Files
wolfssl/linuxkm
Daniel Pouzzner b087533fdf linuxkm/lkcapi_sha_glue.c:
* add drbg_init_from() and fork_default_rng(), and
* use the latter to define LKCAPI_INITRNG_FOR_SELFTEST() opportunistically (with fallback to plain wc_InitRng());

linuxkm/lkcapi_rsa_glue.c:
* add km_rsa_ctx_init_rng(),
* remove wc_InitRng() from km_rsa_ctx_init(),
* remove the WC_RSA_BLINDING gates around calls to wc_RsaSetRNG(), and
* call km_rsa_ctx_init_rng() before each call that needs an initialized RNG;

linuxkm/lkcapi_dh_glue.c and linuxkm/lkcapi_ecdh_glue.c: in km_ffdhe_init() and km_ecdh_init(), if linuxkm_lkcapi_registering_now, use LKCAPI_INITRNG_FOR_SELFTEST() to initialize ctx->rng;

linuxkm/lkcapi_glue.c: add notes that lkcapi_sha_glue inclusion and registrations must precede PK, and move declaration of linuxkm_lkcapi_registering_now to precede lkcapi glue inclusions.
2025-12-22 22:58:29 -06:00
..
2025-12-12 17:07:07 -06:00
2025-12-22 22:58:29 -06:00
2025-12-22 22:58:29 -06:00
2025-12-22 22:58:29 -06:00
2025-12-22 22:58:29 -06:00
2025-12-22 22:58:29 -06:00
2025-12-12 18:58:10 -06:00

wolfSSL linuxkm (linux kernel module)

libwolfssl supports building as a linux kernel module (libwolfssl.ko). When loaded, wolfCrypt and wolfSSL API are made available to the rest of the kernel, supporting cryptography and TLS in kernel space.

Performing cryptographic operations in kernel space has significant advantages over user space for high throughput network (VPN, IPsec, MACsec, TLS, etc) and filesystem (dm-crypt/LUKS, fscrypt disk encryption) IO processing, with the added benefit that keys can be kept isolated to kernel space. Additionally, when wolfCrypt-FIPS is used, this provides a simple recipe for FIPS-compliant kernels.

Supported features:

  • crypto acceleration: AES-NI, AVX, etc.
  • kernel crypto API registration (wolfCrypt algs appear as drivers in /proc/crypto.).
  • CONFIG_CRYPTO_FIPS, and crypto-manager self-tests.
  • FIPS-compliant patches to drivers/char/random.c, covering kernels 5.10 to 6.15.
  • Supports FIPS-compliant WireGuard (https://github.com/wolfssl/wolfguard).
  • TLS 1.3 and DTLS 1.3 kernel offload.

Building and Installing

Build linuxkm with:

$ ./configure --enable-linuxkm --with-linux-source=/usr/src/linux
$ make -j module

note: replace /usr/src/linux with a path to your fully configured and built target kernel source tree.

Assuming you are targeting your native system, install with:

$ sudo make install
$ sudo modprobe libwolfssl

options

linuxkm option description
--enable-linuxkm-lkcapi-register Register wolfcrypt algs with linux kernel
crypto API. Options are 'all', 'none', or
comma separated list of algs.
--enable-linuxkm-pie Enable relocatable object build of module
--enable-linuxkm-benchmarks Run crypto benchmark at module load

Kernel Patches

The dir linuxkm/patches contains a patch to the linux kernel CRNG. The CRNG provides the implementation for /dev/random, /dev/urandom, and getrandom().

The patch updates these two sources

  • drivers/char/random.c
  • include/linux/random.h

to use FIPS-compliant algorithms, instead of chacha and blake2s.

Patches are provided for several kernel versions, ranging from 5.10.x to 6.15.

patch procedure

  1. Ensure kernel src tree is clean before patching:
cd ~/kernelsrc/
make mrproper
  1. Verify patches will apply clean with a dry run check:
patch -p1 --dry-run  <~/wolfssl-5.8.2/linuxkm/patches/6.12/WOLFSSL_LINUXKM_HAVE_GET_RANDOM_CALLBACKS-6v12.patch
checking file drivers/char/random.c
checking file include/linux/random.h
  1. Finally patch the kernel:
patch -p1 <~/wolfssl-5.8.2/linuxkm/patches/6.12/WOLFSSL_LINUXKM_HAVE_GET_RANDOM_CALLBACKS-6v12.patch
patching file drivers/char/random.c
patching file include/linux/random.h
  1. Build kernel.