Files
wolfssl/linuxkm
Daniel Pouzzner 0b91a0e913 linuxkm/linuxkm_wc_port.h, linuxkm/module_hooks.c, linuxkm/Makefile: refactor wc_linuxkm_normalize_relocations() and associated types and objects:
* change wc_linuxkm_pie_reloc_tab from unsigned int[] to struct wc_linuxkm_pie_reloc_tab_ent[], with dest_segment and reloc_type members;
  * add enum wc_reloc_dest_segment and enum wc_reloc_type;
  * update GENERATE_RELOC_TAB recipe in Makefile to render the dest segment and reloc type;
  * add struct reloc_layout_ent, and reloc_layouts[] fully populated for x86 and ARM relocations;
  * refactor find_reloc_tab_offset() and wc_linuxkm_normalize_relocations() to reflect the above;

linuxkm/module_hooks.c: tweak various printf format characters and arguments for compatibility with ARM32;

linuxkm/linuxkm_wc_port.h: include linux/inet.h and define wc_linuxkm_inet_pton() and XINET_PTON(), unless WOLFCRYPT_ONLY.
2026-01-30 17:34:02 -06:00
..
2025-12-22 22:58:29 -06:00
2025-12-12 18:58:10 -06:00

wolfSSL linuxkm (linux kernel module)

libwolfssl supports building as a linux kernel module (libwolfssl.ko). When loaded, wolfCrypt and wolfSSL API are made available to the rest of the kernel, supporting cryptography and TLS in kernel space.

Performing cryptographic operations in kernel space has significant advantages over user space for high throughput network (VPN, IPsec, MACsec, TLS, etc) and filesystem (dm-crypt/LUKS, fscrypt disk encryption) IO processing, with the added benefit that keys can be kept isolated to kernel space. Additionally, when wolfCrypt-FIPS is used, this provides a simple recipe for FIPS-compliant kernels.

Supported features:

  • crypto acceleration: AES-NI, AVX, etc.
  • kernel crypto API registration (wolfCrypt algs appear as drivers in /proc/crypto.).
  • CONFIG_CRYPTO_FIPS, and crypto-manager self-tests.
  • FIPS-compliant patches to drivers/char/random.c, covering kernels 5.10 to 6.15.
  • Supports FIPS-compliant WireGuard (https://github.com/wolfssl/wolfguard).
  • TLS 1.3 and DTLS 1.3 kernel offload.

Building and Installing

Build linuxkm with:

$ ./configure --enable-linuxkm --with-linux-source=/usr/src/linux
$ make -j module

note: replace /usr/src/linux with a path to your fully configured and built target kernel source tree.

Assuming you are targeting your native system, install with:

$ sudo make install
$ sudo modprobe libwolfssl

options

linuxkm option description
--enable-linuxkm-lkcapi-register Register wolfcrypt algs with linux kernel
crypto API. Options are 'all', 'none', or
comma separated list of algs.
--enable-linuxkm-pie Enable relocatable object build of module
--enable-linuxkm-benchmarks Run crypto benchmark at module load

Kernel Patches

The dir linuxkm/patches contains a patch to the linux kernel CRNG. The CRNG provides the implementation for /dev/random, /dev/urandom, and getrandom().

The patch updates these two sources

  • drivers/char/random.c
  • include/linux/random.h

to use FIPS-compliant algorithms, instead of chacha and blake2s.

Patches are provided for several kernel versions, ranging from 5.10.x to 6.15.

patch procedure

  1. Ensure kernel src tree is clean before patching:
cd ~/kernelsrc/
make mrproper
  1. Verify patches will apply clean with a dry run check:
patch -p1 --dry-run  <~/wolfssl-5.8.2/linuxkm/patches/6.12/WOLFSSL_LINUXKM_HAVE_GET_RANDOM_CALLBACKS-6v12.patch
checking file drivers/char/random.c
checking file include/linux/random.h
  1. Finally patch the kernel:
patch -p1 <~/wolfssl-5.8.2/linuxkm/patches/6.12/WOLFSSL_LINUXKM_HAVE_GET_RANDOM_CALLBACKS-6v12.patch
patching file drivers/char/random.c
patching file include/linux/random.h
  1. Build kernel.