSSL_FFDHE_2048:
break;
#endif
#ifdef HAVE_FFDHE_3072
case WOLFSSL_FFDHE_3072:
break;
#endif
#ifdef HAVE_FFDHE_4096
case WOLFSSL_FFDHE_4096:
break;
#endif
#ifdef HAVE_FFDHE_6144
case WOLFSSL_FFDHE_6144:
break;
#endif
#ifdef HAVE_FFDHE_8192
case WOLFSSL_FFDHE_8192:
break;
#endif
#if (!defined(NO_ECC256) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 256
#ifdef HAVE_ECC_KOBLITZ
case WOLFSSL_ECC_SECP256K1:
break;
#endif
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP256R1:
break;
#endif /* !NO_ECC_SECP */
#ifdef HAVE_ECC_BRAINPOOL
case WOLFSSL_ECC_BRAINPOOLP256R1:
break;
#endif
#ifdef WOLFSSL_SM2
case WOLFSSL_ECC_SM2P256V1:
break;
#endif /* WOLFSSL_SM2 */
#endif
#if defined(HAVE_CURVE25519) && ECC_MIN_KEY_SZ <= 256
case WOLFSSL_ECC_X25519:
break;
#endif
#if defined(HAVE_CURVE448) && ECC_MIN_KEY_SZ <= 448
case WOLFSSL_ECC_X448:
break;
#endif
#if (defined(HAVE_ECC384) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 384
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP384R1:
break;
#endif /* !NO_ECC_SECP */
#ifdef HAVE_ECC_BRAINPOOL
case WOLFSSL_ECC_BRAINPOOLP384R1:
break;
#endif
#endif
#if (defined(HAVE_ECC521) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 521
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP521R1:
break;
#endif /* !NO_ECC_SECP */
#endif
#if (defined(HAVE_ECC160) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 160
#ifdef HAVE_ECC_KOBLITZ
case WOLFSSL_ECC_SECP160K1:
break;
#endif
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP160R1:
break;
#endif
#ifdef HAVE_ECC_SECPR2
case WOLFSSL_ECC_SECP160R2:
break;
#endif
#endif
#if (defined(HAVE_ECC192) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 192
#ifdef HAVE_ECC_KOBLITZ
case WOLFSSL_ECC_SECP192K1:
break;
#endif
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP192R1:
break;
#endif
#endif
#if (defined(HAVE_ECC224) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 224
#ifdef HAVE_ECC_KOBLITZ
case WOLFSSL_ECC_SECP224K1:
break;
#endif
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP224R1:
break;
#endif
#endif
#if (defined(HAVE_ECC512) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 512
#ifdef HAVE_ECC_BRAINPOOL
case WOLFSSL_ECC_BRAINPOOLP512R1:
break;
#endif
#endif
#ifdef WOLFSSL_HAVE_MLKEM
#ifndef WOLFSSL_NO_ML_KEM
#ifdef WOLFSSL_WC_MLKEM
#ifndef WOLFSSL_NO_ML_KEM_512
case WOLFSSL_ML_KEM_512:
case WOLFSSL_SECP256R1MLKEM512:
#if defined(HAVE_CURVE25519) && ECC_MIN_KEY_SZ <= 256
case WOLFSSL_X25519MLKEM512:
#endif
#endif
#ifndef WOLFSSL_NO_ML_KEM_768
case WOLFSSL_ML_KEM_768:
case WOLFSSL_SECP384R1MLKEM768:
case WOLFSSL_SECP256R1MLKEM768:
#if defined(HAVE_CURVE25519) && ECC_MIN_KEY_SZ <= 256
case WOLFSSL_X25519MLKEM768:
#endif
#if defined(HAVE_CURVE448) && ECC_MIN_KEY_SZ <= 448
case WOLFSSL_X448MLKEM768:
#endif
#endif
#ifndef WOLFSSL_NO_ML_KEM_1024
case WOLFSSL_ML_KEM_1024:
case WOLFSSL_SECP521R1MLKEM1024:
case WOLFSSL_SECP384R1MLKEM1024:
break;
#endif
#ifdef WOLFSSL_ML_KEM_USE_OLD_IDS
case WOLFSSL_P256_ML_KEM_512_OLD:
case WOLFSSL_P384_ML_KEM_768_OLD:
case WOLFSSL_P521_ML_KEM_1024_OLD:
break;
#endif
#elif defined(HAVE_LIBOQS)
case WOLFSSL_ML_KEM_512:
case WOLFSSL_ML_KEM_768:
case WOLFSSL_ML_KEM_1024:
{
int ret;
int id;
ret = mlkem_id2type(namedGroup, &id);
if (ret == WC_NO_ERR_TRACE(NOT_COMPILED_IN)) {
return 0;
}
if (! ext_mlkem_enabled(id)) {
return 0;
}
break;
}
case WOLFSSL_SECP256R1MLKEM512:
case WOLFSSL_SECP384R1MLKEM768:
case WOLFSSL_SECP256R1MLKEM768:
case WOLFSSL_SECP521R1MLKEM1024:
case WOLFSSL_SECP384R1MLKEM1024:
case WOLFSSL_X25519MLKEM512:
case WOLFSSL_X448MLKEM768:
case WOLFSSL_X25519MLKEM768:
{
int ret;
int id;
findEccPqc(NULL, &namedGroup, NULL, namedGroup);
ret = mlkem_id2type(namedGroup, &id);
if (ret == WC_NO_ERR_TRACE(NOT_COMPILED_IN)) {
return 0;
}
if (! ext_mlkem_enabled(id)) {
return 0;
}
break;
}
#endif
#endif /* WOLFSSL_NO_ML_KEM */
#ifdef WOLFSSL_MLKEM_KYBER
#ifdef WOLFSSL_WC_MLKEM
#ifdef WOLFSSL_KYBER512
case WOLFSSL_KYBER_LEVEL1:
case WOLFSSL_P256_KYBER_LEVEL1:
#if defined(HAVE_CURVE25519) && ECC_MIN_KEY_SZ <= 256
case WOLFSSL_X25519_KYBER_LEVEL1:
#endif
#endif
#ifdef WOLFSSL_KYBER768
case WOLFSSL_KYBER_LEVEL3:
case WOLFSSL_P384_KYBER_LEVEL3:
case WOLFSSL_P256_KYBER_LEVEL3:
#if defined(HAVE_CURVE25519) && ECC_MIN_KEY_SZ <= 256
case WOLFSSL_X25519_KYBER_LEVEL3:
#endif
#if defined(HAVE_CURVE448) && ECC_MIN_KEY_SZ <= 448
case WOLFSSL_X448_KYBER_LEVEL3:
#endif
#endif
#ifdef WOLFSSL_KYBER1024
case WOLFSSL_KYBER_LEVEL5:
case WOLFSSL_P521_KYBER_LEVEL5:
#endif
break;
#elif defined(HAVE_LIBOQS)
case WOLFSSL_KYBER_LEVEL1:
case WOLFSSL_KYBER_LEVEL3:
case WOLFSSL_KYBER_LEVEL5:
{
int ret;
int id;
ret = mlkem_id2type(namedGroup, &id);
if (ret == WC_NO_ERR_TRACE(NOT_COMPILED_IN)) {
return 0;
}
if (! ext_mlkem_enabled(id)) {
return 0;
}
break;
}
case WOLFSSL_P256_KYBER_LEVEL1:
case WOLFSSL_P384_KYBER_LEVEL3:
case WOLFSSL_P256_KYBER_LEVEL3:
case WOLFSSL_P521_KYBER_LEVEL5:
case WOLFSSL_X25519_KYBER_LEVEL1:
case WOLFSSL_X448_KYBER_LEVEL3:
case WOLFSSL_X25519_KYBER_LEVEL3:
{
int ret;
int id;
findEccPqc(NULL, &namedGroup, NULL, namedGroup);
ret = mlkem_id2type(namedGroup, &id);
if (ret == WC_NO_ERR_TRACE(NOT_COMPILED_IN)) {
return 0;
}
if (! ext_mlkem_enabled(id)) {
return 0;
}
break;
}
#endif
#endif
#endif /* WOLFSSL_HAVE_MLKEM */
default:
return 0;
}
return 1;
}
#endif
/******************************************************************************/
/* Supported Elliptic Curves */
/******************************************************************************/
#ifdef HAVE_SUPPORTED_CURVES
#if !defined(HAVE_ECC) && !defined(HAVE_CURVE25519) && !defined(HAVE_CURVE448) \
&& !defined(HAVE_FFDHE) && !defined(WOLFSSL_HAVE_MLKEM)
#error Elliptic Curves Extension requires Elliptic Curve Cryptography or liboqs groups. \
Use --enable-ecc and/or --enable-liboqs in the configure script or \
define HAVE_ECC. Alternatively use FFDHE for DH cipher suites.
#endif
static int TLSX_SupportedCurve_New(SupportedCurve** curve, word16 name,
void* heap)
{
if (curve == NULL)
return BAD_FUNC_ARG;
(void)heap;
*curve = (SupportedCurve*)XMALLOC(sizeof(SupportedCurve), heap,
DYNAMIC_TYPE_TLSX);
if (*curve == NULL)
return MEMORY_E;
(*curve)->name = name;
(*curve)->next = NULL;
return 0;
}
static int TLSX_PointFormat_New(PointFormat** point, byte format, void* heap)
{
if (point == NULL)
return BAD_FUNC_ARG;
(void)heap;
*point = (PointFormat*)XMALLOC(sizeof(PointFormat), heap,
DYNAMIC_TYPE_TLSX);
if (*point == NULL)
return MEMORY_E;
(*point)->format = format;
(*point)->next = NULL;
return 0;
}
static void TLSX_SupportedCurve_FreeAll(SupportedCurve* list, void* heap)
{
SupportedCurve* curve;
while ((curve = list)) {
list = curve->next;
XFREE(curve, heap, DYNAMIC_TYPE_TLSX);
}
(void)heap;
}
static void TLSX_PointFormat_FreeAll(PointFormat* list, void* heap)
{
PointFormat* point;
while ((point = list)) {
list = point->next;
XFREE(point, heap, DYNAMIC_TYPE_TLSX);
}
(void)heap;
}
static int TLSX_SupportedCurve_Append(SupportedCurve* list, word16 name,
void* heap)
{
int ret = WC_NO_ERR_TRACE(BAD_FUNC_ARG);
while (list) {
if (list->name == name) {
ret = 0; /* curve already in use */
break;
}
if (list->next == NULL) {
ret = TLSX_SupportedCurve_New(&list->next, name, heap);
break;
}
list = list->next;
}
return ret;
}
static int TLSX_PointFormat_Append(PointFormat* list, byte format, void* heap)
{
int ret = WC_NO_ERR_TRACE(BAD_FUNC_ARG);
while (list) {
if (list->format == format) {
ret = 0; /* format already in use */
break;
}
if (list->next == NULL) {
ret = TLSX_PointFormat_New(&list->next, format, heap);
break;
}
list = list->next;
}
return ret;
}
#if defined(WOLFSSL_TLS13) || !defined(NO_WOLFSSL_CLIENT)
#if defined(HAVE_FFDHE) && (defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448))
static void TLSX_SupportedCurve_ValidateRequest(const WOLFSSL* ssl,
const byte* semaphore)
{
/* If all pre-defined parameter types for key exchange are supported then
* always send SupportedGroups extension.
*/
(void)ssl;
(void)semaphore;
}
#else
static void TLSX_SupportedCurve_ValidateRequest(WOLFSSL* ssl, byte* semaphore)
{
word16 i;
const Suites* suites = WOLFSSL_SUITES(ssl);
for (i = 0; i < suites->suiteSz; i += 2) {
if (suites->suites[i] == TLS13_BYTE)
return;
#ifdef BUILD_TLS_SM4_GCM_SM3
if ((suites->suites[i] == CIPHER_BYTE) &&
(suites->suites[i+1] == TLS_SM4_GCM_SM3))
return;
#endif
#ifdef BUILD_TLS_SM4_CCM_SM3
if ((suites->suites[i] == CIPHER_BYTE) &&
(suites->suites[i+1] == TLS_SM4_CCM_SM3))
return;
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_CBC_SM3
if ((suites->suites[i] == SM_BYTE) &&
(suites->suites[i+1] == TLS_ECDHE_ECDSA_WITH_SM4_CBC_SM3))
return;
#endif
if ((suites->suites[i] == ECC_BYTE) ||
(suites->suites[i] == ECDHE_PSK_BYTE) ||
(suites->suites[i] == CHACHA_BYTE)) {
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)
return;
#endif
}
#ifdef HAVE_FFDHE
else {
return;
}
#endif
}
/* turns semaphore on to avoid sending this extension. */
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_SUPPORTED_GROUPS));
}
#endif
/* Only send PointFormats if TLSv13, ECC or CHACHA cipher suite present.
*/
static void TLSX_PointFormat_ValidateRequest(WOLFSSL* ssl, byte* semaphore)
{
#ifdef HAVE_FFDHE
(void)ssl;
(void)semaphore;
#else
word16 i;
const Suites* suites = WOLFSSL_SUITES(ssl);
if (suites == NULL)
return;
for (i = 0; i < suites->suiteSz; i += 2) {
if (suites->suites[i] == TLS13_BYTE)
return;
#ifdef BUILD_TLS_SM4_GCM_SM3
if ((suites->suites[i] == CIPHER_BYTE) &&
(suites->suites[i+1] == TLS_SM4_GCM_SM3))
return;
#endif
#ifdef BUILD_TLS_SM4_CCM_SM3
if ((suites->suites[i] == CIPHER_BYTE) &&
(suites->suites[i+1] == TLS_SM4_CCM_SM3))
return;
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_CBC_SM3
if ((suites->suites[i] == SM_BYTE) &&
(suites->suites[i+1] == TLS_ECDHE_ECDSA_WITH_SM4_CBC_SM3))
return;
#endif
if ((suites->suites[i] == ECC_BYTE) ||
(suites->suites[i] == ECDHE_PSK_BYTE) ||
(suites->suites[i] == CHACHA_BYTE)) {
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)
return;
#endif
}
}
/* turns semaphore on to avoid sending this extension. */
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_EC_POINT_FORMATS));
#endif
}
#endif /* WOLFSSL_TLS13 || !NO_WOLFSSL_CLIENT */
#ifndef NO_WOLFSSL_SERVER
static void TLSX_PointFormat_ValidateResponse(WOLFSSL* ssl, byte* semaphore)
{
#if defined(HAVE_FFDHE) || defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)
(void)semaphore;
#endif
if (ssl->options.cipherSuite0 == TLS13_BYTE)
return;
#ifdef BUILD_TLS_SM4_GCM_SM3
if ((ssl->options.cipherSuite0 == CIPHER_BYTE) &&
(ssl->options.cipherSuite == TLS_SM4_GCM_SM3))
return;
#endif
#ifdef BUILD_TLS_SM4_CCM_SM3
if ((ssl->options.cipherSuite0 == CIPHER_BYTE) &&
(ssl->options.cipherSuite == TLS_SM4_CCM_SM3))
return;
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_CBC_SM3
if ((ssl->options.cipherSuite0 == SM_BYTE) &&
(ssl->options.cipherSuite == TLS_ECDHE_ECDSA_WITH_SM4_CBC_SM3))
return;
#endif
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || defined(HAVE_CURVE448)
if (ssl->options.cipherSuite0 == ECC_BYTE ||
ssl->options.cipherSuite0 == ECDHE_PSK_BYTE ||
ssl->options.cipherSuite0 == CHACHA_BYTE) {
return;
}
#endif
/* turns semaphore on to avoid sending this extension. */
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_EC_POINT_FORMATS));
}
#endif /* !NO_WOLFSSL_SERVER */
#if !defined(NO_WOLFSSL_CLIENT) || defined(WOLFSSL_TLS13)
static word16 TLSX_SupportedCurve_GetSize(SupportedCurve* list)
{
SupportedCurve* curve;
word16 length = OPAQUE16_LEN; /* list length */
while ((curve = list)) {
list = curve->next;
length += OPAQUE16_LEN; /* curve length */
}
return length;
}
#endif
static word16 TLSX_PointFormat_GetSize(PointFormat* list)
{
PointFormat* point;
word16 length = ENUM_LEN; /* list length */
while ((point = list)) {
list = point->next;
length += ENUM_LEN; /* format length */
}
return length;
}
#if !defined(NO_WOLFSSL_CLIENT) || defined(WOLFSSL_TLS13)
static word16 TLSX_SupportedCurve_Write(SupportedCurve* list, byte* output)
{
word16 offset = OPAQUE16_LEN;
while (list) {
c16toa(list->name, output + offset);
offset += OPAQUE16_LEN;
list = list->next;
}
c16toa(offset - OPAQUE16_LEN, output); /* writing list length */
return offset;
}
#endif
static word16 TLSX_PointFormat_Write(PointFormat* list, byte* output)
{
word16 offset = ENUM_LEN;
while (list) {
output[offset++] = list->format;
list = list->next;
}
output[0] = (byte)(offset - ENUM_LEN);
return offset;
}
#if !defined(NO_WOLFSSL_SERVER) || (defined(WOLFSSL_TLS13) && \
!defined(WOLFSSL_NO_SERVER_GROUPS_EXT))
int TLSX_SupportedCurve_Parse(const WOLFSSL* ssl, const byte* input,
word16 length, byte isRequest, TLSX** extensions)
{
word16 offset;
word16 name;
int ret = 0;
TLSX* extension;
if(!isRequest && !IsAtLeastTLSv1_3(ssl->version)) {
#ifdef WOLFSSL_ALLOW_SERVER_SC_EXT
return 0;
#else
return BUFFER_ERROR; /* servers doesn't send this extension. */
#endif
}
if (OPAQUE16_LEN > length || length % OPAQUE16_LEN)
return BUFFER_ERROR;
ato16(input, &offset);
/* validating curve list length */
if (length != OPAQUE16_LEN + offset)
return BUFFER_ERROR;
offset = OPAQUE16_LEN;
if (offset == length)
return 0;
extension = TLSX_Find(*extensions, TLSX_SUPPORTED_GROUPS);
if (extension == NULL) {
/* Just accept what the peer wants to use */
for (; offset < length; offset += OPAQUE16_LEN) {
ato16(input + offset, &name);
ret = TLSX_UseSupportedCurve(extensions, name, ssl->heap);
/* If it is BAD_FUNC_ARG then it is a group we do not support, but
* that is fine. */
if (ret != WOLFSSL_SUCCESS &&
ret != WC_NO_ERR_TRACE(BAD_FUNC_ARG))
break;
ret = 0;
}
}
else {
/* Find the intersection with what the user has set */
SupportedCurve* commonCurves = NULL;
for (; offset < length; offset += OPAQUE16_LEN) {
SupportedCurve* foundCurve = (SupportedCurve*)extension->data;
ato16(input + offset, &name);
while (foundCurve != NULL && foundCurve->name != name)
foundCurve = foundCurve->next;
if (foundCurve != NULL) {
ret = commonCurves == NULL ?
TLSX_SupportedCurve_New(&commonCurves, name, ssl->heap) :
TLSX_SupportedCurve_Append(commonCurves, name, ssl->heap);
if (ret != 0)
break;
}
}
/* If no common curves return error. In TLS 1.3 we can still try to save
* this by using HRR. */
if (ret == 0 && commonCurves == NULL &&
!IsAtLeastTLSv1_3(ssl->version))
ret = ECC_CURVE_ERROR;
if (ret == 0) {
/* Now swap out the curves in the extension */
TLSX_SupportedCurve_FreeAll((SupportedCurve*)extension->data,
ssl->heap);
extension->data = commonCurves;
commonCurves = NULL;
}
TLSX_SupportedCurve_FreeAll(commonCurves, ssl->heap);
}
return ret;
}
#endif
#if !defined(NO_WOLFSSL_SERVER)
#if defined(WOLFSSL_TLS13) && !defined(WOLFSSL_NO_SERVER_GROUPS_EXT)
/* Checks the priority of the groups on the server and set the supported groups
* response if there is a group not advertised by the client that is preferred.
*
* ssl SSL/TLS object.
* returns 0 on success, otherwise an error.
*/
int TLSX_SupportedCurve_CheckPriority(WOLFSSL* ssl)
{
int ret;
TLSX* extension;
TLSX* priority = NULL;
TLSX* ext = NULL;
word16 name;
SupportedCurve* curve;
extension = TLSX_Find(ssl->extensions, TLSX_SUPPORTED_GROUPS);
/* May be doing PSK with no key exchange. */
if (extension == NULL)
return 0;
ret = TLSX_PopulateSupportedGroups(ssl, &priority);
if (ret != WOLFSSL_SUCCESS) {
TLSX_FreeAll(priority, ssl->heap);
return ret;
}
ext = TLSX_Find(priority, TLSX_SUPPORTED_GROUPS);
if (ext == NULL) {
WOLFSSL_MSG("Could not find supported groups extension");
TLSX_FreeAll(priority, ssl->heap);
return 0;
}
curve = (SupportedCurve*)ext->data;
name = curve->name;
curve = (SupportedCurve*)extension->data;
while (curve != NULL) {
if (curve->name == name)
break;
curve = curve->next;
}
if (curve == NULL) {
/* Couldn't find the preferred group in client list. */
extension->resp = 1;
/* Send server list back and free client list. */
curve = (SupportedCurve*)extension->data;
extension->data = ext->data;
ext->data = curve;
}
TLSX_FreeAll(priority, ssl->heap);
return 0;
}
#endif /* WOLFSSL_TLS13 && !WOLFSSL_NO_SERVER_GROUPS_EXT */
#if defined(HAVE_FFDHE) && !defined(WOLFSSL_NO_TLS12)
#ifdef HAVE_PUBLIC_FFDHE
static int tlsx_ffdhe_find_group(WOLFSSL* ssl, SupportedCurve* clientGroup,
SupportedCurve* serverGroup)
{
int ret = 0;
SupportedCurve* group;
const DhParams* params = NULL;
for (; serverGroup != NULL; serverGroup = serverGroup->next) {
if (!WOLFSSL_NAMED_GROUP_IS_FFDHE(serverGroup->name))
continue;
for (group = clientGroup; group != NULL; group = group->next) {
if (serverGroup->name != group->name)
continue;
switch (serverGroup->name) {
#ifdef HAVE_FFDHE_2048
case WOLFSSL_FFDHE_2048:
params = wc_Dh_ffdhe2048_Get();
break;
#endif
#ifdef HAVE_FFDHE_3072
case WOLFSSL_FFDHE_3072:
params = wc_Dh_ffdhe3072_Get();
break;
#endif
#ifdef HAVE_FFDHE_4096
case WOLFSSL_FFDHE_4096:
params = wc_Dh_ffdhe4096_Get();
break;
#endif
#ifdef HAVE_FFDHE_6144
case WOLFSSL_FFDHE_6144:
params = wc_Dh_ffdhe6144_Get();
break;
#endif
#ifdef HAVE_FFDHE_8192
case WOLFSSL_FFDHE_8192:
params = wc_Dh_ffdhe8192_Get();
break;
#endif
default:
break;
}
if (params == NULL) {
ret = BAD_FUNC_ARG;
break;
}
if (params->p_len >= ssl->options.minDhKeySz &&
params->p_len <= ssl->options.maxDhKeySz) {
break;
}
}
if (ret != 0)
break;
if ((group != NULL) && (serverGroup->name == group->name))
break;
}
if ((ret == 0) && (serverGroup != NULL) && (params != NULL)) {
ssl->buffers.serverDH_P.buffer = (unsigned char *)params->p;
ssl->buffers.serverDH_P.length = params->p_len;
ssl->buffers.serverDH_G.buffer = (unsigned char *)params->g;
ssl->buffers.serverDH_G.length = params->g_len;
ssl->namedGroup = serverGroup->name;
#if !defined(WOLFSSL_OLD_PRIME_CHECK) && \
!defined(HAVE_FIPS) && !defined(HAVE_SELFTEST)
ssl->options.dhDoKeyTest = 0;
#endif
ssl->options.haveDH = 1;
}
return ret;
}
#else
static int tlsx_ffdhe_find_group(WOLFSSL* ssl, SupportedCurve* clientGroup,
SupportedCurve* serverGroup)
{
int ret = 0;
SupportedCurve* group;
word32 p_len;
for (; serverGroup != NULL; serverGroup = serverGroup->next) {
if (!WOLFSSL_NAMED_GROUP_IS_FFDHE(serverGroup->name))
continue;
for (group = clientGroup; group != NULL; group = group->next) {
if (serverGroup->name != group->name)
continue;
ret = wc_DhGetNamedKeyParamSize(serverGroup->name, &p_len, NULL, NULL);
if (ret == 0) {
if (p_len == 0) {
ret = BAD_FUNC_ARG;
break;
}
if (p_len >= ssl->options.minDhKeySz &&
p_len <= ssl->options.maxDhKeySz) {
break;
}
}
}
if (ret != 0)
break;
if ((group != NULL) && (serverGroup->name == group->name))
break;
}
if ((ret == 0) && (serverGroup != NULL)) {
word32 pSz, gSz;
ssl->buffers.serverDH_P.buffer = NULL;
ssl->buffers.serverDH_G.buffer = NULL;
ret = wc_DhGetNamedKeyParamSize(serverGroup->name, &pSz, &gSz, NULL);
if (ret == 0) {
ssl->buffers.serverDH_P.buffer =
(byte*)XMALLOC(pSz, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (ssl->buffers.serverDH_P.buffer == NULL)
ret = MEMORY_E;
else
ssl->buffers.serverDH_P.length = pSz;
}
if (ret == 0) {
ssl->buffers.serverDH_G.buffer =
(byte*)XMALLOC(gSz, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (ssl->buffers.serverDH_G.buffer == NULL) {
ret = MEMORY_E;
} else
ssl->buffers.serverDH_G.length = gSz;
}
if (ret == 0) {
ret = wc_DhCopyNamedKey(serverGroup->name,
ssl->buffers.serverDH_P.buffer, &pSz,
ssl->buffers.serverDH_G.buffer, &gSz,
NULL, NULL);
}
if (ret == 0) {
ssl->buffers.weOwnDH = 1;
ssl->namedGroup = serverGroup->name;
#if !defined(WOLFSSL_OLD_PRIME_CHECK) && \
!defined(HAVE_FIPS) && !defined(HAVE_SELFTEST)
ssl->options.dhDoKeyTest = 0;
#endif
ssl->options.haveDH = 1;
}
else {
if (ssl->buffers.serverDH_P.buffer != NULL) {
XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_P.length = 0;
ssl->buffers.serverDH_P.buffer = NULL;
}
if (ssl->buffers.serverDH_G.buffer != NULL) {
XFREE(ssl->buffers.serverDH_G.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_G.length = 0;
ssl->buffers.serverDH_G.buffer = NULL;
}
}
}
return ret;
}
#endif
/* Set the highest priority common FFDHE group on the server as compared to
* client extensions.
*
* ssl SSL/TLS object.
* returns 0 on success, otherwise an error.
*/
int TLSX_SupportedFFDHE_Set(WOLFSSL* ssl)
{
int ret;
TLSX* priority = NULL;
TLSX* ext = NULL;
TLSX* extension;
SupportedCurve* clientGroup;
SupportedCurve* group;
int found = 0;
extension = TLSX_Find(ssl->extensions, TLSX_SUPPORTED_GROUPS);
/* May be doing PSK with no key exchange. */
if (extension == NULL)
return 0;
clientGroup = (SupportedCurve*)extension->data;
for (group = clientGroup; group != NULL; group = group->next) {
if (WOLFSSL_NAMED_GROUP_IS_FFDHE(group->name)) {
found = 1;
break;
}
}
if (!found)
return 0;
if (ssl->buffers.serverDH_P.buffer && ssl->buffers.weOwnDH) {
XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
}
if (ssl->buffers.serverDH_G.buffer && ssl->buffers.weOwnDH) {
XFREE(ssl->buffers.serverDH_G.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
}
ssl->buffers.serverDH_P.buffer = NULL;
ssl->buffers.serverDH_G.buffer = NULL;
ssl->buffers.weOwnDH = 0;
ssl->options.haveDH = 0;
ret = TLSX_PopulateSupportedGroups(ssl, &priority);
if (ret == WOLFSSL_SUCCESS) {
SupportedCurve* serverGroup;
ext = TLSX_Find(priority, TLSX_SUPPORTED_GROUPS);
if (ext == NULL) {
WOLFSSL_MSG("Could not find supported groups extension");
ret = 0;
}
else {
serverGroup = (SupportedCurve*)ext->data;
ret = tlsx_ffdhe_find_group(ssl, clientGroup, serverGroup);
}
}
TLSX_FreeAll(priority, ssl->heap);
return ret;
}
#endif /* HAVE_FFDHE && !WOLFSSL_NO_TLS12 */
#endif /* !NO_WOLFSSL_SERVER */
#if defined(WOLFSSL_TLS13) && !defined(WOLFSSL_NO_SERVER_GROUPS_EXT)
/* Return the preferred group.
*
* ssl SSL/TLS object.
* checkSupported Whether to check for the first supported group.
* returns BAD_FUNC_ARG if no group found, otherwise the group.
*/
int TLSX_SupportedCurve_Preferred(WOLFSSL* ssl, int checkSupported)
{
TLSX* extension;
SupportedCurve* curve;
extension = TLSX_Find(ssl->extensions, TLSX_SUPPORTED_GROUPS);
if (extension == NULL)
return BAD_FUNC_ARG;
curve = (SupportedCurve*)extension->data;
while (curve != NULL) {
if (!checkSupported || TLSX_IsGroupSupported(curve->name))
return curve->name;
curve = curve->next;
}
return BAD_FUNC_ARG;
}
#endif /* HAVE_SUPPORTED_CURVES */
#ifndef NO_WOLFSSL_SERVER
static int TLSX_PointFormat_Parse(WOLFSSL* ssl, const byte* input,
word16 length, byte isRequest)
{
int ret;
/* validating formats list length */
if (ENUM_LEN > length || length != (word16)ENUM_LEN + input[0])
return BUFFER_ERROR;
if (isRequest) {
/* adding uncompressed point format to response */
ret = TLSX_UsePointFormat(&ssl->extensions, WOLFSSL_EC_PF_UNCOMPRESSED,
ssl->heap);
if (ret != WOLFSSL_SUCCESS)
return ret; /* throw error */
TLSX_SetResponse(ssl, TLSX_EC_POINT_FORMATS);
}
return 0;
}
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || defined(HAVE_CURVE448)
int TLSX_ValidateSupportedCurves(const WOLFSSL* ssl, byte first, byte second,
word32* ecdhCurveOID) {
TLSX* extension = NULL;
SupportedCurve* curve = NULL;
word32 oid = 0;
word32 defOid = 0;
word32 defSz = 80; /* Maximum known curve size is 66. */
word32 nextOid = 0;
word32 nextSz = 80; /* Maximum known curve size is 66. */
word32 currOid = ssl->ecdhCurveOID;
int ephmSuite = 0;
word16 octets = 0; /* according to 'ecc_set_type ecc_sets[];' */
int key = 0; /* validate key */
int foundCurve = 0; /* Found at least one supported curve */
(void)oid;
if (first == CHACHA_BYTE) {
switch (second) {
case TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256:
case TLS_PSK_WITH_CHACHA20_POLY1305_SHA256:
case TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256:
case TLS_DHE_RSA_WITH_CHACHA20_OLD_POLY1305_SHA256:
return 1; /* no suite restriction */
case TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256:
case TLS_ECDHE_RSA_WITH_CHACHA20_OLD_POLY1305_SHA256:
case TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256:
break;
}
}
if (first == ECC_BYTE || first == ECDHE_PSK_BYTE || first == CHACHA_BYTE)
extension = TLSX_Find(ssl->extensions, TLSX_SUPPORTED_GROUPS);
if (!extension)
return 1; /* no suite restriction */
for (curve = (SupportedCurve*)extension->data;
curve && !key;
curve = curve->next) {
#ifdef OPENSSL_EXTRA
/* skip if name is not in supported ECC range
* or disabled by user */
if (wolfSSL_curve_is_disabled(ssl, curve->name))
continue;
#endif
/* find supported curve */
switch (curve->name) {
#ifdef HAVE_ECC
#if (defined(HAVE_ECC160) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 160
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP160R1:
oid = ECC_SECP160R1_OID;
octets = 20;
break;
#endif /* !NO_ECC_SECP */
#ifdef HAVE_ECC_SECPR2
case WOLFSSL_ECC_SECP160R2:
oid = ECC_SECP160R2_OID;
octets = 20;
break;
#endif /* HAVE_ECC_SECPR2 */
#ifdef HAVE_ECC_KOBLITZ
case WOLFSSL_ECC_SECP160K1:
oid = ECC_SECP160K1_OID;
octets = 20;
break;
#endif /* HAVE_ECC_KOBLITZ */
#endif
#if (defined(HAVE_ECC192) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 192
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP192R1:
oid = ECC_SECP192R1_OID;
octets = 24;
break;
#endif /* !NO_ECC_SECP */
#ifdef HAVE_ECC_KOBLITZ
case WOLFSSL_ECC_SECP192K1:
oid = ECC_SECP192K1_OID;
octets = 24;
break;
#endif /* HAVE_ECC_KOBLITZ */
#endif
#if (defined(HAVE_ECC224) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 224
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP224R1:
oid = ECC_SECP224R1_OID;
octets = 28;
break;
#endif /* !NO_ECC_SECP */
#ifdef HAVE_ECC_KOBLITZ
case WOLFSSL_ECC_SECP224K1:
oid = ECC_SECP224K1_OID;
octets = 28;
break;
#endif /* HAVE_ECC_KOBLITZ */
#endif
#if (!defined(NO_ECC256) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 256
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP256R1:
oid = ECC_SECP256R1_OID;
octets = 32;
break;
#endif /* !NO_ECC_SECP */
#endif /* !NO_ECC256 || HAVE_ALL_CURVES */
#endif
#if (defined(HAVE_CURVE25519) || defined(HAVE_ED25519)) && ECC_MIN_KEY_SZ <= 256
case WOLFSSL_ECC_X25519:
oid = ECC_X25519_OID;
octets = 32;
break;
#endif /* HAVE_CURVE25519 */
#ifdef HAVE_ECC
#if (!defined(NO_ECC256) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 256
#ifdef HAVE_ECC_KOBLITZ
case WOLFSSL_ECC_SECP256K1:
oid = ECC_SECP256K1_OID;
octets = 32;
break;
#endif /* HAVE_ECC_KOBLITZ */
#ifdef HAVE_ECC_BRAINPOOL
case WOLFSSL_ECC_BRAINPOOLP256R1:
oid = ECC_BRAINPOOLP256R1_OID;
octets = 32;
break;
#endif /* HAVE_ECC_BRAINPOOL */
#ifdef WOLFSSL_SM2
case WOLFSSL_ECC_SM2P256V1:
oid = ECC_SM2P256V1_OID;
octets = 32;
break;
#endif /* WOLFSSL_SM2 */
#endif
#if (defined(HAVE_ECC384) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 384
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP384R1:
oid = ECC_SECP384R1_OID;
octets = 48;
break;
#endif /* !NO_ECC_SECP */
#ifdef HAVE_ECC_BRAINPOOL
case WOLFSSL_ECC_BRAINPOOLP384R1:
oid = ECC_BRAINPOOLP384R1_OID;
octets = 48;
break;
#endif /* HAVE_ECC_BRAINPOOL */
#endif
#endif
#if (defined(HAVE_CURVE448) || defined(HAVE_ED448)) && ECC_MIN_KEY_SZ <= 448
case WOLFSSL_ECC_X448:
oid = ECC_X448_OID;
octets = 57;
break;
#endif /* HAVE_CURVE448 */
#ifdef HAVE_ECC
#if (defined(HAVE_ECC512) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 512
#ifdef HAVE_ECC_BRAINPOOL
case WOLFSSL_ECC_BRAINPOOLP512R1:
oid = ECC_BRAINPOOLP512R1_OID;
octets = 64;
break;
#endif /* HAVE_ECC_BRAINPOOL */
#endif
#if (defined(HAVE_ECC521) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 521
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP521R1:
oid = ECC_SECP521R1_OID;
octets = 66;
break;
#endif /* !NO_ECC_SECP */
#endif
#endif
default: continue; /* unsupported curve */
}
foundCurve = 1;
#ifdef HAVE_ECC
/* Set default Oid */
if (defOid == 0 && ssl->eccTempKeySz <= octets && defSz > octets) {
defOid = oid;
defSz = octets;
}
/* The eccTempKeySz is the preferred ephemeral key size */
if (currOid == 0 && ssl->eccTempKeySz == octets)
currOid = oid;
if ((nextOid == 0 || nextSz > octets) && ssl->eccTempKeySz <= octets) {
nextOid = oid;
nextSz = octets;
}
#else
if (defOid == 0 && defSz > octets) {
defOid = oid;
defSz = octets;
}
if (currOid == 0)
currOid = oid;
if (nextOid == 0 || nextSz > octets) {
nextOid = oid;
nextSz = octets;
}
#endif
if (first == ECC_BYTE) {
switch (second) {
#if defined(HAVE_ECC) || defined(HAVE_ED25519) || defined(HAVE_ED448)
/* ECDHE_ECDSA */
case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA:
case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA:
case TLS_ECDHE_ECDSA_WITH_RC4_128_SHA:
case TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA:
case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256:
case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384:
case TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256:
case TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384:
case TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8:
case TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8:
key |= ssl->ecdhCurveOID == oid;
ephmSuite = 1;
break;
#ifdef WOLFSSL_STATIC_DH
/* ECDH_ECDSA */
case TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA:
case TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA:
case TLS_ECDH_ECDSA_WITH_RC4_128_SHA:
case TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA:
case TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256:
case TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384:
case TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256:
case TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384:
if (oid == ECC_X25519_OID && defOid == oid) {
defOid = 0;
defSz = 80;
}
if (oid == ECC_X448_OID && defOid == oid) {
defOid = 0;
defSz = 80;
}
key |= ssl->pkCurveOID == oid;
break;
#endif /* WOLFSSL_STATIC_DH */
#endif /* HAVE_ECC || HAVE_ED25519 || HAVE_ED448 */
#ifndef NO_RSA
/* ECDHE_RSA */
case TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA:
case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA:
case TLS_ECDHE_RSA_WITH_RC4_128_SHA:
case TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA:
case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256:
case TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384:
case TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256:
case TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384:
key |= ssl->ecdhCurveOID == oid;
ephmSuite = 1;
break;
#if defined(HAVE_ECC) && defined(WOLFSSL_STATIC_DH)
/* ECDH_RSA */
case TLS_ECDH_RSA_WITH_AES_256_CBC_SHA:
case TLS_ECDH_RSA_WITH_AES_128_CBC_SHA:
case TLS_ECDH_RSA_WITH_RC4_128_SHA:
case TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA:
case TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256:
case TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384:
case TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256:
case TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384:
if (oid == ECC_X25519_OID && defOid == oid) {
defOid = 0;
defSz = 80;
}
if (oid == ECC_X448_OID && defOid == oid) {
defOid = 0;
defSz = 80;
}
key |= ssl->pkCurveOID == oid;
break;
#endif /* HAVE_ECC && WOLFSSL_STATIC_DH */
#endif
default:
if (oid == ECC_X25519_OID && defOid == oid) {
defOid = 0;
defSz = 80;
}
if (oid == ECC_X448_OID && defOid == oid) {
defOid = 0;
defSz = 80;
}
key = 1;
break;
}
}
/* ChaCha20-Poly1305 ECC cipher suites */
if (first == CHACHA_BYTE) {
switch (second) {
#if defined(HAVE_ECC) || defined(HAVE_ED25519) || defined(HAVE_ED448)
/* ECDHE_ECDSA */
case TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 :
case TLS_ECDHE_ECDSA_WITH_CHACHA20_OLD_POLY1305_SHA256 :
key |= ssl->ecdhCurveOID == oid;
ephmSuite = 1;
break;
#endif /* HAVE_ECC || HAVE_ED25519 || HAVE_ED448 */
#ifndef NO_RSA
/* ECDHE_RSA */
case TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 :
case TLS_ECDHE_RSA_WITH_CHACHA20_OLD_POLY1305_SHA256 :
key |= ssl->ecdhCurveOID == oid;
ephmSuite = 1;
break;
#endif
default:
key = 1;
break;
}
}
}
/* Check we found at least one supported curve */
if (!foundCurve)
return 0;
*ecdhCurveOID = ssl->ecdhCurveOID;
/* Choose the default if it is at the required strength. */
#ifdef HAVE_ECC
if (*ecdhCurveOID == 0 && defSz == ssl->eccTempKeySz)
#else
if (*ecdhCurveOID == 0)
#endif
{
key = 1;
*ecdhCurveOID = defOid;
}
/* Choose any curve at the required strength. */
if (*ecdhCurveOID == 0) {
key = 1;
*ecdhCurveOID = currOid;
}
/* Choose the default if it is at the next highest strength. */
if (*ecdhCurveOID == 0 && defSz == nextSz)
*ecdhCurveOID = defOid;
/* Choose any curve at the next highest strength. */
if (*ecdhCurveOID == 0)
*ecdhCurveOID = nextOid;
/* No curve and ephemeral ECC suite requires a matching curve. */
if (*ecdhCurveOID == 0 && ephmSuite)
key = 0;
return key;
}
#endif
#endif /* NO_WOLFSSL_SERVER */
int TLSX_SupportedCurve_Copy(TLSX* src, TLSX** dst, void* heap)
{
TLSX* extension;
int ret;
extension = TLSX_Find(src, TLSX_SUPPORTED_GROUPS);
if (extension != NULL) {
SupportedCurve* curve;
for (curve = (SupportedCurve*)extension->data; curve != NULL;
curve = curve->next) {
ret = TLSX_UseSupportedCurve(dst, curve->name, heap);
if (ret != WOLFSSL_SUCCESS)
return MEMORY_E;
}
}
return 0;
}
int TLSX_UseSupportedCurve(TLSX** extensions, word16 name, void* heap)
{
TLSX* extension = NULL;
SupportedCurve* curve = NULL;
int ret;
if (extensions == NULL) {
return BAD_FUNC_ARG;
}
if (! TLSX_IsGroupSupported(name)) {
return BAD_FUNC_ARG;
}
extension = TLSX_Find(*extensions, TLSX_SUPPORTED_GROUPS);
if (!extension) {
ret = TLSX_SupportedCurve_New(&curve, name, heap);
if (ret != 0)
return ret;
ret = TLSX_Push(extensions, TLSX_SUPPORTED_GROUPS, curve, heap);
if (ret != 0) {
XFREE(curve, heap, DYNAMIC_TYPE_TLSX);
return ret;
}
}
else {
ret = TLSX_SupportedCurve_Append((SupportedCurve*)extension->data, name,
heap);
if (ret != 0)
return ret;
#ifdef WOLFSSL_ML_KEM_USE_OLD_IDS
if (name == WOLFSSL_SECP256R1MLKEM512) {
ret = TLSX_SupportedCurve_Append((SupportedCurve*)extension->data,
WOLFSSL_P256_ML_KEM_512_OLD, heap);
}
else if (name == WOLFSSL_SECP384R1MLKEM768) {
ret = TLSX_SupportedCurve_Append((SupportedCurve*)extension->data,
WOLFSSL_P384_ML_KEM_768_OLD, heap);
}
else if (name == WOLFSSL_SECP521R1MLKEM1024) {
ret = TLSX_SupportedCurve_Append((SupportedCurve*)extension->data,
WOLFSSL_P521_ML_KEM_1024_OLD, heap);
}
if (ret != 0) {
return ret;
}
#endif
}
return WOLFSSL_SUCCESS;
}
int TLSX_UsePointFormat(TLSX** extensions, byte format, void* heap)
{
TLSX* extension = NULL;
PointFormat* point = NULL;
int ret = 0;
if (extensions == NULL)
return BAD_FUNC_ARG;
extension = TLSX_Find(*extensions, TLSX_EC_POINT_FORMATS);
if (!extension) {
ret = TLSX_PointFormat_New(&point, format, heap);
if (ret != 0)
return ret;
ret = TLSX_Push(extensions, TLSX_EC_POINT_FORMATS, point, heap);
if (ret != 0) {
XFREE(point, heap, DYNAMIC_TYPE_TLSX);
return ret;
}
}
else {
ret = TLSX_PointFormat_Append((PointFormat*)extension->data, format,
heap);
if (ret != 0)
return ret;
}
return WOLFSSL_SUCCESS;
}
#define EC_FREE_ALL TLSX_SupportedCurve_FreeAll
#define EC_VALIDATE_REQUEST TLSX_SupportedCurve_ValidateRequest
/* In TLS 1.2 the server never sends supported curve extension, but in TLS 1.3
* the server can send supported groups extension to indicate what it will
* support for later connections. */
#if !defined(NO_WOLFSSL_CLIENT) || defined(WOLFSSL_TLS13)
#define EC_GET_SIZE TLSX_SupportedCurve_GetSize
#define EC_WRITE TLSX_SupportedCurve_Write
#else
#define EC_GET_SIZE(list) 0
#define EC_WRITE(a, b) 0
#endif
#if !defined(NO_WOLFSSL_SERVER) || (defined(WOLFSSL_TLS13) && \
!defined(WOLFSSL_NO_SERVER_GROUPS_EXT))
#define EC_PARSE TLSX_SupportedCurve_Parse
#else
#define EC_PARSE(a, b, c, d, e) 0
#endif
#define PF_FREE_ALL TLSX_PointFormat_FreeAll
#define PF_VALIDATE_REQUEST TLSX_PointFormat_ValidateRequest
#define PF_VALIDATE_RESPONSE TLSX_PointFormat_ValidateResponse
#define PF_GET_SIZE TLSX_PointFormat_GetSize
#define PF_WRITE TLSX_PointFormat_Write
#ifndef NO_WOLFSSL_SERVER
#define PF_PARSE TLSX_PointFormat_Parse
#else
#define PF_PARSE(a, b, c, d) 0
#endif
#else
#define EC_FREE_ALL(list, heap) WC_DO_NOTHING
#define EC_GET_SIZE(list) 0
#define EC_WRITE(a, b) 0
#define EC_PARSE(a, b, c, d, e) 0
#define EC_VALIDATE_REQUEST(a, b) WC_DO_NOTHING
#define PF_FREE_ALL(list, heap) WC_DO_NOTHING
#define PF_GET_SIZE(list) 0
#define PF_WRITE(a, b) 0
#define PF_PARSE(a, b, c, d) 0
#define PF_VALIDATE_REQUEST(a, b) WC_DO_NOTHING
#define PF_VALIDATE_RESPONSE(a, b) WC_DO_NOTHING
#endif /* HAVE_SUPPORTED_CURVES */
/******************************************************************************/
/* Renegotiation Indication */
/******************************************************************************/
#if defined(HAVE_SECURE_RENEGOTIATION) \
|| defined(HAVE_SERVER_RENEGOTIATION_INFO)
static byte TLSX_SecureRenegotiation_GetSize(SecureRenegotiation* data,
int isRequest)
{
byte length = OPAQUE8_LEN; /* empty info length */
/* data will be NULL for HAVE_SERVER_RENEGOTIATION_INFO only */
if (data && data->enabled && data->verifySet) {
/* client sends client_verify_data only */
length += TLS_FINISHED_SZ;
/* server also sends server_verify_data */
if (!isRequest)
length += TLS_FINISHED_SZ;
}
return length;
}
static word16 TLSX_SecureRenegotiation_Write(SecureRenegotiation* data,
byte* output, int isRequest)
{
word16 offset = OPAQUE8_LEN; /* RenegotiationInfo length */
if (data && data->enabled && data->verifySet) {
/* client sends client_verify_data only */
XMEMCPY(output + offset, data->client_verify_data, TLS_FINISHED_SZ);
offset += TLS_FINISHED_SZ;
/* server also sends server_verify_data */
if (!isRequest) {
XMEMCPY(output + offset, data->server_verify_data, TLS_FINISHED_SZ);
offset += TLS_FINISHED_SZ;
}
}
output[0] = (byte)(offset - 1); /* info length - self */
return offset;
}
static int TLSX_SecureRenegotiation_Parse(WOLFSSL* ssl, const byte* input,
word16 length, byte isRequest)
{
int ret = WC_NO_ERR_TRACE(SECURE_RENEGOTIATION_E);
if (length >= OPAQUE8_LEN) {
if (isRequest) {
#ifndef NO_WOLFSSL_SERVER
if (ssl->secure_renegotiation == NULL) {
ret = wolfSSL_UseSecureRenegotiation(ssl);
if (ret == WOLFSSL_SUCCESS)
ret = 0;
}
if (ret != 0 && ret != WC_NO_ERR_TRACE(SECURE_RENEGOTIATION_E)) {
}
else if (ssl->secure_renegotiation == NULL) {
}
else if (!ssl->secure_renegotiation->enabled) {
if (*input == 0) {
input++; /* get past size */
ssl->secure_renegotiation->enabled = 1;
TLSX_SetResponse(ssl, TLSX_RENEGOTIATION_INFO);
ret = 0;
}
else {
/* already in error state */
WOLFSSL_MSG("SCR client verify data present");
}
}
else if (*input == TLS_FINISHED_SZ) {
if (length < TLS_FINISHED_SZ + 1) {
WOLFSSL_MSG("SCR malformed buffer");
ret = BUFFER_E;
}
else {
input++; /* get past size */
/* validate client verify data */
if (XMEMCMP(input,
ssl->secure_renegotiation->client_verify_data,
TLS_FINISHED_SZ) == 0) {
WOLFSSL_MSG("SCR client verify data match");
TLSX_SetResponse(ssl, TLSX_RENEGOTIATION_INFO);
ret = 0; /* verified */
}
else {
/* already in error state */
WOLFSSL_MSG("SCR client verify data Failure");
}
}
}
#endif
}
else if (ssl->secure_renegotiation != NULL) {
#ifndef NO_WOLFSSL_CLIENT
if (!ssl->secure_renegotiation->enabled) {
if (*input == 0) {
ssl->secure_renegotiation->enabled = 1;
ret = 0;
}
}
else if (*input == 2 * TLS_FINISHED_SZ &&
length == 2 * TLS_FINISHED_SZ + OPAQUE8_LEN) {
input++; /* get past size */
/* validate client and server verify data */
if (XMEMCMP(input,
ssl->secure_renegotiation->client_verify_data,
TLS_FINISHED_SZ) == 0 &&
XMEMCMP(input + TLS_FINISHED_SZ,
ssl->secure_renegotiation->server_verify_data,
TLS_FINISHED_SZ) == 0) {
WOLFSSL_MSG("SCR client and server verify data match");
ret = 0; /* verified */
}
else {
/* already in error state */
WOLFSSL_MSG("SCR client and server verify data Failure");
}
}
#endif
}
else {
ret = SECURE_RENEGOTIATION_E;
}
}
else {
ret = SECURE_RENEGOTIATION_E;
}
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(ret);
SendAlert(ssl, alert_fatal, handshake_failure);
}
return ret;
}
int TLSX_UseSecureRenegotiation(TLSX** extensions, void* heap)
{
int ret = 0;
SecureRenegotiation* data;
data = (SecureRenegotiation*)XMALLOC(sizeof(SecureRenegotiation), heap,
DYNAMIC_TYPE_TLSX);
if (data == NULL)
return MEMORY_E;
XMEMSET(data, 0, sizeof(SecureRenegotiation));
ret = TLSX_Push(extensions, TLSX_RENEGOTIATION_INFO, data, heap);
if (ret != 0) {
XFREE(data, heap, DYNAMIC_TYPE_TLSX);
return ret;
}
return WOLFSSL_SUCCESS;
}
#ifdef HAVE_SERVER_RENEGOTIATION_INFO
int TLSX_AddEmptyRenegotiationInfo(TLSX** extensions, void* heap)
{
int ret;
/* send empty renegotiation_info extension */
TLSX* ext = TLSX_Find(*extensions, TLSX_RENEGOTIATION_INFO);
if (ext == NULL) {
ret = TLSX_UseSecureRenegotiation(extensions, heap);
if (ret != WOLFSSL_SUCCESS)
return ret;
ext = TLSX_Find(*extensions, TLSX_RENEGOTIATION_INFO);
}
if (ext)
ext->resp = 1;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_SERVER_RENEGOTIATION_INFO */
#define SCR_FREE_ALL(data, heap) XFREE(data, (heap), DYNAMIC_TYPE_TLSX)
#define SCR_GET_SIZE TLSX_SecureRenegotiation_GetSize
#define SCR_WRITE TLSX_SecureRenegotiation_Write
#define SCR_PARSE TLSX_SecureRenegotiation_Parse
#else
#define SCR_FREE_ALL(a, heap) WC_DO_NOTHING
#define SCR_GET_SIZE(a, b) 0
#define SCR_WRITE(a, b, c) 0
#define SCR_PARSE(a, b, c, d) 0
#endif /* HAVE_SECURE_RENEGOTIATION || HAVE_SERVER_RENEGOTIATION_INFO */
/******************************************************************************/
/* Session Tickets */
/******************************************************************************/
#ifdef HAVE_SESSION_TICKET
#if defined(WOLFSSL_TLS13) || !defined(NO_WOLFSSL_CLIENT)
static void TLSX_SessionTicket_ValidateRequest(WOLFSSL* ssl)
{
TLSX* extension = TLSX_Find(ssl->extensions, TLSX_SESSION_TICKET);
SessionTicket* ticket = extension ?
(SessionTicket*)extension->data : NULL;
if (ticket) {
/* TODO validate ticket timeout here! */
if (ticket->lifetime == 0xfffffff) {
/* send empty ticket on timeout */
TLSX_UseSessionTicket(&ssl->extensions, NULL, ssl->heap);
}
}
}
#endif /* WOLFSSL_TLS13 || !NO_WOLFSSL_CLIENT */
static word16 TLSX_SessionTicket_GetSize(SessionTicket* ticket, int isRequest)
{
(void)isRequest;
return ticket ? ticket->size : 0;
}
static word16 TLSX_SessionTicket_Write(SessionTicket* ticket, byte* output,
int isRequest)
{
word16 offset = 0; /* empty ticket */
if (isRequest && ticket) {
XMEMCPY(output + offset, ticket->data, ticket->size);
offset += ticket->size;
}
return offset;
}
static int TLSX_SessionTicket_Parse(WOLFSSL* ssl, const byte* input,
word16 length, byte isRequest)
{
int ret = 0;
(void) input; /* avoid unused parameter if NO_WOLFSSL_SERVER defined */
if (!isRequest) {
if (TLSX_CheckUnsupportedExtension(ssl, TLSX_SESSION_TICKET))
return TLSX_HandleUnsupportedExtension(ssl);
if (length != 0)
return BUFFER_ERROR;
#ifndef NO_WOLFSSL_CLIENT
ssl->expect_session_ticket = 1;
#endif
}
#ifndef NO_WOLFSSL_SERVER
else {
/* server side */
if (ssl->ctx->ticketEncCb == NULL) {
WOLFSSL_MSG("Client sent session ticket, server has no callback");
return 0;
}
#ifdef HAVE_SECURE_RENEGOTIATION
if (IsSCR(ssl)) {
WOLFSSL_MSG("Client sent session ticket during SCR. Ignoring.");
return 0;
}
#endif
if (length > SESSION_TICKET_LEN) {
ret = BAD_TICKET_MSG_SZ;
WOLFSSL_ERROR_VERBOSE(ret);
} else if (IsAtLeastTLSv1_3(ssl->version)) {
WOLFSSL_MSG("Process client ticket rejected, TLS 1.3 no support");
ssl->options.rejectTicket = 1;
ret = 0; /* not fatal */
} else if (ssl->options.noTicketTls12) {
/* ignore ticket request */
} else if (length == 0) {
/* blank ticket */
ret = TLSX_UseSessionTicket(&ssl->extensions, NULL, ssl->heap);
if (ret == WOLFSSL_SUCCESS) {
ret = 0;
/* send blank ticket */
TLSX_SetResponse(ssl, TLSX_SESSION_TICKET);
ssl->options.createTicket = 1; /* will send ticket msg */
ssl->options.useTicket = 1;
ssl->options.resuming = 0; /* no standard resumption */
ssl->arrays->sessionIDSz = 0; /* no echo on blank ticket */
}
} else {
/* got actual ticket from client */
ret = DoClientTicket(ssl, input, length);
if (ret == WOLFSSL_TICKET_RET_OK) { /* use ticket to resume */
WOLFSSL_MSG("Using existing client ticket");
ssl->options.useTicket = 1;
ssl->options.resuming = 1;
/* SERVER: ticket is peer auth. */
ssl->options.peerAuthGood = 1;
} else if (ret == WOLFSSL_TICKET_RET_CREATE) {
WOLFSSL_MSG("Using existing client ticket, creating new one");
ret = TLSX_UseSessionTicket(&ssl->extensions, NULL, ssl->heap);
if (ret == WOLFSSL_SUCCESS) {
ret = 0;
TLSX_SetResponse(ssl, TLSX_SESSION_TICKET);
/* send blank ticket */
ssl->options.createTicket = 1; /* will send ticket msg */
ssl->options.useTicket = 1;
ssl->options.resuming = 1;
/* SERVER: ticket is peer auth. */
ssl->options.peerAuthGood = 1;
}
} else if (ret == WOLFSSL_TICKET_RET_REJECT ||
ret == WC_NO_ERR_TRACE(VERSION_ERROR)) {
WOLFSSL_MSG("Process client ticket rejected, not using");
if (ret == WC_NO_ERR_TRACE(VERSION_ERROR))
WOLFSSL_MSG("\tbad TLS version");
ret = 0; /* not fatal */
ssl->options.rejectTicket = 1;
/* If we have session tickets enabled then send a new ticket */
if (!TLSX_CheckUnsupportedExtension(ssl, TLSX_SESSION_TICKET)) {
ret = TLSX_UseSessionTicket(&ssl->extensions, NULL,
ssl->heap);
if (ret == WOLFSSL_SUCCESS) {
ret = 0;
TLSX_SetResponse(ssl, TLSX_SESSION_TICKET);
ssl->options.createTicket = 1;
ssl->options.useTicket = 1;
}
}
} else if (ret == WOLFSSL_TICKET_RET_FATAL) {
WOLFSSL_MSG("Process client ticket fatal error, not using");
} else if (ret < 0) {
WOLFSSL_MSG("Process client ticket unknown error, not using");
}
}
}
#endif /* NO_WOLFSSL_SERVER */
#if defined(NO_WOLFSSL_CLIENT) && defined(NO_WOLFSSL_SERVER)
(void)ssl;
#endif
return ret;
}
WOLFSSL_LOCAL SessionTicket* TLSX_SessionTicket_Create(word32 lifetime,
byte* data, word16 size, void* heap)
{
SessionTicket* ticket = (SessionTicket*)XMALLOC(sizeof(SessionTicket),
heap, DYNAMIC_TYPE_TLSX);
if (ticket) {
ticket->data = (byte*)XMALLOC(size, heap, DYNAMIC_TYPE_TLSX);
if (ticket->data == NULL) {
XFREE(ticket, heap, DYNAMIC_TYPE_TLSX);
return NULL;
}
XMEMCPY(ticket->data, data, size);
ticket->size = size;
ticket->lifetime = lifetime;
}
(void)heap;
return ticket;
}
WOLFSSL_LOCAL void TLSX_SessionTicket_Free(SessionTicket* ticket, void* heap)
{
if (ticket) {
XFREE(ticket->data, heap, DYNAMIC_TYPE_TLSX);
XFREE(ticket, heap, DYNAMIC_TYPE_TLSX);
}
(void)heap;
}
int TLSX_UseSessionTicket(TLSX** extensions, SessionTicket* ticket, void* heap)
{
int ret = 0;
if (extensions == NULL)
return BAD_FUNC_ARG;
/* If the ticket is NULL, the client will request a new ticket from the
server. Otherwise, the client will use it in the next client hello. */
if ((ret = TLSX_Push(extensions, TLSX_SESSION_TICKET, (void*)ticket, heap))
!= 0)
return ret;
return WOLFSSL_SUCCESS;
}
#define WOLF_STK_VALIDATE_REQUEST TLSX_SessionTicket_ValidateRequest
#define WOLF_STK_GET_SIZE TLSX_SessionTicket_GetSize
#define WOLF_STK_WRITE TLSX_SessionTicket_Write
#define WOLF_STK_PARSE TLSX_SessionTicket_Parse
#define WOLF_STK_FREE(stk, heap) TLSX_SessionTicket_Free((SessionTicket*)(stk),(heap))
#else
#define WOLF_STK_FREE(a, b) WC_DO_NOTHING
#define WOLF_STK_VALIDATE_REQUEST(a) WC_DO_NOTHING
#define WOLF_STK_GET_SIZE(a, b) 0
#define WOLF_STK_WRITE(a, b, c) 0
#define WOLF_STK_PARSE(a, b, c, d) 0
#endif /* HAVE_SESSION_TICKET */
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
/******************************************************************************/
/* Encrypt-then-MAC */
/******************************************************************************/
#ifndef WOLFSSL_NO_TLS12
static int TLSX_EncryptThenMac_Use(WOLFSSL* ssl);
/**
* Get the size of the Encrypt-Then-MAC extension.
*
* msgType Type of message to put extension into.
* pSz Size of extension data.
* return SANITY_MSG_E when the message is not allowed to have extension and
* 0 otherwise.
*/
static int TLSX_EncryptThenMac_GetSize(byte msgType, word16* pSz)
{
(void)pSz;
if (msgType != client_hello && msgType != server_hello) {
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
/* Empty extension */
return 0;
}
/**
* Write the Encrypt-Then-MAC extension.
*
* data Unused
* output Extension data buffer. Unused.
* msgType Type of message to put extension into.
* pSz Size of extension data.
* return SANITY_MSG_E when the message is not allowed to have extension and
* 0 otherwise.
*/
static int TLSX_EncryptThenMac_Write(void* data, byte* output, byte msgType,
word16* pSz)
{
(void)data;
(void)output;
(void)pSz;
if (msgType != client_hello && msgType != server_hello) {
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
/* Empty extension */
return 0;
}
/**
* Parse the Encrypt-Then-MAC extension.
*
* ssl SSL object
* input Extension data buffer.
* length Length of this extension's data.
* msgType Type of message to extension appeared in.
* return SANITY_MSG_E when the message is not allowed to have extension,
* BUFFER_ERROR when the extension's data is invalid,
* MEMORY_E when unable to allocate memory and
* 0 otherwise.
*/
static int TLSX_EncryptThenMac_Parse(WOLFSSL* ssl, const byte* input,
word16 length, byte msgType)
{
int ret;
(void)input;
if (msgType != client_hello && msgType != server_hello) {
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
/* Empty extension */
if (length != 0)
return BUFFER_ERROR;
if (msgType == client_hello) {
/* Check the user hasn't disallowed use of Encrypt-Then-Mac. */
if (!ssl->options.disallowEncThenMac) {
ssl->options.encThenMac = 1;
/* Set the extension reply. */
ret = TLSX_EncryptThenMac_Use(ssl);
if (ret != 0)
return ret;
}
return 0;
}
/* Server Hello */
if (ssl->options.disallowEncThenMac) {
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
ssl->options.encThenMac = 1;
return 0;
}
/**
* Add the Encrypt-Then-MAC extension to list.
*
* ssl SSL object
* return MEMORY_E when unable to allocate memory and 0 otherwise.
*/
static int TLSX_EncryptThenMac_Use(WOLFSSL* ssl)
{
int ret = 0;
TLSX* extension;
/* Find the Encrypt-Then-Mac extension if it exists. */
extension = TLSX_Find(ssl->extensions, TLSX_ENCRYPT_THEN_MAC);
if (extension == NULL) {
/* Push new Encrypt-Then-Mac extension. */
ret = TLSX_Push(&ssl->extensions, TLSX_ENCRYPT_THEN_MAC, NULL,
ssl->heap);
if (ret != 0)
return ret;
}
return 0;
}
/**
* Set the Encrypt-Then-MAC extension as one to respond too.
*
* ssl SSL object
* return EXT_MISSING when EncryptThenMac extension not in list.
*/
int TLSX_EncryptThenMac_Respond(WOLFSSL* ssl)
{
TLSX* extension;
extension = TLSX_Find(ssl->extensions, TLSX_ENCRYPT_THEN_MAC);
if (extension == NULL)
return EXT_MISSING;
extension->resp = 1;
return 0;
}
#define ETM_GET_SIZE TLSX_EncryptThenMac_GetSize
#define ETM_WRITE TLSX_EncryptThenMac_Write
#define ETM_PARSE TLSX_EncryptThenMac_Parse
#else
#define ETM_GET_SIZE(a, b) 0
#define ETM_WRITE(a, b, c, d) 0
#define ETM_PARSE(a, b, c, d) 0
#endif /* !WOLFSSL_NO_TLS12 */
#endif /* HAVE_ENCRYPT_THEN_MAC && !WOLFSSL_AEAD_ONLY */
#ifdef WOLFSSL_SRTP
/******************************************************************************/
/* DTLS SRTP (Secure Real-time Transport Protocol) */
/******************************************************************************/
/* Only support single SRTP profile */
typedef struct TlsxSrtp {
word16 profileCount;
word16 ids; /* selected bits */
} TlsxSrtp;
static int TLSX_UseSRTP_GetSize(TlsxSrtp *srtp)
{
/* SRTP Profile Len (2)
* SRTP Profiles (2)
* MKI (master key id) Length */
return (OPAQUE16_LEN + (srtp->profileCount * OPAQUE16_LEN) + 1);
}
static TlsxSrtp* TLSX_UseSRTP_New(word16 ids, void* heap)
{
TlsxSrtp* srtp;
int i;
srtp = (TlsxSrtp*)XMALLOC(sizeof(TlsxSrtp), heap, DYNAMIC_TYPE_TLSX);
if (srtp == NULL) {
WOLFSSL_MSG("TLSX SRTP Memory failure");
return NULL;
}
/* count and test each bit set */
srtp->profileCount = 0;
for (i=0; i<16; i++) {
if (ids & (1 << i)) {
srtp->profileCount++;
}
}
srtp->ids = ids;
return srtp;
}
static void TLSX_UseSRTP_Free(TlsxSrtp *srtp, void* heap)
{
XFREE(srtp, heap, DYNAMIC_TYPE_TLSX);
(void)heap;
}
static int TLSX_UseSRTP_Parse(WOLFSSL* ssl, const byte* input, word16 length,
byte isRequest)
{
int ret = WC_NO_ERR_TRACE(BAD_FUNC_ARG);
word16 profile_len = 0;
word16 profile_value = 0;
word16 offset = 0;
#ifndef NO_WOLFSSL_SERVER
int i;
TlsxSrtp* srtp = NULL;
#endif
if (length < OPAQUE16_LEN) {
return BUFFER_ERROR;
}
/* reset selected DTLS SRTP profile ID */
ssl->dtlsSrtpId = 0;
/* total length, not include itself */
ato16(input, &profile_len);
offset += OPAQUE16_LEN;
if (!isRequest) {
#ifndef NO_WOLFSSL_CLIENT
if (length < offset + OPAQUE16_LEN)
return BUFFER_ERROR;
ato16(input + offset, &profile_value);
/* check that the profile received was in the ones we support */
if (profile_value < 16 &&
(ssl->dtlsSrtpProfiles & (1 << profile_value))) {
ssl->dtlsSrtpId = profile_value;
ret = 0; /* success */
}
#endif
}
#ifndef NO_WOLFSSL_SERVER
else {
/* parse remainder one profile at a time, looking for match in CTX */
ret = 0;
for (i=offset; i<length; i+=OPAQUE16_LEN) {
if (length < (i + OPAQUE16_LEN)) {
WOLFSSL_MSG("Unexpected length when parsing SRTP profile");
ret = BUFFER_ERROR;
break;
}
ato16(input+i, &profile_value);
/* find first match */
if (profile_value < 16 &&
ssl->dtlsSrtpProfiles & (1 << profile_value)) {
ssl->dtlsSrtpId = profile_value;
/* make sure we respond with selected SRTP id selected */
srtp = TLSX_UseSRTP_New((1 << profile_value), ssl->heap);
if (srtp != NULL) {
ret = TLSX_Push(&ssl->extensions, TLSX_USE_SRTP,
(void*)srtp, ssl->heap);
if (ret == 0) {
TLSX_SetResponse(ssl, TLSX_USE_SRTP);
/* successfully set extension */
}
}
else {
ret = MEMORY_E;
}
break;
}
}
}
if (ret == 0 && ssl->dtlsSrtpId == 0) {
WOLFSSL_MSG("TLSX_UseSRTP_Parse profile not found!");
/* not fatal */
}
else if (ret != 0) {
ssl->dtlsSrtpId = 0;
TLSX_UseSRTP_Free(srtp, ssl->heap);
}
#endif
(void)profile_len;
return ret;
}
static word16 TLSX_UseSRTP_Write(TlsxSrtp* srtp, byte* output)
{
word16 offset = 0;
int i, j;
c16toa(srtp->profileCount * 2, output + offset);
offset += OPAQUE16_LEN;
j = 0;
for (i = 0; i < srtp->profileCount; i++) {
for (; j < 16; j++) {
if (srtp->ids & (1 << j)) {
c16toa(j, output + offset);
offset += OPAQUE16_LEN;
}
}
}
output[offset++] = 0x00; /* MKI Length */
return offset;
}
static int TLSX_UseSRTP(TLSX** extensions, word16 profiles, void* heap)
{
int ret = 0;
TLSX* extension;
if (extensions == NULL) {
return BAD_FUNC_ARG;
}
extension = TLSX_Find(*extensions, TLSX_USE_SRTP);
if (extension == NULL) {
TlsxSrtp* srtp = TLSX_UseSRTP_New(profiles, heap);
if (srtp == NULL) {
return MEMORY_E;
}
ret = TLSX_Push(extensions, TLSX_USE_SRTP, (void*)srtp, heap);
if (ret != 0) {
TLSX_UseSRTP_Free(srtp, heap);
}
}
return ret;
}
#ifndef NO_WOLFSSL_SERVER
#define SRTP_FREE TLSX_UseSRTP_Free
#define SRTP_PARSE TLSX_UseSRTP_Parse
#define SRTP_WRITE TLSX_UseSRTP_Write
#define SRTP_GET_SIZE TLSX_UseSRTP_GetSize
#else
#define SRTP_FREE(a, b) WC_DO_NOTHING
#define SRTP_PARSE(a, b, c, d) 0
#define SRTP_WRITE(a, b) 0
#define SRTP_GET_SIZE(a) 0
#endif
#endif /* WOLFSSL_SRTP */
/******************************************************************************/
/* Supported Versions */
/******************************************************************************/
#ifdef WOLFSSL_TLS13
static WC_INLINE int versionIsGreater(byte isDtls, byte a, byte b)
{
(void)isDtls;
#ifdef WOLFSSL_DTLS
/* DTLS version increases backwards (-1,-2,-3,etc) */
if (isDtls)
return a < b;
#endif /* WOLFSSL_DTLS */
return a > b;
}
static WC_INLINE int versionIsLesser(byte isDtls, byte a, byte b)
{
(void)isDtls;
#ifdef WOLFSSL_DTLS
/* DTLS version increases backwards (-1,-2,-3,etc) */
if (isDtls)
return a > b;
#endif /* WOLFSSL_DTLS */
return a < b;
}
static WC_INLINE int versionIsAtLeast(byte isDtls, byte a, byte b)
{
(void)isDtls;
#ifdef WOLFSSL_DTLS
/* DTLS version increases backwards (-1,-2,-3,etc) */
if (isDtls)
return a <= b;
#endif /* WOLFSSL_DTLS */
return a >= b;
}
static WC_INLINE int versionIsLessEqual(byte isDtls, byte a, byte b)
{
(void)isDtls;
#ifdef WOLFSSL_DTLS
/* DTLS version increases backwards (-1,-2,-3,etc) */
if (isDtls)
return a >= b;
#endif /* WOLFSSL_DTLS */
return a <= b;
}
/* Return the size of the SupportedVersions extension's data.
*
* data The SSL/TLS object.
* msgType The type of the message this extension is being written into.
* returns the length of data that will be in the extension.
*/
static int TLSX_SupportedVersions_GetSize(void* data, byte msgType, word16* pSz)
{
WOLFSSL* ssl = (WOLFSSL*)data;
byte tls13Minor, tls12Minor, tls11Minor, isDtls;
isDtls = !!ssl->options.dtls;
tls13Minor = (byte)(isDtls ? DTLSv1_3_MINOR : TLSv1_3_MINOR);
tls12Minor = (byte)(isDtls ? DTLSv1_2_MINOR : TLSv1_2_MINOR);
tls11Minor = (byte)(isDtls ? DTLS_MINOR : TLSv1_1_MINOR);
/* unused on some configuration */
(void)tls12Minor;
(void)tls13Minor;
(void)tls11Minor;
if (msgType == client_hello) {
/* TLS v1.2 and TLS v1.3 */
int cnt = 0;
if (versionIsLessEqual(isDtls, ssl->options.minDowngrade, tls13Minor)
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) || \
defined(WOLFSSL_WPAS_SMALL)
&& (ssl->options.mask & WOLFSSL_OP_NO_TLSv1_3) == 0
#endif
) {
cnt++;
}
if (ssl->options.downgrade) {
#ifndef WOLFSSL_NO_TLS12
if (versionIsLessEqual(
isDtls, ssl->options.minDowngrade, tls12Minor)
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) || \
defined(WOLFSSL_WPAS_SMALL)
&& (ssl->options.mask & WOLFSSL_OP_NO_TLSv1_2) == 0
#endif
) {
cnt++;
}
#endif
#ifndef NO_OLD_TLS
if (versionIsLessEqual(
isDtls, ssl->options.minDowngrade, tls11Minor)
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) || \
defined(WOLFSSL_WPAS_SMALL)
&& (ssl->options.mask & WOLFSSL_OP_NO_TLSv1_1) == 0
#endif
) {
cnt++;
}
#ifdef WOLFSSL_ALLOW_TLSV10
if (!ssl->options.dtls && (ssl->options.minDowngrade <= TLSv1_MINOR)
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) || \
defined(WOLFSSL_WPAS_SMALL)
&& (ssl->options.mask & WOLFSSL_OP_NO_TLSv1) == 0
#endif
) {
cnt++;
}
#endif
#endif
}
*pSz += (word16)(OPAQUE8_LEN + cnt * OPAQUE16_LEN);
}
else if (msgType == server_hello || msgType == hello_retry_request) {
*pSz += OPAQUE16_LEN;
}
else {
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
return 0;
}
/* Writes the SupportedVersions extension into the buffer.
*
* data The SSL/TLS object.
* output The buffer to write the extension into.
* msgType The type of the message this extension is being written into.
* returns the length of data that was written.
*/
static int TLSX_SupportedVersions_Write(void* data, byte* output,
byte msgType, word16* pSz)
{
WOLFSSL* ssl = (WOLFSSL*)data;
byte tls13minor, tls12minor, tls11minor, isDtls = 0;
tls13minor = (byte)TLSv1_3_MINOR;
tls12minor = (byte)TLSv1_2_MINOR;
tls11minor = (byte)TLSv1_1_MINOR;
/* unused in some configuration */
(void)tls11minor;
(void)tls12minor;
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls) {
tls13minor = (byte)DTLSv1_3_MINOR;
#ifndef WOLFSSL_NO_TLS12
tls12minor = (byte)DTLSv1_2_MINOR;
#endif
#ifndef NO_OLD_TLS
tls11minor = (byte)DTLS_MINOR;
#endif
isDtls = 1;
}
#endif /* WOLFSSL_DTLS13 */
if (msgType == client_hello) {
byte major = ssl->ctx->method->version.major;
byte* cnt = output++;
*cnt = 0;
if (versionIsLessEqual(isDtls, ssl->options.minDowngrade, tls13minor)
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) || \
defined(WOLFSSL_WPAS_SMALL)
&& (ssl->options.mask & WOLFSSL_OP_NO_TLSv1_3) == 0
#endif
) {
*cnt += OPAQUE16_LEN;
#ifdef WOLFSSL_TLS13_DRAFT
/* The TLS draft major number. */
*(output++) = TLS_DRAFT_MAJOR;
/* Version of draft supported. */
*(output++) = TLS_DRAFT_MINOR;
#else
*(output++) = major;
*(output++) = tls13minor;
#endif
}
if (ssl->options.downgrade) {
#ifndef WOLFSSL_NO_TLS12
if (versionIsLessEqual(isDtls, ssl->options.minDowngrade, tls12minor)
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) || \
defined(WOLFSSL_WPAS_SMALL)
&& (ssl->options.mask & WOLFSSL_OP_NO_TLSv1_2) == 0
#endif
) {
*cnt += OPAQUE16_LEN;
*(output++) = major;
*(output++) = tls12minor;
}
#endif
#ifndef NO_OLD_TLS
if (versionIsLessEqual(isDtls, ssl->options.minDowngrade, tls11minor)
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) || \
defined(WOLFSSL_WPAS_SMALL)
&& (ssl->options.mask & WOLFSSL_OP_NO_TLSv1_1) == 0
#endif
) {
*cnt += OPAQUE16_LEN;
*(output++) = major;
*(output++) = tls11minor;
}
#ifdef WOLFSSL_ALLOW_TLSV10
if (!ssl->options.dtls && (ssl->options.minDowngrade <= TLSv1_MINOR)
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) || \
defined(WOLFSSL_WPAS_SMALL)
&& (ssl->options.mask & WOLFSSL_OP_NO_TLSv1) == 0
#endif
) {
*cnt += OPAQUE16_LEN;
*(output++) = major;
*(output++) = (byte)TLSv1_MINOR;
}
#endif
#endif
}
*pSz += (word16)(OPAQUE8_LEN + *cnt);
}
else if (msgType == server_hello || msgType == hello_retry_request) {
output[0] = ssl->version.major;
output[1] = ssl->version.minor;
*pSz += OPAQUE16_LEN;
}
else {
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
return 0;
}
/* Parse the SupportedVersions extension.
*
* ssl The SSL/TLS object.
* input The buffer with the extension data.
* length The length of the extension data.
* msgType The type of the message this extension is being parsed from.
* pv The output ProtocolVersion for the negotiated version
* opts The output options structure. Can be NULL.
* exts The output extensions list. Can be NULL.
* returns 0 on success, otherwise failure.
*/
int TLSX_SupportedVersions_Parse(const WOLFSSL* ssl, const byte* input,
word16 length, byte msgType, ProtocolVersion* pv, Options* opts,
TLSX** exts)
{
/* The client's greatest minor version that we support */
byte clientGreatestMinor = SSLv3_MINOR;
int ret;
byte major, minor;
byte tls13minor, tls12minor;
byte isDtls;
tls13minor = TLSv1_3_MINOR;
tls12minor = TLSv1_2_MINOR;
isDtls = ssl->options.dtls == 1;
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls) {
tls13minor = DTLSv1_3_MINOR;
tls12minor = DTLSv1_2_MINOR;
clientGreatestMinor = DTLS_MINOR;
}
#endif /* WOLFSSL_DTLS13 */
if (msgType == client_hello) {
int i;
int len;
int set = 0;
/* Must contain a length and at least one version. */
if (length < OPAQUE8_LEN + OPAQUE16_LEN || (length & 1) != 1)
return BUFFER_ERROR;
len = *input;
/* Protocol version array must fill rest of data. */
if (length != (word16)OPAQUE8_LEN + len)
return BUFFER_ERROR;
input++;
/* Find first match. */
for (i = 0; i < len; i += OPAQUE16_LEN) {
major = input[i];
minor = input[i + OPAQUE8_LEN];
#ifdef WOLFSSL_TLS13_DRAFT
if (major == TLS_DRAFT_MAJOR && minor == TLS_DRAFT_MINOR) {
major = SSLv3_MAJOR;
minor = TLSv1_3_MINOR;
}
#else
if (major == TLS_DRAFT_MAJOR)
continue;
#endif
if (major != ssl->ctx->method->version.major)
continue;
/* No upgrade allowed. */
if (versionIsGreater(isDtls, minor, ssl->version.minor))
continue;
/* Check downgrade. */
if (versionIsLesser(isDtls, minor, ssl->version.minor)) {
if (!ssl->options.downgrade)
continue;
if (versionIsLesser(isDtls, minor, ssl->options.minDowngrade))
continue;
}
if (versionIsGreater(isDtls, minor, clientGreatestMinor))
clientGreatestMinor = minor;
set = 1;
}
if (!set) {
/* No common supported version was negotiated */
SendAlert((WOLFSSL*)ssl, alert_fatal,
wolfssl_alert_protocol_version);
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
pv->minor = clientGreatestMinor;
if (versionIsAtLeast(isDtls, clientGreatestMinor, tls13minor)) {
if (opts != NULL)
opts->tls1_3 = 1;
/* TLS v1.3 requires supported version extension */
if (exts != NULL &&
TLSX_Find(*exts, TLSX_SUPPORTED_VERSIONS) == NULL) {
ret = TLSX_Push(exts,
TLSX_SUPPORTED_VERSIONS, ssl, ssl->heap);
if (ret != 0) {
return ret;
}
/* *exts should be pointing to the TLSX_SUPPORTED_VERSIONS
* ext in the list since it was pushed. */
(*exts)->resp = 1;
}
}
}
else if (msgType == server_hello || msgType == hello_retry_request) {
/* Must contain one version. */
if (length != OPAQUE16_LEN)
return BUFFER_ERROR;
major = input[0];
minor = input[OPAQUE8_LEN];
if (major != ssl->ctx->method->version.major) {
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
/* Can't downgrade with this extension below TLS v1.3. */
if (versionIsLesser(isDtls, minor, tls13minor)) {
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
/* Version is TLS v1.2 to handle downgrading from TLS v1.3+. */
if (ssl->options.downgrade && ssl->version.minor == tls12minor) {
/* Set minor version back to TLS v1.3+ */
pv->minor = ssl->ctx->method->version.minor;
}
/* No upgrade allowed. */
if (versionIsLesser(isDtls, ssl->version.minor, minor)) {
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
/* Check downgrade. */
if (versionIsGreater(isDtls, ssl->version.minor, minor)) {
if (!ssl->options.downgrade) {
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
if (versionIsLesser(
isDtls, minor, ssl->options.minDowngrade)) {
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
/* Downgrade the version. */
pv->minor = minor;
}
}
else {
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
return 0;
}
/* Sets a new SupportedVersions extension into the extension list.
*
* extensions The list of extensions.
* data The extensions specific data.
* heap The heap used for allocation.
* returns 0 on success, otherwise failure.
*/
static int TLSX_SetSupportedVersions(TLSX** extensions, const void* data,
void* heap)
{
if (extensions == NULL || data == NULL)
return BAD_FUNC_ARG;
return TLSX_Push(extensions, TLSX_SUPPORTED_VERSIONS, data, heap);
}
#define SV_GET_SIZE TLSX_SupportedVersions_GetSize
#define SV_WRITE TLSX_SupportedVersions_Write
#define SV_PARSE TLSX_SupportedVersions_Parse
#else
#define SV_GET_SIZE(a, b, c) 0
#define SV_WRITE(a, b, c, d) 0
#define SV_PARSE(a, b, c, d, e, f, g) 0
#endif /* WOLFSSL_TLS13 */
#if defined(WOLFSSL_TLS13) && defined(WOLFSSL_SEND_HRR_COOKIE)
/******************************************************************************/
/* Cookie */
/******************************************************************************/
/* Free the cookie data.
*
* cookie Cookie data.
* heap The heap used for allocation.
*/
static void TLSX_Cookie_FreeAll(Cookie* cookie, void* heap)
{
(void)heap;
XFREE(cookie, heap, DYNAMIC_TYPE_TLSX);
}
/* Get the size of the encoded Cookie extension.
* In messages: ClientHello and HelloRetryRequest.
*
* cookie The cookie to write.
* msgType The type of the message this extension is being written into.
* returns the number of bytes of the encoded Cookie extension.
*/
static int TLSX_Cookie_GetSize(Cookie* cookie, byte msgType, word16* pSz)
{
if (msgType == client_hello || msgType == hello_retry_request) {
*pSz += OPAQUE16_LEN + cookie->len;
}
else {
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
return 0;
}
/* Writes the Cookie extension into the output buffer.
* Assumes that the the output buffer is big enough to hold data.
* In messages: ClientHello and HelloRetryRequest.
*
* cookie The cookie to write.
* output The buffer to write into.
* msgType The type of the message this extension is being written into.
* returns the number of bytes written into the buffer.
*/
static int TLSX_Cookie_Write(Cookie* cookie, byte* output, byte msgType,
word16* pSz)
{
if (msgType == client_hello || msgType == hello_retry_request) {
c16toa(cookie->len, output);
output += OPAQUE16_LEN;
XMEMCPY(output, cookie->data, cookie->len);
*pSz += OPAQUE16_LEN + cookie->len;
}
else {
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
return 0;
}
/* Parse the Cookie extension.
* In messages: ClientHello and HelloRetryRequest.
*
* ssl The SSL/TLS object.
* input The extension data.
* length The length of the extension data.
* msgType The type of the message this extension is being parsed from.
* returns 0 on success and other values indicate failure.
*/
static int TLSX_Cookie_Parse(WOLFSSL* ssl, const byte* input, word16 length,
byte msgType)
{
word16 len;
word16 idx = 0;
TLSX* extension;
Cookie* cookie;
if (msgType != client_hello && msgType != hello_retry_request) {
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
/* Message contains length and Cookie which must be at least one byte
* in length.
*/
if (length < OPAQUE16_LEN + 1)
return BUFFER_E;
ato16(input + idx, &len);
idx += OPAQUE16_LEN;
if (length - idx != len)
return BUFFER_E;
if (msgType == hello_retry_request) {
ssl->options.hrrSentCookie = 1;
return TLSX_Cookie_Use(ssl, input + idx, len, NULL, 0, 1,
&ssl->extensions);
}
/* client_hello */
extension = TLSX_Find(ssl->extensions, TLSX_COOKIE);
if (extension == NULL) {
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls && IsAtLeastTLSv1_3(ssl->version))
/* Allow a cookie extension with DTLS 1.3 because it is possible
* that a different SSL instance sent the cookie but we are now
* receiving it. */
return TLSX_Cookie_Use(ssl, input + idx, len, NULL, 0, 0,
&ssl->extensions);
else
#endif
{
WOLFSSL_ERROR_VERBOSE(HRR_COOKIE_ERROR);
return HRR_COOKIE_ERROR;
}
}
cookie = (Cookie*)extension->data;
if (cookie->len != len || XMEMCMP(cookie->data, input + idx, len) != 0) {
WOLFSSL_ERROR_VERBOSE(HRR_COOKIE_ERROR);
return HRR_COOKIE_ERROR;
}
/* Request seen. */
extension->resp = 0;
return 0;
}
/* Use the data to create a new Cookie object in the extensions.
*
* ssl SSL/TLS object.
* data Cookie data.
* len Length of cookie data in bytes.
* mac MAC data.
* macSz Length of MAC data in bytes.
* resp Indicates the extension will go into a response (HelloRetryRequest).
* returns 0 on success and other values indicate failure.
*/
int TLSX_Cookie_Use(const WOLFSSL* ssl, const byte* data, word16 len, byte* mac,
byte macSz, int resp, TLSX** exts)
{
int ret = 0;
TLSX* extension;
Cookie* cookie;
/* Find the cookie extension if it exists. */
extension = TLSX_Find(*exts, TLSX_COOKIE);
if (extension == NULL) {
/* Push new cookie extension. */
ret = TLSX_Push(exts, TLSX_COOKIE, NULL, ssl->heap);
if (ret != 0)
return ret;
extension = TLSX_Find(*exts, TLSX_COOKIE);
if (extension == NULL)
return MEMORY_E;
}
cookie = (Cookie*)XMALLOC(sizeof(Cookie) + len + macSz, ssl->heap,
DYNAMIC_TYPE_TLSX);
if (cookie == NULL)
return MEMORY_E;
cookie->len = len + macSz;
XMEMCPY(cookie->data, data, len);
if (mac != NULL)
XMEMCPY(cookie->data + len, mac, macSz);
XFREE(extension->data, ssl->heap, DYNAMIC_TYPE_TLSX);
extension->data = (void*)cookie;
extension->resp = (byte)resp;
return 0;
}
#define CKE_FREE_ALL TLSX_Cookie_FreeAll
#define CKE_GET_SIZE TLSX_Cookie_GetSize
#define CKE_WRITE TLSX_Cookie_Write
#define CKE_PARSE TLSX_Cookie_Parse
#else
#define CKE_FREE_ALL(a, b) 0
#define CKE_GET_SIZE(a, b, c) 0
#define CKE_WRITE(a, b, c, d) 0
#define CKE_PARSE(a, b, c, d) 0
#endif
#if defined(WOLFSSL_TLS13) && !defined(NO_CERTS) && \
!defined(WOLFSSL_NO_CA_NAMES) && defined(OPENSSL_EXTRA)
/* Currently only settable through compatibility API */
/******************************************************************************/
/* Certificate Authorities */
/******************************************************************************/
static word16 TLSX_CA_Names_GetSize(void* data)
{
WOLFSSL* ssl = (WOLFSSL*)data;
WOLF_STACK_OF(WOLFSSL_X509_NAME)* names;
word16 size = 0;
/* Length of names */
size += OPAQUE16_LEN;
for (names = SSL_PRIORITY_CA_NAMES(ssl); names != NULL; names = names->next) {
byte seq[MAX_SEQ_SZ];
WOLFSSL_X509_NAME* name = names->data.name;
if (name != NULL) {
/* 16-bit length | SEQ | Len | DER of name */
size += (word16)(OPAQUE16_LEN + SetSequence(name->rawLen, seq) +
name->rawLen);
}
}
return size;
}
static word16 TLSX_CA_Names_Write(void* data, byte* output)
{
WOLFSSL* ssl = (WOLFSSL*)data;
WOLF_STACK_OF(WOLFSSL_X509_NAME)* names;
byte* len;
/* Reserve space for the length value */
len = output;
output += OPAQUE16_LEN;
for (names = SSL_PRIORITY_CA_NAMES(ssl); names != NULL; names = names->next) {
byte seq[MAX_SEQ_SZ];
WOLFSSL_X509_NAME* name = names->data.name;
if (name != NULL) {
c16toa((word16)name->rawLen +
(word16)SetSequence(name->rawLen, seq), output);
output += OPAQUE16_LEN;
output += SetSequence(name->rawLen, output);
XMEMCPY(output, name->raw, name->rawLen);
output += name->rawLen;
}
}
/* Write the total length */
c16toa((word16)(output - len - OPAQUE16_LEN), len);
return (word16)(output - len);
}
static int TLSX_CA_Names_Parse(WOLFSSL *ssl, const byte* input,
word16 length, byte isRequest)
{
word16 extLen;
(void)isRequest;
wolfSSL_sk_X509_NAME_pop_free(ssl->peer_ca_names, NULL);
ssl->peer_ca_names = wolfSSL_sk_X509_NAME_new(NULL);
if (ssl->peer_ca_names == NULL)
return MEMORY_ERROR;
if (length < OPAQUE16_LEN)
return BUFFER_ERROR;
ato16(input, &extLen);
input += OPAQUE16_LEN;
length -= OPAQUE16_LEN;
if (extLen != length)
return BUFFER_ERROR;
while (length) {
word32 idx = 0;
WOLFSSL_X509_NAME* name = NULL;
int ret = 0;
int didInit = FALSE;
/* Use a DecodedCert struct to get access to GetName to
* parse DN name */
#ifdef WOLFSSL_SMALL_STACK
DecodedCert *cert = (DecodedCert *)XMALLOC(
sizeof(*cert), ssl->heap, DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return MEMORY_ERROR;
#else
DecodedCert cert[1];
#endif
if (length < OPAQUE16_LEN) {
ret = BUFFER_ERROR;
}
if (ret == 0) {
ato16(input, &extLen);
idx += OPAQUE16_LEN;
if (idx + extLen > length)
ret = BUFFER_ERROR;
}
if (ret == 0) {
InitDecodedCert(cert, input + idx, extLen, ssl->heap);
didInit = TRUE;
idx += extLen;
ret = GetName(cert, ASN_SUBJECT, extLen);
}
if (ret == 0 && (name = wolfSSL_X509_NAME_new()) == NULL)
ret = MEMORY_ERROR;
if (ret == 0) {
CopyDecodedName(name, cert, ASN_SUBJECT);
if (wolfSSL_sk_X509_NAME_push(ssl->peer_ca_names, name) <= 0) {
wolfSSL_X509_NAME_free(name);
ret = MEMORY_ERROR;
}
}
if (didInit)
FreeDecodedCert(cert);
WC_FREE_VAR_EX(cert, ssl->heap, DYNAMIC_TYPE_DCERT);
if (ret != 0)
return ret;
input += idx;
length -= (word16)idx;
}
return 0;
}
#define CAN_GET_SIZE(data) TLSX_CA_Names_GetSize(data)
#define CAN_WRITE(data, output) TLSX_CA_Names_Write(data, output)
#define CAN_PARSE(ssl, input, length, isRequest) \
TLSX_CA_Names_Parse(ssl, input, length, isRequest)
#else
#define CAN_GET_SIZE(data) 0
#define CAN_WRITE(data, output) 0
#define CAN_PARSE(ssl, input, length, isRequest) 0
#endif
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_SIGALG)
/******************************************************************************/
/* Signature Algorithms */
/******************************************************************************/
/* Return the size of the SignatureAlgorithms extension's data.
*
* data Unused
* returns the length of data that will be in the extension.
*/
static word16 TLSX_SignatureAlgorithms_GetSize(void* data)
{
SignatureAlgorithms* sa = (SignatureAlgorithms*)data;
if (sa->hashSigAlgoSz == 0)
return OPAQUE16_LEN + WOLFSSL_SUITES(sa->ssl)->hashSigAlgoSz;
else
return OPAQUE16_LEN + sa->hashSigAlgoSz;
}
/* Creates a bit string of supported hash algorithms with RSA PSS.
* The bit string is used when determining which signature algorithm to use
* when creating the CertificateVerify message.
* Note: Valid data has an even length as each signature algorithm is two bytes.
*
* ssl The SSL/TLS object.
* input The buffer with the list of supported signature algorithms.
* length The length of the list in bytes.
* returns 0 on success, BUFFER_ERROR when the length is not even.
*/
static int TLSX_SignatureAlgorithms_MapPss(WOLFSSL *ssl, const byte* input,
word16 length)
{
word16 i;
if ((length & 1) == 1)
return BUFFER_ERROR;
ssl->pssAlgo = 0;
for (i = 0; i < length; i += 2) {
if (input[i] == rsa_pss_sa_algo && input[i + 1] <= sha512_mac)
ssl->pssAlgo |= 1 << input[i + 1];
#ifdef WOLFSSL_TLS13
if (input[i] == rsa_pss_sa_algo && input[i + 1] >= pss_sha256 &&
input[i + 1] <= pss_sha512) {
ssl->pssAlgo |= 1 << input[i + 1];
}
#endif
}
return 0;
}
/* Writes the SignatureAlgorithms extension into the buffer.
*
* data Unused
* output The buffer to write the extension into.
* returns the length of data that was written.
*/
static word16 TLSX_SignatureAlgorithms_Write(void* data, byte* output)
{
SignatureAlgorithms* sa = (SignatureAlgorithms*)data;
const Suites* suites = WOLFSSL_SUITES(sa->ssl);
word16 hashSigAlgoSz;
if (sa->hashSigAlgoSz == 0) {
c16toa(suites->hashSigAlgoSz, output);
XMEMCPY(output + OPAQUE16_LEN, suites->hashSigAlgo,
suites->hashSigAlgoSz);
hashSigAlgoSz = suites->hashSigAlgoSz;
}
else {
c16toa(sa->hashSigAlgoSz, output);
XMEMCPY(output + OPAQUE16_LEN, sa->hashSigAlgo,
sa->hashSigAlgoSz);
hashSigAlgoSz = sa->hashSigAlgoSz;
}
#ifndef NO_RSA
TLSX_SignatureAlgorithms_MapPss(sa->ssl, output + OPAQUE16_LEN,
hashSigAlgoSz);
#endif
return OPAQUE16_LEN + hashSigAlgoSz;
}
/* Parse the SignatureAlgorithms extension.
*
* ssl The SSL/TLS object.
* input The buffer with the extension data.
* length The length of the extension data.
* returns 0 on success, otherwise failure.
*/
static int TLSX_SignatureAlgorithms_Parse(WOLFSSL *ssl, const byte* input,
word16 length, byte isRequest, Suites* suites)
{
word16 len;
if (!isRequest)
return BUFFER_ERROR;
/* Must contain a length and at least algorithm. */
if (length < OPAQUE16_LEN + OPAQUE16_LEN || (length & 1) != 0)
return BUFFER_ERROR;
ato16(input, &len);
input += OPAQUE16_LEN;
/* Algorithm array must fill rest of data. */
if (length != OPAQUE16_LEN + len)
return BUFFER_ERROR;
/* Sig Algo list size must be even. */
if (suites->hashSigAlgoSz % 2 != 0)
return BUFFER_ERROR;
/* truncate hashSigAlgo list if too long */
suites->hashSigAlgoSz = len;
if (suites->hashSigAlgoSz > WOLFSSL_MAX_SIGALGO) {
WOLFSSL_MSG("TLSX SigAlgo list exceeds max, truncating");
suites->hashSigAlgoSz = WOLFSSL_MAX_SIGALGO;
}
XMEMCPY(suites->hashSigAlgo, input, suites->hashSigAlgoSz);
return TLSX_SignatureAlgorithms_MapPss(ssl, input, len);
}
/* Sets a new SignatureAlgorithms extension into the extension list.
*
* extensions The list of extensions.
* data The extensions specific data.
* heap The heap used for allocation.
* returns 0 on success, otherwise failure.
*/
static int TLSX_SetSignatureAlgorithms(TLSX** extensions, WOLFSSL* ssl,
void* heap)
{
SignatureAlgorithms* sa;
int ret;
if (extensions == NULL)
return BAD_FUNC_ARG;
/* Already present */
if (TLSX_Find(*extensions, TLSX_SIGNATURE_ALGORITHMS) != NULL)
return 0;
sa = TLSX_SignatureAlgorithms_New(ssl, 0, heap);
if (sa == NULL)
return MEMORY_ERROR;
ret = TLSX_Push(extensions, TLSX_SIGNATURE_ALGORITHMS, sa, heap);
if (ret != 0)
TLSX_SignatureAlgorithms_FreeAll(sa, heap);
return ret;
}
SignatureAlgorithms* TLSX_SignatureAlgorithms_New(WOLFSSL* ssl,
word16 hashSigAlgoSz, void* heap)
{
SignatureAlgorithms* sa;
(void)heap;
sa = (SignatureAlgorithms*)XMALLOC(sizeof(*sa) + hashSigAlgoSz, heap,
DYNAMIC_TYPE_TLSX);
if (sa != NULL) {
XMEMSET(sa, 0, sizeof(*sa) + hashSigAlgoSz);
sa->ssl = ssl;
sa->hashSigAlgoSz = hashSigAlgoSz;
}
return sa;
}
void TLSX_SignatureAlgorithms_FreeAll(SignatureAlgorithms* sa,
void* heap)
{
XFREE(sa, heap, DYNAMIC_TYPE_TLSX);
(void)heap;
}
#define SA_GET_SIZE TLSX_SignatureAlgorithms_GetSize
#define SA_WRITE TLSX_SignatureAlgorithms_Write
#define SA_PARSE TLSX_SignatureAlgorithms_Parse
#define SA_FREE_ALL TLSX_SignatureAlgorithms_FreeAll
#endif
/******************************************************************************/
/* Signature Algorithms Certificate */
/******************************************************************************/
#if defined(WOLFSSL_TLS13) && !defined(NO_CERTS) && !defined(WOLFSSL_NO_SIGALG)
/* Return the size of the SignatureAlgorithms extension's data.
*
* data Unused
* returns the length of data that will be in the extension.
*/
static word16 TLSX_SignatureAlgorithmsCert_GetSize(void* data)
{
WOLFSSL* ssl = (WOLFSSL*)data;
return OPAQUE16_LEN + ssl->certHashSigAlgoSz;
}
/* Writes the SignatureAlgorithmsCert extension into the buffer.
*
* data Unused
* output The buffer to write the extension into.
* returns the length of data that was written.
*/
static word16 TLSX_SignatureAlgorithmsCert_Write(void* data, byte* output)
{
WOLFSSL* ssl = (WOLFSSL*)data;
c16toa(ssl->certHashSigAlgoSz, output);
XMEMCPY(output + OPAQUE16_LEN, ssl->certHashSigAlgo,
ssl->certHashSigAlgoSz);
return OPAQUE16_LEN + ssl->certHashSigAlgoSz;
}
/* Parse the SignatureAlgorithmsCert extension.
*
* ssl The SSL/TLS object.
* input The buffer with the extension data.
* length The length of the extension data.
* returns 0 on success, otherwise failure.
*/
static int TLSX_SignatureAlgorithmsCert_Parse(WOLFSSL *ssl, const byte* input,
word16 length, byte isRequest)
{
word16 len;
if (!isRequest)
return BUFFER_ERROR;
/* Must contain a length and at least algorithm. */
if (length < OPAQUE16_LEN + OPAQUE16_LEN || (length & 1) != 0)
return BUFFER_ERROR;
ato16(input, &len);
input += OPAQUE16_LEN;
/* Algorithm array must fill rest of data. */
if (length != OPAQUE16_LEN + len)
return BUFFER_ERROR;
/* truncate hashSigAlgo list if too long */
ssl->certHashSigAlgoSz = len;
if (ssl->certHashSigAlgoSz > WOLFSSL_MAX_SIGALGO) {
WOLFSSL_MSG("TLSX SigAlgo list exceeds max, truncating");
ssl->certHashSigAlgoSz = WOLFSSL_MAX_SIGALGO;
}
XMEMCPY(ssl->certHashSigAlgo, input, ssl->certHashSigAlgoSz);
return 0;
}
/* Sets a new SignatureAlgorithmsCert extension into the extension list.
*
* extensions The list of extensions.
* data The extensions specific data.
* heap The heap used for allocation.
* returns 0 on success, otherwise failure.
*/
static int TLSX_SetSignatureAlgorithmsCert(TLSX** extensions,
const WOLFSSL* data, void* heap)
{
if (extensions == NULL)
return BAD_FUNC_ARG;
return TLSX_Push(extensions, TLSX_SIGNATURE_ALGORITHMS_CERT, data, heap);
}
#define SAC_GET_SIZE TLSX_SignatureAlgorithmsCert_GetSize
#define SAC_WRITE TLSX_SignatureAlgorithmsCert_Write
#define SAC_PARSE TLSX_SignatureAlgorithmsCert_Parse
#endif /* WOLFSSL_TLS13 */
/******************************************************************************/
/* Key Share */
/******************************************************************************/
#ifndef MAX_KEYSHARE_NAMED_GROUPS
#if defined(WOLFSSL_HAVE_MLKEM) && !defined(WOLFSSL_MLKEM_NO_MAKE_KEY)
#define MAX_KEYSHARE_NAMED_GROUPS 24
#else
#define MAX_KEYSHARE_NAMED_GROUPS 12
#endif
#endif
#if defined(WOLFSSL_TLS13) && defined(HAVE_SUPPORTED_CURVES)
/* Create a key share entry using named Diffie-Hellman parameters group.
* Generates a key pair.
*
* ssl The SSL/TLS object.
* kse The key share entry object.
* returns 0 on success, otherwise failure.
*/
static int TLSX_KeyShare_GenDhKey(WOLFSSL *ssl, KeyShareEntry* kse)
{
int ret = 0;
#if !defined(NO_DH) && (!defined(NO_CERTS) || !defined(NO_PSK))
word32 pSz = 0, pvtSz = 0;
DhKey* dhKey = (DhKey*)kse->key;
/* Pick the parameters from the named group. */
#ifdef HAVE_PUBLIC_FFDHE
const DhParams* params = NULL;
switch (kse->group) {
#ifdef HAVE_FFDHE_2048
case WOLFSSL_FFDHE_2048:
params = wc_Dh_ffdhe2048_Get();
pvtSz = 29;
break;
#endif
#ifdef HAVE_FFDHE_3072
case WOLFSSL_FFDHE_3072:
params = wc_Dh_ffdhe3072_Get();
pvtSz = 34;
break;
#endif
#ifdef HAVE_FFDHE_4096
case WOLFSSL_FFDHE_4096:
params = wc_Dh_ffdhe4096_Get();
pvtSz = 39;
break;
#endif
#ifdef HAVE_FFDHE_6144
case WOLFSSL_FFDHE_6144:
params = wc_Dh_ffdhe6144_Get();
pvtSz = 46;
break;
#endif
#ifdef HAVE_FFDHE_8192
case WOLFSSL_FFDHE_8192:
params = wc_Dh_ffdhe8192_Get();
pvtSz = 52;
break;
#endif
default:
break;
}
if (params == NULL)
return BAD_FUNC_ARG;
pSz = params->p_len;
#else
pvtSz = wc_DhGetNamedKeyMinSize(kse->group);
if (pvtSz == 0) {
return BAD_FUNC_ARG;
}
ret = wc_DhGetNamedKeyParamSize(kse->group, &pSz, NULL, NULL);
if (ret != 0) {
return BAD_FUNC_ARG;
}
#endif
/* Trigger Key Generation */
if (kse->pubKey == NULL || kse->privKey == NULL) {
if (kse->key == NULL) {
kse->key = (DhKey*)XMALLOC(sizeof(DhKey), ssl->heap,
DYNAMIC_TYPE_DH);
if (kse->key == NULL)
return MEMORY_E;
/* Setup Key */
ret = wc_InitDhKey_ex((DhKey*)kse->key, ssl->heap, ssl->devId);
if (ret == 0) {
dhKey = (DhKey*)kse->key;
#ifdef HAVE_PUBLIC_FFDHE
ret = wc_DhSetKey(dhKey, params->p, params->p_len, params->g,
params->g_len);
#else
ret = wc_DhSetNamedKey(dhKey, kse->group);
#endif
}
}
/* Allocate space for the private and public key */
if (ret == 0 && kse->pubKey == NULL) {
kse->pubKey = (byte*)XMALLOC(pSz, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (kse->pubKey == NULL)
ret = MEMORY_E;
}
if (ret == 0 && kse->privKey == NULL) {
kse->privKey = (byte*)XMALLOC(pvtSz, ssl->heap,
DYNAMIC_TYPE_PRIVATE_KEY);
if (kse->privKey == NULL)
ret = MEMORY_E;
}
if (ret == 0) {
#if defined(WOLFSSL_STATIC_EPHEMERAL) && defined(WOLFSSL_DH_EXTRA)
ret = wolfSSL_StaticEphemeralKeyLoad(ssl, WC_PK_TYPE_DH, kse->key);
kse->pubKeyLen = pSz;
kse->keyLen = pvtSz;
if (ret == 0) {
ret = wc_DhExportKeyPair(dhKey,
(byte*)kse->privKey, &kse->keyLen, /* private */
kse->pubKey, &kse->pubKeyLen /* public */
);
}
else
#endif
{
/* Generate a new key pair */
/* For async this is called once and when event is done, the
* provided buffers will be populated.
* Final processing is zero pad below. */
kse->pubKeyLen = pSz;
kse->keyLen = pvtSz;
ret = DhGenKeyPair(ssl, dhKey,
(byte*)kse->privKey, &kse->keyLen, /* private */
kse->pubKey, &kse->pubKeyLen /* public */
);
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_NO_ERR_TRACE(WC_PENDING_E)) {
return ret;
}
#endif
}
}
}
if (ret == 0) {
if (pSz != kse->pubKeyLen) {
/* Zero pad the front of the public key to match prime "p" size */
XMEMMOVE(kse->pubKey + pSz - kse->pubKeyLen, kse->pubKey,
kse->pubKeyLen);
XMEMSET(kse->pubKey, 0, pSz - kse->pubKeyLen);
kse->pubKeyLen = pSz;
}
if (pvtSz != kse->keyLen) {
/* Zero pad the front of the private key */
XMEMMOVE(kse->privKey + pvtSz - kse->keyLen, kse->privKey,
kse->keyLen);
XMEMSET(kse->privKey, 0, pvtSz - kse->keyLen);
kse->keyLen = pvtSz;
}
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG("Public DH Key");
WOLFSSL_BUFFER(kse->pubKey, kse->pubKeyLen);
#endif
}
/* Always release the DH key to free up memory.
* The DhKey will be setup again in TLSX_KeyShare_ProcessDh */
if (dhKey != NULL)
wc_FreeDhKey(dhKey);
XFREE(kse->key, ssl->heap, DYNAMIC_TYPE_DH);
kse->key = NULL;
if (ret != 0) {
/* Cleanup on error, otherwise data owned by key share entry */
if (kse->privKey) {
ForceZero(kse->privKey, pvtSz);
XFREE(kse->privKey, ssl->heap, DYNAMIC_TYPE_PRIVATE_KEY);
kse->privKey = NULL;
}
XFREE(kse->pubKey, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
kse->pubKey = NULL;
}
#else
(void)ssl;
(void)kse;
ret = NOT_COMPILED_IN;
WOLFSSL_ERROR_VERBOSE(ret);
#endif
return ret;
}
/* Create a key share entry using X25519 parameters group.
* Generates a key pair.
*
* ssl The SSL/TLS object.
* kse The key share entry object.
* returns 0 on success, otherwise failure.
*/
static int TLSX_KeyShare_GenX25519Key(WOLFSSL *ssl, KeyShareEntry* kse)
{
int ret = 0;
#ifdef HAVE_CURVE25519
curve25519_key* key = (curve25519_key*)kse->key;
if (kse->key == NULL) {
/* Allocate a Curve25519 key to hold private key. */
kse->key = (curve25519_key*)XMALLOC(sizeof(curve25519_key), ssl->heap,
DYNAMIC_TYPE_PRIVATE_KEY);
if (kse->key == NULL) {
WOLFSSL_MSG("GenX25519Key memory error");
return MEMORY_E;
}
/* Make an Curve25519 key. */
ret = wc_curve25519_init_ex((curve25519_key*)kse->key, ssl->heap,
INVALID_DEVID);
if (ret == 0) {
/* setting "key" means okay to call wc_curve25519_free */
key = (curve25519_key*)kse->key;
kse->keyLen = CURVE25519_KEYSIZE;
#ifdef WOLFSSL_STATIC_EPHEMERAL
ret = wolfSSL_StaticEphemeralKeyLoad(ssl, WC_PK_TYPE_CURVE25519, kse->key);
if (ret != 0)
#endif
{
ret = wc_curve25519_make_key(ssl->rng, CURVE25519_KEYSIZE, key);
}
}
}
if (ret == 0 && kse->pubKey == NULL) {
/* Allocate space for the public key. */
kse->pubKey = (byte*)XMALLOC(CURVE25519_KEYSIZE, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (kse->pubKey == NULL) {
WOLFSSL_MSG("GenX25519Key pub memory error");
ret = MEMORY_E;
}
}
if (ret == 0) {
/* Export Curve25519 public key. */
kse->pubKeyLen = CURVE25519_KEYSIZE;
if (wc_curve25519_export_public_ex(key, kse->pubKey, &kse->pubKeyLen,
EC25519_LITTLE_ENDIAN) != 0) {
ret = ECC_EXPORT_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
kse->pubKeyLen = CURVE25519_KEYSIZE; /* always CURVE25519_KEYSIZE */
}
#ifdef WOLFSSL_DEBUG_TLS
if (ret == 0) {
WOLFSSL_MSG("Public Curve25519 Key");
WOLFSSL_BUFFER(kse->pubKey, kse->pubKeyLen);
}
#endif
if (ret != 0) {
/* Data owned by key share entry otherwise. */
XFREE(kse->pubKey, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
kse->pubKey = NULL;
if (key != NULL)
wc_curve25519_free(key);
XFREE(kse->key, ssl->heap, DYNAMIC_TYPE_PRIVATE_KEY);
kse->key = NULL;
}
#else
(void)ssl;
(void)kse;
ret = NOT_COMPILED_IN;
WOLFSSL_ERROR_VERBOSE(ret);
#endif /* HAVE_CURVE25519 */
return ret;
}
/* Create a key share entry using X448 parameters group.
* Generates a key pair.
*
* ssl The SSL/TLS object.
* kse The key share entry object.
* returns 0 on success, otherwise failure.
*/
static int TLSX_KeyShare_GenX448Key(WOLFSSL *ssl, KeyShareEntry* kse)
{
int ret = 0;
#ifdef HAVE_CURVE448
curve448_key* key = (curve448_key*)kse->key;
if (kse->key == NULL) {
/* Allocate a Curve448 key to hold private key. */
kse->key = (curve448_key*)XMALLOC(sizeof(curve448_key), ssl->heap,
DYNAMIC_TYPE_PRIVATE_KEY);
if (kse->key == NULL) {
WOLFSSL_MSG("GenX448Key memory error");
return MEMORY_E;
}
/* Make an Curve448 key. */
ret = wc_curve448_init((curve448_key*)kse->key);
if (ret == 0) {
key = (curve448_key*)kse->key;
kse->keyLen = CURVE448_KEY_SIZE;
#ifdef WOLFSSL_STATIC_EPHEMERAL
ret = wolfSSL_StaticEphemeralKeyLoad(ssl, WC_PK_TYPE_CURVE448, kse->key);
if (ret != 0)
#endif
{
ret = wc_curve448_make_key(ssl->rng, CURVE448_KEY_SIZE, key);
}
}
}
if (ret == 0 && kse->pubKey == NULL) {
/* Allocate space for the public key. */
kse->pubKey = (byte*)XMALLOC(CURVE448_KEY_SIZE, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (kse->pubKey == NULL) {
WOLFSSL_MSG("GenX448Key pub memory error");
ret = MEMORY_E;
}
}
if (ret == 0) {
/* Export Curve448 public key. */
kse->pubKeyLen = CURVE448_KEY_SIZE;
if (wc_curve448_export_public_ex(key, kse->pubKey, &kse->pubKeyLen,
EC448_LITTLE_ENDIAN) != 0) {
ret = ECC_EXPORT_ERROR;
}
kse->pubKeyLen = CURVE448_KEY_SIZE; /* always CURVE448_KEY_SIZE */
}
#ifdef WOLFSSL_DEBUG_TLS
if (ret == 0) {
WOLFSSL_MSG("Public Curve448 Key");
WOLFSSL_BUFFER(kse->pubKey, kse->pubKeyLen);
}
#endif
if (ret != 0) {
/* Data owned by key share entry otherwise. */
XFREE(kse->pubKey, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
kse->pubKey = NULL;
if (key != NULL)
wc_curve448_free(key);
XFREE(kse->key, ssl->heap, DYNAMIC_TYPE_PRIVATE_KEY);
kse->key = NULL;
}
#else
(void)ssl;
(void)kse;
ret = NOT_COMPILED_IN;
WOLFSSL_ERROR_VERBOSE(ret);
#endif /* HAVE_CURVE448 */
return ret;
}
/* Create a key share entry using named elliptic curve parameters group.
* Generates a key pair.
*
* ssl The SSL/TLS object.
* kse The key share entry object.
* returns 0 on success, otherwise failure.
*/
static int TLSX_KeyShare_GenEccKey(WOLFSSL *ssl, KeyShareEntry* kse)
{
int ret = 0;
#if defined(HAVE_ECC) && defined(HAVE_ECC_KEY_EXPORT)
word32 keySize = 0;
word16 curveId = (word16) ECC_CURVE_INVALID;
ecc_key* eccKey = (ecc_key*)kse->key;
/* TODO: [TLS13] Get key sizes using wc_ecc_get_curve_size_from_id. */
/* Translate named group to a curve id. */
switch (kse->group) {
#if (!defined(NO_ECC256) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 256
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP256R1:
curveId = ECC_SECP256R1;
keySize = 32;
break;
#endif /* !NO_ECC_SECP */
#ifdef WOLFSSL_SM2
case WOLFSSL_ECC_SM2P256V1:
curveId = ECC_SM2P256V1;
keySize = 32;
break;
#endif /* !NO_ECC_SECP */
#endif
#if (defined(HAVE_ECC384) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 384
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP384R1:
curveId = ECC_SECP384R1;
keySize = 48;
break;
#endif /* !NO_ECC_SECP */
#endif
#if (defined(HAVE_ECC521) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 521
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP521R1:
curveId = ECC_SECP521R1;
keySize = 66;
break;
#endif /* !NO_ECC_SECP */
#endif
default:
WOLFSSL_ERROR_VERBOSE(BAD_FUNC_ARG);
return BAD_FUNC_ARG;
}
if (kse->key == NULL) {
/* Allocate an ECC key to hold private key. */
kse->key = (byte*)XMALLOC(sizeof(ecc_key), ssl->heap, DYNAMIC_TYPE_ECC);
if (kse->key == NULL) {
WOLFSSL_MSG_EX("Failed to allocate %d bytes, ssl->heap: %p",
(int)sizeof(ecc_key), (wc_ptr_t)ssl->heap);
WOLFSSL_MSG("EccTempKey Memory error!");
return MEMORY_E;
}
/* Initialize an ECC key struct for the ephemeral key */
ret = wc_ecc_init_ex((ecc_key*)kse->key, ssl->heap, ssl->devId);
if (ret == 0) {
kse->keyLen = keySize;
kse->pubKeyLen = keySize * 2 + 1;
#if defined(WOLFSSL_RENESAS_TSIP_TLS)
ret = tsip_Tls13GenEccKeyPair(ssl, kse);
if (ret != WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE)) {
return ret;
}
#endif
/* setting eccKey means okay to call wc_ecc_free */
eccKey = (ecc_key*)kse->key;
#ifdef WOLFSSL_STATIC_EPHEMERAL
ret = wolfSSL_StaticEphemeralKeyLoad(ssl, WC_PK_TYPE_ECDH, kse->key);
if (ret != 0 || eccKey->dp->id != curveId)
#endif
{
/* set curve info for EccMakeKey "peer" info */
ret = wc_ecc_set_curve(eccKey, (int)kse->keyLen, curveId);
if (ret == 0) {
#ifdef WOLFSSL_ASYNC_CRYPT
/* Detect when private key generation is done */
if (ssl->error == WC_NO_ERR_TRACE(WC_PENDING_E) &&
eccKey->type == ECC_PRIVATEKEY) {
ret = 0; /* ECC Key Generation is done */
}
else
#endif
{
/* Generate ephemeral ECC key */
/* For async this is called once and when event is done, the
* provided buffers in key be populated.
* Final processing is x963 key export below. */
ret = EccMakeKey(ssl, eccKey, eccKey);
}
}
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_NO_ERR_TRACE(WC_PENDING_E))
return ret;
#endif
}
}
}
if (ret == 0 && kse->pubKey == NULL) {
/* Allocate space for the public key */
kse->pubKey = (byte*)XMALLOC(kse->pubKeyLen, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (kse->pubKey == NULL) {
WOLFSSL_MSG("Key data Memory error");
ret = MEMORY_E;
}
}
if (ret == 0) {
XMEMSET(kse->pubKey, 0, kse->pubKeyLen);
/* Export public key. */
PRIVATE_KEY_UNLOCK();
if (wc_ecc_export_x963(eccKey, kse->pubKey, &kse->pubKeyLen) != 0) {
ret = ECC_EXPORT_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
PRIVATE_KEY_LOCK();
}
#ifdef WOLFSSL_DEBUG_TLS
if (ret == 0) {
WOLFSSL_MSG("Public ECC Key");
WOLFSSL_BUFFER(kse->pubKey, kse->pubKeyLen);
}
#endif
if (ret != 0) {
/* Cleanup on error, otherwise data owned by key share entry */
XFREE(kse->pubKey, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
kse->pubKey = NULL;
if (eccKey != NULL)
wc_ecc_free(eccKey);
XFREE(kse->key, ssl->heap, DYNAMIC_TYPE_PRIVATE_KEY);
kse->key = NULL;
}
#else
(void)ssl;
(void)kse;
ret = NOT_COMPILED_IN;
WOLFSSL_ERROR_VERBOSE(ret);
#endif /* HAVE_ECC && HAVE_ECC_KEY_EXPORT */
return ret;
}
#ifdef WOLFSSL_HAVE_MLKEM
#if defined(WOLFSSL_MLKEM_CACHE_A) && \
!defined(WOLFSSL_TLSX_PQC_MLKEM_STORE_PRIV_KEY)
/* Store KyberKey object rather than private key bytes in key share entry.
* Improves performance at cost of more dynamic memory being used. */
#define WOLFSSL_TLSX_PQC_MLKEM_STORE_OBJ
#endif
#if defined(WOLFSSL_TLSX_PQC_MLKEM_STORE_PRIV_KEY) && \
defined(WOLFSSL_TLSX_PQC_MLKEM_STORE_OBJ)
#error "Choose WOLFSSL_TLSX_PQC_MLKEM_STORE_PRIV_KEY or "
"WOLFSSL_TLSX_PQC_MLKEM_STORE_OBJ"
#endif
#if !defined(WOLFSSL_MLKEM_NO_MAKE_KEY) || \
!defined(WOLFSSL_MLKEM_NO_ENCAPSULATE) || \
(!defined(WOLFSSL_MLKEM_NO_DECAPSULATE) && \
!defined(WOLFSSL_TLSX_PQC_MLKEM_STORE_OBJ))
static int mlkem_id2type(int id, int *type)
{
int ret = 0;
switch (id) {
#ifndef WOLFSSL_NO_ML_KEM
#ifndef WOLFSSL_NO_ML_KEM_512
case WOLFSSL_ML_KEM_512:
*type = WC_ML_KEM_512;
break;
#endif
#ifndef WOLFSSL_NO_ML_KEM_768
case WOLFSSL_ML_KEM_768:
*type = WC_ML_KEM_768;
break;
#endif
#ifndef WOLFSSL_NO_ML_KEM_1024
case WOLFSSL_ML_KEM_1024:
*type = WC_ML_KEM_1024;
break;
#endif
#endif
#ifdef WOLFSSL_MLKEM_KYBER
#ifdef WOLFSSL_KYBER512
case WOLFSSL_KYBER_LEVEL1:
*type = KYBER512;
break;
#endif
#ifdef WOLFSSL_KYBER768
case WOLFSSL_KYBER_LEVEL3:
*type = KYBER768;
break;
#endif
#ifdef WOLFSSL_KYBER1024
case WOLFSSL_KYBER_LEVEL5:
*type = KYBER1024;
break;
#endif
#endif
default:
ret = NOT_COMPILED_IN;
break;
}
return ret;
}
#endif
/* Structures and objects needed for hybrid key exchanges using both classic
* ECDHE and PQC KEM key material. */
typedef struct PqcHybridMapping {
int hybrid;
int ecc;
int pqc;
int pqc_first;
} PqcHybridMapping;
static const PqcHybridMapping pqc_hybrid_mapping[] = {
#ifndef WOLFSSL_NO_ML_KEM
{WOLFSSL_SECP256R1MLKEM512, WOLFSSL_ECC_SECP256R1, WOLFSSL_ML_KEM_512, 0},
{WOLFSSL_SECP384R1MLKEM768, WOLFSSL_ECC_SECP384R1, WOLFSSL_ML_KEM_768, 0},
{WOLFSSL_SECP256R1MLKEM768, WOLFSSL_ECC_SECP256R1, WOLFSSL_ML_KEM_768, 0},
{WOLFSSL_SECP521R1MLKEM1024, WOLFSSL_ECC_SECP521R1, WOLFSSL_ML_KEM_1024, 0},
{WOLFSSL_SECP384R1MLKEM1024, WOLFSSL_ECC_SECP384R1, WOLFSSL_ML_KEM_1024, 0},
#ifdef WOLFSSL_ML_KEM_USE_OLD_IDS
{WOLFSSL_P256_ML_KEM_512_OLD, WOLFSSL_ECC_SECP256R1, WOLFSSL_ML_KEM_512, 0},
{WOLFSSL_P384_ML_KEM_768_OLD, WOLFSSL_ECC_SECP384R1, WOLFSSL_ML_KEM_768, 0},
{WOLFSSL_P521_ML_KEM_1024_OLD, WOLFSSL_ECC_SECP521R1, WOLFSSL_ML_KEM_1024, 0},
#endif
#ifdef HAVE_CURVE25519
{WOLFSSL_X25519MLKEM512, WOLFSSL_ECC_X25519, WOLFSSL_ML_KEM_512, 1},
{WOLFSSL_X25519MLKEM768, WOLFSSL_ECC_X25519, WOLFSSL_ML_KEM_768, 1},
#endif
#ifdef HAVE_CURVE448
{WOLFSSL_X448MLKEM768, WOLFSSL_ECC_X448, WOLFSSL_ML_KEM_768, 1},
#endif
#endif /* WOLFSSL_NO_ML_KEM */
#ifdef WOLFSSL_MLKEM_KYBER
{WOLFSSL_P256_KYBER_LEVEL1, WOLFSSL_ECC_SECP256R1, WOLFSSL_KYBER_LEVEL1, 0},
{WOLFSSL_P384_KYBER_LEVEL3, WOLFSSL_ECC_SECP384R1, WOLFSSL_KYBER_LEVEL3, 0},
{WOLFSSL_P256_KYBER_LEVEL3, WOLFSSL_ECC_SECP256R1, WOLFSSL_KYBER_LEVEL3, 0},
{WOLFSSL_P521_KYBER_LEVEL5, WOLFSSL_ECC_SECP521R1, WOLFSSL_KYBER_LEVEL5, 0},
#ifdef HAVE_CURVE25519
{WOLFSSL_X25519_KYBER_LEVEL1, WOLFSSL_ECC_X25519, WOLFSSL_KYBER_LEVEL1, 0},
{WOLFSSL_X25519_KYBER_LEVEL3, WOLFSSL_ECC_X25519, WOLFSSL_KYBER_LEVEL3, 0},
#endif
#ifdef HAVE_CURVE448
{WOLFSSL_X448_KYBER_LEVEL3, WOLFSSL_ECC_X448, WOLFSSL_KYBER_LEVEL3, 0},
#endif
#endif /* WOLFSSL_MLKEM_KYBER */
{0, 0, 0, 0}
};
/* Map an ecc-pqc hybrid group into its ecc group and pqc kem group. */
static void findEccPqc(int *ecc, int *pqc, int *pqc_first, int group)
{
int i;
if (pqc != NULL)
*pqc = 0;
if (ecc != NULL)
*ecc = 0;
if (pqc_first != NULL)
*pqc_first = 0;
for (i = 0; pqc_hybrid_mapping[i].hybrid != 0; i++) {
if (pqc_hybrid_mapping[i].hybrid == group) {
if (pqc != NULL)
*pqc = pqc_hybrid_mapping[i].pqc;
if (ecc != NULL)
*ecc = pqc_hybrid_mapping[i].ecc;
if (pqc_first != NULL)
*pqc_first = pqc_hybrid_mapping[i].pqc_first;
break;
}
}
}
#ifndef WOLFSSL_MLKEM_NO_MAKE_KEY
/* Create a key share entry using pqc parameters group on the client side.
* Generates a key pair.
*
* ssl The SSL/TLS object.
* kse The key share entry object.
* returns 0 on success, otherwise failure.
*/
static int TLSX_KeyShare_GenPqcKeyClient(WOLFSSL *ssl, KeyShareEntry* kse)
{
int ret = 0;
int type = 0;
#ifndef WOLFSSL_TLSX_PQC_MLKEM_STORE_OBJ
WC_DECLARE_VAR(kem, KyberKey, 1, 0);
byte* privKey = NULL;
word32 privSz = 0;
#else
KyberKey* kem = NULL;
#endif
/* This gets called twice. Once during parsing of the key share and once
* during the population of the extension. No need to do work the second
* time. Just return success if its already been done. */
if (kse->pubKey != NULL) {
return ret;
}
/* Get the type of key we need from the key share group. */
ret = mlkem_id2type(kse->group, &type);
if (ret == WC_NO_ERR_TRACE(NOT_COMPILED_IN)) {
WOLFSSL_MSG("Invalid Kyber algorithm specified.");
ret = BAD_FUNC_ARG;
}
#ifndef WOLFSSL_TLSX_PQC_MLKEM_STORE_OBJ
#ifdef WOLFSSL_SMALL_STACK
if (ret == 0) {
kem = (KyberKey *)XMALLOC(sizeof(*kem), ssl->heap,
DYNAMIC_TYPE_PRIVATE_KEY);
if (kem == NULL) {
WOLFSSL_MSG("KEM memory allocation failure");
ret = MEMORY_ERROR;
}
}
#endif /* WOLFSSL_SMALL_STACK */
if (ret == 0) {
ret = wc_KyberKey_Init(type, kem, ssl->heap, ssl->devId);
if (ret != 0) {
WOLFSSL_MSG("Failed to initialize Kyber Key.");
}
}
if (ret == 0) {
ret = wc_KyberKey_PrivateKeySize(kem, &privSz);
}
if (ret == 0) {
ret = wc_KyberKey_PublicKeySize(kem, &kse->pubKeyLen);
}
if (ret == 0) {
privKey = (byte*)XMALLOC(privSz, ssl->heap, DYNAMIC_TYPE_PRIVATE_KEY);
if (privKey == NULL) {
WOLFSSL_MSG("privkey memory allocation failure");
ret = MEMORY_ERROR;
}
}
#else
if (ret == 0) {
/* Allocate a Kyber key to hold private key. */
kem = (KyberKey*)XMALLOC(sizeof(KyberKey), ssl->heap,
DYNAMIC_TYPE_PRIVATE_KEY);
if (kem == NULL) {
WOLFSSL_MSG("KEM memory allocation failure");
ret = MEMORY_ERROR;
}
}
if (ret == 0) {
ret = wc_KyberKey_Init(type, kem, ssl->heap, ssl->devId);
if (ret != 0) {
WOLFSSL_MSG("Failed to initialize Kyber Key.");
}
}
if (ret == 0) {
ret = wc_KyberKey_PublicKeySize(kem, &kse->pubKeyLen);
}
#endif
if (ret == 0) {
kse->pubKey = (byte*)XMALLOC(kse->pubKeyLen, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (kse->pubKey == NULL) {
WOLFSSL_MSG("pubkey memory allocation failure");
ret = MEMORY_ERROR;
}
}
if (ret == 0) {
ret = wc_KyberKey_MakeKey(kem, ssl->rng);
if (ret != 0) {
WOLFSSL_MSG("Kyber keygen failure");
}
}
if (ret == 0) {
ret = wc_KyberKey_EncodePublicKey(kem, kse->pubKey,
kse->pubKeyLen);
}
#ifndef WOLFSSL_TLSX_PQC_MLKEM_STORE_OBJ
if (ret == 0) {
ret = wc_KyberKey_EncodePrivateKey(kem, privKey, privSz);
}
#endif
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG("Public Kyber Key");
WOLFSSL_BUFFER(kse->pubKey, kse->pubKeyLen );
#endif
if (ret != 0) {
/* Data owned by key share entry otherwise. */
wc_KyberKey_Free(kem);
XFREE(kse->pubKey, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
kse->pubKey = NULL;
#ifndef WOLFSSL_TLSX_PQC_MLKEM_STORE_OBJ
if (privKey) {
ForceZero(privKey, privSz);
XFREE(privKey, ssl->heap, DYNAMIC_TYPE_PRIVATE_KEY);
privKey = NULL;
}
#else
XFREE(kem, ssl->heap, DYNAMIC_TYPE_PRIVATE_KEY);
kse->key = NULL;
#endif
}
else {
#ifndef WOLFSSL_TLSX_PQC_MLKEM_STORE_OBJ
wc_KyberKey_Free(kem);
kse->privKey = (byte*)privKey;
kse->privKeyLen = privSz;
#else
kse->key = kem;
#endif
}
#if !defined(WOLFSSL_TLSX_PQC_MLKEM_STORE_OBJ) && \
defined(WOLFSSL_SMALL_STACK)
XFREE(kem, ssl->heap, DYNAMIC_TYPE_PRIVATE_KEY);
#endif
return ret;
}
/* Create a key share entry using both ecdhe and pqc parameters groups.
* Generates two key pairs on the client side.
*
* ssl The SSL/TLS object.
* kse The key share entry object.
* returns 0 on success, otherwise failure.
*/
static int TLSX_KeyShare_GenPqcHybridKeyClient(WOLFSSL *ssl, KeyShareEntry* kse)
{
int ret = 0;
KeyShareEntry *ecc_kse = NULL;
KeyShareEntry *pqc_kse = NULL;
int pqc_group = 0;
int ecc_group = 0;
int pqc_first = 0;
/* This gets called twice. Once during parsing of the key share and once
* during the population of the extension. No need to do work the second
* time. Just return success if its already been done. */
if (kse->pubKey != NULL) {
return ret;
}
/* Determine the ECC and PQC group of the hybrid combination */
findEccPqc(&ecc_group, &pqc_group, &pqc_first, kse->group);
if (ecc_group == 0 || pqc_group == 0) {
WOLFSSL_MSG("Invalid hybrid group");
ret = BAD_FUNC_ARG;
}
if (ret == 0) {
ecc_kse = (KeyShareEntry*)XMALLOC(sizeof(*ecc_kse), ssl->heap,
DYNAMIC_TYPE_TLSX);
if (ecc_kse == NULL) {
WOLFSSL_MSG("kse memory allocation failure");
ret = MEMORY_ERROR;
}
else {
XMEMSET(ecc_kse, 0, sizeof(*ecc_kse));
}
}
if (ret == 0) {
pqc_kse = (KeyShareEntry*)XMALLOC(sizeof(*pqc_kse), ssl->heap,
DYNAMIC_TYPE_TLSX);
if (pqc_kse == NULL) {
WOLFSSL_MSG("kse memory allocation failure");
ret = MEMORY_ERROR;
}
else {
XMEMSET(pqc_kse, 0, sizeof(*pqc_kse));
}
}
/* Generate ECC key share part */
if (ret == 0) {
ecc_kse->group = ecc_group;
#ifdef HAVE_CURVE25519
if (ecc_group == WOLFSSL_ECC_X25519) {
ret = TLSX_KeyShare_GenX25519Key(ssl, ecc_kse);
}
else
#endif
#ifdef HAVE_CURVE448
if (ecc_group == WOLFSSL_ECC_X448) {
ret = TLSX_KeyShare_GenX448Key(ssl, ecc_kse);
}
else
#endif
{
ret = TLSX_KeyShare_GenEccKey(ssl, ecc_kse);
}
/* No error message, TLSX_KeyShare_Gen*Key will do it. */
}
/* Generate PQC key share part */
if (ret == 0) {
pqc_kse->group = pqc_group;
ret = TLSX_KeyShare_GenPqcKeyClient(ssl, pqc_kse);
/* No error message, TLSX_KeyShare_GenPqcKeyClient will do it. */
}
/* Allocate memory for combined public key */
if (ret == 0) {
kse->pubKey = (byte*)XMALLOC(ecc_kse->pubKeyLen + pqc_kse->pubKeyLen,
ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (kse->pubKey == NULL) {
WOLFSSL_MSG("pubkey memory allocation failure");
ret = MEMORY_ERROR;
}
}
/* Create combined public key. The order of classic/pqc key material is
* indicated by the pqc_first variable. */
if (ret == 0) {
if (pqc_first) {
XMEMCPY(kse->pubKey, pqc_kse->pubKey, pqc_kse->pubKeyLen);
XMEMCPY(kse->pubKey + pqc_kse->pubKeyLen, ecc_kse->pubKey,
ecc_kse->pubKeyLen);
}
else {
XMEMCPY(kse->pubKey, ecc_kse->pubKey, ecc_kse->pubKeyLen);
XMEMCPY(kse->pubKey + ecc_kse->pubKeyLen, pqc_kse->pubKey,
pqc_kse->pubKeyLen);
}
kse->pubKeyLen = ecc_kse->pubKeyLen + pqc_kse->pubKeyLen;
}
/* Store the private keys.
* Note we are saving the PQC private key and ECC private key
* separately. That's because the ECC private key is not simply a
* buffer. Its is an ecc_key struct. */
if (ret == 0) {
#ifndef WOLFSSL_TLSX_PQC_MLKEM_STORE_OBJ
/* PQC private key is an encoded byte array */
kse->privKey = pqc_kse->privKey;
kse->privKeyLen = pqc_kse->privKeyLen;
pqc_kse->privKey = NULL;
#else
/* PQC private key is a pointer to KyberKey object */
kse->privKey = (byte*)pqc_kse->key;
kse->privKeyLen = 0;
pqc_kse->key = NULL;
#endif
/* ECC private key is a pointer to ecc_key object */
kse->key = ecc_kse->key;
kse->keyLen = ecc_kse->keyLen;
ecc_kse->key = NULL;
}
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG("Public Kyber Key");
WOLFSSL_BUFFER(kse->pubKey, kse->pubKeyLen );
#endif
TLSX_KeyShare_FreeAll(ecc_kse, ssl->heap);
TLSX_KeyShare_FreeAll(pqc_kse, ssl->heap);
return ret;
}
#endif /* !WOLFSSL_MLKEM_NO_MAKE_KEY */
#endif /* WOLFSSL_HAVE_MLKEM */
/* Generate a secret/key using the key share entry.
*
* ssl The SSL/TLS object.
* kse The key share entry holding peer data.
*/
int TLSX_KeyShare_GenKey(WOLFSSL *ssl, KeyShareEntry *kse)
{
int ret;
/* Named FFDHE groups have a bit set to identify them. */
if (WOLFSSL_NAMED_GROUP_IS_FFDHE(kse->group))
ret = TLSX_KeyShare_GenDhKey(ssl, kse);
else if (kse->group == WOLFSSL_ECC_X25519)
ret = TLSX_KeyShare_GenX25519Key(ssl, kse);
else if (kse->group == WOLFSSL_ECC_X448)
ret = TLSX_KeyShare_GenX448Key(ssl, kse);
#if defined(WOLFSSL_HAVE_MLKEM) && !defined(WOLFSSL_MLKEM_NO_MAKE_KEY)
else if (WOLFSSL_NAMED_GROUP_IS_PQC(kse->group))
ret = TLSX_KeyShare_GenPqcKeyClient(ssl, kse);
else if (WOLFSSL_NAMED_GROUP_IS_PQC_HYBRID(kse->group))
ret = TLSX_KeyShare_GenPqcHybridKeyClient(ssl, kse);
#endif
else
ret = TLSX_KeyShare_GenEccKey(ssl, kse);
#ifdef WOLFSSL_ASYNC_CRYPT
kse->lastRet = ret;
#endif
return ret;
}
/* Free the key share dynamic data.
*
* list The linked list of key share entry objects.
* heap The heap used for allocation.
*/
static void TLSX_KeyShare_FreeAll(KeyShareEntry* list, void* heap)
{
KeyShareEntry* current;
while ((current = list) != NULL) {
list = current->next;
if (WOLFSSL_NAMED_GROUP_IS_FFDHE(current->group)) {
#ifndef NO_DH
wc_FreeDhKey((DhKey*)current->key);
#endif
}
else if (current->group == WOLFSSL_ECC_X25519) {
#ifdef HAVE_CURVE25519
wc_curve25519_free((curve25519_key*)current->key);
#endif
}
else if (current->group == WOLFSSL_ECC_X448) {
#ifdef HAVE_CURVE448
wc_curve448_free((curve448_key*)current->key);
#endif
}
#ifdef WOLFSSL_HAVE_MLKEM
else if (WOLFSSL_NAMED_GROUP_IS_PQC(current->group)) {
wc_KyberKey_Free((KyberKey*)current->key);
#ifndef WOLFSSL_TLSX_PQC_MLKEM_STORE_OBJ
if (current->privKey != NULL) {
ForceZero(current->privKey, current->privKeyLen);
}
#endif
}
else if (WOLFSSL_NAMED_GROUP_IS_PQC_HYBRID(current->group)) {
int ecc_group = 0;
findEccPqc(&ecc_group, NULL, NULL, current->group);
/* Free PQC private key */
#ifdef WOLFSSL_TLSX_PQC_MLKEM_STORE_OBJ
wc_KyberKey_Free((KyberKey*)current->privKey);
#else
if (current->privKey != NULL) {
ForceZero(current->privKey, current->privKeyLen);
}
#endif
/* Free ECC private key */
if (ecc_group == WOLFSSL_ECC_X25519) {
#ifdef HAVE_CURVE25519
wc_curve25519_free((curve25519_key*)current->key);
#endif
}
else if (ecc_group == WOLFSSL_ECC_X448) {
#ifdef HAVE_CURVE448
wc_curve448_free((curve448_key*)current->key);
#endif
}
else {
#ifdef HAVE_ECC
wc_ecc_free((ecc_key*)current->key);
#endif
}
}
#endif
else {
#ifdef HAVE_ECC
wc_ecc_free((ecc_key*)current->key);
#endif
}
XFREE(current->key, heap, DYNAMIC_TYPE_PRIVATE_KEY);
#if !defined(NO_DH) || defined(WOLFSSL_HAVE_MLKEM)
XFREE(current->privKey, heap, DYNAMIC_TYPE_PRIVATE_KEY);
#endif
XFREE(current->pubKey, heap, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(current->ke, heap, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(current, heap, DYNAMIC_TYPE_TLSX);
}
(void)heap;
}
/* Get the size of the encoded key share extension.
*
* list The linked list of key share extensions.
* msgType The type of the message this extension is being written into.
* returns the number of bytes of the encoded key share extension.
*/
static word16 TLSX_KeyShare_GetSize(KeyShareEntry* list, byte msgType)
{
word16 len = 0;
byte isRequest = (msgType == client_hello);
KeyShareEntry* current;
/* The named group the server wants to use. */
if (msgType == hello_retry_request)
return OPAQUE16_LEN;
/* List of key exchange groups. */
if (isRequest)
len += OPAQUE16_LEN;
while ((current = list) != NULL) {
list = current->next;
if (!isRequest && current->pubKey == NULL)
continue;
len += (word16)(KE_GROUP_LEN + OPAQUE16_LEN + current->pubKeyLen);
}
return len;
}
/* Writes the key share extension into the output buffer.
* Assumes that the the output buffer is big enough to hold data.
*
* list The linked list of key share entries.
* output The buffer to write into.
* msgType The type of the message this extension is being written into.
* returns the number of bytes written into the buffer.
*/
static word16 TLSX_KeyShare_Write(KeyShareEntry* list, byte* output,
byte msgType)
{
word16 i = 0;
byte isRequest = (msgType == client_hello);
KeyShareEntry* current;
if (msgType == hello_retry_request) {
c16toa(list->group, output);
return OPAQUE16_LEN;
}
/* ClientHello has a list but ServerHello is only the chosen. */
if (isRequest)
i += OPAQUE16_LEN;
/* Write out all in the list. */
while ((current = list) != NULL) {
list = current->next;
if (!isRequest && current->pubKey == NULL)
continue;
c16toa(current->group, &output[i]);
i += KE_GROUP_LEN;
c16toa((word16)(current->pubKeyLen), &output[i]);
i += OPAQUE16_LEN;
XMEMCPY(&output[i], current->pubKey, current->pubKeyLen);
i += (word16)current->pubKeyLen;
}
/* Write the length of the list if required. */
if (isRequest)
c16toa(i - OPAQUE16_LEN, output);
return i;
}
/* Process the DH key share extension on the client side.
*
* ssl The SSL/TLS object.
* keyShareEntry The key share entry object to use to calculate shared secret.
* returns 0 on success and other values indicate failure.
*/
static int TLSX_KeyShare_ProcessDh(WOLFSSL* ssl, KeyShareEntry* keyShareEntry)
{
int ret = 0;
#if !defined(NO_DH) && (!defined(NO_CERTS) || !defined(NO_PSK))
word32 pSz = 0;
DhKey* dhKey = (DhKey*)keyShareEntry->key;
#ifdef HAVE_PUBLIC_FFDHE
const DhParams* params = NULL;
switch (keyShareEntry->group) {
#ifdef HAVE_FFDHE_2048
case WOLFSSL_FFDHE_2048:
params = wc_Dh_ffdhe2048_Get();
break;
#endif
#ifdef HAVE_FFDHE_3072
case WOLFSSL_FFDHE_3072:
params = wc_Dh_ffdhe3072_Get();
break;
#endif
#ifdef HAVE_FFDHE_4096
case WOLFSSL_FFDHE_4096:
params = wc_Dh_ffdhe4096_Get();
break;
#endif
#ifdef HAVE_FFDHE_6144
case WOLFSSL_FFDHE_6144:
params = wc_Dh_ffdhe6144_Get();
break;
#endif
#ifdef HAVE_FFDHE_8192
case WOLFSSL_FFDHE_8192:
params = wc_Dh_ffdhe8192_Get();
break;
#endif
default:
break;
}
if (params == NULL) {
WOLFSSL_ERROR_VERBOSE(PEER_KEY_ERROR);
return PEER_KEY_ERROR;
}
pSz = params->p_len;
#else
ret = wc_DhGetNamedKeyParamSize(keyShareEntry->group, &pSz, NULL, NULL);
if (ret != 0 || pSz == 0) {
WOLFSSL_ERROR_VERBOSE(PEER_KEY_ERROR);
return PEER_KEY_ERROR;
}
#endif
/* if DhKey is not setup, do it now */
if (keyShareEntry->key == NULL) {
keyShareEntry->key = (DhKey*)XMALLOC(sizeof(DhKey), ssl->heap,
DYNAMIC_TYPE_DH);
if (keyShareEntry->key == NULL)
return MEMORY_E;
/* Setup Key */
ret = wc_InitDhKey_ex((DhKey*)keyShareEntry->key, ssl->heap, ssl->devId);
if (ret == 0) {
dhKey = (DhKey*)keyShareEntry->key;
/* Set key */
#ifdef HAVE_PUBLIC_FFDHE
ret = wc_DhSetKey(dhKey, params->p, params->p_len, params->g,
params->g_len);
#else
ret = wc_DhSetNamedKey(dhKey, keyShareEntry->group);
#endif
}
}
if (ret == 0
#ifdef WOLFSSL_ASYNC_CRYPT
&& keyShareEntry->lastRet == 0 /* don't enter here if WC_PENDING_E */
#endif
) {
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG("Peer DH Key");
WOLFSSL_BUFFER(keyShareEntry->ke, keyShareEntry->keLen);
#endif
ssl->options.dhKeySz = (word16)pSz;
/* Derive secret from private key and peer's public key. */
ret = DhAgree(ssl, dhKey,
(const byte*)keyShareEntry->privKey, keyShareEntry->keyLen, /* our private */
keyShareEntry->ke, keyShareEntry->keLen, /* peer's public key */
ssl->arrays->preMasterSecret, &ssl->arrays->preMasterSz, /* secret */
NULL, 0
);
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_NO_ERR_TRACE(WC_PENDING_E)) {
return ret;
}
#endif
}
/* RFC 8446 Section 7.4.1:
* ... left-padded with zeros up to the size of the prime. ...
*/
if (ret == 0 && (word32)ssl->options.dhKeySz > ssl->arrays->preMasterSz) {
word32 diff = (word32)ssl->options.dhKeySz - ssl->arrays->preMasterSz;
XMEMMOVE(ssl->arrays->preMasterSecret + diff,
ssl->arrays->preMasterSecret, ssl->arrays->preMasterSz);
XMEMSET(ssl->arrays->preMasterSecret, 0, diff);
ssl->arrays->preMasterSz = ssl->options.dhKeySz;
}
/* done with key share, release resources */
if (dhKey)
wc_FreeDhKey(dhKey);
XFREE(keyShareEntry->key, ssl->heap, DYNAMIC_TYPE_DH);
keyShareEntry->key = NULL;
if (keyShareEntry->privKey) {
ForceZero(keyShareEntry->privKey, keyShareEntry->keyLen);
XFREE(keyShareEntry->privKey, ssl->heap, DYNAMIC_TYPE_PRIVATE_KEY);
keyShareEntry->privKey = NULL;
}
XFREE(keyShareEntry->pubKey, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
keyShareEntry->pubKey = NULL;
XFREE(keyShareEntry->ke, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
keyShareEntry->ke = NULL;
#else
(void)ssl;
(void)keyShareEntry;
ret = PEER_KEY_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
#endif
return ret;
}
/* Process the X25519 key share extension on the client side.
*
* ssl The SSL/TLS object.
* keyShareEntry The key share entry object to use to calculate shared secret.
* ssOutput The destination buffer for the shared secret.
* ssOutSz The size of the generated shared secret.
*
* returns 0 on success and other values indicate failure.
*/
static int TLSX_KeyShare_ProcessX25519_ex(WOLFSSL* ssl,
KeyShareEntry* keyShareEntry,
unsigned char* ssOutput,
word32* ssOutSz)
{
int ret;
#ifdef HAVE_CURVE25519
curve25519_key* key = (curve25519_key*)keyShareEntry->key;
curve25519_key* peerX25519Key;
#ifdef HAVE_ECC
if (ssl->peerEccKey != NULL) {
wc_ecc_free(ssl->peerEccKey);
ssl->peerEccKey = NULL;
ssl->peerEccKeyPresent = 0;
}
#endif
peerX25519Key = (curve25519_key*)XMALLOC(sizeof(curve25519_key), ssl->heap,
DYNAMIC_TYPE_TLSX);
if (peerX25519Key == NULL) {
WOLFSSL_MSG("PeerEccKey Memory error");
return MEMORY_ERROR;
}
ret = wc_curve25519_init(peerX25519Key);
if (ret != 0) {
XFREE(peerX25519Key, ssl->heap, DYNAMIC_TYPE_TLSX);
return ret;
}
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG("Peer Curve25519 Key");
WOLFSSL_BUFFER(keyShareEntry->ke, keyShareEntry->keLen);
#endif
if (wc_curve25519_check_public(keyShareEntry->ke, keyShareEntry->keLen,
EC25519_LITTLE_ENDIAN) != 0) {
ret = ECC_PEERKEY_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
if (ret == 0) {
if (wc_curve25519_import_public_ex(keyShareEntry->ke,
keyShareEntry->keLen, peerX25519Key,
EC25519_LITTLE_ENDIAN) != 0) {
ret = ECC_PEERKEY_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
if (ret == 0) {
ssl->ecdhCurveOID = ECC_X25519_OID;
#ifdef WOLFSSL_CURVE25519_BLINDING
ret = wc_curve25519_set_rng(key, ssl->rng);
}
if (ret == 0) {
#endif
ret = wc_curve25519_shared_secret_ex(key, peerX25519Key,
ssOutput, ssOutSz, EC25519_LITTLE_ENDIAN);
}
wc_curve25519_free(peerX25519Key);
XFREE(peerX25519Key, ssl->heap, DYNAMIC_TYPE_TLSX);
wc_curve25519_free((curve25519_key*)keyShareEntry->key);
XFREE(keyShareEntry->key, ssl->heap, DYNAMIC_TYPE_PRIVATE_KEY);
keyShareEntry->key = NULL;
XFREE(keyShareEntry->ke, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
keyShareEntry->ke = NULL;
#else
(void)ssl;
(void)keyShareEntry;
(void)ssOutput;
(void)ssOutSz;
ret = PEER_KEY_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
#endif /* HAVE_CURVE25519 */
return ret;
}
/* Process the X25519 key share extension on the client side.
*
* ssl The SSL/TLS object.
* keyShareEntry The key share entry object to use to calculate shared secret.
*
* returns 0 on success and other values indicate failure.
*/
static int TLSX_KeyShare_ProcessX25519(WOLFSSL* ssl,
KeyShareEntry* keyShareEntry)
{
return TLSX_KeyShare_ProcessX25519_ex(ssl, keyShareEntry,
ssl->arrays->preMasterSecret, &ssl->arrays->preMasterSz);
}
/* Process the X448 key share extension on the client side.
*
* ssl The SSL/TLS object.
* keyShareEntry The key share entry object to use to calculate shared secret.
* ssOutput The destination buffer for the shared secret.
* ssOutSz The size of the generated shared secret.
*
* returns 0 on success and other values indicate failure.
*/
static int TLSX_KeyShare_ProcessX448_ex(WOLFSSL* ssl,
KeyShareEntry* keyShareEntry,
unsigned char* ssOutput,
word32* ssOutSz)
{
int ret;
#ifdef HAVE_CURVE448
curve448_key* key = (curve448_key*)keyShareEntry->key;
curve448_key* peerX448Key;
#ifdef HAVE_ECC
if (ssl->peerEccKey != NULL) {
wc_ecc_free(ssl->peerEccKey);
ssl->peerEccKey = NULL;
ssl->peerEccKeyPresent = 0;
}
#endif
peerX448Key = (curve448_key*)XMALLOC(sizeof(curve448_key), ssl->heap,
DYNAMIC_TYPE_TLSX);
if (peerX448Key == NULL) {
WOLFSSL_MSG("PeerEccKey Memory error");
return MEMORY_ERROR;
}
ret = wc_curve448_init(peerX448Key);
if (ret != 0) {
XFREE(peerX448Key, ssl->heap, DYNAMIC_TYPE_TLSX);
return ret;
}
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG("Peer Curve448 Key");
WOLFSSL_BUFFER(keyShareEntry->ke, keyShareEntry->keLen);
#endif
if (wc_curve448_check_public(keyShareEntry->ke, keyShareEntry->keLen,
EC448_LITTLE_ENDIAN) != 0) {
ret = ECC_PEERKEY_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
if (ret == 0) {
if (wc_curve448_import_public_ex(keyShareEntry->ke,
keyShareEntry->keLen, peerX448Key,
EC448_LITTLE_ENDIAN) != 0) {
ret = ECC_PEERKEY_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
if (ret == 0) {
ssl->ecdhCurveOID = ECC_X448_OID;
ret = wc_curve448_shared_secret_ex(key, peerX448Key,
ssOutput, ssOutSz, EC448_LITTLE_ENDIAN);
}
wc_curve448_free(peerX448Key);
XFREE(peerX448Key, ssl->heap, DYNAMIC_TYPE_TLSX);
wc_curve448_free((curve448_key*)keyShareEntry->key);
XFREE(keyShareEntry->key, ssl->heap, DYNAMIC_TYPE_PRIVATE_KEY);
keyShareEntry->key = NULL;
XFREE(keyShareEntry->ke, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
keyShareEntry->ke = NULL;
#else
(void)ssl;
(void)keyShareEntry;
(void)ssOutput;
(void)ssOutSz;
ret = PEER_KEY_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
#endif /* HAVE_CURVE448 */
return ret;
}
/* Process the X448 key share extension on the client side.
*
* ssl The SSL/TLS object.
* keyShareEntry The key share entry object to use to calculate shared secret.
* returns 0 on success and other values indicate failure.
*/
static int TLSX_KeyShare_ProcessX448(WOLFSSL* ssl, KeyShareEntry* keyShareEntry)
{
return TLSX_KeyShare_ProcessX448_ex(ssl, keyShareEntry,
ssl->arrays->preMasterSecret, &ssl->arrays->preMasterSz);
}
/* Process the ECC key share extension on the client side.
*
* ssl The SSL/TLS object.
* keyShareEntry The key share entry object to use to calculate shared secret.
* ssOutput The destination buffer for the shared secret.
* ssOutSz The size of the generated shared secret.
*
* returns 0 on success and other values indicate failure.
*/
static int TLSX_KeyShare_ProcessEcc_ex(WOLFSSL* ssl,
KeyShareEntry* keyShareEntry,
unsigned char* ssOutput,
word32* ssOutSz)
{
int ret = 0;
#ifdef HAVE_ECC
int curveId = ECC_CURVE_INVALID;
ecc_key* eccKey = (ecc_key*)keyShareEntry->key;
/* find supported curve */
switch (keyShareEntry->group) {
#if (!defined(NO_ECC256) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 256
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP256R1:
curveId = ECC_SECP256R1;
break;
#endif /* !NO_ECC_SECP */
#ifdef WOLFSSL_SM2
case WOLFSSL_ECC_SM2P256V1:
curveId = ECC_SM2P256V1;
break;
#endif
#endif
#if (defined(HAVE_ECC384) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 384
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP384R1:
curveId = ECC_SECP384R1;
break;
#endif /* !NO_ECC_SECP */
#endif
#if (defined(HAVE_ECC521) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 521
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP521R1:
curveId = ECC_SECP521R1;
break;
#endif /* !NO_ECC_SECP */
#endif
#if defined(HAVE_X448) && ECC_MIN_KEY_SZ <= 448
case WOLFSSL_ECC_X448:
curveId = ECC_X448;
break;
#endif
default:
/* unsupported curve */
WOLFSSL_ERROR_VERBOSE(ECC_PEERKEY_ERROR);
return ECC_PEERKEY_ERROR;
}
#ifdef WOLFSSL_ASYNC_CRYPT
if (keyShareEntry->lastRet == 0) /* don't enter here if WC_PENDING_E */
#endif
{
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG("Peer ECC Key");
WOLFSSL_BUFFER(keyShareEntry->ke, keyShareEntry->keLen);
#endif
if (ssl->peerEccKey != NULL) {
wc_ecc_free(ssl->peerEccKey);
XFREE(ssl->peerEccKey, ssl->heap, DYNAMIC_TYPE_ECC);
ssl->peerEccKeyPresent = 0;
}
#if defined(WOLFSSL_RENESAS_TSIP_TLS)
ret = tsip_Tls13GenSharedSecret(ssl, keyShareEntry);
if (ret != WC_NO_ERR_TRACE(CRYPTOCB_UNAVAILABLE)) {
return ret;
}
ret = 0;
#endif
ssl->peerEccKey = (ecc_key*)XMALLOC(sizeof(ecc_key), ssl->heap,
DYNAMIC_TYPE_ECC);
if (ssl->peerEccKey == NULL) {
WOLFSSL_MSG("PeerEccKey Memory error");
ret = MEMORY_ERROR;
}
if (ret == 0) {
ret = wc_ecc_init_ex(ssl->peerEccKey, ssl->heap, ssl->devId);
}
/* Point is validated by import function. */
if (ret == 0) {
ret = wc_ecc_import_x963_ex(keyShareEntry->ke, keyShareEntry->keLen,
ssl->peerEccKey, curveId);
if (ret != 0) {
ret = ECC_PEERKEY_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
if (ret == 0) {
ssl->ecdhCurveOID = ssl->peerEccKey->dp->oidSum;
ssl->peerEccKeyPresent = 1;
}
}
if (ret == 0 && eccKey == NULL)
ret = BAD_FUNC_ARG;
if (ret == 0) {
ret = EccSharedSecret(ssl, eccKey, ssl->peerEccKey,
keyShareEntry->ke, &keyShareEntry->keLen,
ssOutput, ssOutSz, ssl->options.side);
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_NO_ERR_TRACE(WC_PENDING_E))
return ret;
#endif
}
/* done with key share, release resources */
if (ssl->peerEccKey != NULL
#ifdef HAVE_PK_CALLBACKS
&& ssl->ctx->EccSharedSecretCb == NULL
#endif
) {
wc_ecc_free(ssl->peerEccKey);
XFREE(ssl->peerEccKey, ssl->heap, DYNAMIC_TYPE_ECC);
ssl->peerEccKey = NULL;
ssl->peerEccKeyPresent = 0;
}
if (keyShareEntry->key) {
wc_ecc_free((ecc_key*)keyShareEntry->key);
XFREE(keyShareEntry->key, ssl->heap, DYNAMIC_TYPE_ECC);
keyShareEntry->key = NULL;
}
XFREE(keyShareEntry->ke, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
keyShareEntry->ke = NULL;
#else
(void)ssl;
(void)keyShareEntry;
(void)ssOutput;
(void)ssOutSz;
ret = PEER_KEY_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
#endif /* HAVE_ECC */
return ret;
}
/* Process the ECC key share extension on the client side.
*
* ssl The SSL/TLS object.
* keyShareEntry The key share entry object to use to calculate shared secret.
* returns 0 on success and other values indicate failure.
*/
static int TLSX_KeyShare_ProcessEcc(WOLFSSL* ssl, KeyShareEntry* keyShareEntry)
{
return TLSX_KeyShare_ProcessEcc_ex(ssl, keyShareEntry,
ssl->arrays->preMasterSecret, &ssl->arrays->preMasterSz);
}
#if defined(WOLFSSL_HAVE_MLKEM) && !defined(WOLFSSL_MLKEM_NO_DECAPSULATE)
/* Process the Kyber key share extension on the client side.
*
* ssl The SSL/TLS object.
* keyShareEntry The key share entry object to use to calculate shared secret.
* ssOutput The destination buffer for the shared secret.
* ssOutSz The size of the generated shared secret.
*
* returns 0 on success and other values indicate failure.
*/
static int TLSX_KeyShare_ProcessPqcClient_ex(WOLFSSL* ssl,
KeyShareEntry* keyShareEntry,
unsigned char* ssOutput,
word32* ssOutSz)
{
int ret = 0;
KyberKey* kem = (KyberKey*)keyShareEntry->key;
#ifndef WOLFSSL_TLSX_PQC_MLKEM_STORE_OBJ
word32 privSz = 0;
#endif
word32 ctSz = 0;
word32 ssSz = 0;
if (ssl->options.side == WOLFSSL_SERVER_END) {
/* I am the server, the shared secret has already been generated and
* is in ssl->arrays->preMasterSecret, so nothing really to do here. */
return 0;
}
if (keyShareEntry->ke == NULL) {
WOLFSSL_MSG("Invalid PQC algorithm specified.");
return BAD_FUNC_ARG;
}
if (ssOutSz == NULL)
return BAD_FUNC_ARG;
#ifndef WOLFSSL_TLSX_PQC_MLKEM_STORE_OBJ
if (kem == NULL) {
int type = 0;
/* Allocate a Kyber key to hold private key. */
kem = (KyberKey*) XMALLOC(sizeof(KyberKey), ssl->heap,
DYNAMIC_TYPE_PRIVATE_KEY);
if (kem == NULL) {
WOLFSSL_MSG("GenPqcKey memory error");
ret = MEMORY_E;
}
if (ret == 0) {
ret = mlkem_id2type(keyShareEntry->group, &type);
}
if (ret != 0) {
WOLFSSL_MSG("Invalid PQC algorithm specified.");
ret = BAD_FUNC_ARG;
}
if (ret == 0) {
ret = wc_KyberKey_Init(type, kem, ssl->heap, ssl->devId);
if (ret != 0) {
WOLFSSL_MSG("Error creating Kyber KEM");
}
}
}
#else
if (kem == NULL || keyShareEntry->privKeyLen != 0) {
WOLFSSL_MSG("Invalid Kyber key.");
ret = BAD_FUNC_ARG;
}
#endif
if (ret == 0) {
ret = wc_KyberKey_SharedSecretSize(kem, &ssSz);
}
if (ret == 0) {
ret = wc_KyberKey_CipherTextSize(kem, &ctSz);
}
#ifndef WOLFSSL_TLSX_PQC_MLKEM_STORE_OBJ
if (ret == 0) {
ret = wc_KyberKey_PrivateKeySize(kem, &privSz);
}
if (ret == 0 && privSz != keyShareEntry->privKeyLen) {
WOLFSSL_MSG("Invalid private key size.");
ret = BAD_FUNC_ARG;
}
if (ret == 0) {
ret = wc_KyberKey_DecodePrivateKey(kem, keyShareEntry->privKey, privSz);
}
#endif
if (ret == 0) {
ret = wc_KyberKey_Decapsulate(kem, ssOutput,
keyShareEntry->ke, ctSz);
if (ret != 0) {
WOLFSSL_MSG("wc_KyberKey decapsulation failure.");
ret = BAD_FUNC_ARG;
}
}
if (ret == 0) {
*ssOutSz = ssSz;
}
wc_KyberKey_Free(kem);
XFREE(kem, ssl->heap, DYNAMIC_TYPE_PRIVATE_KEY);
keyShareEntry->key = NULL;
XFREE(keyShareEntry->ke, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
keyShareEntry->ke = NULL;
return ret;
}
/* Process the Kyber key share extension on the client side.
*
* ssl The SSL/TLS object.
* keyShareEntry The key share entry object to use to calculate shared secret.
*
* returns 0 on success and other values indicate failure.
*/
static int TLSX_KeyShare_ProcessPqcClient(WOLFSSL* ssl,
KeyShareEntry* keyShareEntry)
{
return TLSX_KeyShare_ProcessPqcClient_ex(ssl, keyShareEntry,
ssl->arrays->preMasterSecret,
&ssl->arrays->preMasterSz);
}
/* Process the hybrid key share extension on the client side.
*
* ssl The SSL/TLS object.
* keyShareEntry The key share entry object to use to calculate shared secret.
* returns 0 on success and other values indicate failure.
*/
static int TLSX_KeyShare_ProcessPqcHybridClient(WOLFSSL* ssl,
KeyShareEntry* keyShareEntry)
{
int ret = 0;
int pqc_group = 0;
int ecc_group = 0;
int pqc_first = 0;
KeyShareEntry* pqc_kse = NULL;
KeyShareEntry *ecc_kse = NULL;
word32 ctSz = 0;
word32 ssSzPqc = 0;
word32 ssSzEcc = 0;
if (ssl->options.side == WOLFSSL_SERVER_END) {
/* I am the server, the shared secret has already been generated and
* is in ssl->arrays->preMasterSecret, so nothing really to do here. */
return 0;
}
if (keyShareEntry->ke == NULL) {
WOLFSSL_MSG("Invalid PQC algorithm specified.");
return BAD_FUNC_ARG;
}
/* I am the client, both the PQC ciphertext and the ECHD public key are in
* keyShareEntry->ke */
/* Determine the ECC and PQC group of the hybrid combination */
findEccPqc(&ecc_group, &pqc_group, &pqc_first, keyShareEntry->group);
if (ecc_group == 0 || pqc_group == 0) {
WOLFSSL_MSG("Invalid hybrid group");
ret = BAD_FUNC_ARG;
}
if (ret == 0) {
ecc_kse = (KeyShareEntry*)XMALLOC(sizeof(*ecc_kse), ssl->heap,
DYNAMIC_TYPE_TLSX);
if (ecc_kse == NULL) {
WOLFSSL_MSG("kse memory allocation failure");
ret = MEMORY_ERROR;
}
else {
XMEMSET(ecc_kse, 0, sizeof(*ecc_kse));
}
}
if (ret == 0) {
pqc_kse = (KeyShareEntry*)XMALLOC(sizeof(*pqc_kse), ssl->heap,
DYNAMIC_TYPE_TLSX);
if (pqc_kse == NULL) {
WOLFSSL_MSG("kse memory allocation failure");
ret = MEMORY_ERROR;
}
else {
XMEMSET(pqc_kse, 0, sizeof(*pqc_kse));
}
}
/* The ciphertext and shared secret sizes of a KEM are fixed. Hence, we
* decode these sizes to separate the KEM ciphertext from the ECDH public
* key. */
if (ret == 0) {
#ifndef WOLFSSL_TLSX_PQC_MLKEM_STORE_OBJ
int type;
pqc_kse->privKey = keyShareEntry->privKey;
ret = mlkem_id2type(pqc_group, &type);
if (ret != 0) {
WOLFSSL_MSG("Invalid Kyber algorithm specified.");
ret = BAD_FUNC_ARG;
}
if (ret == 0) {
pqc_kse->key = XMALLOC(sizeof(KyberKey), ssl->heap,
DYNAMIC_TYPE_PRIVATE_KEY);
if (pqc_kse->key == NULL) {
WOLFSSL_MSG("GenPqcKey memory error");
ret = MEMORY_E;
}
}
if (ret == 0) {
ret = wc_KyberKey_Init(type, (KyberKey*)pqc_kse->key,
ssl->heap, ssl->devId);
if (ret != 0) {
WOLFSSL_MSG("Error creating Kyber KEM");
}
}
#else
pqc_kse->key = keyShareEntry->privKey;
#endif
pqc_kse->group = pqc_group;
pqc_kse->privKeyLen = keyShareEntry->privKeyLen;
if (ret == 0) {
ret = wc_KyberKey_SharedSecretSize((KyberKey*)pqc_kse->key,
&ssSzPqc);
}
if (ret == 0) {
ret = wc_KyberKey_CipherTextSize((KyberKey*)pqc_kse->key,
&ctSz);
if (ret == 0 && keyShareEntry->keLen <= ctSz) {
WOLFSSL_MSG("Invalid ciphertext size.");
ret = BAD_FUNC_ARG;
}
}
if (ret == 0) {
pqc_kse->keLen = ctSz;
pqc_kse->ke = (byte*)XMALLOC(pqc_kse->keLen, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (pqc_kse->ke == NULL) {
WOLFSSL_MSG("pqc_kse memory allocation failure");
ret = MEMORY_ERROR;
}
/* Copy the PQC KEM ciphertext. Depending on the pqc_first flag,
* the KEM ciphertext comes before or after the ECDH public key. */
if (ret == 0) {
int offset = keyShareEntry->keLen - ctSz;
if (pqc_first)
offset = 0;
XMEMCPY(pqc_kse->ke, keyShareEntry->ke + offset, ctSz);
}
}
}
if (ret == 0) {
ecc_kse->group = ecc_group;
ecc_kse->keLen = keyShareEntry->keLen - ctSz;
ecc_kse->key = keyShareEntry->key;
ecc_kse->ke = (byte*)XMALLOC(ecc_kse->keLen, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (ecc_kse->ke == NULL) {
WOLFSSL_MSG("ecc_kse memory allocation failure");
ret = MEMORY_ERROR;
}
/* Copy the ECDH public key. Depending on the pqc_first flag, the
* KEM ciphertext comes before or after the ECDH public key. */
if (ret == 0) {
int offset = 0;
if (pqc_first)
offset = ctSz;
XMEMCPY(ecc_kse->ke, keyShareEntry->ke + offset, ecc_kse->keLen);
}
}
/* Process ECDH key share part. The generated shared secret is directly
* stored in the ssl->arrays->preMasterSecret buffer. Depending on the
* pqc_first flag, the ECDH shared secret part goes before or after the
* KEM part. */
if (ret == 0) {
int offset = 0;
/* Set the ECC size variable to the initial buffer size */
ssSzEcc = ssl->arrays->preMasterSz;
if (pqc_first)
offset = ssSzPqc;
#ifdef HAVE_CURVE25519
if (ecc_group == WOLFSSL_ECC_X25519) {
ret = TLSX_KeyShare_ProcessX25519_ex(ssl, ecc_kse,
ssl->arrays->preMasterSecret + offset, &ssSzEcc);
}
else
#endif
#ifdef HAVE_CURVE448
if (ecc_group == WOLFSSL_ECC_X448) {
ret = TLSX_KeyShare_ProcessX448_ex(ssl, ecc_kse,
ssl->arrays->preMasterSecret + offset, &ssSzEcc);
}
else
#endif
{
ret = TLSX_KeyShare_ProcessEcc_ex(ssl, ecc_kse,
ssl->arrays->preMasterSecret + offset, &ssSzEcc);
}
}
if (ret == 0) {
keyShareEntry->key = ecc_kse->key;
if ((ret == 0) && ((ssSzEcc + ssSzPqc) > ENCRYPT_LEN)) {
WOLFSSL_MSG("shared secret is too long.");
ret = LENGTH_ERROR;
}
}
/* Process PQC KEM key share part. Depending on the pqc_first flag, the
* KEM shared secret part goes before or after the ECDH part. */
if (ret == 0) {
int offset = ssSzEcc;
if (pqc_first)
offset = 0;
ret = TLSX_KeyShare_ProcessPqcClient_ex(ssl, pqc_kse,
ssl->arrays->preMasterSecret + offset, &ssSzPqc);
}
if (ret == 0) {
keyShareEntry->privKey = (byte*)pqc_kse->key;
ssl->arrays->preMasterSz = ssSzEcc + ssSzPqc;
}
TLSX_KeyShare_FreeAll(ecc_kse, ssl->heap);
TLSX_KeyShare_FreeAll(pqc_kse, ssl->heap);
return ret;
}
#endif /* WOLFSSL_HAVE_MLKEM && !WOLFSSL_MLKEM_NO_DECAPSULATE */
/* Process the key share extension on the client side.
*
* ssl The SSL/TLS object.
* keyShareEntry The key share entry object to use to calculate shared secret.
* returns 0 on success and other values indicate failure.
*/
static int TLSX_KeyShare_Process(WOLFSSL* ssl, KeyShareEntry* keyShareEntry)
{
int ret;
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
keyShareEntry->session = ssl->session->namedGroup;
ssl->session->namedGroup = keyShareEntry->group;
#endif
/* reset the pre master secret size */
if (ssl->arrays->preMasterSz == 0)
ssl->arrays->preMasterSz = ENCRYPT_LEN;
/* Use Key Share Data from server. */
if (WOLFSSL_NAMED_GROUP_IS_FFDHE(keyShareEntry->group))
ret = TLSX_KeyShare_ProcessDh(ssl, keyShareEntry);
else if (keyShareEntry->group == WOLFSSL_ECC_X25519)
ret = TLSX_KeyShare_ProcessX25519(ssl, keyShareEntry);
else if (keyShareEntry->group == WOLFSSL_ECC_X448)
ret = TLSX_KeyShare_ProcessX448(ssl, keyShareEntry);
#if defined(WOLFSSL_HAVE_MLKEM) && !defined(WOLFSSL_MLKEM_NO_DECAPSULATE)
else if (WOLFSSL_NAMED_GROUP_IS_PQC(keyShareEntry->group))
ret = TLSX_KeyShare_ProcessPqcClient(ssl, keyShareEntry);
else if (WOLFSSL_NAMED_GROUP_IS_PQC_HYBRID(keyShareEntry->group))
ret = TLSX_KeyShare_ProcessPqcHybridClient(ssl, keyShareEntry);
#endif
else
ret = TLSX_KeyShare_ProcessEcc(ssl, keyShareEntry);
#ifdef WOLFSSL_DEBUG_TLS
if (ret == 0) {
WOLFSSL_MSG("KE Secret");
WOLFSSL_BUFFER(ssl->arrays->preMasterSecret, ssl->arrays->preMasterSz);
}
#endif
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
keyShareEntry->derived = (ret == 0);
#endif
#ifdef WOLFSSL_ASYNC_CRYPT
keyShareEntry->lastRet = ret;
#endif
return ret;
}
/* Parse an entry of the KeyShare extension.
*
* ssl The SSL/TLS object.
* input The extension data.
* length The length of the extension data.
* kse The new key share entry object.
* returns a positive number to indicate amount of data parsed and a negative
* number on error.
*/
static int TLSX_KeyShareEntry_Parse(const WOLFSSL* ssl, const byte* input,
word16 length, KeyShareEntry **kse, word16* seenGroups,
int* seenGroupsCnt, TLSX** extensions)
{
int ret;
word16 group;
word16 keLen;
int offset = 0;
byte* ke;
int i;
if (length < OPAQUE16_LEN + OPAQUE16_LEN)
return BUFFER_ERROR;
/* Named group */
ato16(&input[offset], &group);
offset += OPAQUE16_LEN;
/* Key exchange data - public key. */
ato16(&input[offset], &keLen);
offset += OPAQUE16_LEN;
if (keLen == 0)
return INVALID_PARAMETER;
if (keLen > length - offset)
return BUFFER_ERROR;
if (seenGroups != NULL) {
if (*seenGroupsCnt == MAX_KEYSHARE_NAMED_GROUPS) {
return BAD_KEY_SHARE_DATA;
}
for (i = 0; i < *seenGroupsCnt; i++) {
if (seenGroups[i] == group) {
return BAD_KEY_SHARE_DATA;
}
}
seenGroups[i] = group;
*seenGroupsCnt = i + 1;
}
#ifdef WOLFSSL_HAVE_MLKEM
if ((WOLFSSL_NAMED_GROUP_IS_PQC(group) ||
WOLFSSL_NAMED_GROUP_IS_PQC_HYBRID(group)) &&
ssl->options.side == WOLFSSL_SERVER_END) {
/* When handling a key share containing a KEM public key on the server
* end, we have to perform the encapsulation immediately in order to
* send the resulting ciphertext back to the client in the ServerHello
* message. As the public key is not stored and we do not modify it, we
* don't have to create a copy of it.
* In case of a hybrid key exchange, the ECDH part is also performed
* immediately (to not split the generation of the master secret).
* Hence, we also don't have to store this public key either. */
ke = (byte *)&input[offset];
} else
#endif
{
/* Store a copy in the key share object. */
ke = (byte*)XMALLOC(keLen, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (ke == NULL)
return MEMORY_E;
XMEMCPY(ke, &input[offset], keLen);
}
/* Populate a key share object in the extension. */
ret = TLSX_KeyShare_Use(ssl, group, keLen, ke, kse, extensions);
if (ret != 0) {
if (ke != &input[offset]) {
XFREE(ke, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
}
return ret;
}
/* Total length of the parsed data. */
return offset + keLen;
}
/* Searches the groups sent for the specified named group.
*
* ssl SSL/TLS object.
* name Group name to match.
* returns 1 when the extension has the group name and 0 otherwise.
*/
static int TLSX_KeyShare_Find(WOLFSSL* ssl, word16 group)
{
TLSX* extension;
KeyShareEntry* list;
extension = TLSX_Find(ssl->extensions, TLSX_KEY_SHARE);
if (extension == NULL) {
extension = TLSX_Find(ssl->ctx->extensions, TLSX_KEY_SHARE);
if (extension == NULL)
return 0;
}
list = (KeyShareEntry*)extension->data;
while (list != NULL) {
if (list->group == group)
return 1;
list = list->next;
}
return 0;
}
/* Searches the supported groups extension for the specified named group.
*
* ssl The SSL/TLS object.
* name The group name to match.
* returns 1 when the extension has the group name and 0 otherwise.
*/
static int TLSX_SupportedGroups_Find(const WOLFSSL* ssl, word16 name,
TLSX* extensions)
{
#ifdef HAVE_SUPPORTED_CURVES
TLSX* extension;
SupportedCurve* curve = NULL;
if ((extension = TLSX_Find(extensions, TLSX_SUPPORTED_GROUPS)) == NULL) {
if ((extension = TLSX_Find(ssl->ctx->extensions,
TLSX_SUPPORTED_GROUPS)) == NULL) {
return 0;
}
}
for (curve = (SupportedCurve*)extension->data; curve; curve = curve->next) {
if (curve->name == name)
return 1;
}
#endif
(void)ssl;
(void)name;
return 0;
}
int TLSX_KeyShare_Parse_ClientHello(const WOLFSSL* ssl,
const byte* input, word16 length, TLSX** extensions)
{
int ret;
int offset = 0;
word16 len;
TLSX* extension;
word16 seenGroups[MAX_KEYSHARE_NAMED_GROUPS];
int seenGroupsCnt = 0;
/* Add a KeyShare extension if it doesn't exist even if peer sent no
* entries. The presence of this extension signals that the peer can be
* negotiated with. */
extension = TLSX_Find(*extensions, TLSX_KEY_SHARE);
if (extension == NULL) {
/* Push new KeyShare extension. */
ret = TLSX_Push(extensions, TLSX_KEY_SHARE, NULL, ssl->heap);
if (ret != 0)
return ret;
}
if (length < OPAQUE16_LEN)
return BUFFER_ERROR;
/* ClientHello contains zero or more key share entries. */
ato16(input, &len);
if (len != length - OPAQUE16_LEN)
return BUFFER_ERROR;
offset += OPAQUE16_LEN;
while (offset < (int)length) {
ret = TLSX_KeyShareEntry_Parse(ssl, &input[offset],
length - (word16)offset, NULL, seenGroups, &seenGroupsCnt,
extensions);
if (ret < 0)
return ret;
offset += ret;
}
return 0;
}
/* Parse the KeyShare extension.
* Different formats in different messages.
*
* ssl The SSL/TLS object.
* input The extension data.
* length The length of the extension data.
* msgType The type of the message this extension is being parsed from.
* returns 0 on success and other values indicate failure.
*/
int TLSX_KeyShare_Parse(WOLFSSL* ssl, const byte* input, word16 length,
byte msgType)
{
int ret = 0;
KeyShareEntry *keyShareEntry = NULL;
word16 group;
if (msgType == client_hello) {
ret = TLSX_KeyShare_Parse_ClientHello(ssl, input, length,
&ssl->extensions);
}
else if (msgType == server_hello) {
int len;
if (length < OPAQUE16_LEN)
return BUFFER_ERROR;
/* The data is the named group the server wants to use. */
ato16(input, &group);
/* Check the selected group was supported by ClientHello extensions. */
if (!TLSX_SupportedGroups_Find(ssl, group, ssl->extensions)) {
WOLFSSL_ERROR_VERBOSE(BAD_KEY_SHARE_DATA);
return BAD_KEY_SHARE_DATA;
}
/* Check if the group was sent. */
if (!TLSX_KeyShare_Find(ssl, group)) {
WOLFSSL_ERROR_VERBOSE(BAD_KEY_SHARE_DATA);
return BAD_KEY_SHARE_DATA;
}
/* ServerHello contains one key share entry. */
len = TLSX_KeyShareEntry_Parse(ssl, input, length, &keyShareEntry, NULL,
NULL, &ssl->extensions);
if (len != (int)length)
return BUFFER_ERROR;
/* Not in list sent if there isn't a private key. */
if (keyShareEntry == NULL || (keyShareEntry->key == NULL
#if !defined(NO_DH) || defined(WOLFSSL_HAVE_MLKEM)
&& keyShareEntry->privKey == NULL
#endif
)) {
WOLFSSL_ERROR_VERBOSE(BAD_KEY_SHARE_DATA);
return BAD_KEY_SHARE_DATA;
}
/* Process the entry to calculate the secret. */
ret = TLSX_KeyShare_Process(ssl, keyShareEntry);
if (ret == 0)
ssl->session->namedGroup = ssl->namedGroup = group;
}
else if (msgType == hello_retry_request) {
if (length != OPAQUE16_LEN)
return BUFFER_ERROR;
ssl->options.hrrSentKeyShare = 1;
/* The data is the named group the server wants to use. */
ato16(input, &group);
#ifdef WOLFSSL_ASYNC_CRYPT
/* only perform find and clear TLSX if not returning from async */
if (ssl->error != WC_NO_ERR_TRACE(WC_PENDING_E))
#endif
{
/* Check the selected group was supported by ClientHello extensions.
*/
if (!TLSX_SupportedGroups_Find(ssl, group, ssl->extensions)) {
WOLFSSL_ERROR_VERBOSE(BAD_KEY_SHARE_DATA);
return BAD_KEY_SHARE_DATA;
}
/* Make sure KeyShare for server requested group was not sent in
* ClientHello. */
if (TLSX_KeyShare_Find(ssl, group)) {
WOLFSSL_ERROR_VERBOSE(BAD_KEY_SHARE_DATA);
return BAD_KEY_SHARE_DATA;
}
/* Clear out unusable key shares. */
ret = TLSX_KeyShare_Empty(ssl);
if (ret != 0)
return ret;
}
ret = TLSX_KeyShare_Use(ssl, group, 0, NULL, NULL, &ssl->extensions);
if (ret == 0)
ssl->session->namedGroup = ssl->namedGroup = group;
}
else {
/* Not a message type that is allowed to have this extension. */
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
return ret;
}
/* Create a new key share entry and put it into the list.
*
* list The linked list of key share entries.
* group The named group.
* heap The memory to allocate with.
* keyShareEntry The new key share entry object.
* returns 0 on success and other values indicate failure.
*/
static int TLSX_KeyShare_New(KeyShareEntry** list, int group, void *heap,
KeyShareEntry** keyShareEntry)
{
KeyShareEntry* kse;
KeyShareEntry** next;
kse = (KeyShareEntry*)XMALLOC(sizeof(KeyShareEntry), heap,
DYNAMIC_TYPE_TLSX);
if (kse == NULL)
return MEMORY_E;
XMEMSET(kse, 0, sizeof(*kse));
kse->group = (word16)group;
/* Add it to the back and maintain the links. */
while (*list != NULL) {
/* Assign to temporary to work around compiler bug found by customer. */
next = &((*list)->next);
list = next;
}
*list = kse;
*keyShareEntry = kse;
(void)heap;
return 0;
}
#if defined(WOLFSSL_HAVE_MLKEM) && !defined(WOLFSSL_MLKEM_NO_ENCAPSULATE)
/* Process the Kyber key share extension on the server side.
*
* ssl The SSL/TLS object.
* keyShareEntry The key share entry object to be sent to the client.
* data The key share data received from the client.
* len The length of the key share data from the client.
* ssOutput The destination buffer for the shared secret.
* ssOutSz The size of the generated shared secret.
*
* returns 0 on success and other values indicate failure.
*/
static int TLSX_KeyShare_HandlePqcKeyServer(WOLFSSL* ssl,
KeyShareEntry* keyShareEntry, byte* clientData, word16 clientLen,
unsigned char* ssOutput, word32* ssOutSz)
{
/* We are on the server side. The key share contains a PQC KEM public key
* that we are using for an encapsulate operation. The resulting ciphertext
* is stored in the server key share. */
KyberKey* kemKey = (KyberKey*)keyShareEntry->key;
byte* ciphertext = NULL;
int ret = 0;
word32 pubSz = 0;
word32 ctSz = 0;
word32 ssSz = 0;
if (clientData == NULL) {
WOLFSSL_MSG("No KEM public key from the client.");
return BAD_FUNC_ARG;
}
if (kemKey == NULL) {
int type = 0;
/* Allocate a Kyber key to hold private key. */
kemKey = (KyberKey*) XMALLOC(sizeof(KyberKey), ssl->heap,
DYNAMIC_TYPE_PRIVATE_KEY);
if (kemKey == NULL) {
WOLFSSL_MSG("GenPqcKey memory error");
ret = MEMORY_E;
}
if (ret == 0) {
ret = mlkem_id2type(keyShareEntry->group, &type);
}
if (ret != 0) {
WOLFSSL_MSG("Invalid PQC algorithm specified.");
ret = BAD_FUNC_ARG;
}
if (ret == 0) {
ret = wc_KyberKey_Init(type, kemKey, ssl->heap, ssl->devId);
if (ret != 0) {
WOLFSSL_MSG("Error creating Kyber KEM");
}
}
}
if (ret == 0) {
ret = wc_KyberKey_PublicKeySize(kemKey, &pubSz);
}
if (ret == 0) {
ret = wc_KyberKey_CipherTextSize(kemKey, &ctSz);
}
if (ret == 0) {
ret = wc_KyberKey_SharedSecretSize(kemKey, &ssSz);
}
if (ret == 0 && clientLen != pubSz) {
WOLFSSL_MSG("Invalid public key.");
ret = BAD_FUNC_ARG;
}
if (ret == 0) {
ciphertext = (byte*)XMALLOC(ctSz, ssl->heap, DYNAMIC_TYPE_TLSX);
if (ciphertext == NULL) {
WOLFSSL_MSG("Ciphertext memory allocation failure.");
ret = MEMORY_E;
}
}
if (ret == 0) {
ret = wc_KyberKey_DecodePublicKey(kemKey, clientData, pubSz);
}
if (ret == 0) {
ret = wc_KyberKey_Encapsulate(kemKey, ciphertext,
ssOutput, ssl->rng);
if (ret != 0) {
WOLFSSL_MSG("wc_KyberKey encapsulation failure.");
}
}
if (ret == 0) {
XFREE(keyShareEntry->ke, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
*ssOutSz = ssSz;
keyShareEntry->ke = NULL;
keyShareEntry->keLen = 0;
keyShareEntry->pubKey = ciphertext;
keyShareEntry->pubKeyLen = ctSz;
ciphertext = NULL;
/* Set namedGroup so wolfSSL_get_curve_name() can function properly on
* the server side. */
ssl->namedGroup = keyShareEntry->group;
}
XFREE(ciphertext, ssl->heap, DYNAMIC_TYPE_TLSX);
wc_KyberKey_Free(kemKey);
XFREE(kemKey, ssl->heap, DYNAMIC_TYPE_PRIVATE_KEY);
keyShareEntry->key = NULL;
return ret;
}
static int TLSX_KeyShare_HandlePqcHybridKeyServer(WOLFSSL* ssl,
KeyShareEntry* keyShareEntry, byte* data, word16 len)
{
/* I am the server. The data parameter is the concatenation of the client's
* ECDH public key and the KEM public key. I need to generate a matching
* public key for ECDH and encapsulate a shared secret using the KEM public
* key. We send the ECDH public key and the KEM ciphertext back to the
* client. Additionally, we create the ECDH shared secret here already.
*/
int type;
byte* ciphertext = NULL;
int ret = 0;
int pqc_group = 0;
int ecc_group = 0;
int pqc_first = 0;
KeyShareEntry *ecc_kse = NULL;
KeyShareEntry *pqc_kse = NULL;
word32 pubSz = 0;
word32 ctSz = 0;
word32 ssSzPqc = 0;
word32 ssSzEcc = 0;
if (data == NULL) {
WOLFSSL_MSG("No hybrid key share data from the client.");
return BAD_FUNC_ARG;
}
/* Determine the ECC and PQC group of the hybrid combination */
findEccPqc(&ecc_group, &pqc_group, &pqc_first, keyShareEntry->group);
if (ecc_group == 0 || pqc_group == 0) {
WOLFSSL_MSG("Invalid hybrid group");
ret = BAD_FUNC_ARG;
}
if (ret == 0) {
ecc_kse = (KeyShareEntry*)XMALLOC(sizeof(*ecc_kse), ssl->heap,
DYNAMIC_TYPE_TLSX);
pqc_kse = (KeyShareEntry*)XMALLOC(sizeof(*pqc_kse), ssl->heap,
DYNAMIC_TYPE_TLSX);
if (ecc_kse == NULL || pqc_kse == NULL) {
WOLFSSL_MSG("kse memory allocation failure");
ret = MEMORY_ERROR;
}
}
/* The ciphertext and shared secret sizes of a KEM are fixed. Hence, we
* decode these sizes to properly concatenate the KEM ciphertext with the
* ECDH public key. */
if (ret == 0) {
XMEMSET(pqc_kse, 0, sizeof(*pqc_kse));
pqc_kse->group = pqc_group;
/* Allocate a Kyber key to hold private key. */
pqc_kse->key = (KyberKey*) XMALLOC(sizeof(KyberKey), ssl->heap,
DYNAMIC_TYPE_PRIVATE_KEY);
if (pqc_kse->key == NULL) {
WOLFSSL_MSG("GenPqcKey memory error");
ret = MEMORY_E;
}
if (ret == 0) {
ret = mlkem_id2type(pqc_kse->group, &type);
}
if (ret != 0) {
WOLFSSL_MSG("Invalid PQC algorithm specified.");
ret = BAD_FUNC_ARG;
}
if (ret == 0) {
ret = wc_KyberKey_Init(type, (KyberKey*)pqc_kse->key,
ssl->heap, ssl->devId);
if (ret != 0) {
WOLFSSL_MSG("Error creating Kyber KEM");
}
}
if (ret == 0) {
ret = wc_KyberKey_SharedSecretSize((KyberKey*)pqc_kse->key,
&ssSzPqc);
}
if (ret == 0) {
ret = wc_KyberKey_CipherTextSize((KyberKey*)pqc_kse->key,
&ctSz);
}
if (ret == 0) {
ret = wc_KyberKey_PublicKeySize((KyberKey*)pqc_kse->key,
&pubSz);
}
}
/* Generate the ECDH key share part to be sent to the client */
if (ret == 0 && ecc_group != 0) {
XMEMSET(ecc_kse, 0, sizeof(*ecc_kse));
ecc_kse->group = ecc_group;
#ifdef HAVE_CURVE25519
if (ecc_group == WOLFSSL_ECC_X25519) {
ret = TLSX_KeyShare_GenX25519Key(ssl, ecc_kse);
}
else
#endif
#ifdef HAVE_CURVE448
if (ecc_group == WOLFSSL_ECC_X448) {
ret = TLSX_KeyShare_GenX448Key(ssl, ecc_kse);
}
else
#endif
{
ret = TLSX_KeyShare_GenEccKey(ssl, ecc_kse);
}
/* No error message, TLSX_KeyShare_GenKey will do it. */
}
if (ret == 0 && len != pubSz + ecc_kse->pubKeyLen) {
WOLFSSL_MSG("Invalid public key.");
ret = BAD_FUNC_ARG;
}
/* Allocate buffer for the concatenated client key share data
* (PQC KEM ciphertext + ECDH public key) */
if (ret == 0) {
ciphertext = (byte*)XMALLOC(ecc_kse->pubKeyLen + ctSz, ssl->heap,
DYNAMIC_TYPE_TLSX);
if (ciphertext == NULL) {
WOLFSSL_MSG("Ciphertext memory allocation failure.");
ret = MEMORY_E;
}
}
/* Process ECDH key share part. The generated shared secret is directly
* stored in the ssl->arrays->preMasterSecret buffer. Depending on the
* pqc_first flag, the ECDH shared secret part goes before or after the
* KEM part. */
if (ret == 0) {
ecc_kse->keLen = len - pubSz;
ecc_kse->ke = (byte*)XMALLOC(ecc_kse->keLen, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (ecc_kse->ke == NULL) {
WOLFSSL_MSG("ecc_kse memory allocation failure");
ret = MEMORY_ERROR;
}
if (ret == 0) {
int pubOffset = 0;
int ssOffset = 0;
/* Set the ECC size variable to the initial buffer size */
ssSzEcc = ssl->arrays->preMasterSz;
if (pqc_first) {
pubOffset = pubSz;
ssOffset = ssSzPqc;
}
XMEMCPY(ecc_kse->ke, data + pubOffset, ecc_kse->keLen);
#ifdef HAVE_CURVE25519
if (ecc_group == WOLFSSL_ECC_X25519) {
ret = TLSX_KeyShare_ProcessX25519_ex(ssl, ecc_kse,
ssl->arrays->preMasterSecret + ssOffset, &ssSzEcc);
}
else
#endif
#ifdef HAVE_CURVE448
if (ecc_group == WOLFSSL_ECC_X448) {
ret = TLSX_KeyShare_ProcessX448_ex(ssl, ecc_kse,
ssl->arrays->preMasterSecret + ssOffset, &ssSzEcc);
}
else
#endif
{
ret = TLSX_KeyShare_ProcessEcc_ex(ssl, ecc_kse,
ssl->arrays->preMasterSecret + ssOffset, &ssSzEcc);
}
}
if (ret == 0) {
if (ssSzEcc != ecc_kse->keyLen) {
WOLFSSL_MSG("Data length mismatch.");
ret = BAD_FUNC_ARG;
}
}
}
if (ret == 0 && ssSzEcc + ssSzPqc > ENCRYPT_LEN) {
WOLFSSL_MSG("shared secret is too long.");
ret = LENGTH_ERROR;
}
/* Process PQC KEM key share part. Depending on the pqc_first flag, the
* KEM shared secret part goes before or after the ECDH part. */
if (ret == 0) {
int input_offset = ecc_kse->keLen;
int output_offset = ssSzEcc;
if (pqc_first) {
input_offset = 0;
output_offset = 0;
}
ret = TLSX_KeyShare_HandlePqcKeyServer(ssl, pqc_kse,
data + input_offset, pubSz,
ssl->arrays->preMasterSecret + output_offset, &ssSzPqc);
}
if (ret == 0) {
XFREE(keyShareEntry->ke, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
ssl->arrays->preMasterSz = ssSzEcc + ssSzPqc;
keyShareEntry->ke = NULL;
keyShareEntry->keLen = 0;
/* Concatenate the ECDH public key and the PQC KEM ciphertext. Based on
* the pqc_first flag, the ECDH public key goes before or after the KEM
* ciphertext. */
if (pqc_first) {
XMEMCPY(ciphertext, pqc_kse->pubKey, ctSz);
XMEMCPY(ciphertext + ctSz, ecc_kse->pubKey, ecc_kse->pubKeyLen);
}
else {
XMEMCPY(ciphertext, ecc_kse->pubKey, ecc_kse->pubKeyLen);
XMEMCPY(ciphertext + ecc_kse->pubKeyLen, pqc_kse->pubKey, ctSz);
}
keyShareEntry->pubKey = ciphertext;
keyShareEntry->pubKeyLen = ecc_kse->pubKeyLen + ctSz;
ciphertext = NULL;
/* Set namedGroup so wolfSSL_get_curve_name() can function properly on
* the server side. */
ssl->namedGroup = keyShareEntry->group;
}
TLSX_KeyShare_FreeAll(ecc_kse, ssl->heap);
TLSX_KeyShare_FreeAll(pqc_kse, ssl->heap);
XFREE(ciphertext, ssl->heap, DYNAMIC_TYPE_TLSX);
return ret;
}
#endif /* WOLFSSL_HAVE_MLKEM && !WOLFSSL_MLKEM_NO_ENCAPSULATE */
/* Use the data to create a new key share object in the extensions.
*
* ssl The SSL/TLS object.
* group The named group.
* len The length of the public key data.
* data The public key data.
* kse The new key share entry object.
* returns 0 on success and other values indicate failure.
*/
int TLSX_KeyShare_Use(const WOLFSSL* ssl, word16 group, word16 len, byte* data,
KeyShareEntry **kse, TLSX** extensions)
{
int ret = 0;
TLSX* extension;
KeyShareEntry* keyShareEntry = NULL;
/* Find the KeyShare extension if it exists. */
extension = TLSX_Find(*extensions, TLSX_KEY_SHARE);
if (extension == NULL) {
/* Push new KeyShare extension. */
ret = TLSX_Push(extensions, TLSX_KEY_SHARE, NULL, ssl->heap);
if (ret != 0)
return ret;
extension = TLSX_Find(*extensions, TLSX_KEY_SHARE);
if (extension == NULL)
return MEMORY_E;
}
extension->resp = 0;
/* Try to find the key share entry with this group. */
keyShareEntry = (KeyShareEntry*)extension->data;
while (keyShareEntry != NULL) {
#ifdef WOLFSSL_ML_KEM_USE_OLD_IDS
if ((group == WOLFSSL_P256_ML_KEM_512_OLD &&
keyShareEntry->group == WOLFSSL_SECP256R1MLKEM512) ||
(group == WOLFSSL_P384_ML_KEM_768_OLD &&
keyShareEntry->group == WOLFSSL_SECP384R1MLKEM768) ||
(group == WOLFSSL_P521_ML_KEM_1024_OLD &&
keyShareEntry->group == WOLFSSL_SECP521R1MLKEM1024)) {
keyShareEntry->group = group;
break;
}
else
#endif
if (keyShareEntry->group == group)
break;
keyShareEntry = keyShareEntry->next;
}
/* Create a new key share entry if not found. */
if (keyShareEntry == NULL) {
ret = TLSX_KeyShare_New((KeyShareEntry**)&extension->data, group,
ssl->heap, &keyShareEntry);
if (ret != 0)
return ret;
}
#if defined(WOLFSSL_HAVE_MLKEM) && !defined(WOLFSSL_MLKEM_NO_ENCAPSULATE)
if (ssl->options.side == WOLFSSL_SERVER_END &&
WOLFSSL_NAMED_GROUP_IS_PQC(group)) {
ret = TLSX_KeyShare_HandlePqcKeyServer((WOLFSSL*)ssl,
keyShareEntry,
data, len,
ssl->arrays->preMasterSecret,
&ssl->arrays->preMasterSz);
if (ret != 0)
return ret;
}
else if (ssl->options.side == WOLFSSL_SERVER_END &&
WOLFSSL_NAMED_GROUP_IS_PQC_HYBRID(group)) {
ret = TLSX_KeyShare_HandlePqcHybridKeyServer((WOLFSSL*)ssl,
keyShareEntry,
data, len);
if (ret != 0)
return ret;
}
else
#endif
if (data != NULL) {
XFREE(keyShareEntry->ke, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
keyShareEntry->ke = data;
keyShareEntry->keLen = len;
}
else {
/* Generate a key pair. Casting to non-const since changes inside are
* minimal but would require an extensive redesign to refactor. Also
* this path shouldn't be taken when parsing a ClientHello in stateless
* mode. */
ret = TLSX_KeyShare_GenKey((WOLFSSL*)ssl, keyShareEntry);
if (ret != 0)
return ret;
}
if (kse != NULL)
*kse = keyShareEntry;
return 0;
}
/* Set an empty Key Share extension.
*
* ssl The SSL/TLS object.
* returns 0 on success and other values indicate failure.
*/
int TLSX_KeyShare_Empty(WOLFSSL* ssl)
{
int ret = 0;
TLSX* extension;
/* Find the KeyShare extension if it exists. */
extension = TLSX_Find(ssl->extensions, TLSX_KEY_SHARE);
if (extension == NULL) {
/* Push new KeyShare extension. */
ret = TLSX_Push(&ssl->extensions, TLSX_KEY_SHARE, NULL, ssl->heap);
}
else if (extension->data != NULL) {
TLSX_KeyShare_FreeAll((KeyShareEntry*)extension->data, ssl->heap);
extension->data = NULL;
}
return ret;
}
static const word16 preferredGroup[] = {
#if defined(HAVE_ECC) && (!defined(NO_ECC256) || \
defined(HAVE_ALL_CURVES)) && !defined(NO_ECC_SECP) && ECC_MIN_KEY_SZ <= 256
WOLFSSL_ECC_SECP256R1,
#if !defined(HAVE_FIPS) && defined(WOLFSSL_SM2)
WOLFSSL_ECC_SM2P256V1,
#endif
#endif
#if defined(HAVE_CURVE25519) && ECC_MIN_KEY_SZ <= 256
WOLFSSL_ECC_X25519,
#endif
#if defined(HAVE_CURVE448) && ECC_MIN_KEY_SZ <= 448
WOLFSSL_ECC_X448,
#endif
#if defined(HAVE_ECC) && (!defined(NO_ECC384) || \
defined(HAVE_ALL_CURVES)) && !defined(NO_ECC_SECP) && ECC_MIN_KEY_SZ <= 384
WOLFSSL_ECC_SECP384R1,
#endif
#if defined(HAVE_ECC) && (!defined(NO_ECC521) || \
defined(HAVE_ALL_CURVES)) && !defined(NO_ECC_SECP) && ECC_MIN_KEY_SZ <= 521
WOLFSSL_ECC_SECP521R1,
#endif
#if defined(HAVE_FFDHE_2048)
WOLFSSL_FFDHE_2048,
#endif
#if defined(HAVE_FFDHE_3072)
WOLFSSL_FFDHE_3072,
#endif
#if defined(HAVE_FFDHE_4096)
WOLFSSL_FFDHE_4096,
#endif
#if defined(HAVE_FFDHE_6144)
WOLFSSL_FFDHE_6144,
#endif
#if defined(HAVE_FFDHE_8192)
WOLFSSL_FFDHE_8192,
#endif
#ifndef WOLFSSL_NO_ML_KEM
#ifdef WOLFSSL_WC_MLKEM
#ifndef WOLFSSL_NO_ML_KEM_512
WOLFSSL_ML_KEM_512,
WOLFSSL_SECP256R1MLKEM512,
#if defined(HAVE_CURVE25519) && ECC_MIN_KEY_SZ <= 256
WOLFSSL_X25519MLKEM512,
#endif
#endif
#ifndef WOLFSSL_NO_ML_KEM_768
WOLFSSL_ML_KEM_768,
WOLFSSL_SECP384R1MLKEM768,
WOLFSSL_SECP256R1MLKEM768,
#if defined(HAVE_CURVE25519) && ECC_MIN_KEY_SZ <= 256
WOLFSSL_X25519MLKEM768,
#endif
#if defined(HAVE_CURVE448) && ECC_MIN_KEY_SZ <= 448
WOLFSSL_X448MLKEM768,
#endif
#endif
#ifndef WOLFSSL_NO_ML_KEM_1024
WOLFSSL_ML_KEM_1024,
WOLFSSL_SECP521R1MLKEM1024,
WOLFSSL_SECP384R1MLKEM1024,
#endif
#elif defined(HAVE_LIBOQS)
/* These require a runtime call to TLSX_IsGroupSupported to use */
WOLFSSL_ML_KEM_512,
WOLFSSL_ML_KEM_768,
WOLFSSL_ML_KEM_1024,
WOLFSSL_SECP256R1MLKEM512,
WOLFSSL_SECP384R1MLKEM768,
WOLFSSL_SECP256R1MLKEM768,
WOLFSSL_SECP521R1MLKEM1024,
WOLFSSL_SECP384R1MLKEM1024,
#if defined(HAVE_CURVE25519) && ECC_MIN_KEY_SZ <= 256
WOLFSSL_X25519MLKEM512,
WOLFSSL_X25519MLKEM768,
#endif
#if defined(HAVE_CURVE448) && ECC_MIN_KEY_SZ <= 448
WOLFSSL_X448MLKEM768,
#endif
#endif
#endif /* !WOLFSSL_NO_ML_KEM */
#ifdef WOLFSSL_MLKEM_KYBER
#ifdef WOLFSSL_WC_MLKEM
#ifdef WOLFSSL_KYBER512
WOLFSSL_KYBER_LEVEL1,
WOLFSSL_P256_KYBER_LEVEL1,
#if defined(HAVE_CURVE25519) && ECC_MIN_KEY_SZ <= 256
WOLFSSL_X25519_KYBER_LEVEL1,
#endif
#endif
#ifdef WOLFSSL_KYBER768
WOLFSSL_KYBER_LEVEL3,
WOLFSSL_P384_KYBER_LEVEL3,
WOLFSSL_P256_KYBER_LEVEL3,
#if defined(HAVE_CURVE25519) && ECC_MIN_KEY_SZ <= 256
WOLFSSL_X25519_KYBER_LEVEL3,
#endif
#if defined(HAVE_CURVE448) && ECC_MIN_KEY_SZ <= 448
WOLFSSL_X448_KYBER_LEVEL3,
#endif
#endif
#ifdef WOLFSSL_KYBER1024
WOLFSSL_KYBER_LEVEL5,
WOLFSSL_P521_KYBER_LEVEL5,
#endif
#elif defined(HAVE_LIBOQS)
/* These require a runtime call to TLSX_IsGroupSupported to use */
WOLFSSL_KYBER_LEVEL1,
WOLFSSL_KYBER_LEVEL3,
WOLFSSL_KYBER_LEVEL5,
WOLFSSL_P256_KYBER_LEVEL1,
WOLFSSL_P384_KYBER_LEVEL3,
WOLFSSL_P256_KYBER_LEVEL3,
WOLFSSL_P521_KYBER_LEVEL5,
#if defined(HAVE_CURVE25519) && ECC_MIN_KEY_SZ <= 256
WOLFSSL_X25519_KYBER_LEVEL1,
WOLFSSL_X25519_KYBER_LEVEL3,
#endif
#if defined(HAVE_CURVE448) && ECC_MIN_KEY_SZ <= 448
WOLFSSL_X448_KYBER_LEVEL3,
#endif
#endif
#endif /* WOLFSSL_MLKEM_KYBER */
WOLFSSL_NAMED_GROUP_INVALID
};
#define PREFERRED_GROUP_SZ \
((sizeof(preferredGroup)/sizeof(*preferredGroup)) - 1)
/* -1 for the invalid group */
/* Examines the application specified group ranking and returns the rank of the
* group.
* If no group ranking set then all groups are rank 0 (highest).
*
* ssl The SSL/TLS object.
* group The group to check ranking for.
* returns ranking from 0 to MAX_GROUP_COUNT-1 or -1 when group not in list.
*/
static int TLSX_KeyShare_GroupRank(const WOLFSSL* ssl, int group)
{
byte i;
const word16* groups;
byte numGroups;
if (ssl->numGroups == 0) {
return 0;
}
else {
groups = ssl->group;
numGroups = ssl->numGroups;
}
#ifdef HAVE_LIBOQS
if (!TLSX_IsGroupSupported(group))
return WOLFSSL_FATAL_ERROR;
#endif
for (i = 0; i < numGroups; i++) {
#ifdef WOLFSSL_ML_KEM_USE_OLD_IDS
if ((group == WOLFSSL_P256_ML_KEM_512_OLD &&
groups[i] == WOLFSSL_SECP256R1MLKEM512) ||
(group == WOLFSSL_P384_ML_KEM_768_OLD &&
groups[i] == WOLFSSL_SECP384R1MLKEM768) ||
(group == WOLFSSL_P521_ML_KEM_1024_OLD &&
groups[i] == WOLFSSL_SECP521R1MLKEM1024)) {
return i;
}
#endif
if (groups[i] == (word16)group)
return i;
}
return WOLFSSL_FATAL_ERROR;
}
/* Set a key share that is supported by the client into extensions.
*
* ssl The SSL/TLS object.
* returns BAD_KEY_SHARE_DATA if no supported group has a key share,
* 0 if a supported group has a key share and other values indicate an error.
*/
int TLSX_KeyShare_SetSupported(const WOLFSSL* ssl, TLSX** extensions)
{
int ret;
#ifdef HAVE_SUPPORTED_CURVES
TLSX* extension;
SupportedCurve* curve = NULL;
SupportedCurve* preferredCurve = NULL;
word16 name = WOLFSSL_NAMED_GROUP_INVALID;
KeyShareEntry* kse = NULL;
int preferredRank = WOLFSSL_MAX_GROUP_COUNT;
int rank;
extension = TLSX_Find(*extensions, TLSX_SUPPORTED_GROUPS);
if (extension != NULL)
curve = (SupportedCurve*)extension->data;
for (; curve != NULL; curve = curve->next) {
/* Use server's preference order. Common group was found but key share
* was missing */
if (!TLSX_IsGroupSupported(curve->name))
continue;
if (wolfSSL_curve_is_disabled(ssl, curve->name))
continue;
rank = TLSX_KeyShare_GroupRank(ssl, curve->name);
if (rank == -1)
continue;
if (rank < preferredRank) {
preferredCurve = curve;
preferredRank = rank;
}
}
curve = preferredCurve;
if (curve == NULL) {
byte i;
/* Fallback to user selected group */
preferredRank = WOLFSSL_MAX_GROUP_COUNT;
for (i = 0; i < ssl->numGroups; i++) {
rank = TLSX_KeyShare_GroupRank(ssl, ssl->group[i]);
if (rank == -1)
continue;
if (rank < preferredRank) {
name = ssl->group[i];
preferredRank = rank;
}
}
if (name == WOLFSSL_NAMED_GROUP_INVALID) {
/* No group selected or specified by the server */
WOLFSSL_ERROR_VERBOSE(BAD_KEY_SHARE_DATA);
return BAD_KEY_SHARE_DATA;
}
}
else {
name = curve->name;
}
#ifdef WOLFSSL_ASYNC_CRYPT
/* Check the old key share data list. */
extension = TLSX_Find(*extensions, TLSX_KEY_SHARE);
if (extension != NULL) {
kse = (KeyShareEntry*)extension->data;
/* We should not be computing keys if we are only going to advertise
* our choice here. */
if (kse != NULL && kse->lastRet == WC_NO_ERR_TRACE(WC_PENDING_E)) {
WOLFSSL_ERROR_VERBOSE(BAD_KEY_SHARE_DATA);
return BAD_KEY_SHARE_DATA;
}
}
#endif
/* Push new KeyShare extension. This will also free the old one */
ret = TLSX_Push(extensions, TLSX_KEY_SHARE, NULL, ssl->heap);
if (ret != 0)
return ret;
/* Extension got pushed to head */
extension = *extensions;
/* Push the selected curve */
ret = TLSX_KeyShare_New((KeyShareEntry**)&extension->data, name,
ssl->heap, &kse);
if (ret != 0)
return ret;
/* Set extension to be in response. */
extension->resp = 1;
#else
(void)ssl;
WOLFSSL_ERROR_VERBOSE(NOT_COMPILED_IN);
ret = NOT_COMPILED_IN;
#endif
return ret;
}
#ifdef WOLFSSL_DUAL_ALG_CERTS
/* Writes the CKS objects of a list in a buffer. */
static word16 CKS_WRITE(WOLFSSL* ssl, byte* output)
{
XMEMCPY(output, ssl->sigSpec, ssl->sigSpecSz);
return ssl->sigSpecSz;
}
static int TLSX_UseCKS(TLSX** extensions, WOLFSSL* ssl, void* heap)
{
int ret = 0;
TLSX* extension;
if (extensions == NULL) {
return BAD_FUNC_ARG;
}
extension = TLSX_Find(*extensions, TLSX_CKS);
/* If it is already present, do nothing. */
if (extension == NULL) {
/* The data required is in the ssl struct, so push it in. */
ret = TLSX_Push(extensions, TLSX_CKS, (void*)ssl, heap);
}
return ret;
}
int TLSX_CKS_Set(WOLFSSL* ssl, TLSX** extensions)
{
int ret;
TLSX* extension;
/* Push new KeyShare extension. This will also free the old one */
ret = TLSX_Push(extensions, TLSX_CKS, NULL, ssl->heap);
if (ret != 0)
return ret;
/* Extension got pushed to head */
extension = *extensions;
/* Need ssl->sigSpecSz during extension length calculation. */
extension->data = ssl;
/* Set extension to be in response. */
extension->resp = 1;
return ret;
}
int TLSX_CKS_Parse(WOLFSSL* ssl, byte* input, word16 length,
TLSX** extensions)
{
int ret;
int i, j;
(void) extensions;
/* Validating the input. */
if (length == 0)
return BUFFER_ERROR;
for (i = 0; i < length; i++) {
switch (input[i])
{
case WOLFSSL_CKS_SIGSPEC_NATIVE:
case WOLFSSL_CKS_SIGSPEC_ALTERNATIVE:
case WOLFSSL_CKS_SIGSPEC_BOTH:
/* These are all valid values; do nothing */
break;
case WOLFSSL_CKS_SIGSPEC_EXTERNAL:
default:
/* All other values (including external) are not. */
return BAD_FUNC_ARG;
}
}
/* This could be a situation where the client tried to start with TLS 1.3
* when it sent ClientHello and the server down-graded to TLS 1.2. In that
* case, erroring out because it is TLS 1.2 is not a reasonable thing to do.
* In the case of TLS 1.2, the CKS values will be ignored. */
if (!IsAtLeastTLSv1_3(ssl->version)) {
ssl->sigSpec = NULL;
ssl->sigSpecSz = 0;
return 0;
}
/* Extension data is valid, but if we are the server and we don't have an
* alt private key, do not respond with CKS extension. */
if (wolfSSL_is_server(ssl) && ssl->buffers.altKey == NULL) {
ssl->sigSpec = NULL;
ssl->sigSpecSz = 0;
return 0;
}
/* Copy as the lifetime of input seems to be ephemeral. */
ssl->peerSigSpec = (byte*)XMALLOC(length, ssl->heap, DYNAMIC_TYPE_TLSX);
if (ssl->peerSigSpec == NULL) {
return BUFFER_ERROR;
}
XMEMCPY(ssl->peerSigSpec, input, length);
ssl->peerSigSpecSz = length;
/* If there is no preference set, use theirs... */
if (ssl->sigSpec == NULL) {
ret = wolfSSL_UseCKS(ssl, ssl->peerSigSpec, 1);
if (ret == WOLFSSL_SUCCESS) {
ret = TLSX_UseCKS(&ssl->extensions, ssl, ssl->heap);
TLSX_SetResponse(ssl, TLSX_CKS);
}
return ret;
}
/* ...otherwise, prioritize our preference. */
for (i = 0; i < ssl->sigSpecSz; i++) {
for (j = 0; j < length; j++) {
if (ssl->sigSpec[i] == input[j]) {
/* Got the match, set to this one. */
ret = wolfSSL_UseCKS(ssl, &ssl->sigSpec[i], 1);
if (ret == WOLFSSL_SUCCESS) {
ret = TLSX_UseCKS(&ssl->extensions, ssl, ssl->heap);
TLSX_SetResponse(ssl, TLSX_CKS);
}
return ret;
}
}
}
/* No match found. Cannot continue. */
return MATCH_SUITE_ERROR;
}
#endif /* WOLFSSL_DUAL_ALG_CERTS */
/* Server side KSE processing */
int TLSX_KeyShare_Choose(const WOLFSSL *ssl, TLSX* extensions,
byte cipherSuite0, byte cipherSuite, KeyShareEntry** kse, byte* searched)
{
TLSX* extension;
KeyShareEntry* clientKSE = NULL;
KeyShareEntry* list = NULL;
KeyShareEntry* preferredKSE = NULL;
int preferredRank = WOLFSSL_MAX_GROUP_COUNT;
int rank;
(void)cipherSuite0;
(void)cipherSuite;
if (ssl == NULL || ssl->options.side != WOLFSSL_SERVER_END)
return BAD_FUNC_ARG;
*searched = 0;
/* Find the KeyShare extension if it exists. */
extension = TLSX_Find(extensions, TLSX_KEY_SHARE);
if (extension != NULL)
list = (KeyShareEntry*)extension->data;
if (extension && extension->resp == 1) {
/* Outside of the async case this path should not be taken. */
int ret = WC_NO_ERR_TRACE(INCOMPLETE_DATA);
#ifdef WOLFSSL_ASYNC_CRYPT
/* in async case make sure key generation is finalized */
KeyShareEntry* serverKSE = (KeyShareEntry*)extension->data;
if (serverKSE && serverKSE->lastRet == WC_NO_ERR_TRACE(WC_PENDING_E)) {
if (ssl->options.serverState == SERVER_HELLO_RETRY_REQUEST_COMPLETE)
*searched = 1;
ret = TLSX_KeyShare_GenKey((WOLFSSL*)ssl, serverKSE);
}
else
#endif
{
ret = INCOMPLETE_DATA;
}
return ret;
}
/* Use server's preference order. */
for (clientKSE = list; clientKSE != NULL; clientKSE = clientKSE->next) {
if ((clientKSE->ke == NULL) &&
(!WOLFSSL_NAMED_GROUP_IS_PQC(clientKSE->group)) &&
(!WOLFSSL_NAMED_GROUP_IS_PQC_HYBRID(clientKSE->group)))
continue;
#ifdef WOLFSSL_SM2
if ((cipherSuite0 == CIPHER_BYTE) &&
((cipherSuite == TLS_SM4_GCM_SM3) ||
(cipherSuite == TLS_SM4_CCM_SM3))) {
if (clientKSE->group != WOLFSSL_ECC_SM2P256V1) {
continue;
}
}
else if (clientKSE->group == WOLFSSL_ECC_SM2P256V1) {
continue;
}
#endif
/* Check consistency now - extensions in any order. */
if (!TLSX_SupportedGroups_Find(ssl, clientKSE->group, extensions))
continue;
if (!WOLFSSL_NAMED_GROUP_IS_FFDHE(clientKSE->group)) {
/* Check max value supported. */
if (clientKSE->group > WOLFSSL_ECC_MAX) {
#ifdef WOLFSSL_HAVE_MLKEM
if (!WOLFSSL_NAMED_GROUP_IS_PQC(clientKSE->group) &&
!WOLFSSL_NAMED_GROUP_IS_PQC_HYBRID(clientKSE->group))
#endif
continue;
}
if (wolfSSL_curve_is_disabled(ssl, clientKSE->group))
continue;
}
if (!TLSX_IsGroupSupported(clientKSE->group))
continue;
rank = TLSX_KeyShare_GroupRank(ssl, clientKSE->group);
if (rank == -1)
continue;
if (rank < preferredRank) {
preferredKSE = clientKSE;
preferredRank = rank;
}
}
*kse = preferredKSE;
*searched = 1;
return 0;
}
/* Server side KSE processing */
int TLSX_KeyShare_Setup(WOLFSSL *ssl, KeyShareEntry* clientKSE)
{
int ret;
TLSX* extension;
KeyShareEntry* serverKSE;
KeyShareEntry* list = NULL;
if (ssl == NULL || ssl->options.side != WOLFSSL_SERVER_END)
return BAD_FUNC_ARG;
extension = TLSX_Find(ssl->extensions, TLSX_KEY_SHARE);
if (extension == NULL)
return BAD_STATE_E;
if (clientKSE == NULL) {
#ifdef WOLFSSL_ASYNC_CRYPT
/* Not necessarily an error. The key may have already been setup. */
if (extension != NULL && extension->resp == 1) {
serverKSE = (KeyShareEntry*)extension->data;
if (serverKSE != NULL) {
/* in async case make sure key generation is finalized */
if (serverKSE->lastRet == WC_NO_ERR_TRACE(WC_PENDING_E))
return TLSX_KeyShare_GenKey((WOLFSSL*)ssl, serverKSE);
else if (serverKSE->lastRet == 0)
return 0;
}
}
#endif
return BAD_FUNC_ARG;
}
/* Generate a new key pair except in the case of PQC KEM because we
* are going to encapsulate and that does not require us to generate a
* key pair.
*/
ret = TLSX_KeyShare_New(&list, clientKSE->group, ssl->heap, &serverKSE);
if (ret != 0)
return ret;
if (clientKSE->key == NULL) {
#ifdef WOLFSSL_HAVE_MLKEM
if (WOLFSSL_NAMED_GROUP_IS_PQC(clientKSE->group) ||
WOLFSSL_NAMED_GROUP_IS_PQC_HYBRID(clientKSE->group)) {
/* Going to need the public key (AKA ciphertext). */
serverKSE->pubKey = clientKSE->pubKey;
clientKSE->pubKey = NULL;
serverKSE->pubKeyLen = clientKSE->pubKeyLen;
clientKSE->pubKeyLen = 0;
}
else
#endif
{
ret = TLSX_KeyShare_GenKey(ssl, serverKSE);
}
/* for async do setup of serverKSE below, but return WC_PENDING_E */
if (ret != 0
#ifdef WOLFSSL_ASYNC_CRYPT
&& ret != WC_NO_ERR_TRACE(WC_PENDING_E)
#endif
) {
TLSX_KeyShare_FreeAll(list, ssl->heap);
return ret;
}
}
else {
/* transfer buffers to serverKSE */
serverKSE->key = clientKSE->key;
clientKSE->key = NULL;
serverKSE->keyLen = clientKSE->keyLen;
serverKSE->pubKey = clientKSE->pubKey;
clientKSE->pubKey = NULL;
serverKSE->pubKeyLen = clientKSE->pubKeyLen;
#ifndef NO_DH
serverKSE->privKey = clientKSE->privKey;
clientKSE->privKey = NULL;
#endif
}
serverKSE->ke = clientKSE->ke;
serverKSE->keLen = clientKSE->keLen;
clientKSE->ke = NULL;
clientKSE->keLen = 0;
ssl->namedGroup = serverKSE->group;
TLSX_KeyShare_FreeAll((KeyShareEntry*)extension->data, ssl->heap);
extension->data = (void *)serverKSE;
extension->resp = 1;
return ret;
}
/* Ensure there is a key pair that can be used for key exchange.
*
* ssl The SSL/TLS object.
* doHelloRetry If set to non-zero will do hello_retry
* returns 0 on success and other values indicate failure.
*/
int TLSX_KeyShare_Establish(WOLFSSL *ssl, int* doHelloRetry)
{
int ret;
KeyShareEntry* clientKSE = NULL;
byte searched = 0;
*doHelloRetry = 0;
ret = TLSX_KeyShare_Choose(ssl, ssl->extensions, ssl->cipher.cipherSuite0,
ssl->cipher.cipherSuite, &clientKSE, &searched);
if (ret != 0 || !searched)
return ret;
/* No supported group found - send HelloRetryRequest. */
if (clientKSE == NULL) {
/* Set KEY_SHARE_ERROR to indicate HelloRetryRequest required. */
*doHelloRetry = 1;
return TLSX_KeyShare_SetSupported(ssl, &ssl->extensions);
}
return TLSX_KeyShare_Setup(ssl, clientKSE);
}
/* Derive the shared secret of the key exchange.
*
* ssl The SSL/TLS object.
* returns 0 on success and other values indicate failure.
*/
int TLSX_KeyShare_DeriveSecret(WOLFSSL *ssl)
{
int ret;
TLSX* extension;
KeyShareEntry* list = NULL;
#ifdef WOLFSSL_ASYNC_CRYPT
ret = wolfSSL_AsyncPop(ssl, NULL);
/* Check for error */
if (ret != WC_NO_ERR_TRACE(WC_NO_PENDING_E) && ret < 0) {
return ret;
}
#endif
/* Find the KeyShare extension if it exists. */
extension = TLSX_Find(ssl->extensions, TLSX_KEY_SHARE);
if (extension != NULL)
list = (KeyShareEntry*)extension->data;
if (list == NULL)
return KEY_SHARE_ERROR;
/* Calculate secret. */
ret = TLSX_KeyShare_Process(ssl, list);
return ret;
}
#define KS_FREE_ALL TLSX_KeyShare_FreeAll
#define KS_GET_SIZE TLSX_KeyShare_GetSize
#define KS_WRITE TLSX_KeyShare_Write
#define KS_PARSE TLSX_KeyShare_Parse
#else
#define KS_FREE_ALL(a, b) WC_DO_NOTHING
#define KS_GET_SIZE(a, b) 0
#define KS_WRITE(a, b, c) 0
#define KS_PARSE(a, b, c, d) 0
#endif /* WOLFSSL_TLS13 */
/******************************************************************************/
/* Pre-Shared Key */
/******************************************************************************/
#if defined(WOLFSSL_TLS13) && (defined(HAVE_SESSION_TICKET) || !defined(NO_PSK))
/* Free the pre-shared key dynamic data.
*
* list The linked list of key share entry objects.
* heap The heap used for allocation.
*/
static void TLSX_PreSharedKey_FreeAll(PreSharedKey* list, void* heap)
{
PreSharedKey* current;
while ((current = list) != NULL) {
list = current->next;
XFREE(current->identity, heap, DYNAMIC_TYPE_TLSX);
XFREE(current, heap, DYNAMIC_TYPE_TLSX);
}
(void)heap;
}
/* Get the size of the encoded pre shared key extension.
*
* list The linked list of pre-shared key extensions.
* msgType The type of the message this extension is being written into.
* returns the number of bytes of the encoded pre-shared key extension or
* SANITY_MSG_E to indicate invalid message type.
*/
static int TLSX_PreSharedKey_GetSize(PreSharedKey* list, byte msgType,
word16* pSz)
{
if (msgType == client_hello) {
/* Length of identities + Length of binders. */
word16 len = OPAQUE16_LEN + OPAQUE16_LEN;
while (list != NULL) {
/* Each entry has: identity, ticket age and binder. */
len += OPAQUE16_LEN + list->identityLen + OPAQUE32_LEN +
OPAQUE8_LEN + (word16)list->binderLen;
list = list->next;
}
*pSz += len;
return 0;
}
if (msgType == server_hello) {
*pSz += OPAQUE16_LEN;
return 0;
}
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
/* The number of bytes to be written for the binders.
*
* list The linked list of pre-shared key extensions.
* msgType The type of the message this extension is being written into.
* returns the number of bytes of the encoded pre-shared key extension or
* SANITY_MSG_E to indicate invalid message type.
*/
int TLSX_PreSharedKey_GetSizeBinders(PreSharedKey* list, byte msgType,
word16* pSz)
{
word16 len;
if (msgType != client_hello) {
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
/* Length of all binders. */
len = OPAQUE16_LEN;
while (list != NULL) {
len += OPAQUE8_LEN + (word16)list->binderLen;
list = list->next;
}
*pSz = len;
return 0;
}
/* Writes the pre-shared key extension into the output buffer - binders only.
* Assumes that the the output buffer is big enough to hold data.
*
* list The linked list of key share entries.
* output The buffer to write into.
* msgType The type of the message this extension is being written into.
* returns the number of bytes written into the buffer.
*/
int TLSX_PreSharedKey_WriteBinders(PreSharedKey* list, byte* output,
byte msgType, word16* pSz)
{
PreSharedKey* current = list;
word16 idx = 0;
word16 lenIdx;
word16 len;
if (msgType != client_hello) {
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
/* Skip length of all binders. */
lenIdx = idx;
idx += OPAQUE16_LEN;
while (current != NULL) {
/* Binder data length. */
output[idx++] = (byte)current->binderLen;
/* Binder data. */
XMEMCPY(output + idx, current->binder, current->binderLen);
idx += (word16)current->binderLen;
current = current->next;
}
/* Length of the binders. */
len = idx - lenIdx - OPAQUE16_LEN;
c16toa(len, output + lenIdx);
*pSz = idx;
return 0;
}
/* Writes the pre-shared key extension into the output buffer.
* Assumes that the the output buffer is big enough to hold data.
*
* list The linked list of key share entries.
* output The buffer to write into.
* msgType The type of the message this extension is being written into.
* returns the number of bytes written into the buffer.
*/
static int TLSX_PreSharedKey_Write(PreSharedKey* list, byte* output,
byte msgType, word16* pSz)
{
if (msgType == client_hello) {
PreSharedKey* current = list;
word16 idx = 0;
word16 lenIdx;
word16 len;
int ret;
/* Write identities only. Binders after HMACing over this. */
lenIdx = idx;
idx += OPAQUE16_LEN;
while (current != NULL) {
/* Identity length */
c16toa(current->identityLen, output + idx);
idx += OPAQUE16_LEN;
/* Identity data */
XMEMCPY(output + idx, current->identity, current->identityLen);
idx += current->identityLen;
/* Obfuscated ticket age. */
c32toa(current->ticketAge, output + idx);
idx += OPAQUE32_LEN;
current = current->next;
}
/* Length of the identities. */
len = idx - lenIdx - OPAQUE16_LEN;
c16toa(len, output + lenIdx);
/* Don't include binders here.
* The binders are based on the hash of all the ClientHello data up to
* and include the identities written above.
*/
ret = TLSX_PreSharedKey_GetSizeBinders(list, msgType, &len);
if (ret < 0)
return ret;
*pSz += idx + len;
}
else if (msgType == server_hello) {
word16 i;
/* Find the index of the chosen identity. */
for (i=0; list != NULL && !list->chosen; i++)
list = list->next;
if (list == NULL) {
WOLFSSL_ERROR_VERBOSE(BUILD_MSG_ERROR);
return BUILD_MSG_ERROR;
}
/* The index of the identity chosen by the server from the list supplied
* by the client.
*/
c16toa(i, output);
*pSz += OPAQUE16_LEN;
}
else {
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
return 0;
}
int TLSX_PreSharedKey_Parse_ClientHello(TLSX** extensions, const byte* input,
word16 length, void* heap)
{
int ret;
word16 len;
word16 idx = 0;
TLSX* extension;
PreSharedKey* list;
TLSX_Remove(extensions, TLSX_PRE_SHARED_KEY, heap);
/* Length of identities and of binders. */
if ((int)(length - idx) < OPAQUE16_LEN + OPAQUE16_LEN)
return BUFFER_E;
/* Length of identities. */
ato16(input + idx, &len);
idx += OPAQUE16_LEN;
if (len < MIN_PSK_ID_LEN || length - idx < len)
return BUFFER_E;
/* Create a pre-shared key object for each identity. */
while (len > 0) {
const byte* identity;
word16 identityLen;
word32 age;
if (len < OPAQUE16_LEN)
return BUFFER_E;
/* Length of identity. */
ato16(input + idx, &identityLen);
idx += OPAQUE16_LEN;
if (len < OPAQUE16_LEN + identityLen + OPAQUE32_LEN ||
identityLen > MAX_PSK_ID_LEN)
return BUFFER_E;
/* Cache identity pointer. */
identity = input + idx;
idx += identityLen;
/* Ticket age. */
ato32(input + idx, &age);
idx += OPAQUE32_LEN;
ret = TLSX_PreSharedKey_Use(extensions, identity, identityLen, age, no_mac,
0, 0, 1, NULL, heap);
if (ret != 0)
return ret;
/* Done with this identity. */
len -= OPAQUE16_LEN + identityLen + OPAQUE32_LEN;
}
/* Find the list of identities sent to server. */
extension = TLSX_Find(*extensions, TLSX_PRE_SHARED_KEY);
if (extension == NULL)
return PSK_KEY_ERROR;
list = (PreSharedKey*)extension->data;
/* Length of binders. */
if (idx + OPAQUE16_LEN > length)
return BUFFER_E;
ato16(input + idx, &len);
idx += OPAQUE16_LEN;
if (len < MIN_PSK_BINDERS_LEN || length - idx < len)
return BUFFER_E;
/* Set binder for each identity. */
while (list != NULL && len > 0) {
/* Length of binder */
list->binderLen = input[idx++];
if (list->binderLen < WC_SHA256_DIGEST_SIZE ||
list->binderLen > WC_MAX_DIGEST_SIZE)
return BUFFER_E;
if (len < OPAQUE8_LEN + list->binderLen)
return BUFFER_E;
/* Copy binder into static buffer. */
XMEMCPY(list->binder, input + idx, list->binderLen);
idx += (word16)list->binderLen;
/* Done with binder entry. */
len -= OPAQUE8_LEN + (word16)list->binderLen;
/* Next identity. */
list = list->next;
}
if (list != NULL || len != 0)
return BUFFER_E;
return 0;
}
/* Parse the pre-shared key extension.
* Different formats in different messages.
*
* ssl The SSL/TLS object.
* input The extension data.
* length The length of the extension data.
* msgType The type of the message this extension is being parsed from.
* returns 0 on success and other values indicate failure.
*/
static int TLSX_PreSharedKey_Parse(WOLFSSL* ssl, const byte* input,
word16 length, byte msgType)
{
if (msgType == client_hello) {
return TLSX_PreSharedKey_Parse_ClientHello(&ssl->extensions, input,
length, ssl->heap);
}
if (msgType == server_hello) {
word16 idx;
PreSharedKey* list;
TLSX* extension;
/* Index of identity chosen by server. */
if (length != OPAQUE16_LEN)
return BUFFER_E;
ato16(input, &idx);
#ifdef WOLFSSL_EARLY_DATA
ssl->options.pskIdIndex = idx + 1;
#endif
/* Find the list of identities sent to server. */
extension = TLSX_Find(ssl->extensions, TLSX_PRE_SHARED_KEY);
if (extension == NULL)
return PSK_KEY_ERROR;
list = (PreSharedKey*)extension->data;
/* Mark the identity as chosen. */
for (; list != NULL && idx > 0; idx--)
list = list->next;
if (list == NULL) {
WOLFSSL_ERROR_VERBOSE(PSK_KEY_ERROR);
return PSK_KEY_ERROR;
}
list->chosen = 1;
#ifdef HAVE_SESSION_TICKET
if (list->resumption) {
/* Check that the session's details are the same as the server's. */
if (ssl->options.cipherSuite0 != ssl->session->cipherSuite0 ||
ssl->options.cipherSuite != ssl->session->cipherSuite ||
ssl->session->version.major != ssl->ctx->method->version.major ||
ssl->session->version.minor != ssl->ctx->method->version.minor) {
WOLFSSL_ERROR_VERBOSE(PSK_KEY_ERROR);
return PSK_KEY_ERROR;
}
}
#endif
return 0;
}
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
/* Create a new pre-shared key and put it into the list.
*
* list The linked list of pre-shared key.
* identity The identity.
* len The length of the identity data.
* heap The memory to allocate with.
* preSharedKey The new pre-shared key object.
* returns 0 on success and other values indicate failure.
*/
static int TLSX_PreSharedKey_New(PreSharedKey** list, const byte* identity,
word16 len, void *heap,
PreSharedKey** preSharedKey)
{
PreSharedKey* psk;
PreSharedKey** next;
psk = (PreSharedKey*)XMALLOC(sizeof(PreSharedKey), heap, DYNAMIC_TYPE_TLSX);
if (psk == NULL)
return MEMORY_E;
XMEMSET(psk, 0, sizeof(*psk));
/* Make a copy of the identity data. */
psk->identity = (byte*)XMALLOC(len + NULL_TERM_LEN, heap,
DYNAMIC_TYPE_TLSX);
if (psk->identity == NULL) {
XFREE(psk, heap, DYNAMIC_TYPE_TLSX);
return MEMORY_E;
}
XMEMCPY(psk->identity, identity, len);
psk->identityLen = len;
/* Use a NULL terminator in case it is a C string */
psk->identity[psk->identityLen] = '\0';
/* Add it to the end and maintain the links. */
while (*list != NULL) {
/* Assign to temporary to work around compiler bug found by customer. */
next = &((*list)->next);
list = next;
}
*list = psk;
*preSharedKey = psk;
(void)heap;
return 0;
}
static WC_INLINE byte GetHmacLength(int hmac)
{
switch (hmac) {
#ifndef NO_SHA256
case sha256_mac:
return WC_SHA256_DIGEST_SIZE;
#endif
#ifdef WOLFSSL_SHA384
case sha384_mac:
return WC_SHA384_DIGEST_SIZE;
#endif
#ifdef WOLFSSL_SHA512
case sha512_mac:
return WC_SHA512_DIGEST_SIZE;
#endif
#ifdef WOLFSSL_SM3
case sm3_mac:
return WC_SM3_DIGEST_SIZE;
#endif
default:
break;
}
return 0;
}
/* Use the data to create a new pre-shared key object in the extensions.
*
* ssl The SSL/TLS object.
* identity The identity.
* len The length of the identity data.
* age The age of the identity.
* hmac The HMAC algorithm.
* cipherSuite0 The first byte of the cipher suite to use.
* cipherSuite The second byte of the cipher suite to use.
* resumption The PSK is for resumption of a session.
* preSharedKey The new pre-shared key object.
* returns 0 on success and other values indicate failure.
*/
int TLSX_PreSharedKey_Use(TLSX** extensions, const byte* identity, word16 len,
word32 age, byte hmac, byte cipherSuite0,
byte cipherSuite, byte resumption,
PreSharedKey **preSharedKey, void* heap)
{
int ret = 0;
TLSX* extension;
PreSharedKey* psk = NULL;
/* Find the pre-shared key extension if it exists. */
extension = TLSX_Find(*extensions, TLSX_PRE_SHARED_KEY);
if (extension == NULL) {
/* Push new pre-shared key extension. */
ret = TLSX_Push(extensions, TLSX_PRE_SHARED_KEY, NULL, heap);
if (ret != 0)
return ret;
extension = TLSX_Find(*extensions, TLSX_PRE_SHARED_KEY);
if (extension == NULL)
return MEMORY_E;
}
/* Try to find the pre-shared key with this identity. */
psk = (PreSharedKey*)extension->data;
while (psk != NULL) {
if ((psk->identityLen == len) &&
(XMEMCMP(psk->identity, identity, len) == 0)) {
break;
}
psk = psk->next;
}
/* Create a new pre-shared key object if not found. */
if (psk == NULL) {
ret = TLSX_PreSharedKey_New((PreSharedKey**)&extension->data, identity,
len, heap, &psk);
if (ret != 0)
return ret;
}
/* Update/set age and HMAC algorithm. */
psk->ticketAge = age;
psk->hmac = hmac;
psk->cipherSuite0 = cipherSuite0;
psk->cipherSuite = cipherSuite;
psk->resumption = resumption;
psk->binderLen = GetHmacLength(psk->hmac);
if (preSharedKey != NULL)
*preSharedKey = psk;
return 0;
}
#define PSK_FREE_ALL TLSX_PreSharedKey_FreeAll
#define PSK_GET_SIZE TLSX_PreSharedKey_GetSize
#define PSK_WRITE TLSX_PreSharedKey_Write
#define PSK_PARSE TLSX_PreSharedKey_Parse
#else
#define PSK_FREE_ALL(a, b) WC_DO_NOTHING
#define PSK_GET_SIZE(a, b, c) 0
#define PSK_WRITE(a, b, c, d) 0
#define PSK_PARSE(a, b, c, d) 0
#endif
/******************************************************************************/
/* PSK Key Exchange Modes */
/******************************************************************************/
#if defined(WOLFSSL_TLS13) && (defined(HAVE_SESSION_TICKET) || !defined(NO_PSK))
/* Get the size of the encoded PSK KE modes extension.
* Only in ClientHello.
*
* modes The PSK KE mode bit string.
* msgType The type of the message this extension is being written into.
* returns the number of bytes of the encoded PSK KE mode extension.
*/
static int TLSX_PskKeModes_GetSize(byte modes, byte msgType, word16* pSz)
{
if (msgType == client_hello) {
/* Format: Len | Modes* */
word16 len = OPAQUE8_LEN;
/* Check whether each possible mode is to be written. */
if (modes & (1 << PSK_KE))
len += OPAQUE8_LEN;
if (modes & (1 << PSK_DHE_KE))
len += OPAQUE8_LEN;
*pSz += len;
return 0;
}
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
/* Writes the PSK KE modes extension into the output buffer.
* Assumes that the the output buffer is big enough to hold data.
* Only in ClientHello.
*
* modes The PSK KE mode bit string.
* output The buffer to write into.
* msgType The type of the message this extension is being written into.
* returns the number of bytes written into the buffer.
*/
static int TLSX_PskKeModes_Write(byte modes, byte* output, byte msgType,
word16* pSz)
{
if (msgType == client_hello) {
/* Format: Len | Modes* */
word16 idx = OPAQUE8_LEN;
/* Write out each possible mode. */
if (modes & (1 << PSK_KE))
output[idx++] = PSK_KE;
if (modes & (1 << PSK_DHE_KE))
output[idx++] = PSK_DHE_KE;
/* Write out length of mode list. */
output[0] = (byte)(idx - OPAQUE8_LEN);
*pSz += idx;
return 0;
}
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
int TLSX_PskKeyModes_Parse_Modes(const byte* input, word16 length, byte msgType,
byte* modes)
{
if (msgType == client_hello) {
/* Format: Len | Modes* */
int idx = 0;
word16 len;
*modes = 0;
/* Ensure length byte exists. */
if (length < OPAQUE8_LEN)
return BUFFER_E;
/* Get length of mode list and ensure that is the only data. */
len = input[0];
if (length - OPAQUE8_LEN != len)
return BUFFER_E;
idx = OPAQUE8_LEN;
/* Set a bit for each recognized modes. */
while (len > 0) {
/* Ignore unrecognized modes. */
if (input[idx] <= PSK_DHE_KE)
*modes |= 1 << input[idx];
idx++;
len--;
}
return 0;
}
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
/* Parse the PSK KE modes extension.
* Only in ClientHello.
*
* ssl The SSL/TLS object.
* input The extension data.
* length The length of the extension data.
* msgType The type of the message this extension is being parsed from.
* returns 0 on success and other values indicate failure.
*/
static int TLSX_PskKeModes_Parse(WOLFSSL* ssl, const byte* input, word16 length,
byte msgType)
{
int ret;
byte modes;
ret = TLSX_PskKeyModes_Parse_Modes(input, length, msgType, &modes);
if (ret == 0)
ret = TLSX_PskKeyModes_Use(ssl, modes);
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(ret);
}
return ret;
}
/* Use the data to create a new PSK Key Exchange Modes object in the extensions.
*
* ssl The SSL/TLS object.
* modes The PSK key exchange modes.
* returns 0 on success and other values indicate failure.
*/
int TLSX_PskKeyModes_Use(WOLFSSL* ssl, byte modes)
{
int ret = 0;
TLSX* extension;
/* Find the PSK key exchange modes extension if it exists. */
extension = TLSX_Find(ssl->extensions, TLSX_PSK_KEY_EXCHANGE_MODES);
if (extension == NULL) {
/* Push new PSK key exchange modes extension. */
ret = TLSX_Push(&ssl->extensions, TLSX_PSK_KEY_EXCHANGE_MODES, NULL,
ssl->heap);
if (ret != 0)
return ret;
extension = TLSX_Find(ssl->extensions, TLSX_PSK_KEY_EXCHANGE_MODES);
if (extension == NULL)
return MEMORY_E;
}
extension->val = modes;
return 0;
}
#define PKM_GET_SIZE TLSX_PskKeModes_GetSize
#define PKM_WRITE TLSX_PskKeModes_Write
#define PKM_PARSE TLSX_PskKeModes_Parse
#else
#define PKM_GET_SIZE(a, b, c) 0
#define PKM_WRITE(a, b, c, d) 0
#define PKM_PARSE(a, b, c, d) 0
#endif
/******************************************************************************/
/* Post-Handshake Authentication */
/******************************************************************************/
#if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH)
/* Get the size of the encoded Post-Handshake Authentication extension.
* Only in ClientHello.
*
* msgType The type of the message this extension is being written into.
* returns the number of bytes of the encoded Post-Handshake Authentication
* extension.
*/
static int TLSX_PostHandAuth_GetSize(byte msgType, word16* pSz)
{
if (msgType == client_hello) {
*pSz += 0;
return 0;
}
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
/* Writes the Post-Handshake Authentication extension into the output buffer.
* Assumes that the the output buffer is big enough to hold data.
* Only in ClientHello.
*
* output The buffer to write into.
* msgType The type of the message this extension is being written into.
* returns the number of bytes written into the buffer.
*/
static int TLSX_PostHandAuth_Write(byte* output, byte msgType, word16* pSz)
{
(void)output;
if (msgType == client_hello) {
*pSz += 0;
return 0;
}
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
/* Parse the Post-Handshake Authentication extension.
* Only in ClientHello.
*
* ssl The SSL/TLS object.
* input The extension data.
* length The length of the extension data.
* msgType The type of the message this extension is being parsed from.
* returns 0 on success and other values indicate failure.
*/
static int TLSX_PostHandAuth_Parse(WOLFSSL* ssl, const byte* input,
word16 length, byte msgType)
{
(void)input;
if (msgType == client_hello) {
/* Ensure extension is empty. */
if (length != 0)
return BUFFER_E;
ssl->options.postHandshakeAuth = 1;
return 0;
}
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
/* Create a new Post-handshake authentication object in the extensions.
*
* ssl The SSL/TLS object.
* returns 0 on success and other values indicate failure.
*/
static int TLSX_PostHandAuth_Use(WOLFSSL* ssl)
{
int ret = 0;
TLSX* extension;
/* Find the PSK key exchange modes extension if it exists. */
extension = TLSX_Find(ssl->extensions, TLSX_POST_HANDSHAKE_AUTH);
if (extension == NULL) {
/* Push new Post-handshake Authentication extension. */
ret = TLSX_Push(&ssl->extensions, TLSX_POST_HANDSHAKE_AUTH, NULL,
ssl->heap);
if (ret != 0)
return ret;
}
return 0;
}
#define PHA_GET_SIZE TLSX_PostHandAuth_GetSize
#define PHA_WRITE TLSX_PostHandAuth_Write
#define PHA_PARSE TLSX_PostHandAuth_Parse
#else
#define PHA_GET_SIZE(a, b) 0
#define PHA_WRITE(a, b, c) 0
#define PHA_PARSE(a, b, c, d) 0
#endif
/******************************************************************************/
/* Early Data Indication */
/******************************************************************************/
#ifdef WOLFSSL_EARLY_DATA
/* Get the size of the encoded Early Data Indication extension.
* In messages: ClientHello, EncryptedExtensions and NewSessionTicket.
*
* msgType The type of the message this extension is being written into.
* returns the number of bytes of the encoded Early Data Indication extension.
*/
static int TLSX_EarlyData_GetSize(byte msgType, word16* pSz)
{
int ret = 0;
if (msgType == client_hello || msgType == encrypted_extensions)
*pSz += 0;
else if (msgType == session_ticket)
*pSz += OPAQUE32_LEN;
else {
ret = SANITY_MSG_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
return ret;
}
/* Writes the Early Data Indicator extension into the output buffer.
* Assumes that the the output buffer is big enough to hold data.
* In messages: ClientHello, EncryptedExtensions and NewSessionTicket.
*
* maxSz The maximum early data size.
* output The buffer to write into.
* msgType The type of the message this extension is being written into.
* returns the number of bytes written into the buffer.
*/
static int TLSX_EarlyData_Write(word32 maxSz, byte* output, byte msgType,
word16* pSz)
{
if (msgType == client_hello || msgType == encrypted_extensions)
return 0;
else if (msgType == session_ticket) {
c32toa(maxSz, output);
*pSz += OPAQUE32_LEN;
return 0;
}
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
/* Parse the Early Data Indicator extension.
* In messages: ClientHello, EncryptedExtensions and NewSessionTicket.
*
* ssl The SSL/TLS object.
* input The extension data.
* length The length of the extension data.
* msgType The type of the message this extension is being parsed from.
* returns 0 on success and other values indicate failure.
*/
static int TLSX_EarlyData_Parse(WOLFSSL* ssl, const byte* input, word16 length,
byte msgType)
{
WOLFSSL_ENTER("TLSX_EarlyData_Parse");
if (msgType == client_hello) {
if (length != 0)
return BUFFER_E;
if (ssl->earlyData == expecting_early_data) {
if (ssl->options.maxEarlyDataSz != 0)
ssl->earlyDataStatus = WOLFSSL_EARLY_DATA_ACCEPTED;
else
ssl->earlyDataStatus = WOLFSSL_EARLY_DATA_REJECTED;
return TLSX_EarlyData_Use(ssl, 0, 0);
}
ssl->earlyData = early_data_ext;
return 0;
}
if (msgType == encrypted_extensions) {
if (length != 0)
return BUFFER_E;
/* Ensure the index of PSK identity chosen by server is 0.
* Index is plus one to handle 'not set' value of 0.
*/
if (ssl->options.pskIdIndex != 1) {
WOLFSSL_ERROR_VERBOSE(PSK_KEY_ERROR);
return PSK_KEY_ERROR;
}
if (ssl->options.side == WOLFSSL_CLIENT_END) {
/* the extension from server comes in */
ssl->earlyDataStatus = WOLFSSL_EARLY_DATA_ACCEPTED;
}
return TLSX_EarlyData_Use(ssl, 1, 1);
}
if (msgType == session_ticket) {
word32 maxSz;
if (length != OPAQUE32_LEN)
return BUFFER_E;
ato32(input, &maxSz);
ssl->session->maxEarlyDataSz = maxSz;
return 0;
}
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
/* Use the data to create a new Early Data object in the extensions.
*
* ssl The SSL/TLS object.
* maxSz The maximum early data size.
* is_response if this extension is part of a response
* returns 0 on success and other values indicate failure.
*/
int TLSX_EarlyData_Use(WOLFSSL* ssl, word32 maxSz, int is_response)
{
int ret = 0;
TLSX* extension;
/* Find the early data extension if it exists. */
extension = TLSX_Find(ssl->extensions, TLSX_EARLY_DATA);
if (extension == NULL) {
/* Push new early data extension. */
ret = TLSX_Push(&ssl->extensions, TLSX_EARLY_DATA, NULL, ssl->heap);
if (ret != 0)
return ret;
extension = TLSX_Find(ssl->extensions, TLSX_EARLY_DATA);
if (extension == NULL)
return MEMORY_E;
}
extension->resp = is_response;
/* In QUIC, earlydata size is either 0 or 0xffffffff.
* Override any size between, possibly left from our initial value */
extension->val = (WOLFSSL_IS_QUIC(ssl) && is_response && maxSz > 0) ?
WOLFSSL_MAX_32BIT : maxSz;
return 0;
}
#define EDI_GET_SIZE TLSX_EarlyData_GetSize
#define EDI_WRITE TLSX_EarlyData_Write
#define EDI_PARSE TLSX_EarlyData_Parse
#else
#define EDI_GET_SIZE(a, b) 0
#define EDI_WRITE(a, b, c, d) 0
#define EDI_PARSE(a, b, c, d) 0
#endif
/******************************************************************************/
/* QUIC transport parameter extension */
/******************************************************************************/
#ifdef WOLFSSL_QUIC
static word16 TLSX_QuicTP_GetSize(TLSX* extension)
{
const QuicTransportParam *tp = (QuicTransportParam*)extension->data;
return tp ? tp->len : 0;
}
int TLSX_QuicTP_Use(WOLFSSL* ssl, TLSX_Type ext_type, int is_response)
{
int ret = 0;
TLSX* extension;
WOLFSSL_ENTER("TLSX_QuicTP_Use");
if (ssl->quic.transport_local == NULL) {
/* RFC9000, ch 7.3: "An endpoint MUST treat the absence of [...]
* from either endpoint [...] as a connection error of type
* TRANSPORT_PARAMETER_ERROR."
*/
ret = QUIC_TP_MISSING_E;
goto cleanup;
}
extension = TLSX_Find(ssl->extensions, ext_type);
if (extension == NULL) {
ret = TLSX_Push(&ssl->extensions, ext_type, NULL, ssl->heap);
if (ret != 0)
goto cleanup;
extension = TLSX_Find(ssl->extensions, ext_type);
if (extension == NULL) {
ret = MEMORY_E;
goto cleanup;
}
}
if (extension->data) {
QuicTransportParam_free((QuicTransportParam*)extension->data, ssl->heap);
extension->data = NULL;
}
extension->resp = is_response;
extension->data = (void*)QuicTransportParam_dup(ssl->quic.transport_local, ssl->heap);
if (!extension->data) {
ret = MEMORY_E;
goto cleanup;
}
cleanup:
WOLFSSL_LEAVE("TLSX_QuicTP_Use", ret);
return ret;
}
static word16 TLSX_QuicTP_Write(QuicTransportParam *tp, byte* output)
{
word16 len = 0;
WOLFSSL_ENTER("TLSX_QuicTP_Write");
if (tp && tp->len) {
XMEMCPY(output, tp->data, tp->len);
len = tp->len;
}
WOLFSSL_LEAVE("TLSX_QuicTP_Write", len);
return len;
}
static int TLSX_QuicTP_Parse(WOLFSSL *ssl, const byte *input, size_t len, int ext_type, int msgType)
{
const QuicTransportParam *tp, **ptp;
(void)msgType;
tp = QuicTransportParam_new(input, len, ssl->heap);
if (!tp) {
return MEMORY_E;
}
ptp = (ext_type == TLSX_KEY_QUIC_TP_PARAMS_DRAFT) ?
&ssl->quic.transport_peer_draft : &ssl->quic.transport_peer;
if (*ptp) {
QTP_FREE(*ptp, ssl->heap);
}
*ptp = tp;
return 0;
}
#define QTP_GET_SIZE TLSX_QuicTP_GetSize
#define QTP_USE TLSX_QuicTP_Use
#define QTP_WRITE TLSX_QuicTP_Write
#define QTP_PARSE TLSX_QuicTP_Parse
#endif /* WOLFSSL_QUIC */
#if defined(WOLFSSL_DTLS_CID)
#define CID_GET_SIZE TLSX_ConnectionID_GetSize
#define CID_WRITE TLSX_ConnectionID_Write
#define CID_PARSE TLSX_ConnectionID_Parse
#define CID_FREE TLSX_ConnectionID_Free
#else
#define CID_GET_SIZE(a) 0
#define CID_WRITE(a, b) 0
#define CID_PARSE(a, b, c, d) 0
#define CID_FREE(a, b) 0
#endif /* defined(WOLFSSL_DTLS_CID) */
#if defined(HAVE_RPK)
/******************************************************************************/
/* Client_Certificate_Type extension */
/******************************************************************************/
/* return 1 if specified type is included in the given list, otherwise 0 */
static int IsCertTypeListed(byte type, byte cnt, const byte* list)
{
int ret = 0;
int i;
if (cnt == 0 || list == NULL)
return ret;
if (cnt > 0 && cnt <= MAX_CLIENT_CERT_TYPE_CNT) {
for (i = 0; i < cnt; i++) {
if (list[i] == type)
return 1;
}
}
return 0;
}
/* Search both arrays from above to find a common value between the two given
* arrays(a and b). return 1 if it finds a common value, otherwise return 0.
*/
static int GetCommonItem(const byte* a, byte aLen, const byte* b, byte bLen,
byte* type)
{
int i, j;
if (a == NULL || b == NULL)
return 0;
for (i = 0; i < aLen; i++) {
for (j = 0; j < bLen; j++) {
if (a[i] == b[j]) {
*type = a[i];
return 1;
}
}
}
return 0;
}
/* Creates a "client certificate type" extension if necessary.
* Returns 0 if no error occurred, negative value otherwise.
* A return of 0, it does not indicae that the extension was created.
*/
static int TLSX_ClientCertificateType_Use(WOLFSSL* ssl, byte isServer)
{
int ret = 0;
if (ssl == NULL)
return BAD_FUNC_ARG;
if (isServer) {
/* [in server side]
*/
if (IsCertTypeListed(WOLFSSL_CERT_TYPE_RPK,
ssl->options.rpkConfig.preferred_ClientCertTypeCnt,
ssl->options.rpkConfig.preferred_ClientCertTypes)) {
WOLFSSL_MSG("Adding Client Certificate Type extension");
ret = TLSX_Push(&ssl->extensions, TLSX_CLIENT_CERTIFICATE_TYPE, ssl,
ssl->heap);
if (ret == 0) {
TLSX_SetResponse(ssl, TLSX_CLIENT_CERTIFICATE_TYPE);
}
}
}
else {
/* [in client side]
* This extension MUST be omitted from the ClientHello unless the RPK
* certificate is preferred by the user and actually loaded.
*/
if (IsCertTypeListed(WOLFSSL_CERT_TYPE_RPK,
ssl->options.rpkConfig.preferred_ClientCertTypeCnt,
ssl->options.rpkConfig.preferred_ClientCertTypes)) {
if (ssl->options.rpkState.isRPKLoaded) {
ssl->options.rpkState.sending_ClientCertTypeCnt = 1;
ssl->options.rpkState.sending_ClientCertTypes[0] =
WOLFSSL_CERT_TYPE_RPK;
/* Push new client_certificate_type extension. */
WOLFSSL_MSG("Adding Client Certificate Type extension");
ret = TLSX_Push(&ssl->extensions, TLSX_CLIENT_CERTIFICATE_TYPE,
ssl, ssl->heap);
}
else {
WOLFSSL_MSG("Willing to use RPK cert but not loaded it");
}
}
else {
WOLFSSL_MSG("No will to use RPK cert");
}
}
return ret;
}
/* Parse a "client certificate type" extension received from peer.
* returns 0 on success and other values indicate failure.
*/
static int TLSX_ClientCertificateType_Parse(WOLFSSL* ssl, const byte* input,
word16 length, byte msgType)
{
byte typeCnt;
int idx = 0;
int ret = 0;
int i;
int populate = 0;
byte cmnType;
if (msgType == client_hello) {
/* [parse ClientHello in server end]
* case 1) if peer verify is disabled, this extension must be omitted
* from ServerHello.
* case 2) if user have not set his preference, find X509 in parsed
* result, then populate "Client Certificate Type" extension.
* case 3) if user have not set his preference and X509 isn't included
* in parsed result, send "unsupported certificate" alert.
* case 4) if user have set his preference, find a common cert type
* in users preference and received cert types.
* case 5) if user have set his preference, but no common cert type
* found.
*/
/* case 1 */
if (ssl->options.verifyNone) {
return ret;
}
/* parse extension */
if (length < OPAQUE8_LEN)
return BUFFER_E;
typeCnt = input[idx];
if (typeCnt > MAX_CLIENT_CERT_TYPE_CNT)
return BUFFER_E;
if ((typeCnt + 1) * OPAQUE8_LEN != length){
return BUFFER_E;
}
ssl->options.rpkState.received_ClientCertTypeCnt = input[idx];
idx += OPAQUE8_LEN;
for (i = 0; i < typeCnt; i++) {
ssl->options.rpkState.received_ClientCertTypes[i] = input[idx];
idx += OPAQUE8_LEN;
}
if (ssl->options.rpkConfig.preferred_ClientCertTypeCnt == 0) {
/* case 2 */
if (IsCertTypeListed(WOLFSSL_CERT_TYPE_X509,
ssl->options.rpkState.received_ClientCertTypeCnt,
ssl->options.rpkState.received_ClientCertTypes)) {
ssl->options.rpkState.sending_ClientCertTypeCnt = 1;
ssl->options.rpkState.sending_ClientCertTypes[0] =
WOLFSSL_CERT_TYPE_X509;
populate = 1;
}
/* case 3 */
else {
WOLFSSL_MSG("No common cert type found in client_certificate_type ext");
SendAlert(ssl, alert_fatal, unsupported_certificate);
return UNSUPPORTED_CERTIFICATE;
}
}
else if (ssl->options.rpkConfig.preferred_ClientCertTypeCnt > 0) {
/* case 4 */
if (GetCommonItem(
ssl->options.rpkConfig.preferred_ClientCertTypes,
ssl->options.rpkConfig.preferred_ClientCertTypeCnt,
ssl->options.rpkState.received_ClientCertTypes,
ssl->options.rpkState.received_ClientCertTypeCnt,
&cmnType)) {
ssl->options.rpkState.sending_ClientCertTypeCnt = 1;
ssl->options.rpkState.sending_ClientCertTypes[0] = cmnType;
populate = 1;
}
/* case 5 */
else {
WOLFSSL_MSG("No common cert type found in client_certificate_type ext");
SendAlert(ssl, alert_fatal, unsupported_certificate);
return UNSUPPORTED_CERTIFICATE;
}
}
/* populate client_certificate_type extension */
if (populate) {
WOLFSSL_MSG("Adding Client Certificate Type extension");
ret = TLSX_Push(&ssl->extensions, TLSX_CLIENT_CERTIFICATE_TYPE, ssl,
ssl->heap);
if (ret == 0) {
TLSX_SetResponse(ssl, TLSX_CLIENT_CERTIFICATE_TYPE);
}
}
}
else if (msgType == server_hello || msgType == encrypted_extensions) {
/* parse it in client side */
if (length == 1) {
ssl->options.rpkState.received_ClientCertTypeCnt = 1;
ssl->options.rpkState.received_ClientCertTypes[0] = *input;
}
else {
return BUFFER_E;
}
}
return ret;
}
/* Write out the "client certificate type" extension data into the given buffer.
* return the size wrote in the buffer on success, negative value on error.
*/
static word16 TLSX_ClientCertificateType_Write(void* data, byte* output,
byte msgType)
{
WOLFSSL* ssl = (WOLFSSL*)data;
word16 idx = 0;
byte cnt = 0;
int i;
/* skip to write extension if count is zero */
cnt = ssl->options.rpkState.sending_ClientCertTypeCnt;
if (cnt == 0)
return 0;
if (msgType == client_hello) {
/* client side */
*(output + idx) = cnt;
idx += OPAQUE8_LEN;
for (i = 0; i < cnt; i++) {
*(output + idx) = ssl->options.rpkState.sending_ClientCertTypes[i];
idx += OPAQUE8_LEN;
}
return idx;
}
else if (msgType == server_hello || msgType == encrypted_extensions) {
/* sever side */
if (cnt == 1) {
*(output + idx) = ssl->options.rpkState.sending_ClientCertTypes[0];
idx += OPAQUE8_LEN;
}
}
return idx;
}
/* Calculate then return the size of the "client certificate type" extension
* data.
* return the extension data size on success, negative value on error.
*/
static int TLSX_ClientCertificateType_GetSize(WOLFSSL* ssl, byte msgType)
{
int ret = 0;
byte cnt;
if (ssl == NULL)
return BAD_FUNC_ARG;
if (msgType == client_hello) {
/* client side */
cnt = ssl->options.rpkState.sending_ClientCertTypeCnt;
ret = (int)(OPAQUE8_LEN + cnt * OPAQUE8_LEN);
}
else if (msgType == server_hello || msgType == encrypted_extensions) {
/* server side */
cnt = ssl->options.rpkState.sending_ClientCertTypeCnt;/* must be one */
if (cnt != 1)
return SANITY_MSG_E;
ret = OPAQUE8_LEN;
}
else {
return SANITY_MSG_E;
}
return ret;
}
#define CCT_GET_SIZE TLSX_ClientCertificateType_GetSize
#define CCT_WRITE TLSX_ClientCertificateType_Write
#define CCT_PARSE TLSX_ClientCertificateType_Parse
#else
#define CCT_GET_SIZE(a) 0
#define CCT_WRITE(a, b) 0
#define CCT_PARSE(a, b, c, d) 0
#endif /* HAVE_RPK */
#if defined(HAVE_RPK)
/******************************************************************************/
/* Server_Certificate_Type extension */
/******************************************************************************/
/* Creates a "server certificate type" extension if necessary.
* Returns 0 if no error occurred, negative value otherwise.
* A return of 0, it does not indicae that the extension was created.
*/
static int TLSX_ServerCertificateType_Use(WOLFSSL* ssl, byte isServer)
{
int ret = 0;
byte ctype;
if (ssl == NULL)
return BAD_FUNC_ARG;
if (isServer) {
/* [in server side] */
/* find common cert type to both end */
if (GetCommonItem(
ssl->options.rpkConfig.preferred_ServerCertTypes,
ssl->options.rpkConfig.preferred_ServerCertTypeCnt,
ssl->options.rpkState.received_ServerCertTypes,
ssl->options.rpkState.received_ServerCertTypeCnt,
&ctype)) {
ssl->options.rpkState.sending_ServerCertTypeCnt = 1;
ssl->options.rpkState.sending_ServerCertTypes[0] = ctype;
/* Push new server_certificate_type extension. */
WOLFSSL_MSG("Adding Server Certificate Type extension");
ret = TLSX_Push(&ssl->extensions, TLSX_SERVER_CERTIFICATE_TYPE, ssl,
ssl->heap);
if (ret == 0) {
TLSX_SetResponse(ssl, TLSX_SERVER_CERTIFICATE_TYPE);
}
}
else {
/* no common cert type found */
WOLFSSL_MSG("No common cert type found in server_certificate_type ext");
SendAlert(ssl, alert_fatal, unsupported_certificate);
ret = UNSUPPORTED_CERTIFICATE;
}
}
else {
/* [in client side] */
if (IsCertTypeListed(WOLFSSL_CERT_TYPE_RPK,
ssl->options.rpkConfig.preferred_ServerCertTypeCnt,
ssl->options.rpkConfig.preferred_ServerCertTypes)) {
ssl->options.rpkState.sending_ServerCertTypeCnt =
ssl->options.rpkConfig.preferred_ServerCertTypeCnt;
XMEMCPY(ssl->options.rpkState.sending_ServerCertTypes,
ssl->options.rpkConfig.preferred_ServerCertTypes,
ssl->options.rpkConfig.preferred_ServerCertTypeCnt);
/* Push new server_certificate_type extension. */
WOLFSSL_MSG("Adding Server Certificate Type extension");
ret = TLSX_Push(&ssl->extensions, TLSX_SERVER_CERTIFICATE_TYPE, ssl,
ssl->heap);
}
else {
WOLFSSL_MSG("No will to accept RPK cert");
}
}
return ret;
}
/* Parse a "server certificate type" extension received from peer.
* returns 0 on success and other values indicate failure.
*/
static int TLSX_ServerCertificateType_Parse(WOLFSSL* ssl, const byte* input,
word16 length, byte msgType)
{
byte typeCnt;
int idx = 0;
int ret = 0;
int i;
if (msgType == client_hello) {
/* in server side */
if (length < OPAQUE8_LEN)
return BUFFER_E;
typeCnt = input[idx];
if (typeCnt > MAX_SERVER_CERT_TYPE_CNT)
return BUFFER_E;
if ((typeCnt + 1) * OPAQUE8_LEN != length){
return BUFFER_E;
}
ssl->options.rpkState.received_ServerCertTypeCnt = input[idx];
idx += OPAQUE8_LEN;
for (i = 0; i < typeCnt; i++) {
ssl->options.rpkState.received_ServerCertTypes[i] = input[idx];
idx += OPAQUE8_LEN;
}
ret = TLSX_ServerCertificateType_Use(ssl, 1);
if (ret == 0) {
TLSX_SetResponse(ssl, TLSX_SERVER_CERTIFICATE_TYPE);
}
}
else if (msgType == server_hello || msgType == encrypted_extensions) {
/* in client side */
if (length != 1) /* length slould be 1 */
return BUFFER_E;
ssl->options.rpkState.received_ServerCertTypeCnt = 1;
ssl->options.rpkState.received_ServerCertTypes[0] = *input;
}
return 0;
}
/* Write out the "server certificate type" extension data into the given buffer.
* return the size wrote in the buffer on success, negative value on error.
*/
static word16 TLSX_ServerCertificateType_Write(void* data, byte* output,
byte msgType)
{
WOLFSSL* ssl = (WOLFSSL*)data;
word16 idx = 0;
int cnt = 0;
int i;
/* skip to write extension if count is zero */
cnt = ssl->options.rpkState.sending_ServerCertTypeCnt;
if (cnt == 0)
return 0;
if (msgType == client_hello) {
/* in client side */
*(output + idx) = cnt;
idx += OPAQUE8_LEN;
for (i = 0; i < cnt; i++) {
*(output + idx) = ssl->options.rpkState.sending_ServerCertTypes[i];
idx += OPAQUE8_LEN;
}
}
else if (msgType == server_hello || msgType == encrypted_extensions) {
/* in server side */
/* ensure cnt is one */
if (cnt != 1)
return 0;
*(output + idx) = ssl->options.rpkState.sending_ServerCertTypes[0];
idx += OPAQUE8_LEN;
}
return idx;
}
/* Calculate then return the size of the "server certificate type" extension
* data.
* return the extension data size on success, negative value on error.
*/
static int TLSX_ServerCertificateType_GetSize(WOLFSSL* ssl, byte msgType)
{
int ret = 0;
int cnt;
if (ssl == NULL)
return BAD_FUNC_ARG;
if (msgType == client_hello) {
/* in clent side */
cnt = ssl->options.rpkState.sending_ServerCertTypeCnt;
if (cnt > 0) {
ret = (int)(OPAQUE8_LEN + cnt * OPAQUE8_LEN);
}
}
else if (msgType == server_hello || msgType == encrypted_extensions) {
/* in server side */
ret = (int)OPAQUE8_LEN;
}
else {
return SANITY_MSG_E;
}
return ret;
}
#define SCT_GET_SIZE TLSX_ServerCertificateType_GetSize
#define SCT_WRITE TLSX_ServerCertificateType_Write
#define SCT_PARSE TLSX_ServerCertificateType_Parse
#else
#define SCT_GET_SIZE(a) 0
#define SCT_WRITE(a, b) 0
#define SCT_PARSE(a, b, c, d) 0
#endif /* HAVE_RPK */
/******************************************************************************/
/* TLS Extensions Framework */
/******************************************************************************/
/** Finds an extension in the provided list. */
TLSX* TLSX_Find(TLSX* list, TLSX_Type type)
{
TLSX* extension = list;
while (extension && extension->type != type)
extension = extension->next;
return extension;
}
/** Remove an extension. */
void TLSX_Remove(TLSX** list, TLSX_Type type, void* heap)
{
TLSX* extension;
TLSX** next;
if (list == NULL)
return;
extension = *list;
next = list;
while (extension && extension->type != type) {
next = &extension->next;
extension = extension->next;
}
if (extension) {
*next = extension->next;
extension->next = NULL;
TLSX_FreeAll(extension, heap);
}
}
#if defined(WOLFSSL_TLS13) && defined(HAVE_ECH)
#define GREASE_ECH_SIZE 160
#define MAX_PUBLIC_NAME_SZ 256
#define TLS_INFO_CONST_STRING "tls ech"
#define TLS_INFO_CONST_STRING_SZ 7
/* return status after setting up ech to write a grease ech */
static int TLSX_GreaseECH_Use(TLSX** extensions, void* heap, WC_RNG* rng)
{
int ret = 0;
WOLFSSL_ECH* ech;
if (extensions == NULL)
return BAD_FUNC_ARG;
ech = (WOLFSSL_ECH*)XMALLOC(sizeof(WOLFSSL_ECH), heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (ech == NULL)
return MEMORY_E;
ForceZero(ech, sizeof(WOLFSSL_ECH));
ech->state = ECH_WRITE_GREASE;
/* 0 for outer */
ech->type = ECH_TYPE_OUTER;
/* kemId */
ech->kemId = DHKEM_X25519_HKDF_SHA256;
/* cipherSuite kdf */
ech->cipherSuite.kdfId = HKDF_SHA256;
/* cipherSuite aead */
ech->cipherSuite.aeadId = HPKE_AES_128_GCM;
/* random configId */
ret = wc_RNG_GenerateByte(rng, &(ech->configId));
/* curve25519 encLen */
ech->encLen = DHKEM_X25519_ENC_LEN;
if (ret == 0)
ret = TLSX_Push(extensions, TLSX_ECH, ech, heap);
if (ret != 0) {
XFREE(ech, heap, DYNAMIC_TYPE_TMP_BUFFER);
}
return ret;
}
/* return status after setting up ech to write real ech */
static int TLSX_ECH_Use(WOLFSSL_EchConfig* echConfig, TLSX** extensions,
void* heap, WC_RNG* rng)
{
int ret = 0;
int suiteIndex;
TLSX* echX;
WOLFSSL_ECH* ech;
if (extensions == NULL)
return BAD_FUNC_ARG;
/* skip if we already have an ech extension, we will for hrr */
echX = TLSX_Find(*extensions, TLSX_ECH);
if (echX != NULL)
return 0;
/* find a supported cipher suite */
suiteIndex = EchConfigGetSupportedCipherSuite(echConfig);
if (suiteIndex < 0)
return suiteIndex;
ech = (WOLFSSL_ECH*)XMALLOC(sizeof(WOLFSSL_ECH), heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (ech == NULL)
return MEMORY_E;
ForceZero(ech, sizeof(WOLFSSL_ECH));
ech->state = ECH_WRITE_REAL;
ech->echConfig = echConfig;
/* 0 for outer */
ech->type = ECH_TYPE_OUTER;
/* kemId */
ech->kemId = echConfig->kemId;
/* cipherSuite kdf */
ech->cipherSuite.kdfId = echConfig->cipherSuites[suiteIndex].kdfId;
/* cipherSuite aead */
ech->cipherSuite.aeadId = echConfig->cipherSuites[suiteIndex].aeadId;
/* configId */
ech->configId = echConfig->configId;
/* encLen */
switch (echConfig->kemId)
{
case DHKEM_P256_HKDF_SHA256:
ech->encLen = DHKEM_P256_ENC_LEN;
break;
case DHKEM_P384_HKDF_SHA384:
ech->encLen = DHKEM_P384_ENC_LEN;
break;
case DHKEM_P521_HKDF_SHA512:
ech->encLen = DHKEM_P521_ENC_LEN;
break;
case DHKEM_X25519_HKDF_SHA256:
ech->encLen = DHKEM_X25519_ENC_LEN;
break;
case DHKEM_X448_HKDF_SHA512:
ech->encLen = DHKEM_X448_ENC_LEN;
break;
}
/* setup hpke */
ech->hpke = (Hpke*)XMALLOC(sizeof(Hpke), heap, DYNAMIC_TYPE_TMP_BUFFER);
if (ech->hpke == NULL) {
XFREE(ech, heap, DYNAMIC_TYPE_TMP_BUFFER);
return MEMORY_E;
}
ret = wc_HpkeInit(ech->hpke, ech->kemId, ech->cipherSuite.kdfId,
ech->cipherSuite.aeadId, heap);
/* setup the ephemeralKey */
if (ret == 0)
ret = wc_HpkeGenerateKeyPair(ech->hpke, &ech->ephemeralKey, rng);
if (ret == 0)
ret = TLSX_Push(extensions, TLSX_ECH, ech, heap);
if (ret != 0) {
XFREE(ech->hpke, heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(ech, heap, DYNAMIC_TYPE_TMP_BUFFER);
}
return ret;
}
/* return status after setting up ech to read and decrypt */
static int TLSX_ServerECH_Use(TLSX** extensions, void* heap,
WOLFSSL_EchConfig* configs)
{
int ret;
WOLFSSL_ECH* ech;
TLSX* echX;
if (extensions == NULL)
return BAD_FUNC_ARG;
/* if we already have ech don't override it */
echX = TLSX_Find(*extensions, TLSX_ECH);
if (echX != NULL)
return 0;
ech = (WOLFSSL_ECH*)XMALLOC(sizeof(WOLFSSL_ECH), heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (ech == NULL)
return MEMORY_E;
ForceZero(ech, sizeof(WOLFSSL_ECH));
ech->state = ECH_WRITE_NONE;
/* 0 for outer */
ech->type = ECH_TYPE_OUTER;
ech->echConfig = configs;
/* setup the rest of the settings when we receive ech from the client */
ret = TLSX_Push(extensions, TLSX_ECH, ech, heap);
if (ret != 0)
XFREE(ech, heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
/* return status after writing the ech and updating offset */
static int TLSX_ECH_Write(WOLFSSL_ECH* ech, byte msgType, byte* writeBuf,
word16* offset)
{
int ret = 0;
int rngRet = -1;
word32 configsLen = 0;
void* ephemeralKey = NULL;
byte* writeBuf_p = writeBuf;
#ifdef WOLFSSL_SMALL_STACK
Hpke* hpke = NULL;
WC_RNG* rng = NULL;
#else
Hpke hpke[1];
WC_RNG rng[1];
#endif
WOLFSSL_MSG("TLSX_ECH_Write");
if (msgType == hello_retry_request) {
/* reserve space to write the confirmation to */
*offset += ECH_ACCEPT_CONFIRMATION_SZ;
/* set confBuf */
ech->confBuf = writeBuf;
return 0;
}
if (ech->state == ECH_WRITE_NONE || ech->state == ECH_PARSED_INTERNAL)
return 0;
if (ech->state == ECH_WRITE_RETRY_CONFIGS) {
/* get size then write */
ret = GetEchConfigsEx(ech->echConfig, NULL, &configsLen);
if (ret != WC_NO_ERR_TRACE(LENGTH_ONLY_E))
return ret;
ret = GetEchConfigsEx(ech->echConfig, writeBuf, &configsLen);
if (ret != WOLFSSL_SUCCESS)
return ret;
*offset += configsLen;
return 0;
}
/* type */
*writeBuf_p = ech->type;
writeBuf_p += sizeof(ech->type);
/* outer has body, inner does not */
if (ech->type == ECH_TYPE_OUTER) {
/* kdfId */
c16toa(ech->cipherSuite.kdfId, writeBuf_p);
writeBuf_p += sizeof(ech->cipherSuite.kdfId);
/* aeadId */
c16toa(ech->cipherSuite.aeadId, writeBuf_p);
writeBuf_p += sizeof(ech->cipherSuite.aeadId);
/* configId */
*writeBuf_p = ech->configId;
writeBuf_p += sizeof(ech->configId);
/* encLen */
if (ech->hpkeContext == NULL) {
c16toa(ech->encLen, writeBuf_p);
}
else {
/* set to 0 if this is clientInner 2 */
c16toa(0, writeBuf_p);
}
writeBuf_p += 2;
if (ech->state == ECH_WRITE_GREASE) {
#ifdef WOLFSSL_SMALL_STACK
hpke = (Hpke*)XMALLOC(sizeof(Hpke), NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (hpke == NULL)
return MEMORY_E;
rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (rng == NULL) {
XFREE(hpke, NULL, DYNAMIC_TYPE_RNG);
return MEMORY_E;
}
#endif
/* hpke init */
ret = wc_HpkeInit(hpke, ech->kemId, ech->cipherSuite.kdfId,
ech->cipherSuite.aeadId, NULL);
if (ret == 0)
rngRet = ret = wc_InitRng(rng);
/* create the ephemeralKey */
if (ret == 0)
ret = wc_HpkeGenerateKeyPair(hpke, &ephemeralKey, rng);
/* enc */
if (ret == 0) {
ret = wc_HpkeSerializePublicKey(hpke, ephemeralKey, writeBuf_p,
&ech->encLen);
writeBuf_p += ech->encLen;
}
if (ret == 0) {
/* innerClientHelloLen */
c16toa(GREASE_ECH_SIZE + ((writeBuf_p + 2 - writeBuf) % 32),
writeBuf_p);
writeBuf_p += 2;
/* innerClientHello */
ret = wc_RNG_GenerateBlock(rng, writeBuf_p, GREASE_ECH_SIZE +
((writeBuf_p - writeBuf) % 32));
writeBuf_p += GREASE_ECH_SIZE + ((writeBuf_p - writeBuf) % 32);
}
if (rngRet == 0)
wc_FreeRng(rng);
if (ephemeralKey != NULL)
wc_HpkeFreeKey(hpke, hpke->kem, ephemeralKey, hpke->heap);
WC_FREE_VAR_EX(hpke, NULL, DYNAMIC_TYPE_TMP_BUFFER);
WC_FREE_VAR_EX(rng, NULL, DYNAMIC_TYPE_RNG);
}
else {
/* only write enc if this is our first ech, no hpke context */
if (ech->hpkeContext == NULL) {
/* write enc to writeBuf_p */
ret = wc_HpkeSerializePublicKey(ech->hpke, ech->ephemeralKey,
writeBuf_p, &ech->encLen);
writeBuf_p += ech->encLen;
}
/* innerClientHelloLen */
c16toa(ech->innerClientHelloLen, writeBuf_p);
writeBuf_p += 2;
/* set payload offset for when we finalize */
ech->outerClientPayload = writeBuf_p;
/* write zeros for payload */
XMEMSET(writeBuf_p, 0, ech->innerClientHelloLen);
writeBuf_p += ech->innerClientHelloLen;
}
}
if (ret == 0)
*offset += (writeBuf_p - writeBuf);
return ret;
}
/* return the size needed for the ech extension */
static int TLSX_ECH_GetSize(WOLFSSL_ECH* ech, byte msgType)
{
int ret;
word32 size = 0;
if (ech->state == ECH_WRITE_GREASE) {
size = sizeof(ech->type) + sizeof(ech->cipherSuite) +
sizeof(ech->configId) + sizeof(word16) + ech->encLen +
sizeof(word16);
size += GREASE_ECH_SIZE + (size % 32);
}
else if (msgType == hello_retry_request) {
size = ECH_ACCEPT_CONFIRMATION_SZ;
}
else if (ech->state == ECH_WRITE_NONE ||
ech->state == ECH_PARSED_INTERNAL) {
size = 0;
}
else if (ech->state == ECH_WRITE_RETRY_CONFIGS) {
/* get the size of the raw configs */
ret = GetEchConfigsEx(ech->echConfig, NULL, &size);
if (ret != WC_NO_ERR_TRACE(LENGTH_ONLY_E))
return ret;
}
else if (ech->type == ECH_TYPE_INNER)
{
size = sizeof(ech->type);
}
else
{
size = sizeof(ech->type) + sizeof(ech->cipherSuite) +
sizeof(ech->configId) + sizeof(word16) + sizeof(word16) +
ech->innerClientHelloLen;
/* only set encLen if this is inner hello 1 */
if (ech->hpkeContext == NULL)
size += ech->encLen;
}
return (int)size;
}
/* return status after attempting to open the hpke encrypted ech extension, if
* successful the inner client hello will be stored in
* ech->innerClientHelloLen */
static int TLSX_ExtractEch(WOLFSSL_ECH* ech, WOLFSSL_EchConfig* echConfig,
byte* aad, word32 aadLen, void* heap)
{
int ret = 0;
int expectedEncLen;
int i;
word32 rawConfigLen = 0;
byte* info = NULL;
word32 infoLen = 0;
if (ech == NULL || echConfig == NULL || aad == NULL)
return BAD_FUNC_ARG;
/* verify the kem and key len */
switch (echConfig->kemId)
{
case DHKEM_P256_HKDF_SHA256:
expectedEncLen = DHKEM_P256_ENC_LEN;
break;
case DHKEM_P384_HKDF_SHA384:
expectedEncLen = DHKEM_P384_ENC_LEN;
break;
case DHKEM_P521_HKDF_SHA512:
expectedEncLen = DHKEM_P521_ENC_LEN;
break;
case DHKEM_X25519_HKDF_SHA256:
expectedEncLen = DHKEM_X25519_ENC_LEN;
break;
case DHKEM_X448_HKDF_SHA512:
expectedEncLen = DHKEM_X448_ENC_LEN;
break;
default:
expectedEncLen = 0;
break;
}
if (expectedEncLen != ech->encLen)
return BAD_FUNC_ARG;
/* verify the cipher suite */
for (i = 0; i < echConfig->numCipherSuites; i++) {
if (echConfig->cipherSuites[i].kdfId == ech->cipherSuite.kdfId &&
echConfig->cipherSuites[i].aeadId == ech->cipherSuite.aeadId) {
break;
}
}
if (i >= echConfig->numCipherSuites) {
return BAD_FUNC_ARG;
}
/* check if hpke already exists, may if HelloRetryRequest */
if (ech->hpke == NULL) {
ech->hpke = (Hpke*)XMALLOC(sizeof(Hpke), heap, DYNAMIC_TYPE_TMP_BUFFER);
if (ech->hpke == NULL)
ret = MEMORY_E;
/* init the hpke struct */
if (ret == 0) {
ret = wc_HpkeInit(ech->hpke, echConfig->kemId,
ech->cipherSuite.kdfId, ech->cipherSuite.aeadId, heap);
}
if (ret == 0) {
/* allocate hpkeContext */
ech->hpkeContext =
(HpkeBaseContext*)XMALLOC(sizeof(HpkeBaseContext),
ech->hpke->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (ech->hpkeContext == NULL)
ret = MEMORY_E;
}
/* get the rawConfigLen */
if (ret == 0)
ret = GetEchConfig(echConfig, NULL, &rawConfigLen);
if (ret == WC_NO_ERR_TRACE(LENGTH_ONLY_E))
ret = 0;
/* create info */
if (ret == 0) {
infoLen = TLS_INFO_CONST_STRING_SZ + 1 + rawConfigLen;
info = (byte*)XMALLOC(infoLen, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (info == NULL)
ret = MEMORY_E;
else {
XMEMCPY(info, (byte*)TLS_INFO_CONST_STRING,
TLS_INFO_CONST_STRING_SZ + 1);
ret = GetEchConfig(echConfig, info +
TLS_INFO_CONST_STRING_SZ + 1, &rawConfigLen);
}
}
/* init the context for opening */
if (ret == 0) {
ret = wc_HpkeInitOpenContext(ech->hpke, ech->hpkeContext,
echConfig->receiverPrivkey, ech->enc, ech->encLen, info,
infoLen);
}
}
/* decrypt the ech payload */
if (ret == 0) {
ret = wc_HpkeContextOpenBase(ech->hpke, ech->hpkeContext, aad, aadLen,
ech->outerClientPayload, ech->innerClientHelloLen,
ech->innerClientHello + HANDSHAKE_HEADER_SZ);
}
/* free the hpke and context on failure */
if (ret != 0) {
XFREE(ech->hpke, heap, DYNAMIC_TYPE_TMP_BUFFER);
ech->hpke = NULL;
XFREE(ech->hpkeContext, heap, DYNAMIC_TYPE_TMP_BUFFER);
ech->hpkeContext = NULL;
}
if (info != NULL)
XFREE(info, heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
/* parse the ech extension, if internal update ech->state and return, if
* external attempt to extract the inner client_hello, return the status */
static int TLSX_ECH_Parse(WOLFSSL* ssl, const byte* readBuf, word16 size,
byte msgType)
{
int ret = 0;
int i;
TLSX* echX;
WOLFSSL_ECH* ech;
WOLFSSL_EchConfig* echConfig;
byte* aadCopy;
byte* readBuf_p = (byte*)readBuf;
WOLFSSL_MSG("TLSX_ECH_Parse");
if (size == 0)
return BAD_FUNC_ARG;
if (ssl->options.disableECH) {
WOLFSSL_MSG("TLSX_ECH_Parse: ECH disabled. Ignoring.");
return 0;
}
/* retry configs */
if (msgType == encrypted_extensions) {
ret = wolfSSL_SetEchConfigs(ssl, readBuf, size);
if (ret == WOLFSSL_SUCCESS)
ret = 0;
}
/* HRR with special confirmation */
else if (msgType == hello_retry_request && ssl->options.useEch) {
/* length must be 8 */
if (size != ECH_ACCEPT_CONFIRMATION_SZ)
return BAD_FUNC_ARG;
/* get extension */
echX = TLSX_Find(ssl->extensions, TLSX_ECH);
if (echX == NULL)
return BAD_FUNC_ARG;
ech = (WOLFSSL_ECH*)echX->data;
ech->confBuf = (byte*)readBuf;
}
else if (msgType == client_hello && ssl->ctx->echConfigs != NULL) {
/* get extension */
echX = TLSX_Find(ssl->extensions, TLSX_ECH);
if (echX == NULL)
return BAD_FUNC_ARG;
ech = (WOLFSSL_ECH*)echX->data;
/* read the ech parameters before the payload */
ech->type = *readBuf_p;
readBuf_p++;
if (ech->type == ECH_TYPE_INNER) {
ech->state = ECH_PARSED_INTERNAL;
return 0;
}
/* technically the payload would only be 1 byte at this length */
if (size < 11 + ech->encLen)
return BAD_FUNC_ARG;
/* read kdfId */
ato16(readBuf_p, &ech->cipherSuite.kdfId);
readBuf_p += 2;
/* read aeadId */
ato16(readBuf_p, &ech->cipherSuite.aeadId);
readBuf_p += 2;
/* read configId */
ech->configId = *readBuf_p;
readBuf_p++;
/* only get enc if we don't already have the hpke context */
if (ech->hpkeContext == NULL) {
/* read encLen */
ato16(readBuf_p, &ech->encLen);
readBuf_p += 2;
if (ech->encLen > HPKE_Npk_MAX)
return BAD_FUNC_ARG;
/* read enc */
XMEMCPY(ech->enc, readBuf_p, ech->encLen);
readBuf_p += ech->encLen;
}
else {
readBuf_p += 2;
}
/* read hello inner len */
ato16(readBuf_p, &ech->innerClientHelloLen);
ech->innerClientHelloLen -= WC_AES_BLOCK_SIZE;
readBuf_p += 2;
ech->outerClientPayload = readBuf_p;
/* make a copy of the aad */
aadCopy = (byte*)XMALLOC(ech->aadLen, ssl->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (aadCopy == NULL)
return MEMORY_E;
XMEMCPY(aadCopy, ech->aad, ech->aadLen);
/* set the ech payload of the copy to zeros */
XMEMSET(aadCopy + (readBuf_p - ech->aad), 0,
ech->innerClientHelloLen + WC_AES_BLOCK_SIZE);
/* free the old ech in case this is our second client hello */
if (ech->innerClientHello != NULL)
XFREE(ech->innerClientHello, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
/* allocate the inner payload buffer */
ech->innerClientHello =
(byte*)XMALLOC(ech->innerClientHelloLen + HANDSHAKE_HEADER_SZ,
ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (ech->innerClientHello == NULL) {
XFREE(aadCopy, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
return MEMORY_E;
}
/* first check if the config id matches */
echConfig = ssl->ctx->echConfigs;
while (echConfig != NULL) {
/* decrypt with this config */
if (echConfig->configId == ech->configId) {
ret = TLSX_ExtractEch(ech, echConfig, aadCopy, ech->aadLen,
ssl->heap);
break;
}
echConfig = echConfig->next;
}
/* try to decrypt with all configs */
if (echConfig == NULL || ret != 0) {
echConfig = ssl->ctx->echConfigs;
while (echConfig != NULL) {
ret = TLSX_ExtractEch(ech, echConfig, aadCopy, ech->aadLen,
ssl->heap);
if (ret== 0)
break;
echConfig = echConfig->next;
}
}
/* if we failed to extract, set state to retry configs */
if (ret != 0) {
XFREE(ech->innerClientHello, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
ech->innerClientHello = NULL;
ech->state = ECH_WRITE_RETRY_CONFIGS;
}
else {
i = 0;
/* decrement until before the padding */
while (ech->innerClientHello[ech->innerClientHelloLen +
HANDSHAKE_HEADER_SZ - i - 1] != ECH_TYPE_INNER) {
i++;
}
/* subtract the length of the padding from the length */
ech->innerClientHelloLen -= i;
}
XFREE(aadCopy, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
return 0;
}
return ret;
}
/* free the ech struct and the dynamic buffer it uses */
static void TLSX_ECH_Free(WOLFSSL_ECH* ech, void* heap)
{
XFREE(ech->innerClientHello, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (ech->ephemeralKey != NULL)
wc_HpkeFreeKey(ech->hpke, ech->hpke->kem, ech->ephemeralKey,
ech->hpke->heap);
if (ech->hpke != NULL)
XFREE(ech->hpke, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (ech->hpkeContext != NULL)
XFREE(ech->hpkeContext, heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(ech, heap, DYNAMIC_TYPE_TMP_BUFFER);
(void)heap;
}
/* encrypt the client hello and store it in ech->outerClientPayload, return
* status */
int TLSX_FinalizeEch(WOLFSSL_ECH* ech, byte* aad, word32 aadLen)
{
int ret = 0;
void* receiverPubkey = NULL;
byte* info = NULL;
int infoLen = 0;
byte* aadCopy = NULL;
/* setup hpke context to seal, should be done at most once per connection */
if (ech->hpkeContext == NULL) {
/* import the server public key */
ret = wc_HpkeDeserializePublicKey(ech->hpke, &receiverPubkey,
ech->echConfig->receiverPubkey, ech->encLen);
if (ret == 0) {
/* allocate hpke context */
ech->hpkeContext =
(HpkeBaseContext*)XMALLOC(sizeof(HpkeBaseContext),
ech->hpke->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (ech->hpkeContext == NULL)
ret = MEMORY_E;
}
if (ret == 0) {
/* create info */
infoLen = TLS_INFO_CONST_STRING_SZ + 1 + ech->echConfig->rawLen;
info = (byte*)XMALLOC(infoLen, ech->hpke->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (info == NULL)
ret = MEMORY_E;
}
if (ret == 0) {
/* puts the null byte in for me */
XMEMCPY(info, (byte*)TLS_INFO_CONST_STRING,
TLS_INFO_CONST_STRING_SZ + 1);
XMEMCPY(info + TLS_INFO_CONST_STRING_SZ + 1,
ech->echConfig->raw, ech->echConfig->rawLen);
/* init the context for seal with info and keys */
ret = wc_HpkeInitSealContext(ech->hpke, ech->hpkeContext,
ech->ephemeralKey, receiverPubkey, info, infoLen);
}
}
if (ret == 0) {
/* make a copy of the aad since we overwrite it */
aadCopy = (byte*)XMALLOC(aadLen, ech->hpke->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (aadCopy == NULL) {
ret = MEMORY_E;
}
}
if (ret == 0) {
XMEMCPY(aadCopy, aad, aadLen);
/* seal the payload with context */
ret = wc_HpkeContextSealBase(ech->hpke, ech->hpkeContext, aadCopy,
aadLen, ech->innerClientHello,
ech->innerClientHelloLen - ech->hpke->Nt, ech->outerClientPayload);
}
if (info != NULL)
XFREE(info, ech->hpke->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (aadCopy != NULL)
XFREE(aadCopy, ech->hpke->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (receiverPubkey != NULL)
wc_HpkeFreeKey(ech->hpke, ech->hpke->kem, receiverPubkey,
ech->hpke->heap);
return ret;
}
#define GREASE_ECH_USE TLSX_GreaseECH_Use
#define ECH_USE TLSX_ECH_Use
#define SERVER_ECH_USE TLSX_ServerECH_Use
#define ECH_WRITE TLSX_ECH_Write
#define ECH_GET_SIZE TLSX_ECH_GetSize
#define ECH_PARSE TLSX_ECH_Parse
#define ECH_FREE TLSX_ECH_Free
#endif
/** Releases all extensions in the provided list. */
void TLSX_FreeAll(TLSX* list, void* heap)
{
TLSX* extension;
while ((extension = list)) {
list = extension->next;
switch (extension->type) {
#if defined(HAVE_RPK)
case TLSX_CLIENT_CERTIFICATE_TYPE:
WOLFSSL_MSG("Client Certificate Type extension free");
/* nothing to do */
break;
case TLSX_SERVER_CERTIFICATE_TYPE:
WOLFSSL_MSG("Server Certificate Type extension free");
/* nothing to do */
break;
#endif
#ifdef HAVE_SNI
case TLSX_SERVER_NAME:
WOLFSSL_MSG("SNI extension free");
SNI_FREE_ALL((SNI*)extension->data, heap);
break;
#endif
case TLSX_TRUSTED_CA_KEYS:
WOLFSSL_MSG("Trusted CA Indication extension free");
TCA_FREE_ALL((TCA*)extension->data, heap);
break;
case TLSX_MAX_FRAGMENT_LENGTH:
WOLFSSL_MSG("Max Fragment Length extension free");
MFL_FREE_ALL(extension->data, heap);
break;
case TLSX_EXTENDED_MASTER_SECRET:
WOLFSSL_MSG("Extended Master Secret free");
/* Nothing to do. */
break;
case TLSX_TRUNCATED_HMAC:
WOLFSSL_MSG("Truncated HMAC extension free");
/* Nothing to do. */
break;
case TLSX_SUPPORTED_GROUPS:
WOLFSSL_MSG("Supported Groups extension free");
EC_FREE_ALL((SupportedCurve*)extension->data, heap);
break;
case TLSX_EC_POINT_FORMATS:
WOLFSSL_MSG("Point Formats extension free");
PF_FREE_ALL((PointFormat*)extension->data, heap);
break;
case TLSX_STATUS_REQUEST:
WOLFSSL_MSG("Certificate Status Request extension free");
CSR_FREE_ALL((CertificateStatusRequest*)extension->data, heap);
break;
case TLSX_STATUS_REQUEST_V2:
WOLFSSL_MSG("Certificate Status Request v2 extension free");
CSR2_FREE_ALL((CertificateStatusRequestItemV2*)extension->data,
heap);
break;
case TLSX_RENEGOTIATION_INFO:
WOLFSSL_MSG("Secure Renegotiation extension free");
SCR_FREE_ALL(extension->data, heap);
break;
case TLSX_SESSION_TICKET:
WOLFSSL_MSG("Session Ticket extension free");
WOLF_STK_FREE(extension->data, heap);
break;
case TLSX_APPLICATION_LAYER_PROTOCOL:
WOLFSSL_MSG("ALPN extension free");
ALPN_FREE_ALL((ALPN*)extension->data, heap);
break;
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_SIGALG)
case TLSX_SIGNATURE_ALGORITHMS:
WOLFSSL_MSG("Signature Algorithms extension to free");
SA_FREE_ALL((SignatureAlgorithms*)extension->data, heap);
break;
#endif
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
case TLSX_ENCRYPT_THEN_MAC:
WOLFSSL_MSG("Encrypt-Then-Mac extension free");
break;
#endif
#if defined(WOLFSSL_TLS13) || !defined(WOLFSSL_NO_TLS12) || !defined(NO_OLD_TLS)
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
case TLSX_PRE_SHARED_KEY:
WOLFSSL_MSG("Pre-Shared Key extension free");
PSK_FREE_ALL((PreSharedKey*)extension->data, heap);
break;
#ifdef WOLFSSL_TLS13
case TLSX_PSK_KEY_EXCHANGE_MODES:
WOLFSSL_MSG("PSK Key Exchange Modes extension free");
break;
#endif
#endif
case TLSX_KEY_SHARE:
WOLFSSL_MSG("Key Share extension free");
KS_FREE_ALL((KeyShareEntry*)extension->data, heap);
break;
#endif
#ifdef WOLFSSL_TLS13
case TLSX_SUPPORTED_VERSIONS:
WOLFSSL_MSG("Supported Versions extension free");
break;
#ifdef WOLFSSL_SEND_HRR_COOKIE
case TLSX_COOKIE:
WOLFSSL_MSG("Cookie extension free");
CKE_FREE_ALL((Cookie*)extension->data, heap);
break;
#endif
#ifdef WOLFSSL_EARLY_DATA
case TLSX_EARLY_DATA:
WOLFSSL_MSG("Early Data extension free");
break;
#endif
#ifdef WOLFSSL_POST_HANDSHAKE_AUTH
case TLSX_POST_HANDSHAKE_AUTH:
WOLFSSL_MSG("Post-Handshake Authentication extension free");
break;
#endif
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_SIGALG)
case TLSX_SIGNATURE_ALGORITHMS_CERT:
WOLFSSL_MSG("Signature Algorithms extension free");
break;
#endif
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CA_NAMES)
case TLSX_CERTIFICATE_AUTHORITIES:
WOLFSSL_MSG("Certificate Authorities extension free");
break;
#endif
#endif
#ifdef WOLFSSL_SRTP
case TLSX_USE_SRTP:
WOLFSSL_MSG("SRTP extension free");
SRTP_FREE((TlsxSrtp*)extension->data, heap);
break;
#endif
#ifdef WOLFSSL_QUIC
case TLSX_KEY_QUIC_TP_PARAMS:
FALL_THROUGH;
case TLSX_KEY_QUIC_TP_PARAMS_DRAFT:
WOLFSSL_MSG("QUIC transport parameter free");
QTP_FREE((QuicTransportParam*)extension->data, heap);
break;
#endif
#ifdef WOLFSSL_DTLS_CID
case TLSX_CONNECTION_ID:
WOLFSSL_MSG("Connection ID extension free");
CID_FREE((byte*)extension->data, heap);
break;
#endif /* WOLFSSL_DTLS_CID */
#if defined(WOLFSSL_TLS13) && defined(HAVE_ECH)
case TLSX_ECH:
WOLFSSL_MSG("ECH extension free");
ECH_FREE((WOLFSSL_ECH*)extension->data, heap);
break;
#endif
#ifdef WOLFSSL_DUAL_ALG_CERTS
case TLSX_CKS:
WOLFSSL_MSG("CKS extension free");
/* nothing to do */
break;
#endif
default:
break;
}
XFREE(extension, heap, DYNAMIC_TYPE_TLSX);
}
(void)heap;
}
/** Checks if the tls extensions are supported based on the protocol version. */
int TLSX_SupportExtensions(WOLFSSL* ssl) {
return ssl && (IsTLS(ssl) || ssl->version.major == DTLS_MAJOR);
}
/** Tells the buffered size of the extensions in a list. */
static int TLSX_GetSize(TLSX* list, byte* semaphore, byte msgType,
word16* pLength)
{
int ret = 0;
TLSX* extension;
word16 length = 0;
byte isRequest = (msgType == client_hello ||
msgType == certificate_request);
while ((extension = list)) {
list = extension->next;
/* only extensions marked as response are sent back to the client. */
if (!isRequest && !extension->resp)
continue; /* skip! */
/* ssl level extensions are expected to override ctx level ones. */
if (!IS_OFF(semaphore, TLSX_ToSemaphore((word16)extension->type)))
continue; /* skip! */
/* extension type + extension data length. */
length += HELLO_EXT_TYPE_SZ + OPAQUE16_LEN;
switch (extension->type) {
#ifdef WOLFSSL_DUAL_ALG_CERTS
case TLSX_CKS:
length += ((WOLFSSL*)extension->data)->sigSpecSz ;
break;
#endif
#ifdef HAVE_SNI
case TLSX_SERVER_NAME:
/* SNI only sends the name on the request. */
if (isRequest)
length += SNI_GET_SIZE((SNI*)extension->data);
break;
#endif
case TLSX_TRUSTED_CA_KEYS:
/* TCA only sends the list on the request. */
if (isRequest)
length += TCA_GET_SIZE((TCA*)extension->data);
break;
case TLSX_MAX_FRAGMENT_LENGTH:
length += MFL_GET_SIZE(extension->data);
break;
case TLSX_EXTENDED_MASTER_SECRET:
case TLSX_TRUNCATED_HMAC:
/* always empty. */
break;
case TLSX_SUPPORTED_GROUPS:
length += EC_GET_SIZE((SupportedCurve*)extension->data);
break;
case TLSX_EC_POINT_FORMATS:
length += PF_GET_SIZE((PointFormat*)extension->data);
break;
case TLSX_STATUS_REQUEST:
length += CSR_GET_SIZE(
(CertificateStatusRequest*)extension->data, isRequest);
break;
case TLSX_STATUS_REQUEST_V2:
length += CSR2_GET_SIZE(
(CertificateStatusRequestItemV2*)extension->data,
isRequest);
break;
case TLSX_RENEGOTIATION_INFO:
length += SCR_GET_SIZE((SecureRenegotiation*)extension->data,
isRequest);
break;
case TLSX_SESSION_TICKET:
length += WOLF_STK_GET_SIZE((SessionTicket*)extension->data,
isRequest);
break;
case TLSX_APPLICATION_LAYER_PROTOCOL:
length += ALPN_GET_SIZE((ALPN*)extension->data);
break;
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_SIGALG)
case TLSX_SIGNATURE_ALGORITHMS:
length += SA_GET_SIZE(extension->data);
break;
#endif
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
case TLSX_ENCRYPT_THEN_MAC:
ret = ETM_GET_SIZE(msgType, &length);
break;
#endif /* HAVE_ENCRYPT_THEN_MAC */
#if defined(WOLFSSL_TLS13) || !defined(WOLFSSL_NO_TLS12) || !defined(NO_OLD_TLS)
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
case TLSX_PRE_SHARED_KEY:
ret = PSK_GET_SIZE((PreSharedKey*)extension->data, msgType,
&length);
break;
#ifdef WOLFSSL_TLS13
case TLSX_PSK_KEY_EXCHANGE_MODES:
ret = PKM_GET_SIZE((byte)extension->val, msgType, &length);
break;
#endif
#endif
case TLSX_KEY_SHARE:
length += KS_GET_SIZE((KeyShareEntry*)extension->data, msgType);
break;
#endif
#ifdef WOLFSSL_TLS13
case TLSX_SUPPORTED_VERSIONS:
ret = SV_GET_SIZE(extension->data, msgType, &length);
break;
#ifdef WOLFSSL_SEND_HRR_COOKIE
case TLSX_COOKIE:
ret = CKE_GET_SIZE((Cookie*)extension->data, msgType, &length);
break;
#endif
#ifdef WOLFSSL_EARLY_DATA
case TLSX_EARLY_DATA:
ret = EDI_GET_SIZE(msgType, &length);
break;
#endif
#ifdef WOLFSSL_POST_HANDSHAKE_AUTH
case TLSX_POST_HANDSHAKE_AUTH:
ret = PHA_GET_SIZE(msgType, &length);
break;
#endif
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_SIGALG)
case TLSX_SIGNATURE_ALGORITHMS_CERT:
length += SAC_GET_SIZE(extension->data);
break;
#endif
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CA_NAMES)
case TLSX_CERTIFICATE_AUTHORITIES:
length += CAN_GET_SIZE(extension->data);
break;
#endif
#endif
#ifdef WOLFSSL_SRTP
case TLSX_USE_SRTP:
length += SRTP_GET_SIZE((TlsxSrtp*)extension->data);
break;
#endif
#ifdef HAVE_RPK
case TLSX_CLIENT_CERTIFICATE_TYPE:
length += CCT_GET_SIZE((WOLFSSL*)extension->data, msgType);
break;
case TLSX_SERVER_CERTIFICATE_TYPE:
length += SCT_GET_SIZE((WOLFSSL*)extension->data, msgType);
break;
#endif /* HAVE_RPK */
#ifdef WOLFSSL_QUIC
case TLSX_KEY_QUIC_TP_PARAMS:
FALL_THROUGH; /* followed by */
case TLSX_KEY_QUIC_TP_PARAMS_DRAFT:
length += QTP_GET_SIZE(extension);
break;
#endif
#ifdef WOLFSSL_DTLS_CID
case TLSX_CONNECTION_ID:
length += CID_GET_SIZE((byte*)extension->data);
break;
#endif /* WOLFSSL_DTLS_CID */
#if defined(WOLFSSL_TLS13) && defined(HAVE_ECH)
case TLSX_ECH:
length += ECH_GET_SIZE((WOLFSSL_ECH*)extension->data, msgType);
break;
#endif
default:
break;
}
/* marks the extension as processed so ctx level */
/* extensions don't overlap with ssl level ones. */
TURN_ON(semaphore, TLSX_ToSemaphore((word16)extension->type));
}
*pLength += length;
return ret;
}
/** Writes the extensions of a list in a buffer. */
static int TLSX_Write(TLSX* list, byte* output, byte* semaphore,
byte msgType, word16* pOffset)
{
int ret = 0;
TLSX* extension;
word16 offset = 0;
word16 length_offset = 0;
byte isRequest = (msgType == client_hello ||
msgType == certificate_request);
while ((extension = list)) {
list = extension->next;
/* only extensions marked as response are written in a response. */
if (!isRequest && !extension->resp)
continue; /* skip! */
/* ssl level extensions are expected to override ctx level ones. */
if (!IS_OFF(semaphore, TLSX_ToSemaphore((word16)extension->type)))
continue; /* skip! */
/* writes extension type. */
c16toa((word16)extension->type, output + offset);
offset += HELLO_EXT_TYPE_SZ + OPAQUE16_LEN;
length_offset = offset;
/* extension data should be written internally. */
switch (extension->type) {
#ifdef WOLFSSL_DUAL_ALG_CERTS
case TLSX_CKS:
WOLFSSL_MSG("CKS extension to write");
offset += CKS_WRITE(((WOLFSSL*)extension->data),
output + offset);
break;
#endif
#ifdef HAVE_SNI
case TLSX_SERVER_NAME:
if (isRequest) {
WOLFSSL_MSG("SNI extension to write");
offset += SNI_WRITE((SNI*)extension->data, output + offset);
}
break;
#endif
case TLSX_TRUSTED_CA_KEYS:
WOLFSSL_MSG("Trusted CA Indication extension to write");
if (isRequest) {
offset += TCA_WRITE((TCA*)extension->data, output + offset);
}
break;
case TLSX_MAX_FRAGMENT_LENGTH:
WOLFSSL_MSG("Max Fragment Length extension to write");
offset += MFL_WRITE((byte*)extension->data, output + offset);
break;
case TLSX_EXTENDED_MASTER_SECRET:
WOLFSSL_MSG("Extended Master Secret");
/* always empty. */
break;
case TLSX_TRUNCATED_HMAC:
WOLFSSL_MSG("Truncated HMAC extension to write");
/* always empty. */
break;
case TLSX_SUPPORTED_GROUPS:
WOLFSSL_MSG("Supported Groups extension to write");
offset += EC_WRITE((SupportedCurve*)extension->data,
output + offset);
break;
case TLSX_EC_POINT_FORMATS:
WOLFSSL_MSG("Point Formats extension to write");
offset += PF_WRITE((PointFormat*)extension->data,
output + offset);
break;
case TLSX_STATUS_REQUEST:
WOLFSSL_MSG("Certificate Status Request extension to write");
ret = CSR_WRITE((CertificateStatusRequest*)extension->data,
output + offset, isRequest);
if (ret > 0) {
offset += (word16)ret;
ret = 0;
}
break;
case TLSX_STATUS_REQUEST_V2:
WOLFSSL_MSG("Certificate Status Request v2 extension to write");
ret = CSR2_WRITE(
(CertificateStatusRequestItemV2*)extension->data,
output + offset, isRequest);
if (ret > 0) {
offset += (word16)ret;
ret = 0;
}
break;
case TLSX_RENEGOTIATION_INFO:
WOLFSSL_MSG("Secure Renegotiation extension to write");
offset += SCR_WRITE((SecureRenegotiation*)extension->data,
output + offset, isRequest);
break;
case TLSX_SESSION_TICKET:
WOLFSSL_MSG("Session Ticket extension to write");
offset += WOLF_STK_WRITE((SessionTicket*)extension->data,
output + offset, isRequest);
break;
case TLSX_APPLICATION_LAYER_PROTOCOL:
WOLFSSL_MSG("ALPN extension to write");
offset += ALPN_WRITE((ALPN*)extension->data, output + offset);
break;
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_SIGALG)
case TLSX_SIGNATURE_ALGORITHMS:
WOLFSSL_MSG("Signature Algorithms extension to write");
offset += SA_WRITE(extension->data, output + offset);
break;
#endif
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
case TLSX_ENCRYPT_THEN_MAC:
WOLFSSL_MSG("Encrypt-Then-Mac extension to write");
ret = ETM_WRITE(extension->data, output, msgType, &offset);
break;
#endif /* HAVE_ENCRYPT_THEN_MAC */
#if defined(WOLFSSL_TLS13) || !defined(WOLFSSL_NO_TLS12) || !defined(NO_OLD_TLS)
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
case TLSX_PRE_SHARED_KEY:
WOLFSSL_MSG("Pre-Shared Key extension to write");
ret = PSK_WRITE((PreSharedKey*)extension->data, output + offset,
msgType, &offset);
break;
#ifdef WOLFSSL_TLS13
case TLSX_PSK_KEY_EXCHANGE_MODES:
WOLFSSL_MSG("PSK Key Exchange Modes extension to write");
ret = PKM_WRITE((byte)extension->val, output + offset, msgType,
&offset);
break;
#endif
#endif
case TLSX_KEY_SHARE:
WOLFSSL_MSG("Key Share extension to write");
offset += KS_WRITE((KeyShareEntry*)extension->data,
output + offset, msgType);
break;
#endif
#ifdef WOLFSSL_TLS13
case TLSX_SUPPORTED_VERSIONS:
WOLFSSL_MSG("Supported Versions extension to write");
ret = SV_WRITE(extension->data, output + offset, msgType,
&offset);
break;
#ifdef WOLFSSL_SEND_HRR_COOKIE
case TLSX_COOKIE:
WOLFSSL_MSG("Cookie extension to write");
ret = CKE_WRITE((Cookie*)extension->data, output + offset,
msgType, &offset);
break;
#endif
#ifdef WOLFSSL_EARLY_DATA
case TLSX_EARLY_DATA:
WOLFSSL_MSG("Early Data extension to write");
ret = EDI_WRITE(extension->val, output + offset, msgType,
&offset);
break;
#endif
#ifdef WOLFSSL_POST_HANDSHAKE_AUTH
case TLSX_POST_HANDSHAKE_AUTH:
WOLFSSL_MSG("Post-Handshake Authentication extension to write");
ret = PHA_WRITE(output + offset, msgType, &offset);
break;
#endif
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_SIGALG)
case TLSX_SIGNATURE_ALGORITHMS_CERT:
WOLFSSL_MSG("Signature Algorithms extension to write");
offset += SAC_WRITE(extension->data, output + offset);
break;
#endif
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CA_NAMES)
case TLSX_CERTIFICATE_AUTHORITIES:
WOLFSSL_MSG("Certificate Authorities extension to write");
offset += CAN_WRITE(extension->data, output + offset);
break;
#endif
#endif
#ifdef WOLFSSL_SRTP
case TLSX_USE_SRTP:
WOLFSSL_MSG("SRTP extension to write");
offset += SRTP_WRITE((TlsxSrtp*)extension->data, output+offset);
break;
#endif
#ifdef HAVE_RPK
case TLSX_CLIENT_CERTIFICATE_TYPE:
WOLFSSL_MSG("Client Certificate Type extension to write");
offset += CCT_WRITE(extension->data, output + offset, msgType);
break;
case TLSX_SERVER_CERTIFICATE_TYPE:
WOLFSSL_MSG("Server Certificate Type extension to write");
offset += SCT_WRITE(extension->data, output + offset, msgType);
break;
#endif /* HAVE_RPK */
#ifdef WOLFSSL_QUIC
case TLSX_KEY_QUIC_TP_PARAMS:
FALL_THROUGH;
case TLSX_KEY_QUIC_TP_PARAMS_DRAFT:
WOLFSSL_MSG("QUIC transport parameter to write");
offset += QTP_WRITE((QuicTransportParam*)extension->data,
output + offset);
break;
#endif
#ifdef WOLFSSL_DTLS_CID
case TLSX_CONNECTION_ID:
WOLFSSL_MSG("Connection ID extension to write");
offset += CID_WRITE((byte*)extension->data, output+offset);
break;
#endif /* WOLFSSL_DTLS_CID */
#if defined(WOLFSSL_TLS13) && defined(HAVE_ECH)
case TLSX_ECH:
WOLFSSL_MSG("ECH extension to write");
ret = ECH_WRITE((WOLFSSL_ECH*)extension->data, msgType,
output + offset, &offset);
break;
#endif
default:
break;
}
/* writes extension data length. */
c16toa(offset - length_offset, output + length_offset - OPAQUE16_LEN);
/* marks the extension as processed so ctx level */
/* extensions don't overlap with ssl level ones. */
TURN_ON(semaphore, TLSX_ToSemaphore((word16)extension->type));
/* if we encountered an error propagate it */
if (ret != 0)
break;
}
*pOffset += offset;
return ret;
}
#ifdef HAVE_SUPPORTED_CURVES
/* Populates the default supported groups / curves */
static int TLSX_PopulateSupportedGroups(WOLFSSL* ssl, TLSX** extensions)
{
int ret = WOLFSSL_SUCCESS;
#ifdef WOLFSSL_TLS13
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
if (ssl->options.resuming && ssl->session->namedGroup != 0) {
return TLSX_UseSupportedCurve(extensions, ssl->session->namedGroup,
ssl->heap);
}
#endif
if (ssl->numGroups != 0) {
int i;
for (i = 0; i < ssl->numGroups; i++) {
ret = TLSX_UseSupportedCurve(extensions, ssl->group[i], ssl->heap);
if (ret != WOLFSSL_SUCCESS)
return ret;
}
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_TLS13 */
#if defined(HAVE_ECC)
/* list in order by strength, since not all servers choose by strength */
#if (defined(HAVE_ECC521) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 521
#ifndef NO_ECC_SECP
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_ECC_SECP521R1, ssl->heap);
if (ret != WOLFSSL_SUCCESS) return ret;
#endif
#endif
#if (defined(HAVE_ECC512) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 512
#ifdef HAVE_ECC_BRAINPOOL
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_ECC_BRAINPOOLP512R1, ssl->heap);
if (ret != WOLFSSL_SUCCESS) return ret;
#endif
#endif
#if (defined(HAVE_ECC384) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 384
#ifndef NO_ECC_SECP
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_ECC_SECP384R1, ssl->heap);
if (ret != WOLFSSL_SUCCESS) return ret;
#endif
#ifdef HAVE_ECC_BRAINPOOL
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_ECC_BRAINPOOLP384R1, ssl->heap);
if (ret != WOLFSSL_SUCCESS) return ret;
#endif
#endif
#endif /* HAVE_ECC */
#ifndef HAVE_FIPS
#if defined(HAVE_CURVE448) && ECC_MIN_KEY_SZ <= 448
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_ECC_X448, ssl->heap);
if (ret != WOLFSSL_SUCCESS) return ret;
#endif
#endif /* HAVE_FIPS */
#if defined(HAVE_ECC) && defined(HAVE_SUPPORTED_CURVES)
#if (!defined(NO_ECC256) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 256
#ifndef NO_ECC_SECP
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_ECC_SECP256R1, ssl->heap);
if (ret != WOLFSSL_SUCCESS) return ret;
#endif
#ifdef HAVE_ECC_KOBLITZ
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_ECC_SECP256K1, ssl->heap);
if (ret != WOLFSSL_SUCCESS) return ret;
#endif
#ifdef HAVE_ECC_BRAINPOOL
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_ECC_BRAINPOOLP256R1, ssl->heap);
if (ret != WOLFSSL_SUCCESS) return ret;
#endif
#ifdef WOLFSSL_SM2
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_ECC_SM2P256V1, ssl->heap);
if (ret != WOLFSSL_SUCCESS) return ret;
#endif
#endif
#endif /* HAVE_ECC */
#ifndef HAVE_FIPS
#if defined(HAVE_CURVE25519) && ECC_MIN_KEY_SZ <= 256
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_ECC_X25519, ssl->heap);
if (ret != WOLFSSL_SUCCESS) return ret;
#endif
#endif /* HAVE_FIPS */
#if defined(HAVE_ECC) && defined(HAVE_SUPPORTED_CURVES)
#if (defined(HAVE_ECC224) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 224
#ifndef NO_ECC_SECP
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_ECC_SECP224R1, ssl->heap);
if (ret != WOLFSSL_SUCCESS) return ret;
#endif
#ifdef HAVE_ECC_KOBLITZ
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_ECC_SECP224K1, ssl->heap);
if (ret != WOLFSSL_SUCCESS) return ret;
#endif
#endif
#ifndef HAVE_FIPS
#if (defined(HAVE_ECC192) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 192
#ifndef NO_ECC_SECP
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_ECC_SECP192R1, ssl->heap);
if (ret != WOLFSSL_SUCCESS) return ret;
#endif
#ifdef HAVE_ECC_KOBLITZ
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_ECC_SECP192K1, ssl->heap);
if (ret != WOLFSSL_SUCCESS) return ret;
#endif
#endif
#if (defined(HAVE_ECC160) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 160
#ifndef NO_ECC_SECP
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_ECC_SECP160R1, ssl->heap);
if (ret != WOLFSSL_SUCCESS) return ret;
#endif
#ifdef HAVE_ECC_SECPR2
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_ECC_SECP160R2, ssl->heap);
if (ret != WOLFSSL_SUCCESS) return ret;
#endif
#ifdef HAVE_ECC_KOBLITZ
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_ECC_SECP160K1, ssl->heap);
if (ret != WOLFSSL_SUCCESS) return ret;
#endif
#endif
#endif /* HAVE_FIPS */
#endif /* HAVE_ECC */
#ifndef NO_DH
/* Add FFDHE supported groups. */
#ifdef HAVE_FFDHE_8192
if (8192/8 >= ssl->options.minDhKeySz &&
8192/8 <= ssl->options.maxDhKeySz) {
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_FFDHE_8192, ssl->heap);
if (ret != WOLFSSL_SUCCESS)
return ret;
}
#endif
#ifdef HAVE_FFDHE_6144
if (6144/8 >= ssl->options.minDhKeySz &&
6144/8 <= ssl->options.maxDhKeySz) {
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_FFDHE_6144, ssl->heap);
if (ret != WOLFSSL_SUCCESS)
return ret;
}
#endif
#ifdef HAVE_FFDHE_4096
if (4096/8 >= ssl->options.minDhKeySz &&
4096/8 <= ssl->options.maxDhKeySz) {
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_FFDHE_4096, ssl->heap);
if (ret != WOLFSSL_SUCCESS)
return ret;
}
#endif
#ifdef HAVE_FFDHE_3072
if (3072/8 >= ssl->options.minDhKeySz &&
3072/8 <= ssl->options.maxDhKeySz) {
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_FFDHE_3072, ssl->heap);
if (ret != WOLFSSL_SUCCESS)
return ret;
}
#endif
#ifdef HAVE_FFDHE_2048
if (2048/8 >= ssl->options.minDhKeySz &&
2048/8 <= ssl->options.maxDhKeySz) {
ret = TLSX_UseSupportedCurve(extensions,
WOLFSSL_FFDHE_2048, ssl->heap);
if (ret != WOLFSSL_SUCCESS)
return ret;
}
#endif
#endif
#ifdef WOLFSSL_HAVE_MLKEM
#ifndef WOLFSSL_NO_ML_KEM
#ifdef WOLFSSL_WC_MLKEM
#ifndef WOLFSSL_NO_ML_KEM_512
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_ML_KEM_512,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_SECP256R1MLKEM512,
ssl->heap);
#if defined(HAVE_CURVE25519) && ECC_MIN_KEY_SZ <= 256
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_X25519MLKEM512,
ssl->heap);
#endif
#endif
#ifndef WOLFSSL_NO_ML_KEM_768
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_ML_KEM_768,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_SECP384R1MLKEM768,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_SECP256R1MLKEM768,
ssl->heap);
#if defined(HAVE_CURVE25519) && ECC_MIN_KEY_SZ <= 256
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_X25519MLKEM768,
ssl->heap);
#endif
#if defined(HAVE_CURVE448) && ECC_MIN_KEY_SZ <= 448
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_X448MLKEM768,
ssl->heap);
#endif
#endif
#ifndef WOLFSSL_NO_ML_KEM_1024
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_ML_KEM_1024,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_SECP521R1MLKEM1024,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_SECP384R1MLKEM1024,
ssl->heap);
#endif
#elif defined(HAVE_LIBOQS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_ML_KEM_512, ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_ML_KEM_768,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_ML_KEM_1024,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_SECP256R1MLKEM512,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_SECP384R1MLKEM768,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_SECP256R1MLKEM768,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_SECP521R1MLKEM1024,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_SECP384R1MLKEM1024,
ssl->heap);
#if defined(HAVE_CURVE25519) && ECC_MIN_KEY_SZ <= 256
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_X25519MLKEM512,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_X25519MLKEM768,
ssl->heap);
#endif
#if defined(HAVE_CURVE448) && ECC_MIN_KEY_SZ <= 448
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_X448MLKEM768,
ssl->heap);
#endif
#endif /* HAVE_LIBOQS */
#endif /* !WOLFSSL_NO_ML_KEM */
#ifdef WOLFSSL_MLKEM_KYBER
#ifdef WOLFSSL_WC_MLKEM
#ifdef WOLFSSL_KYBER512
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_KYBER_LEVEL1,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_P256_KYBER_LEVEL1,
ssl->heap);
#if defined(HAVE_CURVE25519) && ECC_MIN_KEY_SZ <= 256
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_X25519_KYBER_LEVEL1,
ssl->heap);
#endif
#endif
#ifdef WOLFSSL_KYBER768
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_KYBER_LEVEL3,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_P384_KYBER_LEVEL3,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_P256_KYBER_LEVEL3,
ssl->heap);
#if defined(HAVE_CURVE25519) && ECC_MIN_KEY_SZ <= 256
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_X25519_KYBER_LEVEL3,
ssl->heap);
#endif
#if defined(HAVE_CURVE448) && ECC_MIN_KEY_SZ <= 448
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_X448_KYBER_LEVEL3,
ssl->heap);
#endif
#endif
#ifdef WOLFSSL_KYBER1024
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_KYBER_LEVEL5,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_P521_KYBER_LEVEL5,
ssl->heap);
#endif
#elif defined(HAVE_LIBOQS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_KYBER_LEVEL1, ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_KYBER_LEVEL3,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_KYBER_LEVEL5,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_P256_KYBER_LEVEL1,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_P384_KYBER_LEVEL3,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_P256_KYBER_LEVEL3,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_P521_KYBER_LEVEL5,
ssl->heap);
#if defined(HAVE_CURVE25519) && ECC_MIN_KEY_SZ <= 256
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_X25519_KYBER_LEVEL1,
ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_X25519_KYBER_LEVEL3,
ssl->heap);
#endif
#if defined(HAVE_CURVE448) && ECC_MIN_KEY_SZ <= 448
if (ret == WOLFSSL_SUCCESS)
ret = TLSX_UseSupportedCurve(extensions, WOLFSSL_X448_KYBER_LEVEL3,
ssl->heap);
#endif
#endif /* HAVE_LIBOQS */
#endif /* WOLFSSL_MLKEM_KYBER */
#endif /* WOLFSSL_HAVE_MLKEM */
(void)ssl;
(void)extensions;
return ret;
}
#endif /* HAVE_SUPPORTED_CURVES */
int TLSX_PopulateExtensions(WOLFSSL* ssl, byte isServer)
{
int ret = 0;
byte* public_key = NULL;
word16 public_key_len = 0;
#if defined(WOLFSSL_TLS13) && (defined(HAVE_SESSION_TICKET) || !defined(NO_PSK))
int usingPSK = 0;
#endif
#if defined(HAVE_SUPPORTED_CURVES) && defined(WOLFSSL_TLS13)
TLSX* extension = NULL;
word16 namedGroup = WOLFSSL_NAMED_GROUP_INVALID;
#endif
/* server will add extension depending on what is parsed from client */
if (!isServer) {
#if defined(HAVE_RPK)
ret = TLSX_ClientCertificateType_Use(ssl, isServer);
if (ret != 0)
return ret;
ret = TLSX_ServerCertificateType_Use(ssl, isServer);
if (ret != 0)
return ret;
#endif /* HAVE_RPK */
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY) && \
!defined(WOLFSSL_NO_TLS12)
if (!ssl->options.disallowEncThenMac) {
ret = TLSX_EncryptThenMac_Use(ssl);
if (ret != 0)
return ret;
}
#endif
#if (defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)) && defined(HAVE_SUPPORTED_CURVES)
if (!ssl->options.userCurves && !ssl->ctx->userCurves) {
if (TLSX_Find(ssl->ctx->extensions,
TLSX_SUPPORTED_GROUPS) == NULL) {
ret = TLSX_PopulateSupportedGroups(ssl, &ssl->extensions);
if (ret != WOLFSSL_SUCCESS)
return ret;
}
}
if ((!IsAtLeastTLSv1_3(ssl->version) || ssl->options.downgrade) &&
TLSX_Find(ssl->ctx->extensions, TLSX_EC_POINT_FORMATS) == NULL &&
TLSX_Find(ssl->extensions, TLSX_EC_POINT_FORMATS) == NULL) {
ret = TLSX_UsePointFormat(&ssl->extensions,
WOLFSSL_EC_PF_UNCOMPRESSED, ssl->heap);
if (ret != WOLFSSL_SUCCESS)
return ret;
}
#endif /* (HAVE_ECC || CURVE25519 || CURVE448) && HAVE_SUPPORTED_CURVES */
#ifdef WOLFSSL_SRTP
if (ssl->options.dtls && ssl->dtlsSrtpProfiles != 0) {
WOLFSSL_MSG("Adding DTLS SRTP extension");
if ((ret = TLSX_UseSRTP(&ssl->extensions, ssl->dtlsSrtpProfiles,
ssl->heap)) != 0) {
return ret;
}
}
#endif
#ifdef WOLFSSL_DUAL_ALG_CERTS
if ((IsAtLeastTLSv1_3(ssl->version)) && (ssl->sigSpec != NULL)) {
WOLFSSL_MSG("Adding CKS extension");
if ((ret = TLSX_UseCKS(&ssl->extensions, ssl, ssl->heap)) != 0) {
return ret;
}
}
#endif
} /* is not server */
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_SIGALG)
WOLFSSL_MSG("Adding signature algorithms extension");
if ((ret = TLSX_SetSignatureAlgorithms(&ssl->extensions, ssl, ssl->heap))
!= 0) {
return ret;
}
#else
ret = 0;
#endif
#ifdef WOLFSSL_TLS13
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CA_NAMES)
if (IsAtLeastTLSv1_3(ssl->version) &&
SSL_PRIORITY_CA_NAMES(ssl) != NULL) {
WOLFSSL_MSG("Adding certificate authorities extension");
if ((ret = TLSX_Push(&ssl->extensions,
TLSX_CERTIFICATE_AUTHORITIES, ssl, ssl->heap)) != 0) {
return ret;
}
}
#endif
if (!isServer && IsAtLeastTLSv1_3(ssl->version)) {
/* Add mandatory TLS v1.3 extension: supported version */
WOLFSSL_MSG("Adding supported versions extension");
if ((ret = TLSX_SetSupportedVersions(&ssl->extensions, ssl,
ssl->heap)) != 0) {
return ret;
}
#if !defined(HAVE_ECC) && !defined(HAVE_CURVE25519) && \
!defined(HAVE_CURVE448) && defined(HAVE_SUPPORTED_CURVES)
if (TLSX_Find(ssl->ctx->extensions, TLSX_SUPPORTED_GROUPS) == NULL) {
/* Put in DH groups for TLS 1.3 only. */
ret = TLSX_PopulateSupportedGroups(ssl, &ssl->extensions);
if (ret != WOLFSSL_SUCCESS)
return ret;
/* ret value will be overwritten in !NO_PSK case */
#ifdef NO_PSK
ret = 0;
#endif
}
#endif /* !(HAVE_ECC || CURVE25519 || CURVE448) && HAVE_SUPPORTED_CURVES */
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_SIGALG)
if (ssl->certHashSigAlgoSz > 0) {
WOLFSSL_MSG("Adding signature algorithms cert extension");
if ((ret = TLSX_SetSignatureAlgorithmsCert(&ssl->extensions,
ssl, ssl->heap)) != 0) {
return ret;
}
}
#endif
#if defined(HAVE_SUPPORTED_CURVES)
extension = TLSX_Find(ssl->extensions, TLSX_KEY_SHARE);
if (extension == NULL) {
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
if (ssl->options.resuming && ssl->session->namedGroup != 0)
namedGroup = ssl->session->namedGroup;
else
#endif
if (ssl->numGroups > 0) {
int set = 0;
int i, j;
/* try to find the highest element in ssl->group[]
* that is contained in preferredGroup[].
*/
namedGroup = preferredGroup[0];
for (i = 0; i < ssl->numGroups && !set; i++) {
for (j = 0; preferredGroup[j] != WOLFSSL_NAMED_GROUP_INVALID; j++) {
if (preferredGroup[j] == ssl->group[i]
#ifdef HAVE_LIBOQS
&& TLSX_IsGroupSupported(preferredGroup[j])
#endif
) {
namedGroup = ssl->group[i];
set = 1;
break;
}
}
}
if (!set)
namedGroup = WOLFSSL_NAMED_GROUP_INVALID;
}
else {
/* Choose the most preferred group. */
namedGroup = preferredGroup[0];
#ifdef HAVE_LIBOQS
if (!TLSX_IsGroupSupported(namedGroup)) {
int i = 1;
for (;preferredGroup[i] != WOLFSSL_NAMED_GROUP_INVALID;
i++) {
if (TLSX_IsGroupSupported(preferredGroup[i]))
break;
}
namedGroup = preferredGroup[i];
}
#endif
}
}
else {
KeyShareEntry* kse = (KeyShareEntry*)extension->data;
if (kse)
namedGroup = kse->group;
}
if (namedGroup != WOLFSSL_NAMED_GROUP_INVALID) {
ret = TLSX_KeyShare_Use(ssl, namedGroup, 0, NULL, NULL,
&ssl->extensions);
if (ret != 0)
return ret;
}
#endif /* HAVE_SUPPORTED_CURVES */
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
TLSX_Remove(&ssl->extensions, TLSX_PRE_SHARED_KEY, ssl->heap);
#endif
#if defined(HAVE_SESSION_TICKET)
if (ssl->options.resuming && ssl->session->ticketLen > 0) {
WOLFSSL_SESSION* sess = ssl->session;
#ifdef WOLFSSL_32BIT_MILLI_TIME
word32 now, milli;
#else
word64 now, milli;
#endif
/* Determine the MAC algorithm for the cipher suite used. */
ssl->options.cipherSuite0 = sess->cipherSuite0;
ssl->options.cipherSuite = sess->cipherSuite;
ret = SetCipherSpecs(ssl);
if (ret != 0)
return ret;
now = (word64)TimeNowInMilliseconds();
if (now == 0)
return GETTIME_ERROR;
#ifdef WOLFSSL_32BIT_MILLI_TIME
if (now < sess->ticketSeen)
milli = (0xFFFFFFFFU - sess->ticketSeen) + 1 + now;
else
milli = now - sess->ticketSeen;
milli += sess->ticketAdd;
/* Pre-shared key is mandatory extension for resumption. */
ret = TLSX_PreSharedKey_Use(&ssl->extensions, sess->ticket,
sess->ticketLen, milli, ssl->specs.mac_algorithm,
ssl->options.cipherSuite0, ssl->options.cipherSuite, 1,
NULL, ssl->heap);
#else
milli = now - sess->ticketSeen + sess->ticketAdd;
/* Pre-shared key is mandatory extension for resumption. */
ret = TLSX_PreSharedKey_Use(&ssl->extensions, sess->ticket,
sess->ticketLen, (word32)milli, ssl->specs.mac_algorithm,
ssl->options.cipherSuite0, ssl->options.cipherSuite, 1,
NULL, ssl->heap);
#endif
if (ret != 0)
return ret;
usingPSK = 1;
}
#endif
#ifndef NO_PSK
#ifndef WOLFSSL_PSK_ONE_ID
if (ssl->options.client_psk_cs_cb != NULL) {
int i;
const Suites* suites = WOLFSSL_SUITES(ssl);
for (i = 0; i < suites->suiteSz; i += 2) {
byte cipherSuite0 = suites->suites[i + 0];
byte cipherSuite = suites->suites[i + 1];
unsigned int keySz;
#ifdef WOLFSSL_PSK_MULTI_ID_PER_CS
int cnt = 0;
#endif
#ifdef HAVE_NULL_CIPHER
if (cipherSuite0 == ECC_BYTE ||
cipherSuite0 == ECDHE_PSK_BYTE) {
if (cipherSuite != TLS_SHA256_SHA256 &&
cipherSuite != TLS_SHA384_SHA384) {
continue;
}
}
else
#endif
#if (defined(WOLFSSL_SM4_GCM) || defined(WOLFSSL_SM4_CCM)) && \
defined(WOLFSSL_SM3)
if (cipherSuite0 == CIPHER_BYTE) {
if ((cipherSuite != TLS_SM4_GCM_SM3) &&
(cipherSuite != TLS_SM4_CCM_SM3)) {
continue;
}
}
else
#endif
if (cipherSuite0 != TLS13_BYTE)
continue;
#ifdef WOLFSSL_PSK_MULTI_ID_PER_CS
do {
ssl->arrays->client_identity[0] = cnt;
#endif
ssl->arrays->client_identity[MAX_PSK_ID_LEN] = '\0';
keySz = ssl->options.client_psk_cs_cb(
ssl, ssl->arrays->server_hint,
ssl->arrays->client_identity, MAX_PSK_ID_LEN,
ssl->arrays->psk_key, MAX_PSK_KEY_LEN,
GetCipherNameInternal(cipherSuite0, cipherSuite));
if (keySz > 0) {
ssl->arrays->psk_keySz = keySz;
ret = TLSX_PreSharedKey_Use(&ssl->extensions,
(byte*)ssl->arrays->client_identity,
(word16)XSTRLEN(ssl->arrays->client_identity),
0, SuiteMac(WOLFSSL_SUITES(ssl)->suites + i),
cipherSuite0, cipherSuite, 0, NULL, ssl->heap);
if (ret != 0)
return ret;
#ifdef WOLFSSL_PSK_MULTI_ID_PER_CS
cnt++;
#endif
}
#ifdef WOLFSSL_PSK_MULTI_ID_PER_CS
}
while (keySz > 0);
#endif
}
usingPSK = 1;
}
else
#endif
if (ssl->options.client_psk_cb != NULL ||
ssl->options.client_psk_tls13_cb != NULL) {
/* Default cipher suite. */
byte cipherSuite0 = TLS13_BYTE;
byte cipherSuite = WOLFSSL_DEF_PSK_CIPHER;
int cipherSuiteFlags = WOLFSSL_CIPHER_SUITE_FLAG_NONE;
const char* cipherName = NULL;
if (ssl->options.client_psk_tls13_cb != NULL) {
ssl->arrays->psk_keySz = ssl->options.client_psk_tls13_cb(
ssl, ssl->arrays->server_hint,
ssl->arrays->client_identity, MAX_PSK_ID_LEN,
ssl->arrays->psk_key, MAX_PSK_KEY_LEN, &cipherName);
if (GetCipherSuiteFromName(cipherName, &cipherSuite0,
&cipherSuite, NULL, NULL, &cipherSuiteFlags) != 0) {
return PSK_KEY_ERROR;
}
}
else {
ssl->arrays->psk_keySz = ssl->options.client_psk_cb(ssl,
ssl->arrays->server_hint, ssl->arrays->client_identity,
MAX_PSK_ID_LEN, ssl->arrays->psk_key, MAX_PSK_KEY_LEN);
}
if (
#ifdef OPENSSL_EXTRA
/* OpenSSL treats a PSK key length of 0
* to indicate no PSK available.
*/
ssl->arrays->psk_keySz == 0 ||
#endif
(ssl->arrays->psk_keySz > MAX_PSK_KEY_LEN &&
(int)ssl->arrays->psk_keySz != WC_NO_ERR_TRACE(USE_HW_PSK))) {
#ifndef OPENSSL_EXTRA
ret = PSK_KEY_ERROR;
#endif
}
else {
ssl->arrays->client_identity[MAX_PSK_ID_LEN] = '\0';
ssl->options.cipherSuite0 = cipherSuite0;
ssl->options.cipherSuite = cipherSuite;
(void)cipherSuiteFlags;
ret = SetCipherSpecs(ssl);
if (ret == 0) {
ret = TLSX_PreSharedKey_Use(
&ssl->extensions,
(byte*)ssl->arrays->client_identity,
(word16)XSTRLEN(ssl->arrays->client_identity),
0, ssl->specs.mac_algorithm,
cipherSuite0, cipherSuite, 0,
NULL, ssl->heap);
}
if (ret == 0)
usingPSK = 1;
}
if (ret != 0)
return ret;
}
#endif /* !NO_PSK */
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
/* Some servers do not generate session tickets unless
* the extension is seen in a non-resume client hello.
* We used to send it only if we were otherwise using PSK.
* Now always send it. Define NO_TLSX_PSKKEM_PLAIN_ANNOUNCE
* to revert to the old behaviour. */
#ifdef NO_TLSX_PSKKEM_PLAIN_ANNOUNCE
if (usingPSK)
#endif
{
byte modes = 0;
(void)usingPSK;
/* Pre-shared key modes: mandatory extension for resumption. */
#ifdef HAVE_SUPPORTED_CURVES
if (!ssl->options.onlyPskDheKe)
#endif
{
modes = 1 << PSK_KE;
}
#if !defined(NO_DH) || defined(HAVE_ECC) || \
defined(HAVE_CURVE25519) || defined(HAVE_CURVE448)
if (!ssl->options.noPskDheKe) {
modes |= 1 << PSK_DHE_KE;
}
#endif
ret = TLSX_PskKeyModes_Use(ssl, modes);
if (ret != 0)
return ret;
}
#endif
#if defined(WOLFSSL_POST_HANDSHAKE_AUTH)
if (!isServer && ssl->options.postHandshakeAuth) {
ret = TLSX_PostHandAuth_Use(ssl);
if (ret != 0)
return ret;
}
#endif
#if defined(HAVE_ECH)
/* GREASE ECH */
if (!ssl->options.disableECH) {
if (ssl->echConfigs == NULL) {
ret = GREASE_ECH_USE(&(ssl->extensions), ssl->heap,
ssl->rng);
}
else if (ssl->echConfigs != NULL) {
ret = ECH_USE(ssl->echConfigs, &(ssl->extensions),
ssl->heap, ssl->rng);
}
}
#endif
}
#if defined(HAVE_ECH)
else if (IsAtLeastTLSv1_3(ssl->version)) {
if (ssl->ctx->echConfigs != NULL && !ssl->options.disableECH) {
ret = SERVER_ECH_USE(&(ssl->extensions), ssl->heap,
ssl->ctx->echConfigs);
if (ret == 0)
TLSX_SetResponse(ssl, TLSX_ECH);
}
}
#endif
#endif
(void)isServer;
(void)public_key;
(void)public_key_len;
(void)ssl;
return ret;
}
#if defined(WOLFSSL_TLS13) || !defined(NO_WOLFSSL_CLIENT)
#if defined(WOLFSSL_TLS13) && defined(HAVE_ECH)
static int TLSX_EchChangeSNI(WOLFSSL* ssl, TLSX** pEchX,
char* serverName, TLSX** pServerNameX,
TLSX*** pExtensions)
{
int ret = 0;
TLSX* echX = NULL;
TLSX* serverNameX = NULL;
TLSX** extensions = NULL;
/* calculate the rest of the extensions length with inner ech */
if (ssl->extensions)
echX = TLSX_Find(ssl->extensions, TLSX_ECH);
if (echX == NULL && ssl->ctx && ssl->ctx->extensions)
/* if not NULL the semaphore will stop it from being counted */
echX = TLSX_Find(ssl->ctx->extensions, TLSX_ECH);
/* if type is outer change sni to public name */
if (echX != NULL &&
((WOLFSSL_ECH*)echX->data)->type == ECH_TYPE_OUTER &&
(ssl->options.echAccepted ||
((WOLFSSL_ECH*)echX->data)->innerCount == 0)) {
if (ssl->extensions) {
serverNameX = TLSX_Find(ssl->extensions, TLSX_SERVER_NAME);
if (serverNameX != NULL)
extensions = &ssl->extensions;
}
if (serverNameX == NULL && ssl->ctx && ssl->ctx->extensions) {
serverNameX = TLSX_Find(ssl->ctx->extensions, TLSX_SERVER_NAME);
extensions = &ssl->ctx->extensions;
}
/* store the inner server name */
if (serverNameX != NULL) {
char* hostName = ((SNI*)serverNameX->data)->data.host_name;
word32 hostNameSz = (word32)XSTRLEN(hostName) + 1;
/* truncate if too long */
if (hostNameSz > MAX_PUBLIC_NAME_SZ)
hostNameSz = MAX_PUBLIC_NAME_SZ;
XMEMCPY(serverName, hostName, hostNameSz);
}
/* remove the inner server name */
TLSX_Remove(extensions, TLSX_SERVER_NAME, ssl->heap);
/* set the public name as the server name */
if ((ret = TLSX_UseSNI(extensions, WOLFSSL_SNI_HOST_NAME,
((WOLFSSL_ECH*)echX->data)->echConfig->publicName,
XSTRLEN(((WOLFSSL_ECH*)echX->data)->echConfig->publicName),
ssl->heap)) == WOLFSSL_SUCCESS)
ret = 0;
}
*pServerNameX = serverNameX;
*pExtensions = extensions;
*pEchX = echX;
return ret;
}
static int TLSX_EchRestoreSNI(WOLFSSL* ssl, char* serverName,
TLSX* serverNameX, TLSX** extensions)
{
int ret = 0;
if (serverNameX != NULL) {
/* remove the public name SNI */
TLSX_Remove(extensions, TLSX_SERVER_NAME, ssl->heap);
/* restore the inner server name */
ret = TLSX_UseSNI(extensions, WOLFSSL_SNI_HOST_NAME,
serverName, XSTRLEN(serverName), ssl->heap);
if (ret == WOLFSSL_SUCCESS)
ret = 0;
}
return ret;
}
/* because the size of ech depends on the size of other extensions we need to
* get the size with ech special and process ech last, return status */
static int TLSX_GetSizeWithEch(WOLFSSL* ssl, byte* semaphore, byte msgType,
word16* pLength)
{
int ret = 0, r = 0;
TLSX* echX = NULL;
TLSX* serverNameX = NULL;
TLSX** extensions = NULL;
WC_DECLARE_VAR(serverName, char, MAX_PUBLIC_NAME_SZ, 0);
WC_ALLOC_VAR_EX(serverName, char, MAX_PUBLIC_NAME_SZ, NULL,
DYNAMIC_TYPE_TMP_BUFFER, return MEMORY_E);
r = TLSX_EchChangeSNI(ssl, &echX, serverName, &serverNameX, &extensions);
if (r == 0 && ssl->extensions)
ret = TLSX_GetSize(ssl->extensions, semaphore, msgType, pLength);
if (r == 0 && ret == 0 && ssl->ctx && ssl->ctx->extensions)
ret = TLSX_GetSize(ssl->ctx->extensions, semaphore, msgType, pLength);
if (r == 0)
r = TLSX_EchRestoreSNI(ssl, serverName, serverNameX, extensions);
WC_FREE_VAR_EX(serverName, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (ret == 0 && r != 0)
ret = r;
return ret;
}
#endif
/** Tells the buffered size of extensions to be sent into the client hello. */
int TLSX_GetRequestSize(WOLFSSL* ssl, byte msgType, word32* pLength)
{
int ret = 0;
word16 length = 0;
byte semaphore[SEMAPHORE_SIZE] = {0};
if (!TLSX_SupportExtensions(ssl))
return 0;
if (msgType == client_hello) {
EC_VALIDATE_REQUEST(ssl, semaphore);
PF_VALIDATE_REQUEST(ssl, semaphore);
WOLF_STK_VALIDATE_REQUEST(ssl);
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_SIGALG)
if (WOLFSSL_SUITES(ssl)->hashSigAlgoSz == 0)
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_SIGNATURE_ALGORITHMS));
#endif
#if defined(WOLFSSL_TLS13)
if (!IsAtLeastTLSv1_2(ssl)) {
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_SUPPORTED_VERSIONS));
}
#if !defined(WOLFSSL_NO_TLS12) || !defined(NO_OLD_TLS)
if (!IsAtLeastTLSv1_3(ssl->version)) {
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_KEY_SHARE));
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_PRE_SHARED_KEY));
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_PSK_KEY_EXCHANGE_MODES));
#endif
#ifdef WOLFSSL_EARLY_DATA
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_EARLY_DATA));
#endif
#ifdef WOLFSSL_SEND_HRR_COOKIE
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_COOKIE));
#endif
#ifdef WOLFSSL_POST_HANDSHAKE_AUTH
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_POST_HANDSHAKE_AUTH));
#endif
}
#endif
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CA_NAMES)
if (!IsAtLeastTLSv1_3(ssl->version) ||
SSL_CA_NAMES(ssl) == NULL) {
TURN_ON(semaphore,
TLSX_ToSemaphore(TLSX_CERTIFICATE_AUTHORITIES));
}
#endif
#endif /* WOLFSSL_TLS13 */
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \
|| defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)
if (!SSL_CM(ssl)->ocspStaplingEnabled) {
/* mark already sent, so it won't send it */
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_STATUS_REQUEST));
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_STATUS_REQUEST_V2));
}
#endif
}
#ifdef WOLFSSL_TLS13
#ifndef NO_CERTS
else if (msgType == certificate_request) {
/* Don't send out any extension except those that are turned off. */
XMEMSET(semaphore, 0xff, SEMAPHORE_SIZE);
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_SIGALG)
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_SIGNATURE_ALGORITHMS));
#endif
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CA_NAMES)
if (SSL_PRIORITY_CA_NAMES(ssl) != NULL) {
TURN_OFF(semaphore,
TLSX_ToSemaphore(TLSX_CERTIFICATE_AUTHORITIES));
}
#endif
/* TODO: TLSX_SIGNED_CERTIFICATE_TIMESTAMP, OID_FILTERS
* TLSX_STATUS_REQUEST
*/
}
#endif
#if defined(HAVE_ECH)
if (ssl->options.useEch == 1 && !ssl->options.disableECH
&& msgType == client_hello) {
ret = TLSX_GetSizeWithEch(ssl, semaphore, msgType, &length);
if (ret != 0)
return ret;
}
else
#endif /* HAVE_ECH */
#endif /* WOLFSSL_TLS13 */
{
if (ssl->extensions) {
ret = TLSX_GetSize(ssl->extensions, semaphore, msgType, &length);
if (ret != 0)
return ret;
}
if (ssl->ctx && ssl->ctx->extensions) {
ret = TLSX_GetSize(ssl->ctx->extensions, semaphore, msgType,
&length);
if (ret != 0)
return ret;
}
}
#ifdef HAVE_EXTENDED_MASTER
if (msgType == client_hello && ssl->options.haveEMS &&
(!IsAtLeastTLSv1_3(ssl->version) || ssl->options.downgrade)) {
length += HELLO_EXT_SZ;
}
#endif
if (length)
length += OPAQUE16_LEN; /* for total length storage. */
*pLength += length;
return ret;
}
#if defined(WOLFSSL_TLS13) && defined(HAVE_ECH)
/* return status after writing the extensions with ech written last */
static int TLSX_WriteWithEch(WOLFSSL* ssl, byte* output, byte* semaphore,
byte msgType, word16* pOffset)
{
int r = 0, ret = 0;
TLSX* echX = NULL;
TLSX* serverNameX = NULL;
TLSX** extensions = NULL;
WC_DECLARE_VAR(serverName, char, MAX_PUBLIC_NAME_SZ, 0);
WC_ALLOC_VAR_EX(serverName, char, MAX_PUBLIC_NAME_SZ, NULL,
DYNAMIC_TYPE_TMP_BUFFER, return MEMORY_E);
r = TLSX_EchChangeSNI(ssl, &echX, serverName, &serverNameX, &extensions);
ret = r;
if (ret == 0 && echX != NULL)
/* turn ech on so it doesn't write, then write it last */
TURN_ON(semaphore, TLSX_ToSemaphore(echX->type));
if (ret == 0 && ssl->extensions) {
ret = TLSX_Write(ssl->extensions, output + *pOffset, semaphore,
msgType, pOffset);
}
if (ret == 0 && ssl->ctx && ssl->ctx->extensions) {
ret = TLSX_Write(ssl->ctx->extensions, output + *pOffset, semaphore,
msgType, pOffset);
}
/* only write if have a shot at acceptance */
if (ret == 0 && echX != NULL &&
(ssl->options.echAccepted ||
((WOLFSSL_ECH*)echX->data)->innerCount == 0)) {
if (echX != NULL) {
/* turn off and write it last */
TURN_OFF(semaphore, TLSX_ToSemaphore(echX->type));
}
if (ret == 0 && ssl->extensions) {
ret = TLSX_Write(ssl->extensions, output + *pOffset, semaphore,
msgType, pOffset);
}
if (ret == 0 && ssl->ctx && ssl->ctx->extensions) {
ret = TLSX_Write(ssl->ctx->extensions, output + *pOffset, semaphore,
msgType, pOffset);
}
}
if (r == 0)
r = TLSX_EchRestoreSNI(ssl, serverName, serverNameX, extensions);
WC_FREE_VAR_EX(serverName, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (ret == 0 && r != 0)
ret = r;
return ret;
}
#endif
/** Writes the extensions to be sent into the client hello. */
int TLSX_WriteRequest(WOLFSSL* ssl, byte* output, byte msgType, word32* pOffset)
{
int ret = 0;
word16 offset = 0;
byte semaphore[SEMAPHORE_SIZE] = {0};
if (!TLSX_SupportExtensions(ssl) || output == NULL)
return 0;
offset += OPAQUE16_LEN; /* extensions length */
if (msgType == client_hello) {
EC_VALIDATE_REQUEST(ssl, semaphore);
PF_VALIDATE_REQUEST(ssl, semaphore);
WOLF_STK_VALIDATE_REQUEST(ssl);
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_SIGALG)
if (WOLFSSL_SUITES(ssl)->hashSigAlgoSz == 0)
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_SIGNATURE_ALGORITHMS));
#endif
#ifdef WOLFSSL_TLS13
if (!IsAtLeastTLSv1_2(ssl)) {
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_SUPPORTED_VERSIONS));
}
#if !defined(WOLFSSL_NO_TLS12) || !defined(NO_OLD_TLS)
if (!IsAtLeastTLSv1_3(ssl->version)) {
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_KEY_SHARE));
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_PSK_KEY_EXCHANGE_MODES));
#endif
#ifdef WOLFSSL_EARLY_DATA
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_EARLY_DATA));
#endif
#ifdef WOLFSSL_SEND_HRR_COOKIE
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_COOKIE));
#endif
#ifdef WOLFSSL_POST_HANDSHAKE_AUTH
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_POST_HANDSHAKE_AUTH));
#endif
#ifdef WOLFSSL_DUAL_ALG_CERTS
TURN_ON(semaphore,
TLSX_ToSemaphore(TLSX_CKS));
#endif
}
#endif
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CA_NAMES)
if (!IsAtLeastTLSv1_3(ssl->version) || SSL_CA_NAMES(ssl) == NULL) {
TURN_ON(semaphore,
TLSX_ToSemaphore(TLSX_CERTIFICATE_AUTHORITIES));
}
#endif
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
/* Must write Pre-shared Key extension at the end in TLS v1.3.
* Must not write out Pre-shared Key extension in earlier versions of
* protocol.
*/
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_PRE_SHARED_KEY));
#endif
#endif /* WOLFSSL_TLS13 */
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \
|| defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)
/* mark already sent, so it won't send it */
if (!SSL_CM(ssl)->ocspStaplingEnabled) {
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_STATUS_REQUEST));
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_STATUS_REQUEST_V2));
}
#endif
}
#ifdef WOLFSSL_TLS13
#ifndef NO_CERTS
else if (msgType == certificate_request) {
/* Don't send out any extension except those that are turned off. */
XMEMSET(semaphore, 0xff, SEMAPHORE_SIZE);
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_SIGALG)
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_SIGNATURE_ALGORITHMS));
#endif
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CA_NAMES)
if (SSL_PRIORITY_CA_NAMES(ssl) != NULL) {
TURN_OFF(semaphore,
TLSX_ToSemaphore(TLSX_CERTIFICATE_AUTHORITIES));
}
#endif
/* TODO: TLSX_SIGNED_CERTIFICATE_TIMESTAMP, TLSX_OID_FILTERS
* TLSX_STATUS_REQUEST
*/
}
#endif
#endif
#if defined(WOLFSSL_TLS13) && defined(HAVE_ECH)
if (ssl->options.useEch == 1 && !ssl->options.disableECH
&& msgType == client_hello) {
ret = TLSX_WriteWithEch(ssl, output, semaphore,
msgType, &offset);
if (ret != 0)
return ret;
}
else
#endif
{
if (ssl->extensions) {
ret = TLSX_Write(ssl->extensions, output + offset, semaphore,
msgType, &offset);
if (ret != 0)
return ret;
}
if (ssl->ctx && ssl->ctx->extensions) {
ret = TLSX_Write(ssl->ctx->extensions, output + offset, semaphore,
msgType, &offset);
if (ret != 0)
return ret;
}
}
#ifdef HAVE_EXTENDED_MASTER
if (msgType == client_hello && ssl->options.haveEMS &&
(!IsAtLeastTLSv1_3(ssl->version) || ssl->options.downgrade)) {
WOLFSSL_MSG("EMS extension to write");
c16toa(HELLO_EXT_EXTMS, output + offset);
offset += HELLO_EXT_TYPE_SZ;
c16toa(0, output + offset);
offset += HELLO_EXT_SZ_SZ;
}
#endif
#ifdef WOLFSSL_TLS13
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
if (msgType == client_hello && IsAtLeastTLSv1_3(ssl->version)) {
/* Write out what we can of Pre-shared key extension. */
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_PRE_SHARED_KEY));
ret = TLSX_Write(ssl->extensions, output + offset, semaphore,
client_hello, &offset);
if (ret != 0)
return ret;
}
#endif
#endif
if (offset > OPAQUE16_LEN || msgType != client_hello)
c16toa(offset - OPAQUE16_LEN, output); /* extensions length */
*pOffset += offset;
return ret;
}
#endif /* WOLFSSL_TLS13 || !NO_WOLFSSL_CLIENT */
#if defined(WOLFSSL_TLS13) || !defined(NO_WOLFSSL_SERVER)
/** Tells the buffered size of extensions to be sent into the server hello. */
int TLSX_GetResponseSize(WOLFSSL* ssl, byte msgType, word16* pLength)
{
int ret = 0;
word16 length = 0;
byte semaphore[SEMAPHORE_SIZE] = {0};
switch (msgType) {
#ifndef NO_WOLFSSL_SERVER
case server_hello:
PF_VALIDATE_RESPONSE(ssl, semaphore);
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version)) {
XMEMSET(semaphore, 0xff, SEMAPHORE_SIZE);
TURN_OFF(semaphore,
TLSX_ToSemaphore(TLSX_SUPPORTED_VERSIONS));
#if defined(HAVE_SUPPORTED_CURVES)
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
if (!ssl->options.noPskDheKe)
#endif
{
/* Expect KeyShare extension in ServerHello. */
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_KEY_SHARE));
}
#endif
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_PRE_SHARED_KEY));
#endif
}
#if !defined(WOLFSSL_NO_TLS12) || !defined(NO_OLD_TLS)
else {
#ifdef HAVE_SUPPORTED_CURVES
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_KEY_SHARE));
#endif
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_PRE_SHARED_KEY));
#endif
}
#endif
#ifdef WOLFSSL_DTLS_CID
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_CONNECTION_ID));
#endif
#endif /* WOLFSSL_TLS13 */
break;
#ifdef WOLFSSL_TLS13
case hello_retry_request:
XMEMSET(semaphore, 0xff, SEMAPHORE_SIZE);
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_SUPPORTED_VERSIONS));
#ifdef HAVE_SUPPORTED_CURVES
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
if (!ssl->options.noPskDheKe)
#endif
{
/* Expect KeyShare extension in HelloRetryRequest. */
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_KEY_SHARE));
}
#endif
#ifdef WOLFSSL_SEND_HRR_COOKIE
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_COOKIE));
#endif
#ifdef HAVE_ECH
/* send the special confirmation */
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_ECH));
#endif
break;
#endif
#ifdef WOLFSSL_TLS13
case encrypted_extensions:
/* Send out all extension except those that are turned on. */
#ifdef HAVE_ECC
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_EC_POINT_FORMATS));
#endif
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_SUPPORTED_VERSIONS));
#ifdef HAVE_SESSION_TICKET
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_SESSION_TICKET));
#endif
#ifdef HAVE_SUPPORTED_CURVES
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_KEY_SHARE));
#endif
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_PRE_SHARED_KEY));
#endif
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_STATUS_REQUEST));
#endif
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST_V2
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_STATUS_REQUEST_V2));
#endif
#if defined(HAVE_SERVER_RENEGOTIATION_INFO)
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_RENEGOTIATION_INFO));
#endif
#ifdef WOLFSSL_DTLS_CID
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_CONNECTION_ID));
#endif /* WOLFSSL_DTLS_CID */
break;
#ifdef WOLFSSL_EARLY_DATA
case session_ticket:
if (ssl->options.tls1_3) {
XMEMSET(semaphore, 0xff, SEMAPHORE_SIZE);
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_EARLY_DATA));
}
break;
#endif
#endif
#endif
#ifdef WOLFSSL_TLS13
#ifndef NO_CERTS
case certificate:
/* Don't send out any extension except those that are turned off. */
XMEMSET(semaphore, 0xff, SEMAPHORE_SIZE);
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_STATUS_REQUEST));
/* TODO: TLSX_SIGNED_CERTIFICATE_TIMESTAMP,
* TLSX_SERVER_CERTIFICATE_TYPE
*/
break;
#endif
#endif
}
#ifdef HAVE_EXTENDED_MASTER
if (ssl->options.haveEMS && msgType == server_hello &&
!IsAtLeastTLSv1_3(ssl->version)) {
length += HELLO_EXT_SZ;
}
#endif
if (TLSX_SupportExtensions(ssl)) {
ret = TLSX_GetSize(ssl->extensions, semaphore, msgType, &length);
if (ret != 0)
return ret;
}
/* All the response data is set at the ssl object only, so no ctx here. */
if (length || msgType != server_hello)
length += OPAQUE16_LEN; /* for total length storage. */
*pLength += length;
return ret;
}
/** Writes the server hello extensions into a buffer. */
int TLSX_WriteResponse(WOLFSSL *ssl, byte* output, byte msgType, word16* pOffset)
{
int ret = 0;
word16 offset = 0;
if (TLSX_SupportExtensions(ssl) && output) {
byte semaphore[SEMAPHORE_SIZE] = {0};
switch (msgType) {
#ifndef NO_WOLFSSL_SERVER
case server_hello:
PF_VALIDATE_RESPONSE(ssl, semaphore);
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version)) {
XMEMSET(semaphore, 0xff, SEMAPHORE_SIZE);
TURN_OFF(semaphore,
TLSX_ToSemaphore(TLSX_SUPPORTED_VERSIONS));
#ifdef HAVE_SUPPORTED_CURVES
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
if (!ssl->options.noPskDheKe)
#endif
{
/* Write out KeyShare in ServerHello. */
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_KEY_SHARE));
}
#endif
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_PRE_SHARED_KEY));
#endif
}
else
#endif /* WOLFSSL_TLS13 */
{
#if !defined(WOLFSSL_NO_TLS12) || !defined(NO_OLD_TLS)
#ifdef HAVE_SUPPORTED_CURVES
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_KEY_SHARE));
#endif
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_PRE_SHARED_KEY));
#endif
#endif
WC_DO_NOTHING; /* avoid empty brackets */
}
#ifdef WOLFSSL_DTLS_CID
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_CONNECTION_ID));
#endif /* WOLFSSL_DTLS_CID */
break;
#ifdef WOLFSSL_TLS13
case hello_retry_request:
XMEMSET(semaphore, 0xff, SEMAPHORE_SIZE);
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_SUPPORTED_VERSIONS));
#ifdef HAVE_SUPPORTED_CURVES
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
if (!ssl->options.noPskDheKe)
#endif
{
/* Write out KeyShare in HelloRetryRequest. */
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_KEY_SHARE));
}
#endif
#ifdef HAVE_ECH
/* send the special confirmation */
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_ECH));
#endif
/* Cookie is written below as last extension. */
break;
#endif
#ifdef WOLFSSL_TLS13
case encrypted_extensions:
/* Send out all extension except those that are turned on. */
#ifdef HAVE_ECC
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_EC_POINT_FORMATS));
#endif
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_SUPPORTED_VERSIONS));
#ifdef HAVE_SESSION_TICKET
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_SESSION_TICKET));
#endif
#ifdef HAVE_SUPPORTED_CURVES
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_KEY_SHARE));
#endif
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_PRE_SHARED_KEY));
#endif
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_STATUS_REQUEST));
#endif
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST_V2
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_STATUS_REQUEST_V2));
#endif
#if defined(HAVE_SERVER_RENEGOTIATION_INFO)
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_RENEGOTIATION_INFO));
#endif
#ifdef WOLFSSL_DTLS_CID
TURN_ON(semaphore, TLSX_ToSemaphore(TLSX_CONNECTION_ID));
#endif /* WOLFSSL_DTLS_CID */
break;
#ifdef WOLFSSL_EARLY_DATA
case session_ticket:
if (ssl->options.tls1_3) {
XMEMSET(semaphore, 0xff, SEMAPHORE_SIZE);
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_EARLY_DATA));
}
break;
#endif
#endif
#endif
#ifdef WOLFSSL_TLS13
#ifndef NO_CERTS
case certificate:
/* Don't send out any extension except those that are turned
* off. */
XMEMSET(semaphore, 0xff, SEMAPHORE_SIZE);
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_STATUS_REQUEST));
/* TODO: TLSX_SIGNED_CERTIFICATE_TIMESTAMP,
* TLSX_SERVER_CERTIFICATE_TYPE
*/
break;
#endif
#endif
default:
break;
}
offset += OPAQUE16_LEN; /* extensions length */
ret = TLSX_Write(ssl->extensions, output + offset, semaphore,
msgType, &offset);
if (ret != 0)
return ret;
#if defined(WOLFSSL_TLS13) && defined(WOLFSSL_SEND_HRR_COOKIE)
if (msgType == hello_retry_request) {
XMEMSET(semaphore, 0xff, SEMAPHORE_SIZE);
TURN_OFF(semaphore, TLSX_ToSemaphore(TLSX_COOKIE));
ret = TLSX_Write(ssl->extensions, output + offset, semaphore,
msgType, &offset);
if (ret != 0)
return ret;
}
#endif
#ifdef HAVE_EXTENDED_MASTER
if (ssl->options.haveEMS && msgType == server_hello &&
!IsAtLeastTLSv1_3(ssl->version)) {
WOLFSSL_MSG("EMS extension to write");
c16toa(HELLO_EXT_EXTMS, output + offset);
offset += HELLO_EXT_TYPE_SZ;
c16toa(0, output + offset);
offset += HELLO_EXT_SZ_SZ;
}
#endif
if (offset > OPAQUE16_LEN || msgType != server_hello)
c16toa(offset - OPAQUE16_LEN, output); /* extensions length */
}
if (pOffset)
*pOffset += offset;
return ret;
}
#endif /* WOLFSSL_TLS13 || !NO_WOLFSSL_SERVER */
#ifdef WOLFSSL_TLS13
int TLSX_ParseVersion(WOLFSSL* ssl, const byte* input, word16 length,
byte msgType, int* found)
{
int ret = 0;
int offset = 0;
*found = 0;
while (offset < (int)length) {
word16 type;
word16 size;
if (offset + (2 * OPAQUE16_LEN) > length) {
ret = BUFFER_ERROR;
break;
}
ato16(input + offset, &type);
offset += HELLO_EXT_TYPE_SZ;
ato16(input + offset, &size);
offset += OPAQUE16_LEN;
if (offset + size > length) {
ret = BUFFER_ERROR;
break;
}
if (type == TLSX_SUPPORTED_VERSIONS) {
*found = 1;
WOLFSSL_MSG("Supported Versions extension received");
ret = SV_PARSE(ssl, input + offset, size, msgType, &ssl->version,
&ssl->options, &ssl->extensions);
break;
}
offset += size;
}
return ret;
}
#endif
/* Jump Table to check minimum size values for client case in TLSX_Parse */
#ifndef NO_WOLFSSL_SERVER
static word16 TLSX_GetMinSize_Client(word16* type)
{
switch (*type) {
case TLSXT_SERVER_NAME:
return WOLFSSL_SNI_MIN_SIZE_CLIENT;
case TLSXT_EARLY_DATA:
return WOLFSSL_EDI_MIN_SIZE_CLIENT;
case TLSXT_MAX_FRAGMENT_LENGTH:
return WOLFSSL_MFL_MIN_SIZE_CLIENT;
case TLSXT_TRUSTED_CA_KEYS:
return WOLFSSL_TCA_MIN_SIZE_CLIENT;
case TLSXT_TRUNCATED_HMAC:
return WOLFSSL_THM_MIN_SIZE_CLIENT;
case TLSXT_STATUS_REQUEST:
return WOLFSSL_CSR_MIN_SIZE_CLIENT;
case TLSXT_SUPPORTED_GROUPS:
return WOLFSSL_EC_MIN_SIZE_CLIENT;
case TLSXT_EC_POINT_FORMATS:
return WOLFSSL_PF_MIN_SIZE_CLIENT;
case TLSXT_SIGNATURE_ALGORITHMS:
return WOLFSSL_SA_MIN_SIZE_CLIENT;
case TLSXT_USE_SRTP:
return WOLFSSL_SRTP_MIN_SIZE_CLIENT;
case TLSXT_APPLICATION_LAYER_PROTOCOL:
return WOLFSSL_ALPN_MIN_SIZE_CLIENT;
case TLSXT_STATUS_REQUEST_V2:
return WOLFSSL_CSR2_MIN_SIZE_CLIENT;
case TLSXT_CLIENT_CERTIFICATE:
return WOLFSSL_CCT_MIN_SIZE_CLIENT;
case TLSXT_SERVER_CERTIFICATE:
return WOLFSSL_SCT_MIN_SIZE_CLIENT;
case TLSXT_ENCRYPT_THEN_MAC:
return WOLFSSL_ETM_MIN_SIZE_CLIENT;
case TLSXT_SESSION_TICKET:
return WOLFSSL_STK_MIN_SIZE_CLIENT;
case TLSXT_PRE_SHARED_KEY:
return WOLFSSL_PSK_MIN_SIZE_CLIENT;
case TLSXT_COOKIE:
return WOLFSSL_CKE_MIN_SIZE_CLIENT;
case TLSXT_PSK_KEY_EXCHANGE_MODES:
return WOLFSSL_PKM_MIN_SIZE_CLIENT;
case TLSXT_CERTIFICATE_AUTHORITIES:
return WOLFSSL_CAN_MIN_SIZE_CLIENT;
case TLSXT_POST_HANDSHAKE_AUTH:
return WOLFSSL_PHA_MIN_SIZE_CLIENT;
case TLSXT_SIGNATURE_ALGORITHMS_CERT:
return WOLFSSL_SA_MIN_SIZE_CLIENT;
case TLSXT_KEY_SHARE:
return WOLFSSL_KS_MIN_SIZE_CLIENT;
case TLSXT_CONNECTION_ID:
return WOLFSSL_CID_MIN_SIZE_CLIENT;
case TLSXT_RENEGOTIATION_INFO:
return WOLFSSL_SCR_MIN_SIZE_CLIENT;
case TLSXT_KEY_QUIC_TP_PARAMS_DRAFT:
return WOLFSSL_QTP_MIN_SIZE_CLIENT;
case TLSXT_ECH:
return WOLFSSL_ECH_MIN_SIZE_CLIENT;
default:
return 0;
}
}
#define TLSX_GET_MIN_SIZE_CLIENT(type) TLSX_GetMinSize_Client(type)
#else
#define TLSX_GET_MIN_SIZE_CLIENT(type) 0
#endif
#ifndef NO_WOLFSSL_CLIENT
/* Jump Table to check minimum size values for server case in TLSX_Parse */
static word16 TLSX_GetMinSize_Server(const word16 *type)
{
switch (*type) {
case TLSXT_SERVER_NAME:
return WOLFSSL_SNI_MIN_SIZE_SERVER;
case TLSXT_EARLY_DATA:
return WOLFSSL_EDI_MIN_SIZE_SERVER;
case TLSXT_MAX_FRAGMENT_LENGTH:
return WOLFSSL_MFL_MIN_SIZE_SERVER;
case TLSXT_TRUSTED_CA_KEYS:
return WOLFSSL_TCA_MIN_SIZE_SERVER;
case TLSXT_TRUNCATED_HMAC:
return WOLFSSL_THM_MIN_SIZE_SERVER;
case TLSXT_STATUS_REQUEST:
return WOLFSSL_CSR_MIN_SIZE_SERVER;
case TLSXT_SUPPORTED_GROUPS:
return WOLFSSL_EC_MIN_SIZE_SERVER;
case TLSXT_EC_POINT_FORMATS:
return WOLFSSL_PF_MIN_SIZE_SERVER;
case TLSXT_SIGNATURE_ALGORITHMS:
return WOLFSSL_SA_MIN_SIZE_SERVER;
case TLSXT_USE_SRTP:
return WOLFSSL_SRTP_MIN_SIZE_SERVER;
case TLSXT_APPLICATION_LAYER_PROTOCOL:
return WOLFSSL_ALPN_MIN_SIZE_SERVER;
case TLSXT_STATUS_REQUEST_V2:
return WOLFSSL_CSR2_MIN_SIZE_SERVER;
case TLSXT_CLIENT_CERTIFICATE:
return WOLFSSL_CCT_MIN_SIZE_SERVER;
case TLSXT_SERVER_CERTIFICATE:
return WOLFSSL_SCT_MIN_SIZE_SERVER;
case TLSXT_ENCRYPT_THEN_MAC:
return WOLFSSL_ETM_MIN_SIZE_SERVER;
case TLSXT_SESSION_TICKET:
return WOLFSSL_STK_MIN_SIZE_SERVER;
case TLSXT_PRE_SHARED_KEY:
return WOLFSSL_PSK_MIN_SIZE_SERVER;
case TLSXT_COOKIE:
return WOLFSSL_CKE_MIN_SIZE_SERVER;
case TLSXT_PSK_KEY_EXCHANGE_MODES:
return WOLFSSL_PKM_MIN_SIZE_SERVER;
case TLSXT_CERTIFICATE_AUTHORITIES:
return WOLFSSL_CAN_MIN_SIZE_SERVER;
case TLSXT_POST_HANDSHAKE_AUTH:
return WOLFSSL_PHA_MIN_SIZE_SERVER;
case TLSXT_SIGNATURE_ALGORITHMS_CERT:
return WOLFSSL_SA_MIN_SIZE_SERVER;
case TLSXT_KEY_SHARE:
return WOLFSSL_KS_MIN_SIZE_SERVER;
case TLSXT_CONNECTION_ID:
return WOLFSSL_CID_MIN_SIZE_SERVER;
case TLSXT_RENEGOTIATION_INFO:
return WOLFSSL_SCR_MIN_SIZE_SERVER;
case TLSXT_KEY_QUIC_TP_PARAMS_DRAFT:
return WOLFSSL_QTP_MIN_SIZE_SERVER;
case TLSXT_ECH:
return WOLFSSL_ECH_MIN_SIZE_SERVER;
default:
return 0;
}
}
#define TLSX_GET_MIN_SIZE_SERVER(type) TLSX_GetMinSize_Server(type)
#else
#define TLSX_GET_MIN_SIZE_SERVER(type) 0
#endif
/** Parses a buffer of TLS extensions. */
int TLSX_Parse(WOLFSSL* ssl, const byte* input, word16 length, byte msgType,
Suites *suites)
{
int ret = 0;
word16 offset = 0;
byte isRequest = (msgType == client_hello ||
msgType == certificate_request);
#ifdef HAVE_EXTENDED_MASTER
byte pendingEMS = 0;
#endif
#if defined(WOLFSSL_TLS13) && (defined(HAVE_SESSION_TICKET) || !defined(NO_PSK))
int pskDone = 0;
#endif
byte seenType[SEMAPHORE_SIZE]; /* Seen known extensions. */
if (!ssl || !input || (isRequest && !suites))
return BAD_FUNC_ARG;
/* No known extensions seen yet. */
XMEMSET(seenType, 0, sizeof(seenType));
while (ret == 0 && offset < length) {
word16 type;
word16 size;
#if defined(WOLFSSL_TLS13) && (defined(HAVE_SESSION_TICKET) || !defined(NO_PSK))
if (msgType == client_hello && pskDone) {
WOLFSSL_ERROR_VERBOSE(PSK_KEY_ERROR);
return PSK_KEY_ERROR;
}
#endif
if (length - offset < HELLO_EXT_TYPE_SZ + OPAQUE16_LEN)
return BUFFER_ERROR;
ato16(input + offset, &type);
offset += HELLO_EXT_TYPE_SZ;
ato16(input + offset, &size);
offset += OPAQUE16_LEN;
/* Check we have a bit for extension type. */
if ((type <= 62) || (type == TLSX_RENEGOTIATION_INFO)
#ifdef WOLFSSL_QUIC
|| (type == TLSX_KEY_QUIC_TP_PARAMS_DRAFT)
#endif
#ifdef WOLFSSL_DUAL_ALG_CERTS
|| (type == TLSX_CKS)
#endif
)
{
/* Detect duplicate recognized extensions. */
if (IS_OFF(seenType, TLSX_ToSemaphore(type))) {
TURN_ON(seenType, TLSX_ToSemaphore(type));
}
else {
return DUPLICATE_TLS_EXT_E;
}
}
if (length - offset < size)
return BUFFER_ERROR;
/* Check minimum size required for TLSX, even if disabled */
switch (msgType) {
#ifndef NO_WOLFSSL_SERVER
case client_hello:
if (size < TLSX_GET_MIN_SIZE_CLIENT(&type)){
WOLFSSL_MSG("Minimum TLSX Size Requirement not Satisfied");
return BUFFER_ERROR;
}
break;
#endif
#ifndef NO_WOLFSSL_CLIENT
case server_hello:
case hello_retry_request:
if (size < TLSX_GET_MIN_SIZE_SERVER(&type)){
WOLFSSL_MSG("Minimum TLSX Size Requirement not Satisfied");
return BUFFER_ERROR;
}
break;
#endif
default:
break;
}
switch (type) {
#ifdef HAVE_SNI
case TLSX_SERVER_NAME:
WOLFSSL_MSG("SNI extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version)) {
if (msgType != client_hello &&
msgType != encrypted_extensions)
return EXT_NOT_ALLOWED;
}
else
#endif
{
if (msgType != client_hello &&
msgType != server_hello)
return EXT_NOT_ALLOWED;
}
ret = SNI_PARSE(ssl, input + offset, size, isRequest);
break;
#endif
case TLSX_TRUSTED_CA_KEYS:
WOLFSSL_MSG("Trusted CA extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
#ifdef WOLFSSL_TLS13
/* RFC 8446 4.2.4 states trusted_ca_keys is not used
in TLS 1.3. */
if (IsAtLeastTLSv1_3(ssl->version)) {
break;
}
else
#endif
{
if (msgType != client_hello &&
msgType != server_hello)
return EXT_NOT_ALLOWED;
}
ret = TCA_PARSE(ssl, input + offset, size, isRequest);
break;
case TLSX_MAX_FRAGMENT_LENGTH:
WOLFSSL_MSG("Max Fragment Length extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version)) {
if (msgType != client_hello &&
msgType != encrypted_extensions) {
WOLFSSL_ERROR_VERBOSE(EXT_NOT_ALLOWED);
return EXT_NOT_ALLOWED;
}
}
else
#endif
{
if (msgType != client_hello &&
msgType != server_hello) {
WOLFSSL_ERROR_VERBOSE(EXT_NOT_ALLOWED);
return EXT_NOT_ALLOWED;
}
}
ret = MFL_PARSE(ssl, input + offset, size, isRequest);
break;
case TLSX_TRUNCATED_HMAC:
WOLFSSL_MSG("Truncated HMAC extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version))
break;
#endif
if (msgType != client_hello)
return EXT_NOT_ALLOWED;
ret = THM_PARSE(ssl, input + offset, size, isRequest);
break;
case TLSX_SUPPORTED_GROUPS:
WOLFSSL_MSG("Supported Groups extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version)) {
if (msgType != client_hello &&
msgType != encrypted_extensions) {
WOLFSSL_ERROR_VERBOSE(EXT_NOT_ALLOWED);
return EXT_NOT_ALLOWED;
}
}
else
#endif
{
if (msgType != client_hello) {
WOLFSSL_ERROR_VERBOSE(EXT_NOT_ALLOWED);
return EXT_NOT_ALLOWED;
}
}
ret = EC_PARSE(ssl, input + offset, size, isRequest,
&ssl->extensions);
break;
#ifdef WOLFSSL_DUAL_ALG_CERTS
case TLSX_CKS:
WOLFSSL_MSG("CKS extension received");
if (msgType != client_hello &&
msgType != encrypted_extensions) {
WOLFSSL_ERROR_VERBOSE(EXT_NOT_ALLOWED);
return EXT_NOT_ALLOWED;
}
ret = TLSX_CKS_Parse(ssl, (byte *)(input + offset), size,
&ssl->extensions);
break;
#endif /* WOLFSSL_DUAL_ALG_CERTS */
case TLSX_EC_POINT_FORMATS:
WOLFSSL_MSG("Point Formats extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version))
break;
#endif
if (msgType != client_hello &&
msgType != server_hello) {
WOLFSSL_ERROR_VERBOSE(EXT_NOT_ALLOWED);
return EXT_NOT_ALLOWED;
}
ret = PF_PARSE(ssl, input + offset, size, isRequest);
break;
case TLSX_STATUS_REQUEST:
WOLFSSL_MSG("Certificate Status Request extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version)) {
if (msgType != client_hello &&
msgType != certificate_request &&
msgType != certificate)
return EXT_NOT_ALLOWED;
}
else
#endif
{
if (msgType != client_hello &&
msgType != server_hello)
return EXT_NOT_ALLOWED;
}
ret = CSR_PARSE(ssl, input + offset, size, isRequest);
break;
case TLSX_STATUS_REQUEST_V2:
WOLFSSL_MSG("Certificate Status Request v2 extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
#if defined(WOLFSSL_TLS13) && defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)
if (IsAtLeastTLSv1_3(ssl->version)) {
if (msgType != client_hello &&
msgType != certificate_request &&
msgType != certificate)
return EXT_NOT_ALLOWED;
}
else
#endif
{
if (msgType != client_hello &&
msgType != server_hello)
return EXT_NOT_ALLOWED;
}
ret = CSR2_PARSE(ssl, input + offset, size, isRequest);
break;
#ifdef HAVE_EXTENDED_MASTER
case HELLO_EXT_EXTMS:
WOLFSSL_MSG("Extended Master Secret extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
#if defined(WOLFSSL_TLS13)
if (IsAtLeastTLSv1_3(ssl->version))
break;
#endif
if (msgType != client_hello &&
msgType != server_hello)
return EXT_NOT_ALLOWED;
if (size != 0)
return BUFFER_ERROR;
#ifndef NO_WOLFSSL_SERVER
if (isRequest)
ssl->options.haveEMS = 1;
#endif
pendingEMS = 1;
break;
#endif
case TLSX_RENEGOTIATION_INFO:
WOLFSSL_MSG("Secure Renegotiation extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version))
break;
#endif
if (msgType != client_hello &&
msgType != server_hello)
return EXT_NOT_ALLOWED;
ret = SCR_PARSE(ssl, input + offset, size, isRequest);
break;
case TLSX_SESSION_TICKET:
WOLFSSL_MSG("Session Ticket extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
#if defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET)
if (IsAtLeastTLSv1_3(ssl->version)) {
if (msgType != client_hello)
return EXT_NOT_ALLOWED;
}
else
#endif
{
if (msgType != client_hello &&
msgType != server_hello)
return EXT_NOT_ALLOWED;
}
ret = WOLF_STK_PARSE(ssl, input + offset, size, isRequest);
break;
case TLSX_APPLICATION_LAYER_PROTOCOL:
WOLFSSL_MSG("ALPN extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
#if defined(WOLFSSL_TLS13) && defined(HAVE_ALPN)
if (IsAtLeastTLSv1_3(ssl->version)) {
if (msgType != client_hello &&
msgType != encrypted_extensions)
return EXT_NOT_ALLOWED;
}
else
#endif
{
if (msgType != client_hello &&
msgType != server_hello)
return EXT_NOT_ALLOWED;
}
ret = ALPN_PARSE(ssl, input + offset, size, isRequest);
break;
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_SIGALG)
case TLSX_SIGNATURE_ALGORITHMS:
WOLFSSL_MSG("Signature Algorithms extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
if (!IsAtLeastTLSv1_2(ssl))
break;
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version)) {
if (msgType != client_hello &&
msgType != certificate_request)
return EXT_NOT_ALLOWED;
}
else
#endif
{
if (msgType != client_hello)
return EXT_NOT_ALLOWED;
}
ret = SA_PARSE(ssl, input + offset, size, isRequest, suites);
break;
#endif
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
case TLSX_ENCRYPT_THEN_MAC:
WOLFSSL_MSG("Encrypt-Then-Mac extension received");
/* Ignore for TLS 1.3+ */
if (IsAtLeastTLSv1_3(ssl->version))
break;
if (msgType != client_hello &&
msgType != server_hello)
return EXT_NOT_ALLOWED;
ret = ETM_PARSE(ssl, input + offset, size, msgType);
break;
#endif /* HAVE_ENCRYPT_THEN_MAC */
#ifdef WOLFSSL_TLS13
case TLSX_SUPPORTED_VERSIONS:
WOLFSSL_MSG("Skipping Supported Versions - already processed");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
if (msgType != client_hello &&
msgType != server_hello &&
msgType != hello_retry_request)
return EXT_NOT_ALLOWED;
break;
#ifdef WOLFSSL_SEND_HRR_COOKIE
case TLSX_COOKIE:
WOLFSSL_MSG("Cookie extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
if (!IsAtLeastTLSv1_3(ssl->version))
break;
if (msgType != client_hello &&
msgType != hello_retry_request) {
return EXT_NOT_ALLOWED;
}
ret = CKE_PARSE(ssl, input + offset, size, msgType);
break;
#endif
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
case TLSX_PRE_SHARED_KEY:
WOLFSSL_MSG("Pre-Shared Key extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
if (!IsAtLeastTLSv1_3(ssl->version))
break;
if (msgType != client_hello &&
msgType != server_hello) {
WOLFSSL_ERROR_VERBOSE(EXT_NOT_ALLOWED);
return EXT_NOT_ALLOWED;
}
ret = PSK_PARSE(ssl, input + offset, size, msgType);
pskDone = 1;
break;
case TLSX_PSK_KEY_EXCHANGE_MODES:
WOLFSSL_MSG("PSK Key Exchange Modes extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
if (!IsAtLeastTLSv1_3(ssl->version))
break;
if (msgType != client_hello) {
WOLFSSL_ERROR_VERBOSE(EXT_NOT_ALLOWED);
return EXT_NOT_ALLOWED;
}
ret = PKM_PARSE(ssl, input + offset, size, msgType);
break;
#endif
#ifdef WOLFSSL_EARLY_DATA
case TLSX_EARLY_DATA:
WOLFSSL_MSG("Early Data extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
if (!IsAtLeastTLSv1_3(ssl->version))
break;
if (msgType != client_hello && msgType != session_ticket &&
msgType != encrypted_extensions) {
WOLFSSL_ERROR_VERBOSE(EXT_NOT_ALLOWED);
return EXT_NOT_ALLOWED;
}
ret = EDI_PARSE(ssl, input + offset, size, msgType);
break;
#endif
#ifdef WOLFSSL_POST_HANDSHAKE_AUTH
case TLSX_POST_HANDSHAKE_AUTH:
WOLFSSL_MSG("Post Handshake Authentication extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
if (!IsAtLeastTLSv1_3(ssl->version))
break;
if (msgType != client_hello) {
WOLFSSL_ERROR_VERBOSE(EXT_NOT_ALLOWED);
return EXT_NOT_ALLOWED;
}
ret = PHA_PARSE(ssl, input + offset, size, msgType);
break;
#endif
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_SIGALG)
case TLSX_SIGNATURE_ALGORITHMS_CERT:
WOLFSSL_MSG("Signature Algorithms extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
if (!IsAtLeastTLSv1_3(ssl->version))
break;
if (msgType != client_hello &&
msgType != certificate_request) {
WOLFSSL_ERROR_VERBOSE(EXT_NOT_ALLOWED);
return EXT_NOT_ALLOWED;
}
ret = SAC_PARSE(ssl, input + offset, size, isRequest);
break;
#endif
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CA_NAMES)
case TLSX_CERTIFICATE_AUTHORITIES:
WOLFSSL_MSG("Certificate Authorities extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
if (!IsAtLeastTLSv1_3(ssl->version))
break;
if (msgType != client_hello &&
msgType != certificate_request) {
WOLFSSL_ERROR_VERBOSE(EXT_NOT_ALLOWED);
return EXT_NOT_ALLOWED;
}
ret = CAN_PARSE(ssl, input + offset, size, isRequest);
break;
#endif
case TLSX_KEY_SHARE:
WOLFSSL_MSG("Key Share extension received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
#ifdef HAVE_SUPPORTED_CURVES
if (!IsAtLeastTLSv1_3(ssl->version))
break;
if (msgType != client_hello && msgType != server_hello &&
msgType != hello_retry_request) {
WOLFSSL_ERROR_VERBOSE(EXT_NOT_ALLOWED);
return EXT_NOT_ALLOWED;
}
#endif
ret = KS_PARSE(ssl, input + offset, size, msgType);
break;
#endif
#ifdef WOLFSSL_SRTP
case TLSX_USE_SRTP:
WOLFSSL_MSG("Use SRTP extension received");
ret = SRTP_PARSE(ssl, input + offset, size, isRequest);
break;
#endif
#ifdef WOLFSSL_QUIC
case TLSX_KEY_QUIC_TP_PARAMS:
FALL_THROUGH;
case TLSX_KEY_QUIC_TP_PARAMS_DRAFT:
WOLFSSL_MSG("QUIC transport parameter received");
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_BUFFER(input + offset, size);
#endif
if (IsAtLeastTLSv1_3(ssl->version) &&
msgType != client_hello &&
msgType != server_hello &&
msgType != encrypted_extensions) {
return EXT_NOT_ALLOWED;
}
else if (!IsAtLeastTLSv1_3(ssl->version) &&
msgType == encrypted_extensions) {
return EXT_NOT_ALLOWED;
}
else if (WOLFSSL_IS_QUIC(ssl)) {
ret = QTP_PARSE(ssl, input + offset, size, type, msgType);
}
else {
WOLFSSL_MSG("QUIC transport param TLS extension type, but no QUIC");
return EXT_NOT_ALLOWED; /* be safe, this should not happen */
}
break;
#endif /* WOLFSSL_QUIC */
#if defined(WOLFSSL_DTLS_CID)
case TLSX_CONNECTION_ID:
if (msgType != client_hello && msgType != server_hello)
return EXT_NOT_ALLOWED;
WOLFSSL_MSG("ConnectionID extension received");
ret = CID_PARSE(ssl, input + offset, size, isRequest);
break;
#endif /* defined(WOLFSSL_DTLS_CID) */
#if defined(HAVE_RPK)
case TLSX_CLIENT_CERTIFICATE_TYPE:
WOLFSSL_MSG("Client Certificate Type extension received");
ret = CCT_PARSE(ssl, input + offset, size, msgType);
break;
case TLSX_SERVER_CERTIFICATE_TYPE:
WOLFSSL_MSG("Server Certificate Type extension received");
ret = SCT_PARSE(ssl, input + offset, size, msgType);
break;
#endif /* HAVE_RPK */
#if defined(WOLFSSL_TLS13) && defined(HAVE_ECH)
case TLSX_ECH:
WOLFSSL_MSG("ECH extension received");
ret = ECH_PARSE(ssl, input + offset, size, msgType);
break;
#endif
default:
WOLFSSL_MSG("Unknown TLS extension type");
}
/* offset should be updated here! */
offset += size;
}
#ifdef HAVE_EXTENDED_MASTER
if (IsAtLeastTLSv1_3(ssl->version) &&
(msgType == hello_retry_request || msgType == hello_verify_request)) {
/* Don't change EMS status until server_hello received.
* Second ClientHello must have same extensions.
*/
}
else if (!isRequest && ssl->options.haveEMS && !pendingEMS)
ssl->options.haveEMS = 0;
#endif
#if defined(WOLFSSL_TLS13) && !defined(NO_PSK)
if (IsAtLeastTLSv1_3(ssl->version) && msgType == server_hello &&
IS_OFF(seenType, TLSX_ToSemaphore(TLSX_KEY_SHARE))) {
ssl->options.noPskDheKe = 1;
}
#endif
#if defined(WOLFSSL_TLS13) && defined(HAVE_SUPPORTED_CURVES)
/* RFC 8446 Section 9.2: ClientHello with KeyShare must
* contain SupportedGroups and vice-versa. */
if (IsAtLeastTLSv1_3(ssl->version) && msgType == client_hello && isRequest) {
int hasKeyShare = !IS_OFF(seenType, TLSX_ToSemaphore(TLSX_KEY_SHARE));
int hasSupportedGroups = !IS_OFF(seenType, TLSX_ToSemaphore(TLSX_SUPPORTED_GROUPS));
if (hasKeyShare && !hasSupportedGroups) {
WOLFSSL_MSG("ClientHello with KeyShare extension missing required SupportedGroups extension");
return MISSING_HANDSHAKE_DATA;
}
if (hasSupportedGroups && !hasKeyShare) {
WOLFSSL_MSG("ClientHello with SupportedGroups extension missing required KeyShare extension");
return MISSING_HANDSHAKE_DATA;
}
}
#endif
if (ret == 0)
ret = SNI_VERIFY_PARSE(ssl, isRequest);
if (ret == 0)
ret = TCA_VERIFY_PARSE(ssl, isRequest);
WOLFSSL_LEAVE("Leaving TLSX_Parse", ret);
return ret;
}
/* undefining semaphore macros */
#undef IS_OFF
#undef TURN_ON
#undef SEMAPHORE_SIZE
#endif /* HAVE_TLS_EXTENSIONS */
#ifndef NO_WOLFSSL_CLIENT
WOLFSSL_METHOD* wolfTLS_client_method(void)
{
return wolfTLS_client_method_ex(NULL);
}
WOLFSSL_METHOD* wolfTLS_client_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("TLS_client_method_ex");
if (method) {
#if defined(WOLFSSL_TLS13)
InitSSL_Method(method, MakeTLSv1_3());
#elif !defined(WOLFSSL_NO_TLS12)
InitSSL_Method(method, MakeTLSv1_2());
#elif !defined(NO_OLD_TLS)
InitSSL_Method(method, MakeTLSv1_1());
#elif defined(WOLFSSL_ALLOW_TLSV10)
InitSSL_Method(method, MakeTLSv1());
#else
#error No TLS version enabled! Consider using NO_TLS or WOLFCRYPT_ONLY.
#endif
method->downgrade = 1;
method->side = WOLFSSL_CLIENT_END;
}
return method;
}
#ifndef NO_OLD_TLS
#ifdef WOLFSSL_ALLOW_TLSV10
WOLFSSL_METHOD* wolfTLSv1_client_method(void)
{
return wolfTLSv1_client_method_ex(NULL);
}
WOLFSSL_METHOD* wolfTLSv1_client_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("TLSv1_client_method_ex");
if (method)
InitSSL_Method(method, MakeTLSv1());
return method;
}
#endif /* WOLFSSL_ALLOW_TLSV10 */
WOLFSSL_METHOD* wolfTLSv1_1_client_method(void)
{
return wolfTLSv1_1_client_method_ex(NULL);
}
WOLFSSL_METHOD* wolfTLSv1_1_client_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("TLSv1_1_client_method_ex");
if (method)
InitSSL_Method(method, MakeTLSv1_1());
return method;
}
#endif /* !NO_OLD_TLS */
#ifndef WOLFSSL_NO_TLS12
WOLFSSL_ABI
WOLFSSL_METHOD* wolfTLSv1_2_client_method(void)
{
return wolfTLSv1_2_client_method_ex(NULL);
}
WOLFSSL_METHOD* wolfTLSv1_2_client_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("TLSv1_2_client_method_ex");
if (method)
InitSSL_Method(method, MakeTLSv1_2());
return method;
}
#endif /* WOLFSSL_NO_TLS12 */
#ifdef WOLFSSL_TLS13
/* The TLS v1.3 client method data.
*
* returns the method data for a TLS v1.3 client.
*/
WOLFSSL_ABI
WOLFSSL_METHOD* wolfTLSv1_3_client_method(void)
{
return wolfTLSv1_3_client_method_ex(NULL);
}
/* The TLS v1.3 client method data.
*
* heap The heap used for allocation.
* returns the method data for a TLS v1.3 client.
*/
WOLFSSL_METHOD* wolfTLSv1_3_client_method_ex(void* heap)
{
WOLFSSL_METHOD* method = (WOLFSSL_METHOD*)
XMALLOC(sizeof(WOLFSSL_METHOD), heap,
DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("TLSv1_3_client_method_ex");
if (method)
InitSSL_Method(method, MakeTLSv1_3());
return method;
}
#endif /* WOLFSSL_TLS13 */
#ifdef WOLFSSL_DTLS
WOLFSSL_METHOD* wolfDTLS_client_method(void)
{
return wolfDTLS_client_method_ex(NULL);
}
WOLFSSL_METHOD* wolfDTLS_client_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("DTLS_client_method_ex");
if (method) {
#if defined(WOLFSSL_DTLS13)
InitSSL_Method(method, MakeDTLSv1_3());
#elif !defined(WOLFSSL_NO_TLS12)
InitSSL_Method(method, MakeDTLSv1_2());
#elif !defined(NO_OLD_TLS)
InitSSL_Method(method, MakeDTLSv1());
#else
#error No DTLS version enabled!
#endif
method->downgrade = 1;
method->side = WOLFSSL_CLIENT_END;
}
return method;
}
#ifndef NO_OLD_TLS
WOLFSSL_METHOD* wolfDTLSv1_client_method(void)
{
return wolfDTLSv1_client_method_ex(NULL);
}
WOLFSSL_METHOD* wolfDTLSv1_client_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("DTLSv1_client_method_ex");
if (method)
InitSSL_Method(method, MakeDTLSv1());
return method;
}
#endif /* NO_OLD_TLS */
#ifndef WOLFSSL_NO_TLS12
WOLFSSL_METHOD* wolfDTLSv1_2_client_method(void)
{
return wolfDTLSv1_2_client_method_ex(NULL);
}
WOLFSSL_METHOD* wolfDTLSv1_2_client_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("DTLSv1_2_client_method_ex");
if (method)
InitSSL_Method(method, MakeDTLSv1_2());
(void)heap;
return method;
}
#endif /* !WOLFSSL_NO_TLS12 */
#endif /* WOLFSSL_DTLS */
#endif /* NO_WOLFSSL_CLIENT */
/* EITHER SIDE METHODS */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EITHER_SIDE)
#ifndef NO_OLD_TLS
#ifdef WOLFSSL_ALLOW_TLSV10
/* Gets a WOLFSSL_METHOD type that is not set as client or server
*
* Returns a pointer to a WOLFSSL_METHOD struct
*/
WOLFSSL_METHOD* wolfTLSv1_method(void)
{
return wolfTLSv1_method_ex(NULL);
}
WOLFSSL_METHOD* wolfTLSv1_method_ex(void* heap)
{
WOLFSSL_METHOD* m;
WOLFSSL_ENTER("TLSv1_method");
#ifndef NO_WOLFSSL_CLIENT
m = wolfTLSv1_client_method_ex(heap);
#else
m = wolfTLSv1_server_method_ex(heap);
#endif
if (m != NULL) {
m->side = WOLFSSL_NEITHER_END;
}
return m;
}
#endif /* WOLFSSL_ALLOW_TLSV10 */
/* Gets a WOLFSSL_METHOD type that is not set as client or server
*
* Returns a pointer to a WOLFSSL_METHOD struct
*/
WOLFSSL_METHOD* wolfTLSv1_1_method(void)
{
return wolfTLSv1_1_method_ex(NULL);
}
WOLFSSL_METHOD* wolfTLSv1_1_method_ex(void* heap)
{
WOLFSSL_METHOD* m;
WOLFSSL_ENTER("TLSv1_1_method");
#ifndef NO_WOLFSSL_CLIENT
m = wolfTLSv1_1_client_method_ex(heap);
#else
m = wolfTLSv1_1_server_method_ex(heap);
#endif
if (m != NULL) {
m->side = WOLFSSL_NEITHER_END;
}
return m;
}
#endif /* !NO_OLD_TLS */
#ifndef WOLFSSL_NO_TLS12
/* Gets a WOLFSSL_METHOD type that is not set as client or server
*
* Returns a pointer to a WOLFSSL_METHOD struct
*/
WOLFSSL_METHOD* wolfTLSv1_2_method(void)
{
return wolfTLSv1_2_method_ex(NULL);
}
WOLFSSL_METHOD* wolfTLSv1_2_method_ex(void* heap)
{
WOLFSSL_METHOD* m;
WOLFSSL_ENTER("TLSv1_2_method");
#ifndef NO_WOLFSSL_CLIENT
m = wolfTLSv1_2_client_method_ex(heap);
#else
m = wolfTLSv1_2_server_method_ex(heap);
#endif
if (m != NULL) {
m->side = WOLFSSL_NEITHER_END;
}
return m;
}
#endif /* !WOLFSSL_NO_TLS12 */
#ifdef WOLFSSL_TLS13
/* Gets a WOLFSSL_METHOD type that is not set as client or server
*
* Returns a pointer to a WOLFSSL_METHOD struct
*/
WOLFSSL_METHOD* wolfTLSv1_3_method(void)
{
return wolfTLSv1_3_method_ex(NULL);
}
WOLFSSL_METHOD* wolfTLSv1_3_method_ex(void* heap)
{
WOLFSSL_METHOD* m;
WOLFSSL_ENTER("TLSv1_3_method");
#ifndef NO_WOLFSSL_CLIENT
m = wolfTLSv1_3_client_method_ex(heap);
#else
m = wolfTLSv1_3_server_method_ex(heap);
#endif
if (m != NULL) {
m->side = WOLFSSL_NEITHER_END;
}
return m;
}
#endif /* WOLFSSL_TLS13 */
#ifdef WOLFSSL_DTLS
WOLFSSL_METHOD* wolfDTLS_method(void)
{
return wolfDTLS_method_ex(NULL);
}
WOLFSSL_METHOD* wolfDTLS_method_ex(void* heap)
{
WOLFSSL_METHOD* m;
WOLFSSL_ENTER("DTLS_method_ex");
#ifndef NO_WOLFSSL_CLIENT
m = wolfDTLS_client_method_ex(heap);
#else
m = wolfDTLS_server_method_ex(heap);
#endif
if (m != NULL) {
m->side = WOLFSSL_NEITHER_END;
}
return m;
}
#ifndef NO_OLD_TLS
WOLFSSL_METHOD* wolfDTLSv1_method(void)
{
return wolfDTLSv1_method_ex(NULL);
}
WOLFSSL_METHOD* wolfDTLSv1_method_ex(void* heap)
{
WOLFSSL_METHOD* m;
WOLFSSL_ENTER("DTLSv1_method_ex");
#ifndef NO_WOLFSSL_CLIENT
m = wolfDTLSv1_client_method_ex(heap);
#else
m = wolfDTLSv1_server_method_ex(heap);
#endif
if (m != NULL) {
m->side = WOLFSSL_NEITHER_END;
}
return m;
}
#endif /* !NO_OLD_TLS */
#ifndef WOLFSSL_NO_TLS12
WOLFSSL_METHOD* wolfDTLSv1_2_method(void)
{
return wolfDTLSv1_2_method_ex(NULL);
}
WOLFSSL_METHOD* wolfDTLSv1_2_method_ex(void* heap)
{
WOLFSSL_METHOD* m;
WOLFSSL_ENTER("DTLSv1_2_method");
#ifndef NO_WOLFSSL_CLIENT
m = wolfDTLSv1_2_client_method_ex(heap);
#else
m = wolfDTLSv1_2_server_method_ex(heap);
#endif
if (m != NULL) {
m->side = WOLFSSL_NEITHER_END;
}
return m;
}
#endif /* !WOLFSSL_NO_TLS12 */
#ifdef WOLFSSL_DTLS13
WOLFSSL_METHOD* wolfDTLSv1_3_method(void)
{
return wolfDTLSv1_3_method_ex(NULL);
}
WOLFSSL_METHOD* wolfDTLSv1_3_method_ex(void* heap)
{
WOLFSSL_METHOD* m;
WOLFSSL_ENTER("DTLSv1_3_method");
#ifndef NO_WOLFSSL_CLIENT
m = wolfDTLSv1_3_client_method_ex(heap);
#else
m = wolfDTLSv1_3_server_method_ex(heap);
#endif
if (m != NULL) {
m->side = WOLFSSL_NEITHER_END;
}
return m;
}
#endif /* WOLFSSL_DTLS13 */
#endif /* WOLFSSL_DTLS */
#endif /* OPENSSL_EXTRA || WOLFSSL_EITHER_SIDE */
#ifndef NO_WOLFSSL_SERVER
WOLFSSL_METHOD* wolfTLS_server_method(void)
{
return wolfTLS_server_method_ex(NULL);
}
WOLFSSL_METHOD* wolfTLS_server_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("TLS_server_method_ex");
if (method) {
#if defined(WOLFSSL_TLS13)
InitSSL_Method(method, MakeTLSv1_3());
#elif !defined(WOLFSSL_NO_TLS12)
InitSSL_Method(method, MakeTLSv1_2());
#elif !defined(NO_OLD_TLS)
InitSSL_Method(method, MakeTLSv1_1());
#elif defined(WOLFSSL_ALLOW_TLSV10)
InitSSL_Method(method, MakeTLSv1());
#else
#error No TLS version enabled! Consider using NO_TLS or WOLFCRYPT_ONLY.
#endif
method->downgrade = 1;
method->side = WOLFSSL_SERVER_END;
}
return method;
}
#ifndef NO_OLD_TLS
#ifdef WOLFSSL_ALLOW_TLSV10
WOLFSSL_METHOD* wolfTLSv1_server_method(void)
{
return wolfTLSv1_server_method_ex(NULL);
}
WOLFSSL_METHOD* wolfTLSv1_server_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("TLSv1_server_method_ex");
if (method) {
InitSSL_Method(method, MakeTLSv1());
method->side = WOLFSSL_SERVER_END;
}
return method;
}
#endif /* WOLFSSL_ALLOW_TLSV10 */
WOLFSSL_METHOD* wolfTLSv1_1_server_method(void)
{
return wolfTLSv1_1_server_method_ex(NULL);
}
WOLFSSL_METHOD* wolfTLSv1_1_server_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("TLSv1_1_server_method_ex");
if (method) {
InitSSL_Method(method, MakeTLSv1_1());
method->side = WOLFSSL_SERVER_END;
}
return method;
}
#endif /* !NO_OLD_TLS */
#ifndef WOLFSSL_NO_TLS12
WOLFSSL_ABI
WOLFSSL_METHOD* wolfTLSv1_2_server_method(void)
{
return wolfTLSv1_2_server_method_ex(NULL);
}
WOLFSSL_METHOD* wolfTLSv1_2_server_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("TLSv1_2_server_method_ex");
if (method) {
InitSSL_Method(method, MakeTLSv1_2());
method->side = WOLFSSL_SERVER_END;
}
return method;
}
#endif /* !WOLFSSL_NO_TLS12 */
#ifdef WOLFSSL_TLS13
/* The TLS v1.3 server method data.
*
* returns the method data for a TLS v1.3 server.
*/
WOLFSSL_ABI
WOLFSSL_METHOD* wolfTLSv1_3_server_method(void)
{
return wolfTLSv1_3_server_method_ex(NULL);
}
/* The TLS v1.3 server method data.
*
* heap The heap used for allocation.
* returns the method data for a TLS v1.3 server.
*/
WOLFSSL_METHOD* wolfTLSv1_3_server_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("TLSv1_3_server_method_ex");
if (method) {
InitSSL_Method(method, MakeTLSv1_3());
method->side = WOLFSSL_SERVER_END;
}
return method;
}
#endif /* WOLFSSL_TLS13 */
#ifdef WOLFSSL_DTLS
WOLFSSL_METHOD* wolfDTLS_server_method(void)
{
return wolfDTLS_server_method_ex(NULL);
}
WOLFSSL_METHOD* wolfDTLS_server_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("DTLS_server_method_ex");
if (method) {
#if defined(WOLFSSL_DTLS13)
InitSSL_Method(method, MakeDTLSv1_3());
#elif !defined(WOLFSSL_NO_TLS12)
InitSSL_Method(method, MakeDTLSv1_2());
#elif !defined(NO_OLD_TLS)
InitSSL_Method(method, MakeDTLSv1());
#else
#error No DTLS version enabled!
#endif
method->downgrade = 1;
method->side = WOLFSSL_SERVER_END;
}
return method;
}
#ifndef NO_OLD_TLS
WOLFSSL_METHOD* wolfDTLSv1_server_method(void)
{
return wolfDTLSv1_server_method_ex(NULL);
}
WOLFSSL_METHOD* wolfDTLSv1_server_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("DTLSv1_server_method_ex");
if (method) {
InitSSL_Method(method, MakeDTLSv1());
method->side = WOLFSSL_SERVER_END;
}
return method;
}
#endif /* !NO_OLD_TLS */
#ifndef WOLFSSL_NO_TLS12
WOLFSSL_METHOD* wolfDTLSv1_2_server_method(void)
{
return wolfDTLSv1_2_server_method_ex(NULL);
}
WOLFSSL_METHOD* wolfDTLSv1_2_server_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
WOLFSSL_ENTER("DTLSv1_2_server_method_ex");
(void)heap;
if (method) {
InitSSL_Method(method, MakeDTLSv1_2());
method->side = WOLFSSL_SERVER_END;
}
(void)heap;
return method;
}
#endif /* !WOLFSSL_NO_TLS12 */
#endif /* WOLFSSL_DTLS */
#endif /* NO_WOLFSSL_SERVER */
#endif /* NO_TLS */
#endif /* WOLFCRYPT_ONLY */