Files
wolfssl/wolfcrypt/src/sp_armthumb.c

27861 lines
856 KiB
C

/* sp.c
*
* Copyright (C) 2006-2020 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
/* Implementation by Sean Parkinson. */
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
#include <wolfssl/wolfcrypt/cpuid.h>
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
#if defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH) || \
defined(WOLFSSL_HAVE_SP_ECC)
#ifdef RSA_LOW_MEM
#ifndef WOLFSSL_SP_SMALL
#define WOLFSSL_SP_SMALL
#endif
#endif
#include <wolfssl/wolfcrypt/sp.h>
#ifdef WOLFSSL_SP_ARM_THUMB_ASM
#if defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH)
#ifndef WOLFSSL_SP_NO_2048
/* Read big endian unsigned byte array into r.
*
* r A single precision integer.
* size Maximum number of bytes to convert
* a Byte array.
* n Number of bytes in array to read.
*/
static void sp_2048_from_bin(sp_digit* r, int size, const byte* a, int n)
{
int i, j = 0;
word32 s = 0;
r[0] = 0;
for (i = n-1; i >= 0; i--) {
r[j] |= (((sp_digit)a[i]) << s);
if (s >= 24U) {
r[j] &= 0xffffffff;
s = 32U - s;
if (j + 1 >= size) {
break;
}
r[++j] = (sp_digit)a[i] >> s;
s = 8U - s;
}
else {
s += 8U;
}
}
for (j++; j < size; j++) {
r[j] = 0;
}
}
/* Convert an mp_int to an array of sp_digit.
*
* r A single precision integer.
* size Maximum number of bytes to convert
* a A multi-precision integer.
*/
static void sp_2048_from_mp(sp_digit* r, int size, const mp_int* a)
{
#if DIGIT_BIT == 32
int j;
XMEMCPY(r, a->dp, sizeof(sp_digit) * a->used);
for (j = a->used; j < size; j++) {
r[j] = 0;
}
#elif DIGIT_BIT > 32
int i, j = 0;
word32 s = 0;
r[0] = 0;
for (i = 0; i < a->used && j < size; i++) {
r[j] |= ((sp_digit)a->dp[i] << s);
r[j] &= 0xffffffff;
s = 32U - s;
if (j + 1 >= size) {
break;
}
/* lint allow cast of mismatch word32 and mp_digit */
r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
while ((s + 32U) <= (word32)DIGIT_BIT) {
s += 32U;
r[j] &= 0xffffffff;
if (j + 1 >= size) {
break;
}
if (s < (word32)DIGIT_BIT) {
/* lint allow cast of mismatch word32 and mp_digit */
r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
}
else {
r[++j] = 0L;
}
}
s = (word32)DIGIT_BIT - s;
}
for (j++; j < size; j++) {
r[j] = 0;
}
#else
int i, j = 0, s = 0;
r[0] = 0;
for (i = 0; i < a->used && j < size; i++) {
r[j] |= ((sp_digit)a->dp[i]) << s;
if (s + DIGIT_BIT >= 32) {
r[j] &= 0xffffffff;
if (j + 1 >= size) {
break;
}
s = 32 - s;
if (s == DIGIT_BIT) {
r[++j] = 0;
s = 0;
}
else {
r[++j] = a->dp[i] >> s;
s = DIGIT_BIT - s;
}
}
else {
s += DIGIT_BIT;
}
}
for (j++; j < size; j++) {
r[j] = 0;
}
#endif
}
/* Write r as big endian to byte array.
* Fixed length number of bytes written: 256
*
* r A single precision integer.
* a Byte array.
*/
static void sp_2048_to_bin(sp_digit* r, byte* a)
{
int i, j, s = 0, b;
j = 2048 / 8 - 1;
a[j] = 0;
for (i=0; i<64 && j>=0; i++) {
b = 0;
/* lint allow cast of mismatch sp_digit and int */
a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
b += 8 - s;
if (j < 0) {
break;
}
while (b < 32) {
a[j--] = (byte)(r[i] >> b);
b += 8;
if (j < 0) {
break;
}
}
s = 8 - (b - 32);
if (j >= 0) {
a[j] = 0;
}
if (s != 0) {
j++;
}
}
}
#ifndef WOLFSSL_SP_SMALL
/* Multiply a and b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static void sp_2048_mul_8(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit tmp[8 * 2];
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"mov r8, r3\n\t"
"mov r11, %[r]\n\t"
"mov r9, %[a]\n\t"
"mov r10, %[b]\n\t"
"mov r6, #32\n\t"
"add r6, r9\n\t"
"mov r12, r6\n\t"
"\n1:\n\t"
"mov %[r], #0\n\t"
"mov r5, #0\n\t"
"mov r6, #28\n\t"
"mov %[a], r8\n\t"
"sub %[a], r6\n\t"
"sbc r6, r6\n\t"
"mvn r6, r6\n\t"
"and %[a], r6\n\t"
"mov %[b], r8\n\t"
"sub %[b], %[a]\n\t"
"add %[a], r9\n\t"
"add %[b], r10\n\t"
"\n2:\n\t"
"# Multiply Start\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [%[b]]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [%[b]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [%[b]]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [%[b]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Multiply Done\n\t"
"add %[a], #4\n\t"
"sub %[b], #4\n\t"
"cmp %[a], r12\n\t"
"beq 3f\n\t"
"mov r6, r8\n\t"
"add r6, r9\n\t"
"cmp %[a], r6\n\t"
"ble 2b\n\t"
"\n3:\n\t"
"mov %[r], r11\n\t"
"mov r7, r8\n\t"
"str r3, [%[r], r7]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"add r7, #4\n\t"
"mov r8, r7\n\t"
"mov r6, #56\n\t"
"cmp r7, r6\n\t"
"ble 1b\n\t"
"str r3, [%[r], r7]\n\t"
"mov %[a], r9\n\t"
"mov %[b], r10\n\t"
:
: [r] "r" (tmp), [a] "r" (a), [b] "r" (b)
: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12"
);
XMEMCPY(r, tmp, sizeof(tmp));
}
/* Square a and put result in r. (r = a * a)
*
* r A single precision integer.
* a A single precision integer.
*/
SP_NOINLINE static void sp_2048_sqr_8(sp_digit* r, const sp_digit* a)
{
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"mov r5, #0\n\t"
"mov r8, r3\n\t"
"mov r11, %[r]\n\t"
"mov r6, #64\n\t"
"neg r6, r6\n\t"
"add sp, r6\n\t"
"mov r10, sp\n\t"
"mov r9, %[a]\n\t"
"\n1:\n\t"
"mov %[r], #0\n\t"
"mov r6, #28\n\t"
"mov %[a], r8\n\t"
"sub %[a], r6\n\t"
"sbc r6, r6\n\t"
"mvn r6, r6\n\t"
"and %[a], r6\n\t"
"mov r2, r8\n\t"
"sub r2, %[a]\n\t"
"add %[a], r9\n\t"
"add r2, r9\n\t"
"\n2:\n\t"
"cmp r2, %[a]\n\t"
"beq 4f\n\t"
"# Multiply * 2: Start\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [r2]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [r2]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [r2]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [r2]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Multiply * 2: Done\n\t"
"bal 5f\n\t"
"\n4:\n\t"
"# Square: Start\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"lsr r6, r6, #16\n\t"
"mul r6, r6\n\t"
"add r3, r6\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"mul r7, r7\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"lsr r6, r6, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #15\n\t"
"lsl r6, r6, #17\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Square: Done\n\t"
"\n5:\n\t"
"add %[a], #4\n\t"
"sub r2, #4\n\t"
"mov r6, #32\n\t"
"add r6, r9\n\t"
"cmp %[a], r6\n\t"
"beq 3f\n\t"
"cmp %[a], r2\n\t"
"bgt 3f\n\t"
"mov r7, r8\n\t"
"add r7, r9\n\t"
"cmp %[a], r7\n\t"
"ble 2b\n\t"
"\n3:\n\t"
"mov %[r], r10\n\t"
"mov r7, r8\n\t"
"str r3, [%[r], r7]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"mov r5, #0\n\t"
"add r7, #4\n\t"
"mov r8, r7\n\t"
"mov r6, #56\n\t"
"cmp r7, r6\n\t"
"ble 1b\n\t"
"mov %[a], r9\n\t"
"str r3, [%[r], r7]\n\t"
"mov %[r], r11\n\t"
"mov %[a], r10\n\t"
"mov r3, #60\n\t"
"\n4:\n\t"
"ldr r6, [%[a], r3]\n\t"
"str r6, [%[r], r3]\n\t"
"sub r3, #4\n\t"
"bge 4b\n\t"
"mov r6, #64\n\t"
"add sp, r6\n\t"
:
: [r] "r" (r), [a] "r" (a)
: "memory", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11"
);
}
/* Add b to a into r. (r = a + b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_2048_add_8(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[b], #0]\n\t"
"add r4, r5\n\t"
"str r4, [%[r], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #4]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[b], #8]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #12]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[b], #16]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #20]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[b], #24]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #28]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #28]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5"
);
return c;
}
/* Sub b from a into r. (r = a - b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_2048_sub_in_place_16(sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"ldr r3, [%[a], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #0]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sub r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #0]\n\t"
"str r4, [%[a], #4]\n\t"
"ldr r3, [%[a], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #8]\n\t"
"ldr r6, [%[b], #12]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #8]\n\t"
"str r4, [%[a], #12]\n\t"
"ldr r3, [%[a], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #16]\n\t"
"ldr r6, [%[b], #20]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #16]\n\t"
"str r4, [%[a], #20]\n\t"
"ldr r3, [%[a], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #24]\n\t"
"ldr r6, [%[b], #28]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #24]\n\t"
"str r4, [%[a], #28]\n\t"
"ldr r3, [%[a], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #32]\n\t"
"ldr r6, [%[b], #36]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #32]\n\t"
"str r4, [%[a], #36]\n\t"
"ldr r3, [%[a], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #40]\n\t"
"ldr r6, [%[b], #44]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #40]\n\t"
"str r4, [%[a], #44]\n\t"
"ldr r3, [%[a], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #48]\n\t"
"ldr r6, [%[b], #52]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #48]\n\t"
"str r4, [%[a], #52]\n\t"
"ldr r3, [%[a], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #56]\n\t"
"ldr r6, [%[b], #60]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #56]\n\t"
"str r4, [%[a], #60]\n\t"
"sbc %[c], %[c]\n\t"
: [c] "+r" (c), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r3", "r4", "r5", "r6"
);
return c;
}
/* Add b to a into r. (r = a + b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_2048_add_16(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[b], #0]\n\t"
"add r4, r5\n\t"
"str r4, [%[r], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #4]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[b], #8]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #12]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[b], #16]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #20]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[b], #24]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #28]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #28]\n\t"
"ldr r4, [%[a], #32]\n\t"
"ldr r5, [%[b], #32]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #36]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #36]\n\t"
"ldr r4, [%[a], #40]\n\t"
"ldr r5, [%[b], #40]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #44]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #44]\n\t"
"ldr r4, [%[a], #48]\n\t"
"ldr r5, [%[b], #48]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #52]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #52]\n\t"
"ldr r4, [%[a], #56]\n\t"
"ldr r5, [%[b], #56]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #60]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #60]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5"
);
return c;
}
/* AND m into each word of a and store in r.
*
* r A single precision integer.
* a A single precision integer.
* m Mask to AND against each digit.
*/
static void sp_2048_mask_8(sp_digit* r, const sp_digit* a, sp_digit m)
{
#ifdef WOLFSSL_SP_SMALL
int i;
for (i=0; i<8; i++) {
r[i] = a[i] & m;
}
#else
r[0] = a[0] & m;
r[1] = a[1] & m;
r[2] = a[2] & m;
r[3] = a[3] & m;
r[4] = a[4] & m;
r[5] = a[5] & m;
r[6] = a[6] & m;
r[7] = a[7] & m;
#endif
}
/* Multiply a and b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static void sp_2048_mul_16(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit* z0 = r;
sp_digit z1[16];
sp_digit a1[8];
sp_digit b1[8];
sp_digit z2[16];
sp_digit u, ca, cb;
ca = sp_2048_add_8(a1, a, &a[8]);
cb = sp_2048_add_8(b1, b, &b[8]);
u = ca & cb;
sp_2048_mul_8(z1, a1, b1);
sp_2048_mul_8(z2, &a[8], &b[8]);
sp_2048_mul_8(z0, a, b);
sp_2048_mask_8(r + 16, a1, 0 - cb);
sp_2048_mask_8(b1, b1, 0 - ca);
u += sp_2048_add_8(r + 16, r + 16, b1);
u += sp_2048_sub_in_place_16(z1, z2);
u += sp_2048_sub_in_place_16(z1, z0);
u += sp_2048_add_16(r + 8, r + 8, z1);
r[24] = u;
XMEMSET(r + 24 + 1, 0, sizeof(sp_digit) * (8 - 1));
(void)sp_2048_add_16(r + 16, r + 16, z2);
}
/* Square a and put result in r. (r = a * a)
*
* r A single precision integer.
* a A single precision integer.
*/
SP_NOINLINE static void sp_2048_sqr_16(sp_digit* r, const sp_digit* a)
{
sp_digit* z0 = r;
sp_digit z2[16];
sp_digit z1[16];
sp_digit a1[8];
sp_digit u;
u = sp_2048_add_8(a1, a, &a[8]);
sp_2048_sqr_8(z1, a1);
sp_2048_sqr_8(z2, &a[8]);
sp_2048_sqr_8(z0, a);
sp_2048_mask_8(r + 16, a1, 0 - u);
u += sp_2048_add_8(r + 16, r + 16, r + 16);
u += sp_2048_sub_in_place_16(z1, z2);
u += sp_2048_sub_in_place_16(z1, z0);
u += sp_2048_add_16(r + 8, r + 8, z1);
r[24] = u;
XMEMSET(r + 24 + 1, 0, sizeof(sp_digit) * (8 - 1));
(void)sp_2048_add_16(r + 16, r + 16, z2);
}
/* Sub b from a into r. (r = a - b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_2048_sub_in_place_32(sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"ldr r3, [%[a], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #0]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sub r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #0]\n\t"
"str r4, [%[a], #4]\n\t"
"ldr r3, [%[a], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #8]\n\t"
"ldr r6, [%[b], #12]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #8]\n\t"
"str r4, [%[a], #12]\n\t"
"ldr r3, [%[a], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #16]\n\t"
"ldr r6, [%[b], #20]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #16]\n\t"
"str r4, [%[a], #20]\n\t"
"ldr r3, [%[a], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #24]\n\t"
"ldr r6, [%[b], #28]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #24]\n\t"
"str r4, [%[a], #28]\n\t"
"ldr r3, [%[a], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #32]\n\t"
"ldr r6, [%[b], #36]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #32]\n\t"
"str r4, [%[a], #36]\n\t"
"ldr r3, [%[a], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #40]\n\t"
"ldr r6, [%[b], #44]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #40]\n\t"
"str r4, [%[a], #44]\n\t"
"ldr r3, [%[a], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #48]\n\t"
"ldr r6, [%[b], #52]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #48]\n\t"
"str r4, [%[a], #52]\n\t"
"ldr r3, [%[a], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #56]\n\t"
"ldr r6, [%[b], #60]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #56]\n\t"
"str r4, [%[a], #60]\n\t"
"ldr r3, [%[a], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #64]\n\t"
"ldr r6, [%[b], #68]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #64]\n\t"
"str r4, [%[a], #68]\n\t"
"ldr r3, [%[a], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #72]\n\t"
"ldr r6, [%[b], #76]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #72]\n\t"
"str r4, [%[a], #76]\n\t"
"ldr r3, [%[a], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #80]\n\t"
"ldr r6, [%[b], #84]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #80]\n\t"
"str r4, [%[a], #84]\n\t"
"ldr r3, [%[a], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #88]\n\t"
"ldr r6, [%[b], #92]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #88]\n\t"
"str r4, [%[a], #92]\n\t"
"ldr r3, [%[a], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #96]\n\t"
"ldr r6, [%[b], #100]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #96]\n\t"
"str r4, [%[a], #100]\n\t"
"ldr r3, [%[a], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #104]\n\t"
"ldr r6, [%[b], #108]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #104]\n\t"
"str r4, [%[a], #108]\n\t"
"ldr r3, [%[a], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #112]\n\t"
"ldr r6, [%[b], #116]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #112]\n\t"
"str r4, [%[a], #116]\n\t"
"ldr r3, [%[a], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #120]\n\t"
"ldr r6, [%[b], #124]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #120]\n\t"
"str r4, [%[a], #124]\n\t"
"sbc %[c], %[c]\n\t"
: [c] "+r" (c), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r3", "r4", "r5", "r6"
);
return c;
}
/* Add b to a into r. (r = a + b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_2048_add_32(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[b], #0]\n\t"
"add r4, r5\n\t"
"str r4, [%[r], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #4]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[b], #8]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #12]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[b], #16]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #20]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[b], #24]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #28]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #28]\n\t"
"ldr r4, [%[a], #32]\n\t"
"ldr r5, [%[b], #32]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #36]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #36]\n\t"
"ldr r4, [%[a], #40]\n\t"
"ldr r5, [%[b], #40]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #44]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #44]\n\t"
"ldr r4, [%[a], #48]\n\t"
"ldr r5, [%[b], #48]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #52]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #52]\n\t"
"ldr r4, [%[a], #56]\n\t"
"ldr r5, [%[b], #56]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #60]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #60]\n\t"
"ldr r4, [%[a], #64]\n\t"
"ldr r5, [%[b], #64]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #68]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #68]\n\t"
"ldr r4, [%[a], #72]\n\t"
"ldr r5, [%[b], #72]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #76]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #76]\n\t"
"ldr r4, [%[a], #80]\n\t"
"ldr r5, [%[b], #80]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #84]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #84]\n\t"
"ldr r4, [%[a], #88]\n\t"
"ldr r5, [%[b], #88]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #92]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #92]\n\t"
"ldr r4, [%[a], #96]\n\t"
"ldr r5, [%[b], #96]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #100]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #100]\n\t"
"ldr r4, [%[a], #104]\n\t"
"ldr r5, [%[b], #104]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #108]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #108]\n\t"
"ldr r4, [%[a], #112]\n\t"
"ldr r5, [%[b], #112]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #116]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #116]\n\t"
"ldr r4, [%[a], #120]\n\t"
"ldr r5, [%[b], #120]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #124]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #124]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5"
);
return c;
}
/* AND m into each word of a and store in r.
*
* r A single precision integer.
* a A single precision integer.
* m Mask to AND against each digit.
*/
static void sp_2048_mask_16(sp_digit* r, const sp_digit* a, sp_digit m)
{
#ifdef WOLFSSL_SP_SMALL
int i;
for (i=0; i<16; i++) {
r[i] = a[i] & m;
}
#else
int i;
for (i = 0; i < 16; i += 8) {
r[i+0] = a[i+0] & m;
r[i+1] = a[i+1] & m;
r[i+2] = a[i+2] & m;
r[i+3] = a[i+3] & m;
r[i+4] = a[i+4] & m;
r[i+5] = a[i+5] & m;
r[i+6] = a[i+6] & m;
r[i+7] = a[i+7] & m;
}
#endif
}
/* Multiply a and b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static void sp_2048_mul_32(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit* z0 = r;
sp_digit z1[32];
sp_digit a1[16];
sp_digit b1[16];
sp_digit z2[32];
sp_digit u, ca, cb;
ca = sp_2048_add_16(a1, a, &a[16]);
cb = sp_2048_add_16(b1, b, &b[16]);
u = ca & cb;
sp_2048_mul_16(z1, a1, b1);
sp_2048_mul_16(z2, &a[16], &b[16]);
sp_2048_mul_16(z0, a, b);
sp_2048_mask_16(r + 32, a1, 0 - cb);
sp_2048_mask_16(b1, b1, 0 - ca);
u += sp_2048_add_16(r + 32, r + 32, b1);
u += sp_2048_sub_in_place_32(z1, z2);
u += sp_2048_sub_in_place_32(z1, z0);
u += sp_2048_add_32(r + 16, r + 16, z1);
r[48] = u;
XMEMSET(r + 48 + 1, 0, sizeof(sp_digit) * (16 - 1));
(void)sp_2048_add_32(r + 32, r + 32, z2);
}
/* Square a and put result in r. (r = a * a)
*
* r A single precision integer.
* a A single precision integer.
*/
SP_NOINLINE static void sp_2048_sqr_32(sp_digit* r, const sp_digit* a)
{
sp_digit* z0 = r;
sp_digit z2[32];
sp_digit z1[32];
sp_digit a1[16];
sp_digit u;
u = sp_2048_add_16(a1, a, &a[16]);
sp_2048_sqr_16(z1, a1);
sp_2048_sqr_16(z2, &a[16]);
sp_2048_sqr_16(z0, a);
sp_2048_mask_16(r + 32, a1, 0 - u);
u += sp_2048_add_16(r + 32, r + 32, r + 32);
u += sp_2048_sub_in_place_32(z1, z2);
u += sp_2048_sub_in_place_32(z1, z0);
u += sp_2048_add_32(r + 16, r + 16, z1);
r[48] = u;
XMEMSET(r + 48 + 1, 0, sizeof(sp_digit) * (16 - 1));
(void)sp_2048_add_32(r + 32, r + 32, z2);
}
/* Sub b from a into r. (r = a - b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_2048_sub_in_place_64(sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"ldr r3, [%[a], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #0]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sub r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #0]\n\t"
"str r4, [%[a], #4]\n\t"
"ldr r3, [%[a], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #8]\n\t"
"ldr r6, [%[b], #12]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #8]\n\t"
"str r4, [%[a], #12]\n\t"
"ldr r3, [%[a], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #16]\n\t"
"ldr r6, [%[b], #20]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #16]\n\t"
"str r4, [%[a], #20]\n\t"
"ldr r3, [%[a], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #24]\n\t"
"ldr r6, [%[b], #28]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #24]\n\t"
"str r4, [%[a], #28]\n\t"
"ldr r3, [%[a], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #32]\n\t"
"ldr r6, [%[b], #36]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #32]\n\t"
"str r4, [%[a], #36]\n\t"
"ldr r3, [%[a], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #40]\n\t"
"ldr r6, [%[b], #44]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #40]\n\t"
"str r4, [%[a], #44]\n\t"
"ldr r3, [%[a], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #48]\n\t"
"ldr r6, [%[b], #52]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #48]\n\t"
"str r4, [%[a], #52]\n\t"
"ldr r3, [%[a], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #56]\n\t"
"ldr r6, [%[b], #60]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #56]\n\t"
"str r4, [%[a], #60]\n\t"
"ldr r3, [%[a], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #64]\n\t"
"ldr r6, [%[b], #68]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #64]\n\t"
"str r4, [%[a], #68]\n\t"
"ldr r3, [%[a], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #72]\n\t"
"ldr r6, [%[b], #76]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #72]\n\t"
"str r4, [%[a], #76]\n\t"
"ldr r3, [%[a], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #80]\n\t"
"ldr r6, [%[b], #84]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #80]\n\t"
"str r4, [%[a], #84]\n\t"
"ldr r3, [%[a], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #88]\n\t"
"ldr r6, [%[b], #92]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #88]\n\t"
"str r4, [%[a], #92]\n\t"
"ldr r3, [%[a], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #96]\n\t"
"ldr r6, [%[b], #100]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #96]\n\t"
"str r4, [%[a], #100]\n\t"
"ldr r3, [%[a], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #104]\n\t"
"ldr r6, [%[b], #108]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #104]\n\t"
"str r4, [%[a], #108]\n\t"
"ldr r3, [%[a], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #112]\n\t"
"ldr r6, [%[b], #116]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #112]\n\t"
"str r4, [%[a], #116]\n\t"
"ldr r3, [%[a], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #120]\n\t"
"ldr r6, [%[b], #124]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #120]\n\t"
"str r4, [%[a], #124]\n\t"
"sbc %[c], %[c]\n\t"
"add %[a], #0x80\n\t"
"add %[b], #0x80\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r3, [%[a], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #0]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #0]\n\t"
"str r4, [%[a], #4]\n\t"
"ldr r3, [%[a], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #8]\n\t"
"ldr r6, [%[b], #12]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #8]\n\t"
"str r4, [%[a], #12]\n\t"
"ldr r3, [%[a], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #16]\n\t"
"ldr r6, [%[b], #20]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #16]\n\t"
"str r4, [%[a], #20]\n\t"
"ldr r3, [%[a], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #24]\n\t"
"ldr r6, [%[b], #28]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #24]\n\t"
"str r4, [%[a], #28]\n\t"
"ldr r3, [%[a], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #32]\n\t"
"ldr r6, [%[b], #36]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #32]\n\t"
"str r4, [%[a], #36]\n\t"
"ldr r3, [%[a], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #40]\n\t"
"ldr r6, [%[b], #44]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #40]\n\t"
"str r4, [%[a], #44]\n\t"
"ldr r3, [%[a], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #48]\n\t"
"ldr r6, [%[b], #52]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #48]\n\t"
"str r4, [%[a], #52]\n\t"
"ldr r3, [%[a], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #56]\n\t"
"ldr r6, [%[b], #60]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #56]\n\t"
"str r4, [%[a], #60]\n\t"
"ldr r3, [%[a], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #64]\n\t"
"ldr r6, [%[b], #68]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #64]\n\t"
"str r4, [%[a], #68]\n\t"
"ldr r3, [%[a], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #72]\n\t"
"ldr r6, [%[b], #76]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #72]\n\t"
"str r4, [%[a], #76]\n\t"
"ldr r3, [%[a], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #80]\n\t"
"ldr r6, [%[b], #84]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #80]\n\t"
"str r4, [%[a], #84]\n\t"
"ldr r3, [%[a], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #88]\n\t"
"ldr r6, [%[b], #92]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #88]\n\t"
"str r4, [%[a], #92]\n\t"
"ldr r3, [%[a], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #96]\n\t"
"ldr r6, [%[b], #100]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #96]\n\t"
"str r4, [%[a], #100]\n\t"
"ldr r3, [%[a], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #104]\n\t"
"ldr r6, [%[b], #108]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #104]\n\t"
"str r4, [%[a], #108]\n\t"
"ldr r3, [%[a], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #112]\n\t"
"ldr r6, [%[b], #116]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #112]\n\t"
"str r4, [%[a], #116]\n\t"
"ldr r3, [%[a], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #120]\n\t"
"ldr r6, [%[b], #124]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #120]\n\t"
"str r4, [%[a], #124]\n\t"
"sbc %[c], %[c]\n\t"
: [c] "+r" (c), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r3", "r4", "r5", "r6"
);
return c;
}
/* Add b to a into r. (r = a + b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_2048_add_64(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r7, #0\n\t"
"mvn r7, r7\n\t"
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[b], #0]\n\t"
"add r4, r5\n\t"
"str r4, [%[r], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #4]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[b], #8]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #12]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[b], #16]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #20]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[b], #24]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #28]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #28]\n\t"
"ldr r4, [%[a], #32]\n\t"
"ldr r5, [%[b], #32]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #36]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #36]\n\t"
"ldr r4, [%[a], #40]\n\t"
"ldr r5, [%[b], #40]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #44]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #44]\n\t"
"ldr r4, [%[a], #48]\n\t"
"ldr r5, [%[b], #48]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #52]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #52]\n\t"
"ldr r4, [%[a], #56]\n\t"
"ldr r5, [%[b], #56]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #60]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #60]\n\t"
"ldr r4, [%[a], #64]\n\t"
"ldr r5, [%[b], #64]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #68]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #68]\n\t"
"ldr r4, [%[a], #72]\n\t"
"ldr r5, [%[b], #72]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #76]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #76]\n\t"
"ldr r4, [%[a], #80]\n\t"
"ldr r5, [%[b], #80]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #84]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #84]\n\t"
"ldr r4, [%[a], #88]\n\t"
"ldr r5, [%[b], #88]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #92]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #92]\n\t"
"ldr r4, [%[a], #96]\n\t"
"ldr r5, [%[b], #96]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #100]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #100]\n\t"
"ldr r4, [%[a], #104]\n\t"
"ldr r5, [%[b], #104]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #108]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #108]\n\t"
"ldr r4, [%[a], #112]\n\t"
"ldr r5, [%[b], #112]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #116]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #116]\n\t"
"ldr r4, [%[a], #120]\n\t"
"ldr r5, [%[b], #120]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #124]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #124]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
"add %[a], #0x80\n\t"
"add %[b], #0x80\n\t"
"add %[r], #0x80\n\t"
"add %[c], r7\n\t"
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[b], #0]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #4]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[b], #8]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #12]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[b], #16]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #20]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[b], #24]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #28]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #28]\n\t"
"ldr r4, [%[a], #32]\n\t"
"ldr r5, [%[b], #32]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #36]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #36]\n\t"
"ldr r4, [%[a], #40]\n\t"
"ldr r5, [%[b], #40]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #44]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #44]\n\t"
"ldr r4, [%[a], #48]\n\t"
"ldr r5, [%[b], #48]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #52]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #52]\n\t"
"ldr r4, [%[a], #56]\n\t"
"ldr r5, [%[b], #56]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #60]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #60]\n\t"
"ldr r4, [%[a], #64]\n\t"
"ldr r5, [%[b], #64]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #68]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #68]\n\t"
"ldr r4, [%[a], #72]\n\t"
"ldr r5, [%[b], #72]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #76]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #76]\n\t"
"ldr r4, [%[a], #80]\n\t"
"ldr r5, [%[b], #80]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #84]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #84]\n\t"
"ldr r4, [%[a], #88]\n\t"
"ldr r5, [%[b], #88]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #92]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #92]\n\t"
"ldr r4, [%[a], #96]\n\t"
"ldr r5, [%[b], #96]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #100]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #100]\n\t"
"ldr r4, [%[a], #104]\n\t"
"ldr r5, [%[b], #104]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #108]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #108]\n\t"
"ldr r4, [%[a], #112]\n\t"
"ldr r5, [%[b], #112]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #116]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #116]\n\t"
"ldr r4, [%[a], #120]\n\t"
"ldr r5, [%[b], #120]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #124]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #124]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5", "r7"
);
return c;
}
/* AND m into each word of a and store in r.
*
* r A single precision integer.
* a A single precision integer.
* m Mask to AND against each digit.
*/
static void sp_2048_mask_32(sp_digit* r, const sp_digit* a, sp_digit m)
{
#ifdef WOLFSSL_SP_SMALL
int i;
for (i=0; i<32; i++) {
r[i] = a[i] & m;
}
#else
int i;
for (i = 0; i < 32; i += 8) {
r[i+0] = a[i+0] & m;
r[i+1] = a[i+1] & m;
r[i+2] = a[i+2] & m;
r[i+3] = a[i+3] & m;
r[i+4] = a[i+4] & m;
r[i+5] = a[i+5] & m;
r[i+6] = a[i+6] & m;
r[i+7] = a[i+7] & m;
}
#endif
}
/* Multiply a and b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static void sp_2048_mul_64(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit* z0 = r;
sp_digit z1[64];
sp_digit a1[32];
sp_digit b1[32];
sp_digit z2[64];
sp_digit u, ca, cb;
ca = sp_2048_add_32(a1, a, &a[32]);
cb = sp_2048_add_32(b1, b, &b[32]);
u = ca & cb;
sp_2048_mul_32(z1, a1, b1);
sp_2048_mul_32(z2, &a[32], &b[32]);
sp_2048_mul_32(z0, a, b);
sp_2048_mask_32(r + 64, a1, 0 - cb);
sp_2048_mask_32(b1, b1, 0 - ca);
u += sp_2048_add_32(r + 64, r + 64, b1);
u += sp_2048_sub_in_place_64(z1, z2);
u += sp_2048_sub_in_place_64(z1, z0);
u += sp_2048_add_64(r + 32, r + 32, z1);
r[96] = u;
XMEMSET(r + 96 + 1, 0, sizeof(sp_digit) * (32 - 1));
(void)sp_2048_add_64(r + 64, r + 64, z2);
}
/* Square a and put result in r. (r = a * a)
*
* r A single precision integer.
* a A single precision integer.
*/
SP_NOINLINE static void sp_2048_sqr_64(sp_digit* r, const sp_digit* a)
{
sp_digit* z0 = r;
sp_digit z2[64];
sp_digit z1[64];
sp_digit a1[32];
sp_digit u;
u = sp_2048_add_32(a1, a, &a[32]);
sp_2048_sqr_32(z1, a1);
sp_2048_sqr_32(z2, &a[32]);
sp_2048_sqr_32(z0, a);
sp_2048_mask_32(r + 64, a1, 0 - u);
u += sp_2048_add_32(r + 64, r + 64, r + 64);
u += sp_2048_sub_in_place_64(z1, z2);
u += sp_2048_sub_in_place_64(z1, z0);
u += sp_2048_add_64(r + 32, r + 32, z1);
r[96] = u;
XMEMSET(r + 96 + 1, 0, sizeof(sp_digit) * (32 - 1));
(void)sp_2048_add_64(r + 64, r + 64, z2);
}
#endif /* !WOLFSSL_SP_SMALL */
#ifdef WOLFSSL_SP_SMALL
/* Add b to a into r. (r = a + b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_2048_add_64(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r6, %[a]\n\t"
"mov r7, #0\n\t"
"mov r4, #1\n\t"
"lsl r4, #8\n\t"
"sub r7, #1\n\t"
"add r6, r4\n\t"
"\n1:\n\t"
"add %[c], r7\n\t"
"ldr r4, [%[a]]\n\t"
"ldr r5, [%[b]]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r]]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
"add %[a], #4\n\t"
"add %[b], #4\n\t"
"add %[r], #4\n\t"
"cmp %[a], r6\n\t"
"bne 1b\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5", "r6", "r7"
);
return c;
}
#endif /* WOLFSSL_SP_SMALL */
#ifdef WOLFSSL_SP_SMALL
/* Sub b from a into a. (a -= b)
*
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_2048_sub_in_place_64(sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r7, %[a]\n\t"
"mov r5, #1\n\t"
"lsl r5, #8\n\t"
"add r7, r5\n\t"
"\n1:\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r3, [%[a]]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b]]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a]]\n\t"
"str r4, [%[a], #4]\n\t"
"sbc %[c], %[c]\n\t"
"add %[a], #8\n\t"
"add %[b], #8\n\t"
"cmp %[a], r7\n\t"
"bne 1b\n\t"
: [c] "+r" (c), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r3", "r4", "r5", "r6", "r7"
);
return c;
}
#endif /* WOLFSSL_SP_SMALL */
#ifdef WOLFSSL_SP_SMALL
/* Multiply a and b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static void sp_2048_mul_64(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit tmp[64 * 2];
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"mov r8, r3\n\t"
"mov r11, %[r]\n\t"
"mov r9, %[a]\n\t"
"mov r10, %[b]\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, r9\n\t"
"mov r12, r6\n\t"
"\n1:\n\t"
"mov %[r], #0\n\t"
"mov r5, #0\n\t"
"mov r6, #252\n\t"
"mov %[a], r8\n\t"
"sub %[a], r6\n\t"
"sbc r6, r6\n\t"
"mvn r6, r6\n\t"
"and %[a], r6\n\t"
"mov %[b], r8\n\t"
"sub %[b], %[a]\n\t"
"add %[a], r9\n\t"
"add %[b], r10\n\t"
"\n2:\n\t"
"# Multiply Start\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [%[b]]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [%[b]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [%[b]]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [%[b]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Multiply Done\n\t"
"add %[a], #4\n\t"
"sub %[b], #4\n\t"
"cmp %[a], r12\n\t"
"beq 3f\n\t"
"mov r6, r8\n\t"
"add r6, r9\n\t"
"cmp %[a], r6\n\t"
"ble 2b\n\t"
"\n3:\n\t"
"mov %[r], r11\n\t"
"mov r7, r8\n\t"
"str r3, [%[r], r7]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"add r7, #4\n\t"
"mov r8, r7\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #248\n\t"
"cmp r7, r6\n\t"
"ble 1b\n\t"
"str r3, [%[r], r7]\n\t"
"mov %[a], r9\n\t"
"mov %[b], r10\n\t"
:
: [r] "r" (tmp), [a] "r" (a), [b] "r" (b)
: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12"
);
XMEMCPY(r, tmp, sizeof(tmp));
}
/* Square a and put result in r. (r = a * a)
*
* r A single precision integer.
* a A single precision integer.
*/
SP_NOINLINE static void sp_2048_sqr_64(sp_digit* r, const sp_digit* a)
{
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"mov r5, #0\n\t"
"mov r8, r3\n\t"
"mov r11, %[r]\n\t"
"mov r6, #2\n\t"
"lsl r6, r6, #8\n\t"
"neg r6, r6\n\t"
"add sp, r6\n\t"
"mov r10, sp\n\t"
"mov r9, %[a]\n\t"
"\n1:\n\t"
"mov %[r], #0\n\t"
"mov r6, #252\n\t"
"mov %[a], r8\n\t"
"sub %[a], r6\n\t"
"sbc r6, r6\n\t"
"mvn r6, r6\n\t"
"and %[a], r6\n\t"
"mov r2, r8\n\t"
"sub r2, %[a]\n\t"
"add %[a], r9\n\t"
"add r2, r9\n\t"
"\n2:\n\t"
"cmp r2, %[a]\n\t"
"beq 4f\n\t"
"# Multiply * 2: Start\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [r2]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [r2]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [r2]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [r2]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Multiply * 2: Done\n\t"
"bal 5f\n\t"
"\n4:\n\t"
"# Square: Start\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"lsr r6, r6, #16\n\t"
"mul r6, r6\n\t"
"add r3, r6\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"mul r7, r7\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"lsr r6, r6, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #15\n\t"
"lsl r6, r6, #17\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Square: Done\n\t"
"\n5:\n\t"
"add %[a], #4\n\t"
"sub r2, #4\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, r9\n\t"
"cmp %[a], r6\n\t"
"beq 3f\n\t"
"cmp %[a], r2\n\t"
"bgt 3f\n\t"
"mov r7, r8\n\t"
"add r7, r9\n\t"
"cmp %[a], r7\n\t"
"ble 2b\n\t"
"\n3:\n\t"
"mov %[r], r10\n\t"
"mov r7, r8\n\t"
"str r3, [%[r], r7]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"mov r5, #0\n\t"
"add r7, #4\n\t"
"mov r8, r7\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #248\n\t"
"cmp r7, r6\n\t"
"ble 1b\n\t"
"mov %[a], r9\n\t"
"str r3, [%[r], r7]\n\t"
"mov %[r], r11\n\t"
"mov %[a], r10\n\t"
"mov r3, #1\n\t"
"lsl r3, r3, #8\n\t"
"add r3, #252\n\t"
"\n4:\n\t"
"ldr r6, [%[a], r3]\n\t"
"str r6, [%[r], r3]\n\t"
"sub r3, #4\n\t"
"bge 4b\n\t"
"mov r6, #2\n\t"
"lsl r6, r6, #8\n\t"
"add sp, r6\n\t"
:
: [r] "r" (r), [a] "r" (a)
: "memory", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11"
);
}
#endif /* WOLFSSL_SP_SMALL */
#if (defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH)) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)
#ifdef WOLFSSL_SP_SMALL
/* AND m into each word of a and store in r.
*
* r A single precision integer.
* a A single precision integer.
* m Mask to AND against each digit.
*/
static void sp_2048_mask_32(sp_digit* r, const sp_digit* a, sp_digit m)
{
int i;
for (i=0; i<32; i++) {
r[i] = a[i] & m;
}
}
#endif /* WOLFSSL_SP_SMALL */
#ifdef WOLFSSL_SP_SMALL
/* Add b to a into r. (r = a + b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_2048_add_32(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r6, %[a]\n\t"
"mov r7, #0\n\t"
"add r6, #128\n\t"
"sub r7, #1\n\t"
"\n1:\n\t"
"add %[c], r7\n\t"
"ldr r4, [%[a]]\n\t"
"ldr r5, [%[b]]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r]]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
"add %[a], #4\n\t"
"add %[b], #4\n\t"
"add %[r], #4\n\t"
"cmp %[a], r6\n\t"
"bne 1b\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5", "r6", "r7"
);
return c;
}
#endif /* WOLFSSL_SP_SMALL */
#ifdef WOLFSSL_SP_SMALL
/* Sub b from a into a. (a -= b)
*
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_2048_sub_in_place_32(sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r7, %[a]\n\t"
"add r7, #128\n\t"
"\n1:\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r3, [%[a]]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b]]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a]]\n\t"
"str r4, [%[a], #4]\n\t"
"sbc %[c], %[c]\n\t"
"add %[a], #8\n\t"
"add %[b], #8\n\t"
"cmp %[a], r7\n\t"
"bne 1b\n\t"
: [c] "+r" (c), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r3", "r4", "r5", "r6", "r7"
);
return c;
}
#endif /* WOLFSSL_SP_SMALL */
#ifdef WOLFSSL_SP_SMALL
/* Multiply a and b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static void sp_2048_mul_32(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit tmp[32 * 2];
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"mov r8, r3\n\t"
"mov r11, %[r]\n\t"
"mov r9, %[a]\n\t"
"mov r10, %[b]\n\t"
"mov r6, #128\n\t"
"add r6, r9\n\t"
"mov r12, r6\n\t"
"\n1:\n\t"
"mov %[r], #0\n\t"
"mov r5, #0\n\t"
"mov r6, #124\n\t"
"mov %[a], r8\n\t"
"sub %[a], r6\n\t"
"sbc r6, r6\n\t"
"mvn r6, r6\n\t"
"and %[a], r6\n\t"
"mov %[b], r8\n\t"
"sub %[b], %[a]\n\t"
"add %[a], r9\n\t"
"add %[b], r10\n\t"
"\n2:\n\t"
"# Multiply Start\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [%[b]]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [%[b]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [%[b]]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [%[b]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Multiply Done\n\t"
"add %[a], #4\n\t"
"sub %[b], #4\n\t"
"cmp %[a], r12\n\t"
"beq 3f\n\t"
"mov r6, r8\n\t"
"add r6, r9\n\t"
"cmp %[a], r6\n\t"
"ble 2b\n\t"
"\n3:\n\t"
"mov %[r], r11\n\t"
"mov r7, r8\n\t"
"str r3, [%[r], r7]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"add r7, #4\n\t"
"mov r8, r7\n\t"
"mov r6, #248\n\t"
"cmp r7, r6\n\t"
"ble 1b\n\t"
"str r3, [%[r], r7]\n\t"
"mov %[a], r9\n\t"
"mov %[b], r10\n\t"
:
: [r] "r" (tmp), [a] "r" (a), [b] "r" (b)
: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12"
);
XMEMCPY(r, tmp, sizeof(tmp));
}
/* Square a and put result in r. (r = a * a)
*
* r A single precision integer.
* a A single precision integer.
*/
SP_NOINLINE static void sp_2048_sqr_32(sp_digit* r, const sp_digit* a)
{
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"mov r5, #0\n\t"
"mov r8, r3\n\t"
"mov r11, %[r]\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"neg r6, r6\n\t"
"add sp, r6\n\t"
"mov r10, sp\n\t"
"mov r9, %[a]\n\t"
"\n1:\n\t"
"mov %[r], #0\n\t"
"mov r6, #124\n\t"
"mov %[a], r8\n\t"
"sub %[a], r6\n\t"
"sbc r6, r6\n\t"
"mvn r6, r6\n\t"
"and %[a], r6\n\t"
"mov r2, r8\n\t"
"sub r2, %[a]\n\t"
"add %[a], r9\n\t"
"add r2, r9\n\t"
"\n2:\n\t"
"cmp r2, %[a]\n\t"
"beq 4f\n\t"
"# Multiply * 2: Start\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [r2]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [r2]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [r2]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [r2]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Multiply * 2: Done\n\t"
"bal 5f\n\t"
"\n4:\n\t"
"# Square: Start\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"lsr r6, r6, #16\n\t"
"mul r6, r6\n\t"
"add r3, r6\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"mul r7, r7\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"lsr r6, r6, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #15\n\t"
"lsl r6, r6, #17\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Square: Done\n\t"
"\n5:\n\t"
"add %[a], #4\n\t"
"sub r2, #4\n\t"
"mov r6, #128\n\t"
"add r6, r9\n\t"
"cmp %[a], r6\n\t"
"beq 3f\n\t"
"cmp %[a], r2\n\t"
"bgt 3f\n\t"
"mov r7, r8\n\t"
"add r7, r9\n\t"
"cmp %[a], r7\n\t"
"ble 2b\n\t"
"\n3:\n\t"
"mov %[r], r10\n\t"
"mov r7, r8\n\t"
"str r3, [%[r], r7]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"mov r5, #0\n\t"
"add r7, #4\n\t"
"mov r8, r7\n\t"
"mov r6, #248\n\t"
"cmp r7, r6\n\t"
"ble 1b\n\t"
"mov %[a], r9\n\t"
"str r3, [%[r], r7]\n\t"
"mov %[r], r11\n\t"
"mov %[a], r10\n\t"
"mov r3, #252\n\t"
"\n4:\n\t"
"ldr r6, [%[a], r3]\n\t"
"str r6, [%[r], r3]\n\t"
"sub r3, #4\n\t"
"bge 4b\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add sp, r6\n\t"
:
: [r] "r" (r), [a] "r" (a)
: "memory", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11"
);
}
#endif /* WOLFSSL_SP_SMALL */
#endif /* (WOLFSSL_HAVE_SP_RSA || WOLFSSL_HAVE_SP_DH) && !WOLFSSL_RSA_PUBLIC_ONLY */
/* Caclulate the bottom digit of -1/a mod 2^n.
*
* a A single precision number.
* rho Bottom word of inverse.
*/
static void sp_2048_mont_setup(const sp_digit* a, sp_digit* rho)
{
sp_digit x, b;
b = a[0];
x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
x *= 2 - b * x; /* here x*a==1 mod 2**8 */
x *= 2 - b * x; /* here x*a==1 mod 2**16 */
x *= 2 - b * x; /* here x*a==1 mod 2**32 */
/* rho = -1/m mod b */
*rho = -x;
}
/* Mul a by digit b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision digit.
*/
SP_NOINLINE static void sp_2048_mul_d_64(sp_digit* r, const sp_digit* a,
sp_digit b)
{
__asm__ __volatile__ (
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, %[a]\n\t"
"mov r8, %[r]\n\t"
"mov r9, r6\n\t"
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"1:\n\t"
"mov %[r], #0\n\t"
"mov r5, #0\n\t"
"# A[] * B\n\t"
"ldr r6, [%[a]]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, %[b], #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"lsr r7, %[b], #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, %[b], #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"lsl r7, %[b], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# A[] * B - Done\n\t"
"mov %[r], r8\n\t"
"str r3, [%[r]]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"add %[r], #4\n\t"
"add %[a], #4\n\t"
"mov r8, %[r]\n\t"
"cmp %[a], r9\n\t"
"blt 1b\n\t"
"str r3, [%[r]]\n\t"
: [r] "+r" (r), [a] "+r" (a)
: [b] "r" (b)
: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9"
);
}
#if (defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH)) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)
/* r = 2^n mod m where n is the number of bits to reduce by.
* Given m must be 2048 bits, just need to subtract.
*
* r A single precision number.
* m A single precision number.
*/
static void sp_2048_mont_norm_32(sp_digit* r, const sp_digit* m)
{
XMEMSET(r, 0, sizeof(sp_digit) * 32);
/* r = 2^n mod m */
sp_2048_sub_in_place_32(r, m);
}
/* Conditionally subtract b from a using the mask m.
* m is -1 to subtract and 0 when not copying.
*
* r A single precision number representing condition subtract result.
* a A single precision number to subtract from.
* b A single precision number to subtract.
* m Mask value to apply.
*/
SP_NOINLINE static sp_digit sp_2048_cond_sub_32(sp_digit* r, const sp_digit* a,
const sp_digit* b, sp_digit m)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r5, #128\n\t"
"mov r8, r5\n\t"
"mov r7, #0\n\t"
"1:\n\t"
"ldr r6, [%[b], r7]\n\t"
"and r6, %[m]\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r5, [%[a], r7]\n\t"
"sbc r5, r6\n\t"
"sbc %[c], %[c]\n\t"
"str r5, [%[r], r7]\n\t"
"add r7, #4\n\t"
"cmp r7, r8\n\t"
"blt 1b\n\t"
: [c] "+r" (c)
: [r] "r" (r), [a] "r" (a), [b] "r" (b), [m] "r" (m)
: "memory", "r5", "r6", "r7", "r8"
);
return c;
}
/* Reduce the number back to 2048 bits using Montgomery reduction.
*
* a A single precision number to reduce in place.
* m The single precision number representing the modulus.
* mp The digit representing the negative inverse of m mod 2^n.
*/
SP_NOINLINE static void sp_2048_mont_reduce_32(sp_digit* a, const sp_digit* m,
sp_digit mp)
{
sp_digit ca = 0;
__asm__ __volatile__ (
"mov r8, %[mp]\n\t"
"mov r12, %[ca]\n\t"
"mov r14, %[m]\n\t"
"mov r9, %[a]\n\t"
"mov r4, #0\n\t"
"# i = 0\n\t"
"mov r11, r4\n\t"
"\n1:\n\t"
"mov r5, #0\n\t"
"mov %[ca], #0\n\t"
"# mu = a[i] * mp\n\t"
"mov %[mp], r8\n\t"
"ldr %[a], [%[a]]\n\t"
"mul %[mp], %[a]\n\t"
"mov %[m], r14\n\t"
"mov r10, r9\n\t"
"\n2:\n\t"
"# a[i+j] += m[j] * mu\n\t"
"mov %[a], r10\n\t"
"ldr %[a], [%[a]]\n\t"
"mov %[ca], #0\n\t"
"mov r4, r5\n\t"
"mov r5, #0\n\t"
"# Multiply m[j] and mu - Start\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r6, %[mp], #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add %[a], r7\n\t"
"adc r5, %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add %[a], r6\n\t"
"adc r5, r7\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r6, %[mp], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r5, r7\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add %[a], r6\n\t"
"adc r5, r7\n\t"
"# Multiply m[j] and mu - Done\n\t"
"add r4, %[a]\n\t"
"adc r5, %[ca]\n\t"
"mov %[a], r10\n\t"
"str r4, [%[a]]\n\t"
"mov r6, #4\n\t"
"add %[m], #4\n\t"
"add r10, r6\n\t"
"mov r4, #124\n\t"
"add r4, r9\n\t"
"cmp r10, r4\n\t"
"blt 2b\n\t"
"# a[i+31] += m[31] * mu\n\t"
"mov %[ca], #0\n\t"
"mov r4, r12\n\t"
"mov %[a], #0\n\t"
"# Multiply m[31] and mu - Start\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r6, %[mp], #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r5, r7\n\t"
"adc r4, %[ca]\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r5, r6\n\t"
"adc r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r6, %[mp], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r5, r6\n\t"
"adc r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"# Multiply m[31] and mu - Done\n\t"
"mov %[ca], %[a]\n\t"
"mov %[a], r10\n\t"
"ldr r7, [%[a], #4]\n\t"
"ldr %[a], [%[a]]\n\t"
"mov r6, #0\n\t"
"add r5, %[a]\n\t"
"adc r7, r4\n\t"
"adc %[ca], r6\n\t"
"mov %[a], r10\n\t"
"str r5, [%[a]]\n\t"
"str r7, [%[a], #4]\n\t"
"# i += 1\n\t"
"mov r6, #4\n\t"
"add r9, r6\n\t"
"add r11, r6\n\t"
"mov r12, %[ca]\n\t"
"mov %[a], r9\n\t"
"mov r4, #128\n\t"
"cmp r11, r4\n\t"
"blt 1b\n\t"
"mov %[m], r14\n\t"
: [ca] "+r" (ca), [a] "+r" (a)
: [m] "r" (m), [mp] "r" (mp)
: "memory", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14"
);
sp_2048_cond_sub_32(a - 32, a, m, (sp_digit)0 - ca);
}
/* Multiply two Montogmery form numbers mod the modulus (prime).
* (r = a * b mod m)
*
* r Result of multiplication.
* a First number to multiply in Montogmery form.
* b Second number to multiply in Montogmery form.
* m Modulus (prime).
* mp Montogmery mulitplier.
*/
static void sp_2048_mont_mul_32(sp_digit* r, const sp_digit* a, const sp_digit* b,
const sp_digit* m, sp_digit mp)
{
sp_2048_mul_32(r, a, b);
sp_2048_mont_reduce_32(r, m, mp);
}
/* Square the Montgomery form number. (r = a * a mod m)
*
* r Result of squaring.
* a Number to square in Montogmery form.
* m Modulus (prime).
* mp Montogmery mulitplier.
*/
static void sp_2048_mont_sqr_32(sp_digit* r, const sp_digit* a, const sp_digit* m,
sp_digit mp)
{
sp_2048_sqr_32(r, a);
sp_2048_mont_reduce_32(r, m, mp);
}
/* Mul a by digit b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision digit.
*/
SP_NOINLINE static void sp_2048_mul_d_32(sp_digit* r, const sp_digit* a,
sp_digit b)
{
__asm__ __volatile__ (
"mov r6, #128\n\t"
"add r6, %[a]\n\t"
"mov r8, %[r]\n\t"
"mov r9, r6\n\t"
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"1:\n\t"
"mov %[r], #0\n\t"
"mov r5, #0\n\t"
"# A[] * B\n\t"
"ldr r6, [%[a]]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, %[b], #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"lsr r7, %[b], #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, %[b], #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"lsl r7, %[b], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# A[] * B - Done\n\t"
"mov %[r], r8\n\t"
"str r3, [%[r]]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"add %[r], #4\n\t"
"add %[a], #4\n\t"
"mov r8, %[r]\n\t"
"cmp %[a], r9\n\t"
"blt 1b\n\t"
"str r3, [%[r]]\n\t"
: [r] "+r" (r), [a] "+r" (a)
: [b] "r" (b)
: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9"
);
}
/* Divide the double width number (d1|d0) by the dividend. (d1|d0 / div)
*
* d1 The high order half of the number to divide.
* d0 The low order half of the number to divide.
* div The dividend.
* returns the result of the division.
*
* Note that this is an approximate div. It may give an answer 1 larger.
*/
SP_NOINLINE static sp_digit div_2048_word_32(sp_digit d1, sp_digit d0,
sp_digit div)
{
sp_digit r = 0;
__asm__ __volatile__ (
"lsr r5, %[div], #1\n\t"
"add r5, #1\n\t"
"mov r8, %[d0]\n\t"
"mov r9, %[d1]\n\t"
"# Do top 32\n\t"
"mov r6, r5\n\t"
"sub r6, %[d1]\n\t"
"sbc r6, r6\n\t"
"add %[r], %[r]\n\t"
"sub %[r], r6\n\t"
"and r6, r5\n\t"
"sub %[d1], r6\n\t"
"# Next 30 bits\n\t"
"mov r4, #29\n\t"
"1:\n\t"
"lsl %[d0], %[d0], #1\n\t"
"adc %[d1], %[d1]\n\t"
"mov r6, r5\n\t"
"sub r6, %[d1]\n\t"
"sbc r6, r6\n\t"
"add %[r], %[r]\n\t"
"sub %[r], r6\n\t"
"and r6, r5\n\t"
"sub %[d1], r6\n\t"
"sub r4, #1\n\t"
"bpl 1b\n\t"
"mov r7, #0\n\t"
"add %[r], %[r]\n\t"
"add %[r], #1\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"sub %[d1], r4\n\t"
"mov r4, %[d1]\n\t"
"mov %[d1], r9\n\t"
"sbc %[d1], r5\n\t"
"mov r5, %[d1]\n\t"
"add %[r], r5\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"mov r6, r9\n\t"
"sub r4, %[d1], r4\n\t"
"sbc r6, r5\n\t"
"mov r5, r6\n\t"
"add %[r], r5\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"mov r6, r9\n\t"
"sub r4, %[d1], r4\n\t"
"sbc r6, r5\n\t"
"mov r5, r6\n\t"
"add %[r], r5\n\t"
"mov r6, %[div]\n\t"
"sub r6, r4\n\t"
"sbc r6, r6\n\t"
"sub %[r], r6\n\t"
: [r] "+r" (r)
: [d1] "r" (d1), [d0] "r" (d0), [div] "r" (div)
: "r4", "r5", "r7", "r6", "r8", "r9"
);
return r;
}
/* Compare a with b in constant time.
*
* a A single precision integer.
* b A single precision integer.
* return -ve, 0 or +ve if a is less than, equal to or greater than b
* respectively.
*/
SP_NOINLINE static int32_t sp_2048_cmp_32(const sp_digit* a, const sp_digit* b)
{
sp_digit r = 0;
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mvn r3, r3\n\t"
"mov r6, #124\n\t"
"1:\n\t"
"ldr r7, [%[a], r6]\n\t"
"ldr r5, [%[b], r6]\n\t"
"and r7, r3\n\t"
"and r5, r3\n\t"
"mov r4, r7\n\t"
"sub r7, r5\n\t"
"sbc r7, r7\n\t"
"add %[r], r7\n\t"
"mvn r7, r7\n\t"
"and r3, r7\n\t"
"sub r5, r4\n\t"
"sbc r7, r7\n\t"
"sub %[r], r7\n\t"
"mvn r7, r7\n\t"
"and r3, r7\n\t"
"sub r6, #4\n\t"
"cmp r6, #0\n\t"
"bge 1b\n\t"
: [r] "+r" (r)
: [a] "r" (a), [b] "r" (b)
: "r3", "r4", "r5", "r6", "r7"
);
return r;
}
/* Divide d in a and put remainder into r (m*d + r = a)
* m is not calculated as it is not needed at this time.
*
* a Nmber to be divided.
* d Number to divide with.
* m Multiplier result.
* r Remainder from the division.
* returns MP_OKAY indicating success.
*/
static WC_INLINE int sp_2048_div_32(const sp_digit* a, const sp_digit* d, sp_digit* m,
sp_digit* r)
{
sp_digit t1[64], t2[33];
sp_digit div, r1;
int i;
(void)m;
div = d[31];
XMEMCPY(t1, a, sizeof(*t1) * 2 * 32);
for (i=31; i>=0; i--) {
r1 = div_2048_word_32(t1[32 + i], t1[32 + i - 1], div);
sp_2048_mul_d_32(t2, d, r1);
t1[32 + i] += sp_2048_sub_in_place_32(&t1[i], t2);
t1[32 + i] -= t2[32];
sp_2048_mask_32(t2, d, t1[32 + i]);
t1[32 + i] += sp_2048_add_32(&t1[i], &t1[i], t2);
sp_2048_mask_32(t2, d, t1[32 + i]);
t1[32 + i] += sp_2048_add_32(&t1[i], &t1[i], t2);
}
r1 = sp_2048_cmp_32(t1, d) >= 0;
sp_2048_cond_sub_32(r, t1, d, (sp_digit)0 - r1);
return MP_OKAY;
}
/* Reduce a modulo m into r. (r = a mod m)
*
* r A single precision number that is the reduced result.
* a A single precision number that is to be reduced.
* m A single precision number that is the modulus to reduce with.
* returns MP_OKAY indicating success.
*/
static WC_INLINE int sp_2048_mod_32(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
return sp_2048_div_32(a, m, NULL, r);
}
#ifdef WOLFSSL_SP_SMALL
/* Modular exponentiate a to the e mod m. (r = a^e mod m)
*
* r A single precision number that is the result of the operation.
* a A single precision number being exponentiated.
* e A single precision number that is the exponent.
* bits The number of bits in the exponent.
* m A single precision number that is the modulus.
* returns 0 on success and MEMORY_E on dynamic memory allocation failure.
*/
static int sp_2048_mod_exp_32(sp_digit* r, const sp_digit* a, const sp_digit* e,
int bits, const sp_digit* m, int reduceA)
{
#ifndef WOLFSSL_SMALL_STACK
sp_digit t[16][64];
#else
sp_digit* t[16];
sp_digit* td;
#endif
sp_digit* norm;
sp_digit mp = 1;
sp_digit n;
sp_digit mask;
int i;
int c, y;
int err = MP_OKAY;
#ifdef WOLFSSL_SMALL_STACK
td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 16 * 64, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (td == NULL) {
err = MEMORY_E;
}
#endif
if (err == MP_OKAY) {
#ifdef WOLFSSL_SMALL_STACK
for (i=0; i<16; i++) {
t[i] = td + i * 64;
}
#endif
norm = t[0];
sp_2048_mont_setup(m, &mp);
sp_2048_mont_norm_32(norm, m);
XMEMSET(t[1], 0, sizeof(sp_digit) * 32U);
if (reduceA != 0) {
err = sp_2048_mod_32(t[1] + 32, a, m);
if (err == MP_OKAY) {
err = sp_2048_mod_32(t[1], t[1], m);
}
}
else {
XMEMCPY(t[1] + 32, a, sizeof(sp_digit) * 32);
err = sp_2048_mod_32(t[1], t[1], m);
}
}
if (err == MP_OKAY) {
sp_2048_mont_sqr_32(t[ 2], t[ 1], m, mp);
sp_2048_mont_mul_32(t[ 3], t[ 2], t[ 1], m, mp);
sp_2048_mont_sqr_32(t[ 4], t[ 2], m, mp);
sp_2048_mont_mul_32(t[ 5], t[ 3], t[ 2], m, mp);
sp_2048_mont_sqr_32(t[ 6], t[ 3], m, mp);
sp_2048_mont_mul_32(t[ 7], t[ 4], t[ 3], m, mp);
sp_2048_mont_sqr_32(t[ 8], t[ 4], m, mp);
sp_2048_mont_mul_32(t[ 9], t[ 5], t[ 4], m, mp);
sp_2048_mont_sqr_32(t[10], t[ 5], m, mp);
sp_2048_mont_mul_32(t[11], t[ 6], t[ 5], m, mp);
sp_2048_mont_sqr_32(t[12], t[ 6], m, mp);
sp_2048_mont_mul_32(t[13], t[ 7], t[ 6], m, mp);
sp_2048_mont_sqr_32(t[14], t[ 7], m, mp);
sp_2048_mont_mul_32(t[15], t[ 8], t[ 7], m, mp);
i = (bits - 1) / 32;
n = e[i--];
c = bits & 31;
if (c == 0) {
c = 32;
}
c -= bits % 4;
if (c == 32) {
c = 28;
}
y = (int)(n >> c);
n <<= 32 - c;
XMEMCPY(r, t[y], sizeof(sp_digit) * 32);
for (; i>=0 || c>=4; ) {
if (c == 0) {
n = e[i--];
y = n >> 28;
n <<= 4;
c = 28;
}
else if (c < 4) {
y = n >> 28;
n = e[i--];
c = 4 - c;
y |= n >> (32 - c);
n <<= c;
c = 32 - c;
}
else {
y = (n >> 28) & 0xf;
n <<= 4;
c -= 4;
}
sp_2048_mont_sqr_32(r, r, m, mp);
sp_2048_mont_sqr_32(r, r, m, mp);
sp_2048_mont_sqr_32(r, r, m, mp);
sp_2048_mont_sqr_32(r, r, m, mp);
sp_2048_mont_mul_32(r, r, t[y], m, mp);
}
XMEMSET(&r[32], 0, sizeof(sp_digit) * 32U);
sp_2048_mont_reduce_32(r, m, mp);
mask = 0 - (sp_2048_cmp_32(r, m) >= 0);
sp_2048_cond_sub_32(r, r, m, mask);
}
#ifdef WOLFSSL_SMALL_STACK
if (td != NULL) {
XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
return err;
}
#else
/* Modular exponentiate a to the e mod m. (r = a^e mod m)
*
* r A single precision number that is the result of the operation.
* a A single precision number being exponentiated.
* e A single precision number that is the exponent.
* bits The number of bits in the exponent.
* m A single precision number that is the modulus.
* returns 0 on success and MEMORY_E on dynamic memory allocation failure.
*/
static int sp_2048_mod_exp_32(sp_digit* r, const sp_digit* a, const sp_digit* e,
int bits, const sp_digit* m, int reduceA)
{
#ifndef WOLFSSL_SMALL_STACK
sp_digit t[32][64];
#else
sp_digit* t[32];
sp_digit* td;
#endif
sp_digit* norm;
sp_digit mp = 1;
sp_digit n;
sp_digit mask;
int i;
int c, y;
int err = MP_OKAY;
#ifdef WOLFSSL_SMALL_STACK
td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 32 * 64, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (td == NULL) {
err = MEMORY_E;
}
#endif
if (err == MP_OKAY) {
#ifdef WOLFSSL_SMALL_STACK
for (i=0; i<32; i++) {
t[i] = td + i * 64;
}
#endif
norm = t[0];
sp_2048_mont_setup(m, &mp);
sp_2048_mont_norm_32(norm, m);
XMEMSET(t[1], 0, sizeof(sp_digit) * 32U);
if (reduceA != 0) {
err = sp_2048_mod_32(t[1] + 32, a, m);
if (err == MP_OKAY) {
err = sp_2048_mod_32(t[1], t[1], m);
}
}
else {
XMEMCPY(t[1] + 32, a, sizeof(sp_digit) * 32);
err = sp_2048_mod_32(t[1], t[1], m);
}
}
if (err == MP_OKAY) {
sp_2048_mont_sqr_32(t[ 2], t[ 1], m, mp);
sp_2048_mont_mul_32(t[ 3], t[ 2], t[ 1], m, mp);
sp_2048_mont_sqr_32(t[ 4], t[ 2], m, mp);
sp_2048_mont_mul_32(t[ 5], t[ 3], t[ 2], m, mp);
sp_2048_mont_sqr_32(t[ 6], t[ 3], m, mp);
sp_2048_mont_mul_32(t[ 7], t[ 4], t[ 3], m, mp);
sp_2048_mont_sqr_32(t[ 8], t[ 4], m, mp);
sp_2048_mont_mul_32(t[ 9], t[ 5], t[ 4], m, mp);
sp_2048_mont_sqr_32(t[10], t[ 5], m, mp);
sp_2048_mont_mul_32(t[11], t[ 6], t[ 5], m, mp);
sp_2048_mont_sqr_32(t[12], t[ 6], m, mp);
sp_2048_mont_mul_32(t[13], t[ 7], t[ 6], m, mp);
sp_2048_mont_sqr_32(t[14], t[ 7], m, mp);
sp_2048_mont_mul_32(t[15], t[ 8], t[ 7], m, mp);
sp_2048_mont_sqr_32(t[16], t[ 8], m, mp);
sp_2048_mont_mul_32(t[17], t[ 9], t[ 8], m, mp);
sp_2048_mont_sqr_32(t[18], t[ 9], m, mp);
sp_2048_mont_mul_32(t[19], t[10], t[ 9], m, mp);
sp_2048_mont_sqr_32(t[20], t[10], m, mp);
sp_2048_mont_mul_32(t[21], t[11], t[10], m, mp);
sp_2048_mont_sqr_32(t[22], t[11], m, mp);
sp_2048_mont_mul_32(t[23], t[12], t[11], m, mp);
sp_2048_mont_sqr_32(t[24], t[12], m, mp);
sp_2048_mont_mul_32(t[25], t[13], t[12], m, mp);
sp_2048_mont_sqr_32(t[26], t[13], m, mp);
sp_2048_mont_mul_32(t[27], t[14], t[13], m, mp);
sp_2048_mont_sqr_32(t[28], t[14], m, mp);
sp_2048_mont_mul_32(t[29], t[15], t[14], m, mp);
sp_2048_mont_sqr_32(t[30], t[15], m, mp);
sp_2048_mont_mul_32(t[31], t[16], t[15], m, mp);
i = (bits - 1) / 32;
n = e[i--];
c = bits & 31;
if (c == 0) {
c = 32;
}
c -= bits % 5;
if (c == 32) {
c = 27;
}
y = (int)(n >> c);
n <<= 32 - c;
XMEMCPY(r, t[y], sizeof(sp_digit) * 32);
for (; i>=0 || c>=5; ) {
if (c == 0) {
n = e[i--];
y = n >> 27;
n <<= 5;
c = 27;
}
else if (c < 5) {
y = n >> 27;
n = e[i--];
c = 5 - c;
y |= n >> (32 - c);
n <<= c;
c = 32 - c;
}
else {
y = (n >> 27) & 0x1f;
n <<= 5;
c -= 5;
}
sp_2048_mont_sqr_32(r, r, m, mp);
sp_2048_mont_sqr_32(r, r, m, mp);
sp_2048_mont_sqr_32(r, r, m, mp);
sp_2048_mont_sqr_32(r, r, m, mp);
sp_2048_mont_sqr_32(r, r, m, mp);
sp_2048_mont_mul_32(r, r, t[y], m, mp);
}
XMEMSET(&r[32], 0, sizeof(sp_digit) * 32U);
sp_2048_mont_reduce_32(r, m, mp);
mask = 0 - (sp_2048_cmp_32(r, m) >= 0);
sp_2048_cond_sub_32(r, r, m, mask);
}
#ifdef WOLFSSL_SMALL_STACK
if (td != NULL) {
XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
return err;
}
#endif /* WOLFSSL_SP_SMALL */
#endif /* (WOLFSSL_HAVE_SP_RSA || WOLFSSL_HAVE_SP_DH) && !WOLFSSL_RSA_PUBLIC_ONLY */
#if defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH)
/* r = 2^n mod m where n is the number of bits to reduce by.
* Given m must be 2048 bits, just need to subtract.
*
* r A single precision number.
* m A single precision number.
*/
static void sp_2048_mont_norm_64(sp_digit* r, const sp_digit* m)
{
XMEMSET(r, 0, sizeof(sp_digit) * 64);
/* r = 2^n mod m */
sp_2048_sub_in_place_64(r, m);
}
#endif /* WOLFSSL_HAVE_SP_RSA || WOLFSSL_HAVE_SP_DH */
/* Conditionally subtract b from a using the mask m.
* m is -1 to subtract and 0 when not copying.
*
* r A single precision number representing condition subtract result.
* a A single precision number to subtract from.
* b A single precision number to subtract.
* m Mask value to apply.
*/
SP_NOINLINE static sp_digit sp_2048_cond_sub_64(sp_digit* r, const sp_digit* a,
const sp_digit* b, sp_digit m)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r5, #1\n\t"
"lsl r5, r5, #8\n\t"
"mov r8, r5\n\t"
"mov r7, #0\n\t"
"1:\n\t"
"ldr r6, [%[b], r7]\n\t"
"and r6, %[m]\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r5, [%[a], r7]\n\t"
"sbc r5, r6\n\t"
"sbc %[c], %[c]\n\t"
"str r5, [%[r], r7]\n\t"
"add r7, #4\n\t"
"cmp r7, r8\n\t"
"blt 1b\n\t"
: [c] "+r" (c)
: [r] "r" (r), [a] "r" (a), [b] "r" (b), [m] "r" (m)
: "memory", "r5", "r6", "r7", "r8"
);
return c;
}
/* Reduce the number back to 2048 bits using Montgomery reduction.
*
* a A single precision number to reduce in place.
* m The single precision number representing the modulus.
* mp The digit representing the negative inverse of m mod 2^n.
*/
SP_NOINLINE static void sp_2048_mont_reduce_64(sp_digit* a, const sp_digit* m,
sp_digit mp)
{
sp_digit ca = 0;
__asm__ __volatile__ (
"mov r8, %[mp]\n\t"
"mov r12, %[ca]\n\t"
"mov r14, %[m]\n\t"
"mov r9, %[a]\n\t"
"mov r4, #0\n\t"
"# i = 0\n\t"
"mov r11, r4\n\t"
"\n1:\n\t"
"mov r5, #0\n\t"
"mov %[ca], #0\n\t"
"# mu = a[i] * mp\n\t"
"mov %[mp], r8\n\t"
"ldr %[a], [%[a]]\n\t"
"mul %[mp], %[a]\n\t"
"mov %[m], r14\n\t"
"mov r10, r9\n\t"
"\n2:\n\t"
"# a[i+j] += m[j] * mu\n\t"
"mov %[a], r10\n\t"
"ldr %[a], [%[a]]\n\t"
"mov %[ca], #0\n\t"
"mov r4, r5\n\t"
"mov r5, #0\n\t"
"# Multiply m[j] and mu - Start\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r6, %[mp], #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add %[a], r7\n\t"
"adc r5, %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add %[a], r6\n\t"
"adc r5, r7\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r6, %[mp], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r5, r7\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add %[a], r6\n\t"
"adc r5, r7\n\t"
"# Multiply m[j] and mu - Done\n\t"
"add r4, %[a]\n\t"
"adc r5, %[ca]\n\t"
"mov %[a], r10\n\t"
"str r4, [%[a]]\n\t"
"mov r6, #4\n\t"
"add %[m], #4\n\t"
"add r10, r6\n\t"
"mov r4, #252\n\t"
"add r4, r9\n\t"
"cmp r10, r4\n\t"
"blt 2b\n\t"
"# a[i+63] += m[63] * mu\n\t"
"mov %[ca], #0\n\t"
"mov r4, r12\n\t"
"mov %[a], #0\n\t"
"# Multiply m[63] and mu - Start\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r6, %[mp], #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r5, r7\n\t"
"adc r4, %[ca]\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r5, r6\n\t"
"adc r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r6, %[mp], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r5, r6\n\t"
"adc r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"# Multiply m[63] and mu - Done\n\t"
"mov %[ca], %[a]\n\t"
"mov %[a], r10\n\t"
"ldr r7, [%[a], #4]\n\t"
"ldr %[a], [%[a]]\n\t"
"mov r6, #0\n\t"
"add r5, %[a]\n\t"
"adc r7, r4\n\t"
"adc %[ca], r6\n\t"
"mov %[a], r10\n\t"
"str r5, [%[a]]\n\t"
"str r7, [%[a], #4]\n\t"
"# i += 1\n\t"
"mov r6, #4\n\t"
"add r9, r6\n\t"
"add r11, r6\n\t"
"mov r12, %[ca]\n\t"
"mov %[a], r9\n\t"
"mov r4, #1\n\t"
"lsl r4, r4, #8\n\t"
"cmp r11, r4\n\t"
"blt 1b\n\t"
"mov %[m], r14\n\t"
: [ca] "+r" (ca), [a] "+r" (a)
: [m] "r" (m), [mp] "r" (mp)
: "memory", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14"
);
sp_2048_cond_sub_64(a - 64, a, m, (sp_digit)0 - ca);
}
/* Multiply two Montogmery form numbers mod the modulus (prime).
* (r = a * b mod m)
*
* r Result of multiplication.
* a First number to multiply in Montogmery form.
* b Second number to multiply in Montogmery form.
* m Modulus (prime).
* mp Montogmery mulitplier.
*/
static void sp_2048_mont_mul_64(sp_digit* r, const sp_digit* a, const sp_digit* b,
const sp_digit* m, sp_digit mp)
{
sp_2048_mul_64(r, a, b);
sp_2048_mont_reduce_64(r, m, mp);
}
/* Square the Montgomery form number. (r = a * a mod m)
*
* r Result of squaring.
* a Number to square in Montogmery form.
* m Modulus (prime).
* mp Montogmery mulitplier.
*/
static void sp_2048_mont_sqr_64(sp_digit* r, const sp_digit* a, const sp_digit* m,
sp_digit mp)
{
sp_2048_sqr_64(r, a);
sp_2048_mont_reduce_64(r, m, mp);
}
/* Divide the double width number (d1|d0) by the dividend. (d1|d0 / div)
*
* d1 The high order half of the number to divide.
* d0 The low order half of the number to divide.
* div The dividend.
* returns the result of the division.
*
* Note that this is an approximate div. It may give an answer 1 larger.
*/
SP_NOINLINE static sp_digit div_2048_word_64(sp_digit d1, sp_digit d0,
sp_digit div)
{
sp_digit r = 0;
__asm__ __volatile__ (
"lsr r5, %[div], #1\n\t"
"add r5, #1\n\t"
"mov r8, %[d0]\n\t"
"mov r9, %[d1]\n\t"
"# Do top 32\n\t"
"mov r6, r5\n\t"
"sub r6, %[d1]\n\t"
"sbc r6, r6\n\t"
"add %[r], %[r]\n\t"
"sub %[r], r6\n\t"
"and r6, r5\n\t"
"sub %[d1], r6\n\t"
"# Next 30 bits\n\t"
"mov r4, #29\n\t"
"1:\n\t"
"lsl %[d0], %[d0], #1\n\t"
"adc %[d1], %[d1]\n\t"
"mov r6, r5\n\t"
"sub r6, %[d1]\n\t"
"sbc r6, r6\n\t"
"add %[r], %[r]\n\t"
"sub %[r], r6\n\t"
"and r6, r5\n\t"
"sub %[d1], r6\n\t"
"sub r4, #1\n\t"
"bpl 1b\n\t"
"mov r7, #0\n\t"
"add %[r], %[r]\n\t"
"add %[r], #1\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"sub %[d1], r4\n\t"
"mov r4, %[d1]\n\t"
"mov %[d1], r9\n\t"
"sbc %[d1], r5\n\t"
"mov r5, %[d1]\n\t"
"add %[r], r5\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"mov r6, r9\n\t"
"sub r4, %[d1], r4\n\t"
"sbc r6, r5\n\t"
"mov r5, r6\n\t"
"add %[r], r5\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"mov r6, r9\n\t"
"sub r4, %[d1], r4\n\t"
"sbc r6, r5\n\t"
"mov r5, r6\n\t"
"add %[r], r5\n\t"
"mov r6, %[div]\n\t"
"sub r6, r4\n\t"
"sbc r6, r6\n\t"
"sub %[r], r6\n\t"
: [r] "+r" (r)
: [d1] "r" (d1), [d0] "r" (d0), [div] "r" (div)
: "r4", "r5", "r7", "r6", "r8", "r9"
);
return r;
}
/* AND m into each word of a and store in r.
*
* r A single precision integer.
* a A single precision integer.
* m Mask to AND against each digit.
*/
static void sp_2048_mask_64(sp_digit* r, const sp_digit* a, sp_digit m)
{
#ifdef WOLFSSL_SP_SMALL
int i;
for (i=0; i<64; i++) {
r[i] = a[i] & m;
}
#else
int i;
for (i = 0; i < 64; i += 8) {
r[i+0] = a[i+0] & m;
r[i+1] = a[i+1] & m;
r[i+2] = a[i+2] & m;
r[i+3] = a[i+3] & m;
r[i+4] = a[i+4] & m;
r[i+5] = a[i+5] & m;
r[i+6] = a[i+6] & m;
r[i+7] = a[i+7] & m;
}
#endif
}
/* Compare a with b in constant time.
*
* a A single precision integer.
* b A single precision integer.
* return -ve, 0 or +ve if a is less than, equal to or greater than b
* respectively.
*/
SP_NOINLINE static int32_t sp_2048_cmp_64(const sp_digit* a, const sp_digit* b)
{
sp_digit r = 0;
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mvn r3, r3\n\t"
"mov r6, #252\n\t"
"1:\n\t"
"ldr r7, [%[a], r6]\n\t"
"ldr r5, [%[b], r6]\n\t"
"and r7, r3\n\t"
"and r5, r3\n\t"
"mov r4, r7\n\t"
"sub r7, r5\n\t"
"sbc r7, r7\n\t"
"add %[r], r7\n\t"
"mvn r7, r7\n\t"
"and r3, r7\n\t"
"sub r5, r4\n\t"
"sbc r7, r7\n\t"
"sub %[r], r7\n\t"
"mvn r7, r7\n\t"
"and r3, r7\n\t"
"sub r6, #4\n\t"
"cmp r6, #0\n\t"
"bge 1b\n\t"
: [r] "+r" (r)
: [a] "r" (a), [b] "r" (b)
: "r3", "r4", "r5", "r6", "r7"
);
return r;
}
/* Divide d in a and put remainder into r (m*d + r = a)
* m is not calculated as it is not needed at this time.
*
* a Nmber to be divided.
* d Number to divide with.
* m Multiplier result.
* r Remainder from the division.
* returns MP_OKAY indicating success.
*/
static WC_INLINE int sp_2048_div_64(const sp_digit* a, const sp_digit* d, sp_digit* m,
sp_digit* r)
{
sp_digit t1[128], t2[65];
sp_digit div, r1;
int i;
(void)m;
div = d[63];
XMEMCPY(t1, a, sizeof(*t1) * 2 * 64);
for (i=63; i>=0; i--) {
r1 = div_2048_word_64(t1[64 + i], t1[64 + i - 1], div);
sp_2048_mul_d_64(t2, d, r1);
t1[64 + i] += sp_2048_sub_in_place_64(&t1[i], t2);
t1[64 + i] -= t2[64];
sp_2048_mask_64(t2, d, t1[64 + i]);
t1[64 + i] += sp_2048_add_64(&t1[i], &t1[i], t2);
sp_2048_mask_64(t2, d, t1[64 + i]);
t1[64 + i] += sp_2048_add_64(&t1[i], &t1[i], t2);
}
r1 = sp_2048_cmp_64(t1, d) >= 0;
sp_2048_cond_sub_64(r, t1, d, (sp_digit)0 - r1);
return MP_OKAY;
}
/* Reduce a modulo m into r. (r = a mod m)
*
* r A single precision number that is the reduced result.
* a A single precision number that is to be reduced.
* m A single precision number that is the modulus to reduce with.
* returns MP_OKAY indicating success.
*/
static WC_INLINE int sp_2048_mod_64(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
return sp_2048_div_64(a, m, NULL, r);
}
/* Divide d in a and put remainder into r (m*d + r = a)
* m is not calculated as it is not needed at this time.
*
* a Nmber to be divided.
* d Number to divide with.
* m Multiplier result.
* r Remainder from the division.
* returns MP_OKAY indicating success.
*/
static WC_INLINE int sp_2048_div_64_cond(const sp_digit* a, const sp_digit* d, sp_digit* m,
sp_digit* r)
{
sp_digit t1[128], t2[65];
sp_digit div, r1;
int i;
(void)m;
div = d[63];
XMEMCPY(t1, a, sizeof(*t1) * 2 * 64);
for (i=63; i>=0; i--) {
r1 = div_2048_word_64(t1[64 + i], t1[64 + i - 1], div);
sp_2048_mul_d_64(t2, d, r1);
t1[64 + i] += sp_2048_sub_in_place_64(&t1[i], t2);
t1[64 + i] -= t2[64];
if (t1[64 + i] != 0) {
t1[64 + i] += sp_2048_add_64(&t1[i], &t1[i], d);
if (t1[64 + i] != 0)
t1[64 + i] += sp_2048_add_64(&t1[i], &t1[i], d);
}
}
r1 = sp_2048_cmp_64(t1, d) >= 0;
sp_2048_cond_sub_64(r, t1, d, (sp_digit)0 - r1);
return MP_OKAY;
}
/* Reduce a modulo m into r. (r = a mod m)
*
* r A single precision number that is the reduced result.
* a A single precision number that is to be reduced.
* m A single precision number that is the modulus to reduce with.
* returns MP_OKAY indicating success.
*/
static WC_INLINE int sp_2048_mod_64_cond(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
return sp_2048_div_64_cond(a, m, NULL, r);
}
#if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || \
defined(WOLFSSL_HAVE_SP_DH)
#ifdef WOLFSSL_SP_SMALL
/* Modular exponentiate a to the e mod m. (r = a^e mod m)
*
* r A single precision number that is the result of the operation.
* a A single precision number being exponentiated.
* e A single precision number that is the exponent.
* bits The number of bits in the exponent.
* m A single precision number that is the modulus.
* returns 0 on success and MEMORY_E on dynamic memory allocation failure.
*/
static int sp_2048_mod_exp_64(sp_digit* r, const sp_digit* a, const sp_digit* e,
int bits, const sp_digit* m, int reduceA)
{
#ifndef WOLFSSL_SMALL_STACK
sp_digit t[16][128];
#else
sp_digit* t[16];
sp_digit* td;
#endif
sp_digit* norm;
sp_digit mp = 1;
sp_digit n;
sp_digit mask;
int i;
int c, y;
int err = MP_OKAY;
#ifdef WOLFSSL_SMALL_STACK
td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 16 * 128, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (td == NULL) {
err = MEMORY_E;
}
#endif
if (err == MP_OKAY) {
#ifdef WOLFSSL_SMALL_STACK
for (i=0; i<16; i++) {
t[i] = td + i * 128;
}
#endif
norm = t[0];
sp_2048_mont_setup(m, &mp);
sp_2048_mont_norm_64(norm, m);
XMEMSET(t[1], 0, sizeof(sp_digit) * 64U);
if (reduceA != 0) {
err = sp_2048_mod_64(t[1] + 64, a, m);
if (err == MP_OKAY) {
err = sp_2048_mod_64(t[1], t[1], m);
}
}
else {
XMEMCPY(t[1] + 64, a, sizeof(sp_digit) * 64);
err = sp_2048_mod_64(t[1], t[1], m);
}
}
if (err == MP_OKAY) {
sp_2048_mont_sqr_64(t[ 2], t[ 1], m, mp);
sp_2048_mont_mul_64(t[ 3], t[ 2], t[ 1], m, mp);
sp_2048_mont_sqr_64(t[ 4], t[ 2], m, mp);
sp_2048_mont_mul_64(t[ 5], t[ 3], t[ 2], m, mp);
sp_2048_mont_sqr_64(t[ 6], t[ 3], m, mp);
sp_2048_mont_mul_64(t[ 7], t[ 4], t[ 3], m, mp);
sp_2048_mont_sqr_64(t[ 8], t[ 4], m, mp);
sp_2048_mont_mul_64(t[ 9], t[ 5], t[ 4], m, mp);
sp_2048_mont_sqr_64(t[10], t[ 5], m, mp);
sp_2048_mont_mul_64(t[11], t[ 6], t[ 5], m, mp);
sp_2048_mont_sqr_64(t[12], t[ 6], m, mp);
sp_2048_mont_mul_64(t[13], t[ 7], t[ 6], m, mp);
sp_2048_mont_sqr_64(t[14], t[ 7], m, mp);
sp_2048_mont_mul_64(t[15], t[ 8], t[ 7], m, mp);
i = (bits - 1) / 32;
n = e[i--];
c = bits & 31;
if (c == 0) {
c = 32;
}
c -= bits % 4;
if (c == 32) {
c = 28;
}
y = (int)(n >> c);
n <<= 32 - c;
XMEMCPY(r, t[y], sizeof(sp_digit) * 64);
for (; i>=0 || c>=4; ) {
if (c == 0) {
n = e[i--];
y = n >> 28;
n <<= 4;
c = 28;
}
else if (c < 4) {
y = n >> 28;
n = e[i--];
c = 4 - c;
y |= n >> (32 - c);
n <<= c;
c = 32 - c;
}
else {
y = (n >> 28) & 0xf;
n <<= 4;
c -= 4;
}
sp_2048_mont_sqr_64(r, r, m, mp);
sp_2048_mont_sqr_64(r, r, m, mp);
sp_2048_mont_sqr_64(r, r, m, mp);
sp_2048_mont_sqr_64(r, r, m, mp);
sp_2048_mont_mul_64(r, r, t[y], m, mp);
}
XMEMSET(&r[64], 0, sizeof(sp_digit) * 64U);
sp_2048_mont_reduce_64(r, m, mp);
mask = 0 - (sp_2048_cmp_64(r, m) >= 0);
sp_2048_cond_sub_64(r, r, m, mask);
}
#ifdef WOLFSSL_SMALL_STACK
if (td != NULL) {
XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
return err;
}
#else
/* Modular exponentiate a to the e mod m. (r = a^e mod m)
*
* r A single precision number that is the result of the operation.
* a A single precision number being exponentiated.
* e A single precision number that is the exponent.
* bits The number of bits in the exponent.
* m A single precision number that is the modulus.
* returns 0 on success and MEMORY_E on dynamic memory allocation failure.
*/
static int sp_2048_mod_exp_64(sp_digit* r, const sp_digit* a, const sp_digit* e,
int bits, const sp_digit* m, int reduceA)
{
#ifndef WOLFSSL_SMALL_STACK
sp_digit t[32][128];
#else
sp_digit* t[32];
sp_digit* td;
#endif
sp_digit* norm;
sp_digit mp = 1;
sp_digit n;
sp_digit mask;
int i;
int c, y;
int err = MP_OKAY;
#ifdef WOLFSSL_SMALL_STACK
td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 32 * 128, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (td == NULL) {
err = MEMORY_E;
}
#endif
if (err == MP_OKAY) {
#ifdef WOLFSSL_SMALL_STACK
for (i=0; i<32; i++) {
t[i] = td + i * 128;
}
#endif
norm = t[0];
sp_2048_mont_setup(m, &mp);
sp_2048_mont_norm_64(norm, m);
XMEMSET(t[1], 0, sizeof(sp_digit) * 64U);
if (reduceA != 0) {
err = sp_2048_mod_64(t[1] + 64, a, m);
if (err == MP_OKAY) {
err = sp_2048_mod_64(t[1], t[1], m);
}
}
else {
XMEMCPY(t[1] + 64, a, sizeof(sp_digit) * 64);
err = sp_2048_mod_64(t[1], t[1], m);
}
}
if (err == MP_OKAY) {
sp_2048_mont_sqr_64(t[ 2], t[ 1], m, mp);
sp_2048_mont_mul_64(t[ 3], t[ 2], t[ 1], m, mp);
sp_2048_mont_sqr_64(t[ 4], t[ 2], m, mp);
sp_2048_mont_mul_64(t[ 5], t[ 3], t[ 2], m, mp);
sp_2048_mont_sqr_64(t[ 6], t[ 3], m, mp);
sp_2048_mont_mul_64(t[ 7], t[ 4], t[ 3], m, mp);
sp_2048_mont_sqr_64(t[ 8], t[ 4], m, mp);
sp_2048_mont_mul_64(t[ 9], t[ 5], t[ 4], m, mp);
sp_2048_mont_sqr_64(t[10], t[ 5], m, mp);
sp_2048_mont_mul_64(t[11], t[ 6], t[ 5], m, mp);
sp_2048_mont_sqr_64(t[12], t[ 6], m, mp);
sp_2048_mont_mul_64(t[13], t[ 7], t[ 6], m, mp);
sp_2048_mont_sqr_64(t[14], t[ 7], m, mp);
sp_2048_mont_mul_64(t[15], t[ 8], t[ 7], m, mp);
sp_2048_mont_sqr_64(t[16], t[ 8], m, mp);
sp_2048_mont_mul_64(t[17], t[ 9], t[ 8], m, mp);
sp_2048_mont_sqr_64(t[18], t[ 9], m, mp);
sp_2048_mont_mul_64(t[19], t[10], t[ 9], m, mp);
sp_2048_mont_sqr_64(t[20], t[10], m, mp);
sp_2048_mont_mul_64(t[21], t[11], t[10], m, mp);
sp_2048_mont_sqr_64(t[22], t[11], m, mp);
sp_2048_mont_mul_64(t[23], t[12], t[11], m, mp);
sp_2048_mont_sqr_64(t[24], t[12], m, mp);
sp_2048_mont_mul_64(t[25], t[13], t[12], m, mp);
sp_2048_mont_sqr_64(t[26], t[13], m, mp);
sp_2048_mont_mul_64(t[27], t[14], t[13], m, mp);
sp_2048_mont_sqr_64(t[28], t[14], m, mp);
sp_2048_mont_mul_64(t[29], t[15], t[14], m, mp);
sp_2048_mont_sqr_64(t[30], t[15], m, mp);
sp_2048_mont_mul_64(t[31], t[16], t[15], m, mp);
i = (bits - 1) / 32;
n = e[i--];
c = bits & 31;
if (c == 0) {
c = 32;
}
c -= bits % 5;
if (c == 32) {
c = 27;
}
y = (int)(n >> c);
n <<= 32 - c;
XMEMCPY(r, t[y], sizeof(sp_digit) * 64);
for (; i>=0 || c>=5; ) {
if (c == 0) {
n = e[i--];
y = n >> 27;
n <<= 5;
c = 27;
}
else if (c < 5) {
y = n >> 27;
n = e[i--];
c = 5 - c;
y |= n >> (32 - c);
n <<= c;
c = 32 - c;
}
else {
y = (n >> 27) & 0x1f;
n <<= 5;
c -= 5;
}
sp_2048_mont_sqr_64(r, r, m, mp);
sp_2048_mont_sqr_64(r, r, m, mp);
sp_2048_mont_sqr_64(r, r, m, mp);
sp_2048_mont_sqr_64(r, r, m, mp);
sp_2048_mont_sqr_64(r, r, m, mp);
sp_2048_mont_mul_64(r, r, t[y], m, mp);
}
XMEMSET(&r[64], 0, sizeof(sp_digit) * 64U);
sp_2048_mont_reduce_64(r, m, mp);
mask = 0 - (sp_2048_cmp_64(r, m) >= 0);
sp_2048_cond_sub_64(r, r, m, mask);
}
#ifdef WOLFSSL_SMALL_STACK
if (td != NULL) {
XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
return err;
}
#endif /* WOLFSSL_SP_SMALL */
#endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
#ifdef WOLFSSL_HAVE_SP_RSA
/* RSA public key operation.
*
* in Array of bytes representing the number to exponentiate, base.
* inLen Number of bytes in base.
* em Public exponent.
* mm Modulus.
* out Buffer to hold big-endian bytes of exponentiation result.
* Must be at least 256 bytes long.
* outLen Number of bytes in result.
* returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
* an array is too long and MEMORY_E when dynamic memory allocation fails.
*/
int sp_RsaPublic_2048(const byte* in, word32 inLen, mp_int* em, mp_int* mm,
byte* out, word32* outLen)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_digit a[128], m[64], r[128];
#else
sp_digit* d = NULL;
sp_digit* a;
sp_digit* m;
sp_digit* r;
#endif
sp_digit *ah;
sp_digit e[1];
int err = MP_OKAY;
if (*outLen < 256)
err = MP_TO_E;
if (err == MP_OKAY && (mp_count_bits(em) > 32 || inLen > 256 ||
mp_count_bits(mm) != 2048))
err = MP_READ_E;
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 64 * 5, NULL,
DYNAMIC_TYPE_RSA);
if (d == NULL)
err = MEMORY_E;
}
if (err == MP_OKAY) {
a = d;
r = a + 64 * 2;
m = r + 64 * 2;
}
#endif
if (err == MP_OKAY) {
ah = a + 64;
sp_2048_from_bin(ah, 64, in, inLen);
#if DIGIT_BIT >= 32
e[0] = em->dp[0];
#else
e[0] = em->dp[0];
if (em->used > 1) {
e[0] |= ((sp_digit)em->dp[1]) << DIGIT_BIT;
}
#endif
if (e[0] == 0) {
err = MP_EXPTMOD_E;
}
}
if (err == MP_OKAY) {
sp_2048_from_mp(m, 64, mm);
if (e[0] == 0x3) {
if (err == MP_OKAY) {
sp_2048_sqr_64(r, ah);
err = sp_2048_mod_64_cond(r, r, m);
}
if (err == MP_OKAY) {
sp_2048_mul_64(r, ah, r);
err = sp_2048_mod_64_cond(r, r, m);
}
}
else {
int i;
sp_digit mp;
sp_2048_mont_setup(m, &mp);
/* Convert to Montgomery form. */
XMEMSET(a, 0, sizeof(sp_digit) * 64);
err = sp_2048_mod_64_cond(a, a, m);
if (err == MP_OKAY) {
for (i = 31; i >= 0; i--) {
if (e[0] >> i) {
break;
}
}
XMEMCPY(r, a, sizeof(sp_digit) * 64);
for (i--; i>=0; i--) {
sp_2048_mont_sqr_64(r, r, m, mp);
if (((e[0] >> i) & 1) == 1) {
sp_2048_mont_mul_64(r, r, a, m, mp);
}
}
XMEMSET(&r[64], 0, sizeof(sp_digit) * 64);
sp_2048_mont_reduce_64(r, m, mp);
for (i = 63; i > 0; i--) {
if (r[i] != m[i]) {
break;
}
}
if (r[i] >= m[i]) {
sp_2048_sub_in_place_64(r, m);
}
}
}
}
if (err == MP_OKAY) {
sp_2048_to_bin(r, out);
*outLen = 256;
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (d != NULL) {
XFREE(d, NULL, DYNAMIC_TYPE_RSA);
}
#endif
return err;
}
#ifndef WOLFSSL_RSA_PUBLIC_ONLY
/* Conditionally add a and b using the mask m.
* m is -1 to add and 0 when not.
*
* r A single precision number representing conditional add result.
* a A single precision number to add with.
* b A single precision number to add.
* m Mask value to apply.
*/
SP_NOINLINE static sp_digit sp_2048_cond_add_32(sp_digit* r, const sp_digit* a, const sp_digit* b,
sp_digit m)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r5, #128\n\t"
"mov r8, r5\n\t"
"mov r7, #0\n\t"
"1:\n\t"
"ldr r6, [%[b], r7]\n\t"
"and r6, %[m]\n\t"
"mov r5, #0\n\t"
"sub r5, #1\n\t"
"add r5, %[c]\n\t"
"ldr r5, [%[a], r7]\n\t"
"adc r5, r6\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
"str r5, [%[r], r7]\n\t"
"add r7, #4\n\t"
"cmp r7, r8\n\t"
"blt 1b\n\t"
: [c] "+r" (c)
: [r] "r" (r), [a] "r" (a), [b] "r" (b), [m] "r" (m)
: "memory", "r5", "r6", "r7", "r8"
);
return c;
}
/* RSA private key operation.
*
* in Array of bytes representing the number to exponentiate, base.
* inLen Number of bytes in base.
* dm Private exponent.
* pm First prime.
* qm Second prime.
* dpm First prime's CRT exponent.
* dqm Second prime's CRT exponent.
* qim Inverse of second prime mod p.
* mm Modulus.
* out Buffer to hold big-endian bytes of exponentiation result.
* Must be at least 256 bytes long.
* outLen Number of bytes in result.
* returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
* an array is too long and MEMORY_E when dynamic memory allocation fails.
*/
int sp_RsaPrivate_2048(const byte* in, word32 inLen, mp_int* dm,
mp_int* pm, mp_int* qm, mp_int* dpm, mp_int* dqm, mp_int* qim, mp_int* mm,
byte* out, word32* outLen)
{
#if defined(SP_RSA_PRIVATE_EXP_D) || defined(RSA_LOW_MEM)
sp_digit* a;
sp_digit* d = NULL;
sp_digit* m;
sp_digit* r;
int err = MP_OKAY;
(void)pm;
(void)qm;
(void)dpm;
(void)dqm;
(void)qim;
if (*outLen < 256U) {
err = MP_TO_E;
}
if (err == MP_OKAY) {
if (mp_count_bits(dm) > 2048) {
err = MP_READ_E;
}
if (inLen > 256) {
err = MP_READ_E;
}
if (mp_count_bits(mm) != 2048) {
err = MP_READ_E;
}
}
if (err == MP_OKAY) {
d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 64 * 4, NULL,
DYNAMIC_TYPE_RSA);
if (d == NULL) {
err = MEMORY_E;
}
}
if (err == MP_OKAY) {
a = d + 64;
m = a + 128;
r = a;
sp_2048_from_bin(a, 64, in, inLen);
sp_2048_from_mp(d, 64, dm);
sp_2048_from_mp(m, 64, mm);
err = sp_2048_mod_exp_64(r, a, d, 2048, m, 0);
}
if (err == MP_OKAY) {
sp_2048_to_bin(r, out);
*outLen = 256;
}
if (d != NULL) {
XMEMSET(d, 0, sizeof(sp_digit) * 64);
XFREE(d, NULL, DYNAMIC_TYPE_RSA);
}
return err;
#else
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_digit a[64 * 2];
sp_digit p[32], q[32], dp[32];
sp_digit tmpa[64], tmpb[64];
#else
sp_digit* t = NULL;
sp_digit* a;
sp_digit* p;
sp_digit* q;
sp_digit* dp;
sp_digit* tmpa;
sp_digit* tmpb;
#endif
sp_digit* r;
sp_digit* qi;
sp_digit* dq;
sp_digit c;
int err = MP_OKAY;
(void)dm;
(void)mm;
if (*outLen < 256)
err = MP_TO_E;
if (err == MP_OKAY && (inLen > 256 || mp_count_bits(mm) != 2048))
err = MP_READ_E;
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 32 * 11, NULL,
DYNAMIC_TYPE_RSA);
if (t == NULL)
err = MEMORY_E;
}
if (err == MP_OKAY) {
a = t;
p = a + 64 * 2;
q = p + 32;
qi = dq = dp = q + 32;
tmpa = qi + 32;
tmpb = tmpa + 64;
r = t + 64;
}
#else
#endif
if (err == MP_OKAY) {
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
r = a;
qi = dq = dp;
#endif
sp_2048_from_bin(a, 64, in, inLen);
sp_2048_from_mp(p, 32, pm);
sp_2048_from_mp(q, 32, qm);
sp_2048_from_mp(dp, 32, dpm);
err = sp_2048_mod_exp_32(tmpa, a, dp, 1024, p, 1);
}
if (err == MP_OKAY) {
sp_2048_from_mp(dq, 32, dqm);
err = sp_2048_mod_exp_32(tmpb, a, dq, 1024, q, 1);
}
if (err == MP_OKAY) {
c = sp_2048_sub_in_place_32(tmpa, tmpb);
c += sp_2048_cond_add_32(tmpa, tmpa, p, c);
sp_2048_cond_add_32(tmpa, tmpa, p, c);
sp_2048_from_mp(qi, 32, qim);
sp_2048_mul_32(tmpa, tmpa, qi);
err = sp_2048_mod_32(tmpa, tmpa, p);
}
if (err == MP_OKAY) {
sp_2048_mul_32(tmpa, q, tmpa);
XMEMSET(&tmpb[32], 0, sizeof(sp_digit) * 32);
sp_2048_add_64(r, tmpb, tmpa);
sp_2048_to_bin(r, out);
*outLen = 256;
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (t != NULL) {
XMEMSET(t, 0, sizeof(sp_digit) * 32 * 11);
XFREE(t, NULL, DYNAMIC_TYPE_RSA);
}
#else
XMEMSET(tmpa, 0, sizeof(tmpa));
XMEMSET(tmpb, 0, sizeof(tmpb));
XMEMSET(p, 0, sizeof(p));
XMEMSET(q, 0, sizeof(q));
XMEMSET(dp, 0, sizeof(dp));
#endif
#endif /* SP_RSA_PRIVATE_EXP_D || RSA_LOW_MEM */
return err;
}
#endif /* WOLFSSL_RSA_PUBLIC_ONLY */
#endif /* WOLFSSL_HAVE_SP_RSA */
#if defined(WOLFSSL_HAVE_SP_DH) || (defined(WOLFSSL_HAVE_SP_RSA) && \
!defined(WOLFSSL_RSA_PUBLIC_ONLY))
/* Convert an array of sp_digit to an mp_int.
*
* a A single precision integer.
* r A multi-precision integer.
*/
static int sp_2048_to_mp(const sp_digit* a, mp_int* r)
{
int err;
err = mp_grow(r, (2048 + DIGIT_BIT - 1) / DIGIT_BIT);
if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
#if DIGIT_BIT == 32
XMEMCPY(r->dp, a, sizeof(sp_digit) * 64);
r->used = 64;
mp_clamp(r);
#elif DIGIT_BIT < 32
int i, j = 0, s = 0;
r->dp[0] = 0;
for (i = 0; i < 64; i++) {
r->dp[j] |= (mp_digit)(a[i] << s);
r->dp[j] &= (1L << DIGIT_BIT) - 1;
s = DIGIT_BIT - s;
r->dp[++j] = (mp_digit)(a[i] >> s);
while (s + DIGIT_BIT <= 32) {
s += DIGIT_BIT;
r->dp[j++] &= (1L << DIGIT_BIT) - 1;
if (s == SP_WORD_SIZE) {
r->dp[j] = 0;
}
else {
r->dp[j] = (mp_digit)(a[i] >> s);
}
}
s = 32 - s;
}
r->used = (2048 + DIGIT_BIT - 1) / DIGIT_BIT;
mp_clamp(r);
#else
int i, j = 0, s = 0;
r->dp[0] = 0;
for (i = 0; i < 64; i++) {
r->dp[j] |= ((mp_digit)a[i]) << s;
if (s + 32 >= DIGIT_BIT) {
#if DIGIT_BIT != 32 && DIGIT_BIT != 64
r->dp[j] &= (1L << DIGIT_BIT) - 1;
#endif
s = DIGIT_BIT - s;
r->dp[++j] = a[i] >> s;
s = 32 - s;
}
else {
s += 32;
}
}
r->used = (2048 + DIGIT_BIT - 1) / DIGIT_BIT;
mp_clamp(r);
#endif
}
return err;
}
/* Perform the modular exponentiation for Diffie-Hellman.
*
* base Base. MP integer.
* exp Exponent. MP integer.
* mod Modulus. MP integer.
* res Result. MP integer.
* returns 0 on success, MP_READ_E if there are too many bytes in an array
* and MEMORY_E if memory allocation fails.
*/
int sp_ModExp_2048(mp_int* base, mp_int* exp, mp_int* mod, mp_int* res)
{
int err = MP_OKAY;
sp_digit b[128], e[64], m[64];
sp_digit* r = b;
int expBits = mp_count_bits(exp);
if (mp_count_bits(base) > 2048) {
err = MP_READ_E;
}
if (err == MP_OKAY) {
if (expBits > 2048) {
err = MP_READ_E;
}
}
if (err == MP_OKAY) {
if (mp_count_bits(mod) != 2048) {
err = MP_READ_E;
}
}
if (err == MP_OKAY) {
sp_2048_from_mp(b, 64, base);
sp_2048_from_mp(e, 64, exp);
sp_2048_from_mp(m, 64, mod);
err = sp_2048_mod_exp_64(r, b, e, expBits, m, 0);
}
if (err == MP_OKAY) {
err = sp_2048_to_mp(r, res);
}
XMEMSET(e, 0, sizeof(e));
return err;
}
#ifdef WOLFSSL_HAVE_SP_DH
#ifdef HAVE_FFDHE_2048
static void sp_2048_lshift_64(sp_digit* r, sp_digit* a, byte n)
{
__asm__ __volatile__ (
"mov r6, #31\n\t"
"sub r6, r6, %[n]\n\t"
"add %[a], %[a], #192\n\t"
"add %[r], %[r], #192\n\t"
"ldr r3, [%[a], #60]\n\t"
"lsr r4, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r4, r4, r6\n\t"
"ldr r2, [%[a], #56]\n\t"
"str r4, [%[r], #64]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #52]\n\t"
"str r3, [%[r], #60]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #48]\n\t"
"str r2, [%[r], #56]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #44]\n\t"
"str r4, [%[r], #52]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #40]\n\t"
"str r3, [%[r], #48]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #36]\n\t"
"str r2, [%[r], #44]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #32]\n\t"
"str r4, [%[r], #40]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #28]\n\t"
"str r3, [%[r], #36]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #24]\n\t"
"str r2, [%[r], #32]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #20]\n\t"
"str r4, [%[r], #28]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #16]\n\t"
"str r3, [%[r], #24]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #12]\n\t"
"str r2, [%[r], #20]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #8]\n\t"
"str r4, [%[r], #16]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #4]\n\t"
"str r3, [%[r], #12]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #0]\n\t"
"str r2, [%[r], #8]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"sub %[a], %[a], #64\n\t"
"sub %[r], %[r], #64\n\t"
"ldr r2, [%[a], #60]\n\t"
"str r4, [%[r], #68]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #56]\n\t"
"str r3, [%[r], #64]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #52]\n\t"
"str r2, [%[r], #60]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #48]\n\t"
"str r4, [%[r], #56]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #44]\n\t"
"str r3, [%[r], #52]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #40]\n\t"
"str r2, [%[r], #48]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #36]\n\t"
"str r4, [%[r], #44]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #32]\n\t"
"str r3, [%[r], #40]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #28]\n\t"
"str r2, [%[r], #36]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #24]\n\t"
"str r4, [%[r], #32]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #20]\n\t"
"str r3, [%[r], #28]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #16]\n\t"
"str r2, [%[r], #24]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #12]\n\t"
"str r4, [%[r], #20]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #8]\n\t"
"str r3, [%[r], #16]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #4]\n\t"
"str r2, [%[r], #12]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #0]\n\t"
"str r4, [%[r], #8]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"sub %[a], %[a], #64\n\t"
"sub %[r], %[r], #64\n\t"
"ldr r4, [%[a], #60]\n\t"
"str r3, [%[r], #68]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #56]\n\t"
"str r2, [%[r], #64]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #52]\n\t"
"str r4, [%[r], #60]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #48]\n\t"
"str r3, [%[r], #56]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #44]\n\t"
"str r2, [%[r], #52]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #40]\n\t"
"str r4, [%[r], #48]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #36]\n\t"
"str r3, [%[r], #44]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #32]\n\t"
"str r2, [%[r], #40]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #28]\n\t"
"str r4, [%[r], #36]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #24]\n\t"
"str r3, [%[r], #32]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #20]\n\t"
"str r2, [%[r], #28]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #16]\n\t"
"str r4, [%[r], #24]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #12]\n\t"
"str r3, [%[r], #20]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #8]\n\t"
"str r2, [%[r], #16]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #4]\n\t"
"str r4, [%[r], #12]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #0]\n\t"
"str r3, [%[r], #8]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"sub %[a], %[a], #64\n\t"
"sub %[r], %[r], #64\n\t"
"ldr r3, [%[a], #60]\n\t"
"str r2, [%[r], #68]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #56]\n\t"
"str r4, [%[r], #64]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #52]\n\t"
"str r3, [%[r], #60]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #48]\n\t"
"str r2, [%[r], #56]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #44]\n\t"
"str r4, [%[r], #52]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #40]\n\t"
"str r3, [%[r], #48]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #36]\n\t"
"str r2, [%[r], #44]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #32]\n\t"
"str r4, [%[r], #40]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #28]\n\t"
"str r3, [%[r], #36]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #24]\n\t"
"str r2, [%[r], #32]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #20]\n\t"
"str r4, [%[r], #28]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #16]\n\t"
"str r3, [%[r], #24]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #12]\n\t"
"str r2, [%[r], #20]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #8]\n\t"
"str r4, [%[r], #16]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #4]\n\t"
"str r3, [%[r], #12]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #0]\n\t"
"str r2, [%[r], #8]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"str r3, [%[r]]\n\t"
"str r4, [%[r], #4]\n\t"
:
: [r] "r" (r), [a] "r" (a), [n] "r" (n)
: "memory", "r2", "r3", "r4", "r5", "r6"
);
}
/* Modular exponentiate 2 to the e mod m. (r = 2^e mod m)
*
* r A single precision number that is the result of the operation.
* e A single precision number that is the exponent.
* bits The number of bits in the exponent.
* m A single precision number that is the modulus.
* returns 0 on success and MEMORY_E on dynamic memory allocation failure.
*/
static int sp_2048_mod_exp_2_64(sp_digit* r, const sp_digit* e, int bits,
const sp_digit* m)
{
#ifndef WOLFSSL_SMALL_STACK
sp_digit nd[128];
sp_digit td[65];
#else
sp_digit* td;
#endif
sp_digit* norm;
sp_digit* tmp;
sp_digit mp = 1;
sp_digit n, o;
sp_digit mask;
int i;
int c, y;
int err = MP_OKAY;
#ifdef WOLFSSL_SMALL_STACK
td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 193, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (td == NULL) {
err = MEMORY_E;
}
#endif
if (err == MP_OKAY) {
#ifdef WOLFSSL_SMALL_STACK
norm = td;
tmp = td + 128;
#else
norm = nd;
tmp = td;
#endif
sp_2048_mont_setup(m, &mp);
sp_2048_mont_norm_64(norm, m);
i = (bits - 1) / 32;
n = e[i--];
c = bits & 31;
if (c == 0) {
c = 32;
}
c -= bits % 5;
if (c == 32) {
c = 27;
}
y = (int)(n >> c);
n <<= 32 - c;
sp_2048_lshift_64(r, norm, y);
for (; i>=0 || c>=5; ) {
if (c == 0) {
n = e[i--];
y = n >> 27;
n <<= 5;
c = 27;
}
else if (c < 5) {
y = n >> 27;
n = e[i--];
c = 5 - c;
y |= n >> (32 - c);
n <<= c;
c = 32 - c;
}
else {
y = (n >> 27) & 0x1f;
n <<= 5;
c -= 5;
}
sp_2048_mont_sqr_64(r, r, m, mp);
sp_2048_mont_sqr_64(r, r, m, mp);
sp_2048_mont_sqr_64(r, r, m, mp);
sp_2048_mont_sqr_64(r, r, m, mp);
sp_2048_mont_sqr_64(r, r, m, mp);
sp_2048_lshift_64(r, r, y);
sp_2048_mul_d_64(tmp, norm, r[64]);
r[64] = 0;
o = sp_2048_add_64(r, r, tmp);
sp_2048_cond_sub_64(r, r, m, (sp_digit)0 - o);
}
XMEMSET(&r[64], 0, sizeof(sp_digit) * 64U);
sp_2048_mont_reduce_64(r, m, mp);
mask = 0 - (sp_2048_cmp_64(r, m) >= 0);
sp_2048_cond_sub_64(r, r, m, mask);
}
#ifdef WOLFSSL_SMALL_STACK
if (td != NULL) {
XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
return err;
}
#endif /* HAVE_FFDHE_2048 */
/* Perform the modular exponentiation for Diffie-Hellman.
*
* base Base.
* exp Array of bytes that is the exponent.
* expLen Length of data, in bytes, in exponent.
* mod Modulus.
* out Buffer to hold big-endian bytes of exponentiation result.
* Must be at least 256 bytes long.
* outLen Length, in bytes, of exponentiation result.
* returns 0 on success, MP_READ_E if there are too many bytes in an array
* and MEMORY_E if memory allocation fails.
*/
int sp_DhExp_2048(mp_int* base, const byte* exp, word32 expLen,
mp_int* mod, byte* out, word32* outLen)
{
int err = MP_OKAY;
sp_digit b[128], e[64], m[64];
sp_digit* r = b;
word32 i;
if (mp_count_bits(base) > 2048) {
err = MP_READ_E;
}
if (err == MP_OKAY) {
if (expLen > 256) {
err = MP_READ_E;
}
}
if (err == MP_OKAY) {
if (mp_count_bits(mod) != 2048) {
err = MP_READ_E;
}
}
if (err == MP_OKAY) {
sp_2048_from_mp(b, 64, base);
sp_2048_from_bin(e, 64, exp, expLen);
sp_2048_from_mp(m, 64, mod);
#ifdef HAVE_FFDHE_2048
if (base->used == 1 && base->dp[0] == 2 && m[63] == (sp_digit)-1)
err = sp_2048_mod_exp_2_64(r, e, expLen * 8, m);
else
#endif
err = sp_2048_mod_exp_64(r, b, e, expLen * 8, m, 0);
}
if (err == MP_OKAY) {
sp_2048_to_bin(r, out);
*outLen = 256;
for (i=0; i<256 && out[i] == 0; i++) {
}
*outLen -= i;
XMEMMOVE(out, out + i, *outLen);
}
XMEMSET(e, 0, sizeof(e));
return err;
}
#endif /* WOLFSSL_HAVE_SP_DH */
/* Perform the modular exponentiation for Diffie-Hellman.
*
* base Base. MP integer.
* exp Exponent. MP integer.
* mod Modulus. MP integer.
* res Result. MP integer.
* returns 0 on success, MP_READ_E if there are too many bytes in an array
* and MEMORY_E if memory allocation fails.
*/
int sp_ModExp_1024(mp_int* base, mp_int* exp, mp_int* mod, mp_int* res)
{
int err = MP_OKAY;
sp_digit b[64], e[32], m[32];
sp_digit* r = b;
int expBits = mp_count_bits(exp);
if (mp_count_bits(base) > 1024) {
err = MP_READ_E;
}
if (err == MP_OKAY) {
if (expBits > 1024) {
err = MP_READ_E;
}
}
if (err == MP_OKAY) {
if (mp_count_bits(mod) != 1024) {
err = MP_READ_E;
}
}
if (err == MP_OKAY) {
sp_2048_from_mp(b, 32, base);
sp_2048_from_mp(e, 32, exp);
sp_2048_from_mp(m, 32, mod);
err = sp_2048_mod_exp_32(r, b, e, expBits, m, 0);
}
if (err == MP_OKAY) {
XMEMSET(r + 32, 0, sizeof(*r) * 32U);
err = sp_2048_to_mp(r, res);
res->used = mod->used;
mp_clamp(res);
}
XMEMSET(e, 0, sizeof(e));
return err;
}
#endif /* WOLFSSL_HAVE_SP_DH || (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) */
#endif /* !WOLFSSL_SP_NO_2048 */
#ifndef WOLFSSL_SP_NO_3072
/* Read big endian unsigned byte array into r.
*
* r A single precision integer.
* size Maximum number of bytes to convert
* a Byte array.
* n Number of bytes in array to read.
*/
static void sp_3072_from_bin(sp_digit* r, int size, const byte* a, int n)
{
int i, j = 0;
word32 s = 0;
r[0] = 0;
for (i = n-1; i >= 0; i--) {
r[j] |= (((sp_digit)a[i]) << s);
if (s >= 24U) {
r[j] &= 0xffffffff;
s = 32U - s;
if (j + 1 >= size) {
break;
}
r[++j] = (sp_digit)a[i] >> s;
s = 8U - s;
}
else {
s += 8U;
}
}
for (j++; j < size; j++) {
r[j] = 0;
}
}
/* Convert an mp_int to an array of sp_digit.
*
* r A single precision integer.
* size Maximum number of bytes to convert
* a A multi-precision integer.
*/
static void sp_3072_from_mp(sp_digit* r, int size, const mp_int* a)
{
#if DIGIT_BIT == 32
int j;
XMEMCPY(r, a->dp, sizeof(sp_digit) * a->used);
for (j = a->used; j < size; j++) {
r[j] = 0;
}
#elif DIGIT_BIT > 32
int i, j = 0;
word32 s = 0;
r[0] = 0;
for (i = 0; i < a->used && j < size; i++) {
r[j] |= ((sp_digit)a->dp[i] << s);
r[j] &= 0xffffffff;
s = 32U - s;
if (j + 1 >= size) {
break;
}
/* lint allow cast of mismatch word32 and mp_digit */
r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
while ((s + 32U) <= (word32)DIGIT_BIT) {
s += 32U;
r[j] &= 0xffffffff;
if (j + 1 >= size) {
break;
}
if (s < (word32)DIGIT_BIT) {
/* lint allow cast of mismatch word32 and mp_digit */
r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
}
else {
r[++j] = 0L;
}
}
s = (word32)DIGIT_BIT - s;
}
for (j++; j < size; j++) {
r[j] = 0;
}
#else
int i, j = 0, s = 0;
r[0] = 0;
for (i = 0; i < a->used && j < size; i++) {
r[j] |= ((sp_digit)a->dp[i]) << s;
if (s + DIGIT_BIT >= 32) {
r[j] &= 0xffffffff;
if (j + 1 >= size) {
break;
}
s = 32 - s;
if (s == DIGIT_BIT) {
r[++j] = 0;
s = 0;
}
else {
r[++j] = a->dp[i] >> s;
s = DIGIT_BIT - s;
}
}
else {
s += DIGIT_BIT;
}
}
for (j++; j < size; j++) {
r[j] = 0;
}
#endif
}
/* Write r as big endian to byte array.
* Fixed length number of bytes written: 384
*
* r A single precision integer.
* a Byte array.
*/
static void sp_3072_to_bin(sp_digit* r, byte* a)
{
int i, j, s = 0, b;
j = 3072 / 8 - 1;
a[j] = 0;
for (i=0; i<96 && j>=0; i++) {
b = 0;
/* lint allow cast of mismatch sp_digit and int */
a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
b += 8 - s;
if (j < 0) {
break;
}
while (b < 32) {
a[j--] = (byte)(r[i] >> b);
b += 8;
if (j < 0) {
break;
}
}
s = 8 - (b - 32);
if (j >= 0) {
a[j] = 0;
}
if (s != 0) {
j++;
}
}
}
#ifndef WOLFSSL_SP_SMALL
/* Multiply a and b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static void sp_3072_mul_12(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit tmp[12 * 2];
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"mov r8, r3\n\t"
"mov r11, %[r]\n\t"
"mov r9, %[a]\n\t"
"mov r10, %[b]\n\t"
"mov r6, #48\n\t"
"add r6, r9\n\t"
"mov r12, r6\n\t"
"\n1:\n\t"
"mov %[r], #0\n\t"
"mov r5, #0\n\t"
"mov r6, #44\n\t"
"mov %[a], r8\n\t"
"sub %[a], r6\n\t"
"sbc r6, r6\n\t"
"mvn r6, r6\n\t"
"and %[a], r6\n\t"
"mov %[b], r8\n\t"
"sub %[b], %[a]\n\t"
"add %[a], r9\n\t"
"add %[b], r10\n\t"
"\n2:\n\t"
"# Multiply Start\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [%[b]]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [%[b]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [%[b]]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [%[b]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Multiply Done\n\t"
"add %[a], #4\n\t"
"sub %[b], #4\n\t"
"cmp %[a], r12\n\t"
"beq 3f\n\t"
"mov r6, r8\n\t"
"add r6, r9\n\t"
"cmp %[a], r6\n\t"
"ble 2b\n\t"
"\n3:\n\t"
"mov %[r], r11\n\t"
"mov r7, r8\n\t"
"str r3, [%[r], r7]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"add r7, #4\n\t"
"mov r8, r7\n\t"
"mov r6, #88\n\t"
"cmp r7, r6\n\t"
"ble 1b\n\t"
"str r3, [%[r], r7]\n\t"
"mov %[a], r9\n\t"
"mov %[b], r10\n\t"
:
: [r] "r" (tmp), [a] "r" (a), [b] "r" (b)
: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12"
);
XMEMCPY(r, tmp, sizeof(tmp));
}
/* Square a and put result in r. (r = a * a)
*
* r A single precision integer.
* a A single precision integer.
*/
SP_NOINLINE static void sp_3072_sqr_12(sp_digit* r, const sp_digit* a)
{
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"mov r5, #0\n\t"
"mov r8, r3\n\t"
"mov r11, %[r]\n\t"
"mov r6, #96\n\t"
"neg r6, r6\n\t"
"add sp, r6\n\t"
"mov r10, sp\n\t"
"mov r9, %[a]\n\t"
"\n1:\n\t"
"mov %[r], #0\n\t"
"mov r6, #44\n\t"
"mov %[a], r8\n\t"
"sub %[a], r6\n\t"
"sbc r6, r6\n\t"
"mvn r6, r6\n\t"
"and %[a], r6\n\t"
"mov r2, r8\n\t"
"sub r2, %[a]\n\t"
"add %[a], r9\n\t"
"add r2, r9\n\t"
"\n2:\n\t"
"cmp r2, %[a]\n\t"
"beq 4f\n\t"
"# Multiply * 2: Start\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [r2]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [r2]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [r2]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [r2]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Multiply * 2: Done\n\t"
"bal 5f\n\t"
"\n4:\n\t"
"# Square: Start\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"lsr r6, r6, #16\n\t"
"mul r6, r6\n\t"
"add r3, r6\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"mul r7, r7\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"lsr r6, r6, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #15\n\t"
"lsl r6, r6, #17\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Square: Done\n\t"
"\n5:\n\t"
"add %[a], #4\n\t"
"sub r2, #4\n\t"
"mov r6, #48\n\t"
"add r6, r9\n\t"
"cmp %[a], r6\n\t"
"beq 3f\n\t"
"cmp %[a], r2\n\t"
"bgt 3f\n\t"
"mov r7, r8\n\t"
"add r7, r9\n\t"
"cmp %[a], r7\n\t"
"ble 2b\n\t"
"\n3:\n\t"
"mov %[r], r10\n\t"
"mov r7, r8\n\t"
"str r3, [%[r], r7]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"mov r5, #0\n\t"
"add r7, #4\n\t"
"mov r8, r7\n\t"
"mov r6, #88\n\t"
"cmp r7, r6\n\t"
"ble 1b\n\t"
"mov %[a], r9\n\t"
"str r3, [%[r], r7]\n\t"
"mov %[r], r11\n\t"
"mov %[a], r10\n\t"
"mov r3, #92\n\t"
"\n4:\n\t"
"ldr r6, [%[a], r3]\n\t"
"str r6, [%[r], r3]\n\t"
"sub r3, #4\n\t"
"bge 4b\n\t"
"mov r6, #96\n\t"
"add sp, r6\n\t"
:
: [r] "r" (r), [a] "r" (a)
: "memory", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11"
);
}
/* Add b to a into r. (r = a + b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_3072_add_12(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[b], #0]\n\t"
"add r4, r5\n\t"
"str r4, [%[r], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #4]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[b], #8]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #12]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[b], #16]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #20]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[b], #24]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #28]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #28]\n\t"
"ldr r4, [%[a], #32]\n\t"
"ldr r5, [%[b], #32]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #36]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #36]\n\t"
"ldr r4, [%[a], #40]\n\t"
"ldr r5, [%[b], #40]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #44]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #44]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5"
);
return c;
}
/* Sub b from a into r. (r = a - b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_3072_sub_in_place_24(sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"ldr r3, [%[a], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #0]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sub r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #0]\n\t"
"str r4, [%[a], #4]\n\t"
"ldr r3, [%[a], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #8]\n\t"
"ldr r6, [%[b], #12]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #8]\n\t"
"str r4, [%[a], #12]\n\t"
"ldr r3, [%[a], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #16]\n\t"
"ldr r6, [%[b], #20]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #16]\n\t"
"str r4, [%[a], #20]\n\t"
"ldr r3, [%[a], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #24]\n\t"
"ldr r6, [%[b], #28]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #24]\n\t"
"str r4, [%[a], #28]\n\t"
"ldr r3, [%[a], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #32]\n\t"
"ldr r6, [%[b], #36]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #32]\n\t"
"str r4, [%[a], #36]\n\t"
"ldr r3, [%[a], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #40]\n\t"
"ldr r6, [%[b], #44]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #40]\n\t"
"str r4, [%[a], #44]\n\t"
"ldr r3, [%[a], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #48]\n\t"
"ldr r6, [%[b], #52]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #48]\n\t"
"str r4, [%[a], #52]\n\t"
"ldr r3, [%[a], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #56]\n\t"
"ldr r6, [%[b], #60]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #56]\n\t"
"str r4, [%[a], #60]\n\t"
"ldr r3, [%[a], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #64]\n\t"
"ldr r6, [%[b], #68]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #64]\n\t"
"str r4, [%[a], #68]\n\t"
"ldr r3, [%[a], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #72]\n\t"
"ldr r6, [%[b], #76]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #72]\n\t"
"str r4, [%[a], #76]\n\t"
"ldr r3, [%[a], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #80]\n\t"
"ldr r6, [%[b], #84]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #80]\n\t"
"str r4, [%[a], #84]\n\t"
"ldr r3, [%[a], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #88]\n\t"
"ldr r6, [%[b], #92]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #88]\n\t"
"str r4, [%[a], #92]\n\t"
"sbc %[c], %[c]\n\t"
: [c] "+r" (c), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r3", "r4", "r5", "r6"
);
return c;
}
/* Add b to a into r. (r = a + b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_3072_add_24(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[b], #0]\n\t"
"add r4, r5\n\t"
"str r4, [%[r], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #4]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[b], #8]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #12]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[b], #16]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #20]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[b], #24]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #28]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #28]\n\t"
"ldr r4, [%[a], #32]\n\t"
"ldr r5, [%[b], #32]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #36]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #36]\n\t"
"ldr r4, [%[a], #40]\n\t"
"ldr r5, [%[b], #40]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #44]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #44]\n\t"
"ldr r4, [%[a], #48]\n\t"
"ldr r5, [%[b], #48]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #52]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #52]\n\t"
"ldr r4, [%[a], #56]\n\t"
"ldr r5, [%[b], #56]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #60]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #60]\n\t"
"ldr r4, [%[a], #64]\n\t"
"ldr r5, [%[b], #64]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #68]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #68]\n\t"
"ldr r4, [%[a], #72]\n\t"
"ldr r5, [%[b], #72]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #76]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #76]\n\t"
"ldr r4, [%[a], #80]\n\t"
"ldr r5, [%[b], #80]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #84]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #84]\n\t"
"ldr r4, [%[a], #88]\n\t"
"ldr r5, [%[b], #88]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #92]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #92]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5"
);
return c;
}
/* AND m into each word of a and store in r.
*
* r A single precision integer.
* a A single precision integer.
* m Mask to AND against each digit.
*/
static void sp_3072_mask_12(sp_digit* r, const sp_digit* a, sp_digit m)
{
#ifdef WOLFSSL_SP_SMALL
int i;
for (i=0; i<12; i++) {
r[i] = a[i] & m;
}
#else
r[0] = a[0] & m;
r[1] = a[1] & m;
r[2] = a[2] & m;
r[3] = a[3] & m;
r[4] = a[4] & m;
r[5] = a[5] & m;
r[6] = a[6] & m;
r[7] = a[7] & m;
r[8] = a[8] & m;
r[9] = a[9] & m;
r[10] = a[10] & m;
r[11] = a[11] & m;
#endif
}
/* Multiply a and b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static void sp_3072_mul_24(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit* z0 = r;
sp_digit z1[24];
sp_digit a1[12];
sp_digit b1[12];
sp_digit z2[24];
sp_digit u, ca, cb;
ca = sp_3072_add_12(a1, a, &a[12]);
cb = sp_3072_add_12(b1, b, &b[12]);
u = ca & cb;
sp_3072_mul_12(z1, a1, b1);
sp_3072_mul_12(z2, &a[12], &b[12]);
sp_3072_mul_12(z0, a, b);
sp_3072_mask_12(r + 24, a1, 0 - cb);
sp_3072_mask_12(b1, b1, 0 - ca);
u += sp_3072_add_12(r + 24, r + 24, b1);
u += sp_3072_sub_in_place_24(z1, z2);
u += sp_3072_sub_in_place_24(z1, z0);
u += sp_3072_add_24(r + 12, r + 12, z1);
r[36] = u;
XMEMSET(r + 36 + 1, 0, sizeof(sp_digit) * (12 - 1));
(void)sp_3072_add_24(r + 24, r + 24, z2);
}
/* Square a and put result in r. (r = a * a)
*
* r A single precision integer.
* a A single precision integer.
*/
SP_NOINLINE static void sp_3072_sqr_24(sp_digit* r, const sp_digit* a)
{
sp_digit* z0 = r;
sp_digit z2[24];
sp_digit z1[24];
sp_digit a1[12];
sp_digit u;
u = sp_3072_add_12(a1, a, &a[12]);
sp_3072_sqr_12(z1, a1);
sp_3072_sqr_12(z2, &a[12]);
sp_3072_sqr_12(z0, a);
sp_3072_mask_12(r + 24, a1, 0 - u);
u += sp_3072_add_12(r + 24, r + 24, r + 24);
u += sp_3072_sub_in_place_24(z1, z2);
u += sp_3072_sub_in_place_24(z1, z0);
u += sp_3072_add_24(r + 12, r + 12, z1);
r[36] = u;
XMEMSET(r + 36 + 1, 0, sizeof(sp_digit) * (12 - 1));
(void)sp_3072_add_24(r + 24, r + 24, z2);
}
/* Sub b from a into r. (r = a - b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_3072_sub_in_place_48(sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"ldr r3, [%[a], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #0]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sub r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #0]\n\t"
"str r4, [%[a], #4]\n\t"
"ldr r3, [%[a], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #8]\n\t"
"ldr r6, [%[b], #12]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #8]\n\t"
"str r4, [%[a], #12]\n\t"
"ldr r3, [%[a], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #16]\n\t"
"ldr r6, [%[b], #20]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #16]\n\t"
"str r4, [%[a], #20]\n\t"
"ldr r3, [%[a], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #24]\n\t"
"ldr r6, [%[b], #28]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #24]\n\t"
"str r4, [%[a], #28]\n\t"
"ldr r3, [%[a], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #32]\n\t"
"ldr r6, [%[b], #36]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #32]\n\t"
"str r4, [%[a], #36]\n\t"
"ldr r3, [%[a], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #40]\n\t"
"ldr r6, [%[b], #44]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #40]\n\t"
"str r4, [%[a], #44]\n\t"
"ldr r3, [%[a], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #48]\n\t"
"ldr r6, [%[b], #52]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #48]\n\t"
"str r4, [%[a], #52]\n\t"
"ldr r3, [%[a], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #56]\n\t"
"ldr r6, [%[b], #60]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #56]\n\t"
"str r4, [%[a], #60]\n\t"
"ldr r3, [%[a], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #64]\n\t"
"ldr r6, [%[b], #68]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #64]\n\t"
"str r4, [%[a], #68]\n\t"
"ldr r3, [%[a], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #72]\n\t"
"ldr r6, [%[b], #76]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #72]\n\t"
"str r4, [%[a], #76]\n\t"
"ldr r3, [%[a], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #80]\n\t"
"ldr r6, [%[b], #84]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #80]\n\t"
"str r4, [%[a], #84]\n\t"
"ldr r3, [%[a], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #88]\n\t"
"ldr r6, [%[b], #92]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #88]\n\t"
"str r4, [%[a], #92]\n\t"
"ldr r3, [%[a], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #96]\n\t"
"ldr r6, [%[b], #100]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #96]\n\t"
"str r4, [%[a], #100]\n\t"
"ldr r3, [%[a], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #104]\n\t"
"ldr r6, [%[b], #108]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #104]\n\t"
"str r4, [%[a], #108]\n\t"
"ldr r3, [%[a], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #112]\n\t"
"ldr r6, [%[b], #116]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #112]\n\t"
"str r4, [%[a], #116]\n\t"
"ldr r3, [%[a], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #120]\n\t"
"ldr r6, [%[b], #124]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #120]\n\t"
"str r4, [%[a], #124]\n\t"
"sbc %[c], %[c]\n\t"
"add %[a], #0x80\n\t"
"add %[b], #0x80\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r3, [%[a], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #0]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #0]\n\t"
"str r4, [%[a], #4]\n\t"
"ldr r3, [%[a], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #8]\n\t"
"ldr r6, [%[b], #12]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #8]\n\t"
"str r4, [%[a], #12]\n\t"
"ldr r3, [%[a], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #16]\n\t"
"ldr r6, [%[b], #20]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #16]\n\t"
"str r4, [%[a], #20]\n\t"
"ldr r3, [%[a], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #24]\n\t"
"ldr r6, [%[b], #28]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #24]\n\t"
"str r4, [%[a], #28]\n\t"
"ldr r3, [%[a], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #32]\n\t"
"ldr r6, [%[b], #36]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #32]\n\t"
"str r4, [%[a], #36]\n\t"
"ldr r3, [%[a], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #40]\n\t"
"ldr r6, [%[b], #44]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #40]\n\t"
"str r4, [%[a], #44]\n\t"
"ldr r3, [%[a], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #48]\n\t"
"ldr r6, [%[b], #52]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #48]\n\t"
"str r4, [%[a], #52]\n\t"
"ldr r3, [%[a], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #56]\n\t"
"ldr r6, [%[b], #60]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #56]\n\t"
"str r4, [%[a], #60]\n\t"
"sbc %[c], %[c]\n\t"
: [c] "+r" (c), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r3", "r4", "r5", "r6"
);
return c;
}
/* Add b to a into r. (r = a + b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_3072_add_48(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r7, #0\n\t"
"mvn r7, r7\n\t"
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[b], #0]\n\t"
"add r4, r5\n\t"
"str r4, [%[r], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #4]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[b], #8]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #12]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[b], #16]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #20]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[b], #24]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #28]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #28]\n\t"
"ldr r4, [%[a], #32]\n\t"
"ldr r5, [%[b], #32]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #36]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #36]\n\t"
"ldr r4, [%[a], #40]\n\t"
"ldr r5, [%[b], #40]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #44]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #44]\n\t"
"ldr r4, [%[a], #48]\n\t"
"ldr r5, [%[b], #48]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #52]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #52]\n\t"
"ldr r4, [%[a], #56]\n\t"
"ldr r5, [%[b], #56]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #60]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #60]\n\t"
"ldr r4, [%[a], #64]\n\t"
"ldr r5, [%[b], #64]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #68]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #68]\n\t"
"ldr r4, [%[a], #72]\n\t"
"ldr r5, [%[b], #72]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #76]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #76]\n\t"
"ldr r4, [%[a], #80]\n\t"
"ldr r5, [%[b], #80]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #84]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #84]\n\t"
"ldr r4, [%[a], #88]\n\t"
"ldr r5, [%[b], #88]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #92]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #92]\n\t"
"ldr r4, [%[a], #96]\n\t"
"ldr r5, [%[b], #96]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #100]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #100]\n\t"
"ldr r4, [%[a], #104]\n\t"
"ldr r5, [%[b], #104]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #108]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #108]\n\t"
"ldr r4, [%[a], #112]\n\t"
"ldr r5, [%[b], #112]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #116]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #116]\n\t"
"ldr r4, [%[a], #120]\n\t"
"ldr r5, [%[b], #120]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #124]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #124]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
"add %[a], #0x80\n\t"
"add %[b], #0x80\n\t"
"add %[r], #0x80\n\t"
"add %[c], r7\n\t"
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[b], #0]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #4]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[b], #8]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #12]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[b], #16]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #20]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[b], #24]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #28]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #28]\n\t"
"ldr r4, [%[a], #32]\n\t"
"ldr r5, [%[b], #32]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #36]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #36]\n\t"
"ldr r4, [%[a], #40]\n\t"
"ldr r5, [%[b], #40]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #44]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #44]\n\t"
"ldr r4, [%[a], #48]\n\t"
"ldr r5, [%[b], #48]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #52]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #52]\n\t"
"ldr r4, [%[a], #56]\n\t"
"ldr r5, [%[b], #56]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #60]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #60]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5", "r7"
);
return c;
}
/* AND m into each word of a and store in r.
*
* r A single precision integer.
* a A single precision integer.
* m Mask to AND against each digit.
*/
static void sp_3072_mask_24(sp_digit* r, const sp_digit* a, sp_digit m)
{
#ifdef WOLFSSL_SP_SMALL
int i;
for (i=0; i<24; i++) {
r[i] = a[i] & m;
}
#else
int i;
for (i = 0; i < 24; i += 8) {
r[i+0] = a[i+0] & m;
r[i+1] = a[i+1] & m;
r[i+2] = a[i+2] & m;
r[i+3] = a[i+3] & m;
r[i+4] = a[i+4] & m;
r[i+5] = a[i+5] & m;
r[i+6] = a[i+6] & m;
r[i+7] = a[i+7] & m;
}
#endif
}
/* Multiply a and b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static void sp_3072_mul_48(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit* z0 = r;
sp_digit z1[48];
sp_digit a1[24];
sp_digit b1[24];
sp_digit z2[48];
sp_digit u, ca, cb;
ca = sp_3072_add_24(a1, a, &a[24]);
cb = sp_3072_add_24(b1, b, &b[24]);
u = ca & cb;
sp_3072_mul_24(z1, a1, b1);
sp_3072_mul_24(z2, &a[24], &b[24]);
sp_3072_mul_24(z0, a, b);
sp_3072_mask_24(r + 48, a1, 0 - cb);
sp_3072_mask_24(b1, b1, 0 - ca);
u += sp_3072_add_24(r + 48, r + 48, b1);
u += sp_3072_sub_in_place_48(z1, z2);
u += sp_3072_sub_in_place_48(z1, z0);
u += sp_3072_add_48(r + 24, r + 24, z1);
r[72] = u;
XMEMSET(r + 72 + 1, 0, sizeof(sp_digit) * (24 - 1));
(void)sp_3072_add_48(r + 48, r + 48, z2);
}
/* Square a and put result in r. (r = a * a)
*
* r A single precision integer.
* a A single precision integer.
*/
SP_NOINLINE static void sp_3072_sqr_48(sp_digit* r, const sp_digit* a)
{
sp_digit* z0 = r;
sp_digit z2[48];
sp_digit z1[48];
sp_digit a1[24];
sp_digit u;
u = sp_3072_add_24(a1, a, &a[24]);
sp_3072_sqr_24(z1, a1);
sp_3072_sqr_24(z2, &a[24]);
sp_3072_sqr_24(z0, a);
sp_3072_mask_24(r + 48, a1, 0 - u);
u += sp_3072_add_24(r + 48, r + 48, r + 48);
u += sp_3072_sub_in_place_48(z1, z2);
u += sp_3072_sub_in_place_48(z1, z0);
u += sp_3072_add_48(r + 24, r + 24, z1);
r[72] = u;
XMEMSET(r + 72 + 1, 0, sizeof(sp_digit) * (24 - 1));
(void)sp_3072_add_48(r + 48, r + 48, z2);
}
/* Sub b from a into r. (r = a - b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_3072_sub_in_place_96(sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"ldr r3, [%[a], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #0]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sub r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #0]\n\t"
"str r4, [%[a], #4]\n\t"
"ldr r3, [%[a], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #8]\n\t"
"ldr r6, [%[b], #12]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #8]\n\t"
"str r4, [%[a], #12]\n\t"
"ldr r3, [%[a], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #16]\n\t"
"ldr r6, [%[b], #20]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #16]\n\t"
"str r4, [%[a], #20]\n\t"
"ldr r3, [%[a], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #24]\n\t"
"ldr r6, [%[b], #28]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #24]\n\t"
"str r4, [%[a], #28]\n\t"
"ldr r3, [%[a], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #32]\n\t"
"ldr r6, [%[b], #36]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #32]\n\t"
"str r4, [%[a], #36]\n\t"
"ldr r3, [%[a], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #40]\n\t"
"ldr r6, [%[b], #44]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #40]\n\t"
"str r4, [%[a], #44]\n\t"
"ldr r3, [%[a], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #48]\n\t"
"ldr r6, [%[b], #52]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #48]\n\t"
"str r4, [%[a], #52]\n\t"
"ldr r3, [%[a], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #56]\n\t"
"ldr r6, [%[b], #60]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #56]\n\t"
"str r4, [%[a], #60]\n\t"
"ldr r3, [%[a], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #64]\n\t"
"ldr r6, [%[b], #68]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #64]\n\t"
"str r4, [%[a], #68]\n\t"
"ldr r3, [%[a], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #72]\n\t"
"ldr r6, [%[b], #76]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #72]\n\t"
"str r4, [%[a], #76]\n\t"
"ldr r3, [%[a], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #80]\n\t"
"ldr r6, [%[b], #84]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #80]\n\t"
"str r4, [%[a], #84]\n\t"
"ldr r3, [%[a], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #88]\n\t"
"ldr r6, [%[b], #92]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #88]\n\t"
"str r4, [%[a], #92]\n\t"
"ldr r3, [%[a], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #96]\n\t"
"ldr r6, [%[b], #100]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #96]\n\t"
"str r4, [%[a], #100]\n\t"
"ldr r3, [%[a], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #104]\n\t"
"ldr r6, [%[b], #108]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #104]\n\t"
"str r4, [%[a], #108]\n\t"
"ldr r3, [%[a], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #112]\n\t"
"ldr r6, [%[b], #116]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #112]\n\t"
"str r4, [%[a], #116]\n\t"
"ldr r3, [%[a], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #120]\n\t"
"ldr r6, [%[b], #124]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #120]\n\t"
"str r4, [%[a], #124]\n\t"
"sbc %[c], %[c]\n\t"
"add %[a], #0x80\n\t"
"add %[b], #0x80\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r3, [%[a], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #0]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #0]\n\t"
"str r4, [%[a], #4]\n\t"
"ldr r3, [%[a], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #8]\n\t"
"ldr r6, [%[b], #12]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #8]\n\t"
"str r4, [%[a], #12]\n\t"
"ldr r3, [%[a], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #16]\n\t"
"ldr r6, [%[b], #20]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #16]\n\t"
"str r4, [%[a], #20]\n\t"
"ldr r3, [%[a], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #24]\n\t"
"ldr r6, [%[b], #28]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #24]\n\t"
"str r4, [%[a], #28]\n\t"
"ldr r3, [%[a], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #32]\n\t"
"ldr r6, [%[b], #36]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #32]\n\t"
"str r4, [%[a], #36]\n\t"
"ldr r3, [%[a], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #40]\n\t"
"ldr r6, [%[b], #44]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #40]\n\t"
"str r4, [%[a], #44]\n\t"
"ldr r3, [%[a], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #48]\n\t"
"ldr r6, [%[b], #52]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #48]\n\t"
"str r4, [%[a], #52]\n\t"
"ldr r3, [%[a], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #56]\n\t"
"ldr r6, [%[b], #60]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #56]\n\t"
"str r4, [%[a], #60]\n\t"
"ldr r3, [%[a], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #64]\n\t"
"ldr r6, [%[b], #68]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #64]\n\t"
"str r4, [%[a], #68]\n\t"
"ldr r3, [%[a], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #72]\n\t"
"ldr r6, [%[b], #76]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #72]\n\t"
"str r4, [%[a], #76]\n\t"
"ldr r3, [%[a], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #80]\n\t"
"ldr r6, [%[b], #84]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #80]\n\t"
"str r4, [%[a], #84]\n\t"
"ldr r3, [%[a], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #88]\n\t"
"ldr r6, [%[b], #92]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #88]\n\t"
"str r4, [%[a], #92]\n\t"
"ldr r3, [%[a], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #96]\n\t"
"ldr r6, [%[b], #100]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #96]\n\t"
"str r4, [%[a], #100]\n\t"
"ldr r3, [%[a], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #104]\n\t"
"ldr r6, [%[b], #108]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #104]\n\t"
"str r4, [%[a], #108]\n\t"
"ldr r3, [%[a], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #112]\n\t"
"ldr r6, [%[b], #116]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #112]\n\t"
"str r4, [%[a], #116]\n\t"
"ldr r3, [%[a], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #120]\n\t"
"ldr r6, [%[b], #124]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #120]\n\t"
"str r4, [%[a], #124]\n\t"
"sbc %[c], %[c]\n\t"
"add %[a], #0x80\n\t"
"add %[b], #0x80\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r3, [%[a], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #0]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #0]\n\t"
"str r4, [%[a], #4]\n\t"
"ldr r3, [%[a], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #8]\n\t"
"ldr r6, [%[b], #12]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #8]\n\t"
"str r4, [%[a], #12]\n\t"
"ldr r3, [%[a], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #16]\n\t"
"ldr r6, [%[b], #20]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #16]\n\t"
"str r4, [%[a], #20]\n\t"
"ldr r3, [%[a], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #24]\n\t"
"ldr r6, [%[b], #28]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #24]\n\t"
"str r4, [%[a], #28]\n\t"
"ldr r3, [%[a], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #32]\n\t"
"ldr r6, [%[b], #36]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #32]\n\t"
"str r4, [%[a], #36]\n\t"
"ldr r3, [%[a], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #40]\n\t"
"ldr r6, [%[b], #44]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #40]\n\t"
"str r4, [%[a], #44]\n\t"
"ldr r3, [%[a], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #48]\n\t"
"ldr r6, [%[b], #52]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #48]\n\t"
"str r4, [%[a], #52]\n\t"
"ldr r3, [%[a], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #56]\n\t"
"ldr r6, [%[b], #60]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #56]\n\t"
"str r4, [%[a], #60]\n\t"
"ldr r3, [%[a], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #64]\n\t"
"ldr r6, [%[b], #68]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #64]\n\t"
"str r4, [%[a], #68]\n\t"
"ldr r3, [%[a], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #72]\n\t"
"ldr r6, [%[b], #76]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #72]\n\t"
"str r4, [%[a], #76]\n\t"
"ldr r3, [%[a], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #80]\n\t"
"ldr r6, [%[b], #84]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #80]\n\t"
"str r4, [%[a], #84]\n\t"
"ldr r3, [%[a], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #88]\n\t"
"ldr r6, [%[b], #92]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #88]\n\t"
"str r4, [%[a], #92]\n\t"
"ldr r3, [%[a], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #96]\n\t"
"ldr r6, [%[b], #100]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #96]\n\t"
"str r4, [%[a], #100]\n\t"
"ldr r3, [%[a], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #104]\n\t"
"ldr r6, [%[b], #108]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #104]\n\t"
"str r4, [%[a], #108]\n\t"
"ldr r3, [%[a], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #112]\n\t"
"ldr r6, [%[b], #116]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #112]\n\t"
"str r4, [%[a], #116]\n\t"
"ldr r3, [%[a], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #120]\n\t"
"ldr r6, [%[b], #124]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #120]\n\t"
"str r4, [%[a], #124]\n\t"
"sbc %[c], %[c]\n\t"
: [c] "+r" (c), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r3", "r4", "r5", "r6"
);
return c;
}
/* Add b to a into r. (r = a + b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_3072_add_96(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r7, #0\n\t"
"mvn r7, r7\n\t"
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[b], #0]\n\t"
"add r4, r5\n\t"
"str r4, [%[r], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #4]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[b], #8]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #12]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[b], #16]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #20]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[b], #24]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #28]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #28]\n\t"
"ldr r4, [%[a], #32]\n\t"
"ldr r5, [%[b], #32]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #36]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #36]\n\t"
"ldr r4, [%[a], #40]\n\t"
"ldr r5, [%[b], #40]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #44]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #44]\n\t"
"ldr r4, [%[a], #48]\n\t"
"ldr r5, [%[b], #48]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #52]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #52]\n\t"
"ldr r4, [%[a], #56]\n\t"
"ldr r5, [%[b], #56]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #60]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #60]\n\t"
"ldr r4, [%[a], #64]\n\t"
"ldr r5, [%[b], #64]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #68]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #68]\n\t"
"ldr r4, [%[a], #72]\n\t"
"ldr r5, [%[b], #72]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #76]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #76]\n\t"
"ldr r4, [%[a], #80]\n\t"
"ldr r5, [%[b], #80]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #84]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #84]\n\t"
"ldr r4, [%[a], #88]\n\t"
"ldr r5, [%[b], #88]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #92]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #92]\n\t"
"ldr r4, [%[a], #96]\n\t"
"ldr r5, [%[b], #96]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #100]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #100]\n\t"
"ldr r4, [%[a], #104]\n\t"
"ldr r5, [%[b], #104]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #108]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #108]\n\t"
"ldr r4, [%[a], #112]\n\t"
"ldr r5, [%[b], #112]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #116]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #116]\n\t"
"ldr r4, [%[a], #120]\n\t"
"ldr r5, [%[b], #120]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #124]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #124]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
"add %[a], #0x80\n\t"
"add %[b], #0x80\n\t"
"add %[r], #0x80\n\t"
"add %[c], r7\n\t"
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[b], #0]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #4]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[b], #8]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #12]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[b], #16]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #20]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[b], #24]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #28]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #28]\n\t"
"ldr r4, [%[a], #32]\n\t"
"ldr r5, [%[b], #32]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #36]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #36]\n\t"
"ldr r4, [%[a], #40]\n\t"
"ldr r5, [%[b], #40]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #44]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #44]\n\t"
"ldr r4, [%[a], #48]\n\t"
"ldr r5, [%[b], #48]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #52]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #52]\n\t"
"ldr r4, [%[a], #56]\n\t"
"ldr r5, [%[b], #56]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #60]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #60]\n\t"
"ldr r4, [%[a], #64]\n\t"
"ldr r5, [%[b], #64]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #68]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #68]\n\t"
"ldr r4, [%[a], #72]\n\t"
"ldr r5, [%[b], #72]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #76]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #76]\n\t"
"ldr r4, [%[a], #80]\n\t"
"ldr r5, [%[b], #80]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #84]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #84]\n\t"
"ldr r4, [%[a], #88]\n\t"
"ldr r5, [%[b], #88]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #92]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #92]\n\t"
"ldr r4, [%[a], #96]\n\t"
"ldr r5, [%[b], #96]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #100]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #100]\n\t"
"ldr r4, [%[a], #104]\n\t"
"ldr r5, [%[b], #104]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #108]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #108]\n\t"
"ldr r4, [%[a], #112]\n\t"
"ldr r5, [%[b], #112]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #116]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #116]\n\t"
"ldr r4, [%[a], #120]\n\t"
"ldr r5, [%[b], #120]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #124]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #124]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
"add %[a], #0x80\n\t"
"add %[b], #0x80\n\t"
"add %[r], #0x80\n\t"
"add %[c], r7\n\t"
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[b], #0]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #4]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[b], #8]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #12]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[b], #16]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #20]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[b], #24]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #28]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #28]\n\t"
"ldr r4, [%[a], #32]\n\t"
"ldr r5, [%[b], #32]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #36]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #36]\n\t"
"ldr r4, [%[a], #40]\n\t"
"ldr r5, [%[b], #40]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #44]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #44]\n\t"
"ldr r4, [%[a], #48]\n\t"
"ldr r5, [%[b], #48]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #52]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #52]\n\t"
"ldr r4, [%[a], #56]\n\t"
"ldr r5, [%[b], #56]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #60]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #60]\n\t"
"ldr r4, [%[a], #64]\n\t"
"ldr r5, [%[b], #64]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #68]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #68]\n\t"
"ldr r4, [%[a], #72]\n\t"
"ldr r5, [%[b], #72]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #76]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #76]\n\t"
"ldr r4, [%[a], #80]\n\t"
"ldr r5, [%[b], #80]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #84]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #84]\n\t"
"ldr r4, [%[a], #88]\n\t"
"ldr r5, [%[b], #88]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #92]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #92]\n\t"
"ldr r4, [%[a], #96]\n\t"
"ldr r5, [%[b], #96]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #100]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #100]\n\t"
"ldr r4, [%[a], #104]\n\t"
"ldr r5, [%[b], #104]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #108]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #108]\n\t"
"ldr r4, [%[a], #112]\n\t"
"ldr r5, [%[b], #112]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #116]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #116]\n\t"
"ldr r4, [%[a], #120]\n\t"
"ldr r5, [%[b], #120]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #124]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #124]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5", "r7"
);
return c;
}
/* AND m into each word of a and store in r.
*
* r A single precision integer.
* a A single precision integer.
* m Mask to AND against each digit.
*/
static void sp_3072_mask_48(sp_digit* r, const sp_digit* a, sp_digit m)
{
#ifdef WOLFSSL_SP_SMALL
int i;
for (i=0; i<48; i++) {
r[i] = a[i] & m;
}
#else
int i;
for (i = 0; i < 48; i += 8) {
r[i+0] = a[i+0] & m;
r[i+1] = a[i+1] & m;
r[i+2] = a[i+2] & m;
r[i+3] = a[i+3] & m;
r[i+4] = a[i+4] & m;
r[i+5] = a[i+5] & m;
r[i+6] = a[i+6] & m;
r[i+7] = a[i+7] & m;
}
#endif
}
/* Multiply a and b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static void sp_3072_mul_96(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit* z0 = r;
sp_digit z1[96];
sp_digit a1[48];
sp_digit b1[48];
sp_digit z2[96];
sp_digit u, ca, cb;
ca = sp_3072_add_48(a1, a, &a[48]);
cb = sp_3072_add_48(b1, b, &b[48]);
u = ca & cb;
sp_3072_mul_48(z1, a1, b1);
sp_3072_mul_48(z2, &a[48], &b[48]);
sp_3072_mul_48(z0, a, b);
sp_3072_mask_48(r + 96, a1, 0 - cb);
sp_3072_mask_48(b1, b1, 0 - ca);
u += sp_3072_add_48(r + 96, r + 96, b1);
u += sp_3072_sub_in_place_96(z1, z2);
u += sp_3072_sub_in_place_96(z1, z0);
u += sp_3072_add_96(r + 48, r + 48, z1);
r[144] = u;
XMEMSET(r + 144 + 1, 0, sizeof(sp_digit) * (48 - 1));
(void)sp_3072_add_96(r + 96, r + 96, z2);
}
/* Square a and put result in r. (r = a * a)
*
* r A single precision integer.
* a A single precision integer.
*/
SP_NOINLINE static void sp_3072_sqr_96(sp_digit* r, const sp_digit* a)
{
sp_digit* z0 = r;
sp_digit z2[96];
sp_digit z1[96];
sp_digit a1[48];
sp_digit u;
u = sp_3072_add_48(a1, a, &a[48]);
sp_3072_sqr_48(z1, a1);
sp_3072_sqr_48(z2, &a[48]);
sp_3072_sqr_48(z0, a);
sp_3072_mask_48(r + 96, a1, 0 - u);
u += sp_3072_add_48(r + 96, r + 96, r + 96);
u += sp_3072_sub_in_place_96(z1, z2);
u += sp_3072_sub_in_place_96(z1, z0);
u += sp_3072_add_96(r + 48, r + 48, z1);
r[144] = u;
XMEMSET(r + 144 + 1, 0, sizeof(sp_digit) * (48 - 1));
(void)sp_3072_add_96(r + 96, r + 96, z2);
}
#endif /* !WOLFSSL_SP_SMALL */
#ifdef WOLFSSL_SP_SMALL
/* Add b to a into r. (r = a + b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_3072_add_96(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r6, %[a]\n\t"
"mov r7, #0\n\t"
"mov r4, #1\n\t"
"lsl r4, #8\n\t"
"add r4, #128\n\t"
"sub r7, #1\n\t"
"add r6, r4\n\t"
"\n1:\n\t"
"add %[c], r7\n\t"
"ldr r4, [%[a]]\n\t"
"ldr r5, [%[b]]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r]]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
"add %[a], #4\n\t"
"add %[b], #4\n\t"
"add %[r], #4\n\t"
"cmp %[a], r6\n\t"
"bne 1b\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5", "r6", "r7"
);
return c;
}
#endif /* WOLFSSL_SP_SMALL */
#ifdef WOLFSSL_SP_SMALL
/* Sub b from a into a. (a -= b)
*
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_3072_sub_in_place_96(sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r7, %[a]\n\t"
"mov r5, #1\n\t"
"lsl r5, #8\n\t"
"add r5, #128\n\t"
"add r7, r5\n\t"
"\n1:\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r3, [%[a]]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b]]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a]]\n\t"
"str r4, [%[a], #4]\n\t"
"sbc %[c], %[c]\n\t"
"add %[a], #8\n\t"
"add %[b], #8\n\t"
"cmp %[a], r7\n\t"
"bne 1b\n\t"
: [c] "+r" (c), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r3", "r4", "r5", "r6", "r7"
);
return c;
}
#endif /* WOLFSSL_SP_SMALL */
#ifdef WOLFSSL_SP_SMALL
/* Multiply a and b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static void sp_3072_mul_96(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit tmp[96 * 2];
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"mov r8, r3\n\t"
"mov r11, %[r]\n\t"
"mov r9, %[a]\n\t"
"mov r10, %[b]\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #128\n\t"
"add r6, r9\n\t"
"mov r12, r6\n\t"
"\n1:\n\t"
"mov %[r], #0\n\t"
"mov r5, #0\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #124\n\t"
"mov %[a], r8\n\t"
"sub %[a], r6\n\t"
"sbc r6, r6\n\t"
"mvn r6, r6\n\t"
"and %[a], r6\n\t"
"mov %[b], r8\n\t"
"sub %[b], %[a]\n\t"
"add %[a], r9\n\t"
"add %[b], r10\n\t"
"\n2:\n\t"
"# Multiply Start\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [%[b]]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [%[b]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [%[b]]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [%[b]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Multiply Done\n\t"
"add %[a], #4\n\t"
"sub %[b], #4\n\t"
"cmp %[a], r12\n\t"
"beq 3f\n\t"
"mov r6, r8\n\t"
"add r6, r9\n\t"
"cmp %[a], r6\n\t"
"ble 2b\n\t"
"\n3:\n\t"
"mov %[r], r11\n\t"
"mov r7, r8\n\t"
"str r3, [%[r], r7]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"add r7, #4\n\t"
"mov r8, r7\n\t"
"mov r6, #2\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #248\n\t"
"cmp r7, r6\n\t"
"ble 1b\n\t"
"str r3, [%[r], r7]\n\t"
"mov %[a], r9\n\t"
"mov %[b], r10\n\t"
:
: [r] "r" (tmp), [a] "r" (a), [b] "r" (b)
: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12"
);
XMEMCPY(r, tmp, sizeof(tmp));
}
/* Square a and put result in r. (r = a * a)
*
* r A single precision integer.
* a A single precision integer.
*/
SP_NOINLINE static void sp_3072_sqr_96(sp_digit* r, const sp_digit* a)
{
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"mov r5, #0\n\t"
"mov r8, r3\n\t"
"mov r11, %[r]\n\t"
"mov r6, #3\n\t"
"lsl r6, r6, #8\n\t"
"neg r6, r6\n\t"
"add sp, r6\n\t"
"mov r10, sp\n\t"
"mov r9, %[a]\n\t"
"\n1:\n\t"
"mov %[r], #0\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #124\n\t"
"mov %[a], r8\n\t"
"sub %[a], r6\n\t"
"sbc r6, r6\n\t"
"mvn r6, r6\n\t"
"and %[a], r6\n\t"
"mov r2, r8\n\t"
"sub r2, %[a]\n\t"
"add %[a], r9\n\t"
"add r2, r9\n\t"
"\n2:\n\t"
"cmp r2, %[a]\n\t"
"beq 4f\n\t"
"# Multiply * 2: Start\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [r2]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [r2]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [r2]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [r2]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Multiply * 2: Done\n\t"
"bal 5f\n\t"
"\n4:\n\t"
"# Square: Start\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"lsr r6, r6, #16\n\t"
"mul r6, r6\n\t"
"add r3, r6\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"mul r7, r7\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"lsr r6, r6, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #15\n\t"
"lsl r6, r6, #17\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Square: Done\n\t"
"\n5:\n\t"
"add %[a], #4\n\t"
"sub r2, #4\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #128\n\t"
"add r6, r9\n\t"
"cmp %[a], r6\n\t"
"beq 3f\n\t"
"cmp %[a], r2\n\t"
"bgt 3f\n\t"
"mov r7, r8\n\t"
"add r7, r9\n\t"
"cmp %[a], r7\n\t"
"ble 2b\n\t"
"\n3:\n\t"
"mov %[r], r10\n\t"
"mov r7, r8\n\t"
"str r3, [%[r], r7]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"mov r5, #0\n\t"
"add r7, #4\n\t"
"mov r8, r7\n\t"
"mov r6, #2\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #248\n\t"
"cmp r7, r6\n\t"
"ble 1b\n\t"
"mov %[a], r9\n\t"
"str r3, [%[r], r7]\n\t"
"mov %[r], r11\n\t"
"mov %[a], r10\n\t"
"mov r3, #2\n\t"
"lsl r3, r3, #8\n\t"
"add r3, #252\n\t"
"\n4:\n\t"
"ldr r6, [%[a], r3]\n\t"
"str r6, [%[r], r3]\n\t"
"sub r3, #4\n\t"
"bge 4b\n\t"
"mov r6, #3\n\t"
"lsl r6, r6, #8\n\t"
"add sp, r6\n\t"
:
: [r] "r" (r), [a] "r" (a)
: "memory", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11"
);
}
#endif /* WOLFSSL_SP_SMALL */
#if (defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH)) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)
#ifdef WOLFSSL_SP_SMALL
/* AND m into each word of a and store in r.
*
* r A single precision integer.
* a A single precision integer.
* m Mask to AND against each digit.
*/
static void sp_3072_mask_48(sp_digit* r, const sp_digit* a, sp_digit m)
{
int i;
for (i=0; i<48; i++) {
r[i] = a[i] & m;
}
}
#endif /* WOLFSSL_SP_SMALL */
#ifdef WOLFSSL_SP_SMALL
/* Add b to a into r. (r = a + b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_3072_add_48(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r6, %[a]\n\t"
"mov r7, #0\n\t"
"add r6, #192\n\t"
"sub r7, #1\n\t"
"\n1:\n\t"
"add %[c], r7\n\t"
"ldr r4, [%[a]]\n\t"
"ldr r5, [%[b]]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r]]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
"add %[a], #4\n\t"
"add %[b], #4\n\t"
"add %[r], #4\n\t"
"cmp %[a], r6\n\t"
"bne 1b\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5", "r6", "r7"
);
return c;
}
#endif /* WOLFSSL_SP_SMALL */
#ifdef WOLFSSL_SP_SMALL
/* Sub b from a into a. (a -= b)
*
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_3072_sub_in_place_48(sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r7, %[a]\n\t"
"add r7, #192\n\t"
"\n1:\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r3, [%[a]]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b]]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a]]\n\t"
"str r4, [%[a], #4]\n\t"
"sbc %[c], %[c]\n\t"
"add %[a], #8\n\t"
"add %[b], #8\n\t"
"cmp %[a], r7\n\t"
"bne 1b\n\t"
: [c] "+r" (c), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r3", "r4", "r5", "r6", "r7"
);
return c;
}
#endif /* WOLFSSL_SP_SMALL */
#ifdef WOLFSSL_SP_SMALL
/* Multiply a and b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static void sp_3072_mul_48(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit tmp[48 * 2];
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"mov r8, r3\n\t"
"mov r11, %[r]\n\t"
"mov r9, %[a]\n\t"
"mov r10, %[b]\n\t"
"mov r6, #192\n\t"
"add r6, r9\n\t"
"mov r12, r6\n\t"
"\n1:\n\t"
"mov %[r], #0\n\t"
"mov r5, #0\n\t"
"mov r6, #188\n\t"
"mov %[a], r8\n\t"
"sub %[a], r6\n\t"
"sbc r6, r6\n\t"
"mvn r6, r6\n\t"
"and %[a], r6\n\t"
"mov %[b], r8\n\t"
"sub %[b], %[a]\n\t"
"add %[a], r9\n\t"
"add %[b], r10\n\t"
"\n2:\n\t"
"# Multiply Start\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [%[b]]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [%[b]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [%[b]]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [%[b]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Multiply Done\n\t"
"add %[a], #4\n\t"
"sub %[b], #4\n\t"
"cmp %[a], r12\n\t"
"beq 3f\n\t"
"mov r6, r8\n\t"
"add r6, r9\n\t"
"cmp %[a], r6\n\t"
"ble 2b\n\t"
"\n3:\n\t"
"mov %[r], r11\n\t"
"mov r7, r8\n\t"
"str r3, [%[r], r7]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"add r7, #4\n\t"
"mov r8, r7\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #120\n\t"
"cmp r7, r6\n\t"
"ble 1b\n\t"
"str r3, [%[r], r7]\n\t"
"mov %[a], r9\n\t"
"mov %[b], r10\n\t"
:
: [r] "r" (tmp), [a] "r" (a), [b] "r" (b)
: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12"
);
XMEMCPY(r, tmp, sizeof(tmp));
}
/* Square a and put result in r. (r = a * a)
*
* r A single precision integer.
* a A single precision integer.
*/
SP_NOINLINE static void sp_3072_sqr_48(sp_digit* r, const sp_digit* a)
{
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"mov r5, #0\n\t"
"mov r8, r3\n\t"
"mov r11, %[r]\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #128\n\t"
"neg r6, r6\n\t"
"add sp, r6\n\t"
"mov r10, sp\n\t"
"mov r9, %[a]\n\t"
"\n1:\n\t"
"mov %[r], #0\n\t"
"mov r6, #188\n\t"
"mov %[a], r8\n\t"
"sub %[a], r6\n\t"
"sbc r6, r6\n\t"
"mvn r6, r6\n\t"
"and %[a], r6\n\t"
"mov r2, r8\n\t"
"sub r2, %[a]\n\t"
"add %[a], r9\n\t"
"add r2, r9\n\t"
"\n2:\n\t"
"cmp r2, %[a]\n\t"
"beq 4f\n\t"
"# Multiply * 2: Start\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [r2]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [r2]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [r2]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [r2]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Multiply * 2: Done\n\t"
"bal 5f\n\t"
"\n4:\n\t"
"# Square: Start\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"lsr r6, r6, #16\n\t"
"mul r6, r6\n\t"
"add r3, r6\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"mul r7, r7\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"lsr r6, r6, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #15\n\t"
"lsl r6, r6, #17\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Square: Done\n\t"
"\n5:\n\t"
"add %[a], #4\n\t"
"sub r2, #4\n\t"
"mov r6, #192\n\t"
"add r6, r9\n\t"
"cmp %[a], r6\n\t"
"beq 3f\n\t"
"cmp %[a], r2\n\t"
"bgt 3f\n\t"
"mov r7, r8\n\t"
"add r7, r9\n\t"
"cmp %[a], r7\n\t"
"ble 2b\n\t"
"\n3:\n\t"
"mov %[r], r10\n\t"
"mov r7, r8\n\t"
"str r3, [%[r], r7]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"mov r5, #0\n\t"
"add r7, #4\n\t"
"mov r8, r7\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #120\n\t"
"cmp r7, r6\n\t"
"ble 1b\n\t"
"mov %[a], r9\n\t"
"str r3, [%[r], r7]\n\t"
"mov %[r], r11\n\t"
"mov %[a], r10\n\t"
"mov r3, #1\n\t"
"lsl r3, r3, #8\n\t"
"add r3, #124\n\t"
"\n4:\n\t"
"ldr r6, [%[a], r3]\n\t"
"str r6, [%[r], r3]\n\t"
"sub r3, #4\n\t"
"bge 4b\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #128\n\t"
"add sp, r6\n\t"
:
: [r] "r" (r), [a] "r" (a)
: "memory", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11"
);
}
#endif /* WOLFSSL_SP_SMALL */
#endif /* (WOLFSSL_HAVE_SP_RSA || WOLFSSL_HAVE_SP_DH) && !WOLFSSL_RSA_PUBLIC_ONLY */
/* Caclulate the bottom digit of -1/a mod 2^n.
*
* a A single precision number.
* rho Bottom word of inverse.
*/
static void sp_3072_mont_setup(const sp_digit* a, sp_digit* rho)
{
sp_digit x, b;
b = a[0];
x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
x *= 2 - b * x; /* here x*a==1 mod 2**8 */
x *= 2 - b * x; /* here x*a==1 mod 2**16 */
x *= 2 - b * x; /* here x*a==1 mod 2**32 */
/* rho = -1/m mod b */
*rho = -x;
}
/* Mul a by digit b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision digit.
*/
SP_NOINLINE static void sp_3072_mul_d_96(sp_digit* r, const sp_digit* a,
sp_digit b)
{
__asm__ __volatile__ (
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #128\n\t"
"add r6, %[a]\n\t"
"mov r8, %[r]\n\t"
"mov r9, r6\n\t"
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"1:\n\t"
"mov %[r], #0\n\t"
"mov r5, #0\n\t"
"# A[] * B\n\t"
"ldr r6, [%[a]]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, %[b], #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"lsr r7, %[b], #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, %[b], #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"lsl r7, %[b], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# A[] * B - Done\n\t"
"mov %[r], r8\n\t"
"str r3, [%[r]]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"add %[r], #4\n\t"
"add %[a], #4\n\t"
"mov r8, %[r]\n\t"
"cmp %[a], r9\n\t"
"blt 1b\n\t"
"str r3, [%[r]]\n\t"
: [r] "+r" (r), [a] "+r" (a)
: [b] "r" (b)
: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9"
);
}
#if (defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH)) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)
/* r = 2^n mod m where n is the number of bits to reduce by.
* Given m must be 3072 bits, just need to subtract.
*
* r A single precision number.
* m A single precision number.
*/
static void sp_3072_mont_norm_48(sp_digit* r, const sp_digit* m)
{
XMEMSET(r, 0, sizeof(sp_digit) * 48);
/* r = 2^n mod m */
sp_3072_sub_in_place_48(r, m);
}
/* Conditionally subtract b from a using the mask m.
* m is -1 to subtract and 0 when not copying.
*
* r A single precision number representing condition subtract result.
* a A single precision number to subtract from.
* b A single precision number to subtract.
* m Mask value to apply.
*/
SP_NOINLINE static sp_digit sp_3072_cond_sub_48(sp_digit* r, const sp_digit* a,
const sp_digit* b, sp_digit m)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r5, #192\n\t"
"mov r8, r5\n\t"
"mov r7, #0\n\t"
"1:\n\t"
"ldr r6, [%[b], r7]\n\t"
"and r6, %[m]\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r5, [%[a], r7]\n\t"
"sbc r5, r6\n\t"
"sbc %[c], %[c]\n\t"
"str r5, [%[r], r7]\n\t"
"add r7, #4\n\t"
"cmp r7, r8\n\t"
"blt 1b\n\t"
: [c] "+r" (c)
: [r] "r" (r), [a] "r" (a), [b] "r" (b), [m] "r" (m)
: "memory", "r5", "r6", "r7", "r8"
);
return c;
}
/* Reduce the number back to 3072 bits using Montgomery reduction.
*
* a A single precision number to reduce in place.
* m The single precision number representing the modulus.
* mp The digit representing the negative inverse of m mod 2^n.
*/
SP_NOINLINE static void sp_3072_mont_reduce_48(sp_digit* a, const sp_digit* m,
sp_digit mp)
{
sp_digit ca = 0;
__asm__ __volatile__ (
"mov r8, %[mp]\n\t"
"mov r12, %[ca]\n\t"
"mov r14, %[m]\n\t"
"mov r9, %[a]\n\t"
"mov r4, #0\n\t"
"# i = 0\n\t"
"mov r11, r4\n\t"
"\n1:\n\t"
"mov r5, #0\n\t"
"mov %[ca], #0\n\t"
"# mu = a[i] * mp\n\t"
"mov %[mp], r8\n\t"
"ldr %[a], [%[a]]\n\t"
"mul %[mp], %[a]\n\t"
"mov %[m], r14\n\t"
"mov r10, r9\n\t"
"\n2:\n\t"
"# a[i+j] += m[j] * mu\n\t"
"mov %[a], r10\n\t"
"ldr %[a], [%[a]]\n\t"
"mov %[ca], #0\n\t"
"mov r4, r5\n\t"
"mov r5, #0\n\t"
"# Multiply m[j] and mu - Start\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r6, %[mp], #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add %[a], r7\n\t"
"adc r5, %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add %[a], r6\n\t"
"adc r5, r7\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r6, %[mp], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r5, r7\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add %[a], r6\n\t"
"adc r5, r7\n\t"
"# Multiply m[j] and mu - Done\n\t"
"add r4, %[a]\n\t"
"adc r5, %[ca]\n\t"
"mov %[a], r10\n\t"
"str r4, [%[a]]\n\t"
"mov r6, #4\n\t"
"add %[m], #4\n\t"
"add r10, r6\n\t"
"mov r4, #188\n\t"
"add r4, r9\n\t"
"cmp r10, r4\n\t"
"blt 2b\n\t"
"# a[i+47] += m[47] * mu\n\t"
"mov %[ca], #0\n\t"
"mov r4, r12\n\t"
"mov %[a], #0\n\t"
"# Multiply m[47] and mu - Start\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r6, %[mp], #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r5, r7\n\t"
"adc r4, %[ca]\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r5, r6\n\t"
"adc r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r6, %[mp], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r5, r6\n\t"
"adc r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"# Multiply m[47] and mu - Done\n\t"
"mov %[ca], %[a]\n\t"
"mov %[a], r10\n\t"
"ldr r7, [%[a], #4]\n\t"
"ldr %[a], [%[a]]\n\t"
"mov r6, #0\n\t"
"add r5, %[a]\n\t"
"adc r7, r4\n\t"
"adc %[ca], r6\n\t"
"mov %[a], r10\n\t"
"str r5, [%[a]]\n\t"
"str r7, [%[a], #4]\n\t"
"# i += 1\n\t"
"mov r6, #4\n\t"
"add r9, r6\n\t"
"add r11, r6\n\t"
"mov r12, %[ca]\n\t"
"mov %[a], r9\n\t"
"mov r4, #192\n\t"
"cmp r11, r4\n\t"
"blt 1b\n\t"
"mov %[m], r14\n\t"
: [ca] "+r" (ca), [a] "+r" (a)
: [m] "r" (m), [mp] "r" (mp)
: "memory", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14"
);
sp_3072_cond_sub_48(a - 48, a, m, (sp_digit)0 - ca);
}
/* Multiply two Montogmery form numbers mod the modulus (prime).
* (r = a * b mod m)
*
* r Result of multiplication.
* a First number to multiply in Montogmery form.
* b Second number to multiply in Montogmery form.
* m Modulus (prime).
* mp Montogmery mulitplier.
*/
static void sp_3072_mont_mul_48(sp_digit* r, const sp_digit* a, const sp_digit* b,
const sp_digit* m, sp_digit mp)
{
sp_3072_mul_48(r, a, b);
sp_3072_mont_reduce_48(r, m, mp);
}
/* Square the Montgomery form number. (r = a * a mod m)
*
* r Result of squaring.
* a Number to square in Montogmery form.
* m Modulus (prime).
* mp Montogmery mulitplier.
*/
static void sp_3072_mont_sqr_48(sp_digit* r, const sp_digit* a, const sp_digit* m,
sp_digit mp)
{
sp_3072_sqr_48(r, a);
sp_3072_mont_reduce_48(r, m, mp);
}
/* Mul a by digit b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision digit.
*/
SP_NOINLINE static void sp_3072_mul_d_48(sp_digit* r, const sp_digit* a,
sp_digit b)
{
__asm__ __volatile__ (
"mov r6, #192\n\t"
"add r6, %[a]\n\t"
"mov r8, %[r]\n\t"
"mov r9, r6\n\t"
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"1:\n\t"
"mov %[r], #0\n\t"
"mov r5, #0\n\t"
"# A[] * B\n\t"
"ldr r6, [%[a]]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, %[b], #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"lsr r7, %[b], #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, %[b], #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"lsl r7, %[b], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# A[] * B - Done\n\t"
"mov %[r], r8\n\t"
"str r3, [%[r]]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"add %[r], #4\n\t"
"add %[a], #4\n\t"
"mov r8, %[r]\n\t"
"cmp %[a], r9\n\t"
"blt 1b\n\t"
"str r3, [%[r]]\n\t"
: [r] "+r" (r), [a] "+r" (a)
: [b] "r" (b)
: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9"
);
}
/* Divide the double width number (d1|d0) by the dividend. (d1|d0 / div)
*
* d1 The high order half of the number to divide.
* d0 The low order half of the number to divide.
* div The dividend.
* returns the result of the division.
*
* Note that this is an approximate div. It may give an answer 1 larger.
*/
SP_NOINLINE static sp_digit div_3072_word_48(sp_digit d1, sp_digit d0,
sp_digit div)
{
sp_digit r = 0;
__asm__ __volatile__ (
"lsr r5, %[div], #1\n\t"
"add r5, #1\n\t"
"mov r8, %[d0]\n\t"
"mov r9, %[d1]\n\t"
"# Do top 32\n\t"
"mov r6, r5\n\t"
"sub r6, %[d1]\n\t"
"sbc r6, r6\n\t"
"add %[r], %[r]\n\t"
"sub %[r], r6\n\t"
"and r6, r5\n\t"
"sub %[d1], r6\n\t"
"# Next 30 bits\n\t"
"mov r4, #29\n\t"
"1:\n\t"
"lsl %[d0], %[d0], #1\n\t"
"adc %[d1], %[d1]\n\t"
"mov r6, r5\n\t"
"sub r6, %[d1]\n\t"
"sbc r6, r6\n\t"
"add %[r], %[r]\n\t"
"sub %[r], r6\n\t"
"and r6, r5\n\t"
"sub %[d1], r6\n\t"
"sub r4, #1\n\t"
"bpl 1b\n\t"
"mov r7, #0\n\t"
"add %[r], %[r]\n\t"
"add %[r], #1\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"sub %[d1], r4\n\t"
"mov r4, %[d1]\n\t"
"mov %[d1], r9\n\t"
"sbc %[d1], r5\n\t"
"mov r5, %[d1]\n\t"
"add %[r], r5\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"mov r6, r9\n\t"
"sub r4, %[d1], r4\n\t"
"sbc r6, r5\n\t"
"mov r5, r6\n\t"
"add %[r], r5\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"mov r6, r9\n\t"
"sub r4, %[d1], r4\n\t"
"sbc r6, r5\n\t"
"mov r5, r6\n\t"
"add %[r], r5\n\t"
"mov r6, %[div]\n\t"
"sub r6, r4\n\t"
"sbc r6, r6\n\t"
"sub %[r], r6\n\t"
: [r] "+r" (r)
: [d1] "r" (d1), [d0] "r" (d0), [div] "r" (div)
: "r4", "r5", "r7", "r6", "r8", "r9"
);
return r;
}
/* Compare a with b in constant time.
*
* a A single precision integer.
* b A single precision integer.
* return -ve, 0 or +ve if a is less than, equal to or greater than b
* respectively.
*/
SP_NOINLINE static int32_t sp_3072_cmp_48(const sp_digit* a, const sp_digit* b)
{
sp_digit r = 0;
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mvn r3, r3\n\t"
"mov r6, #188\n\t"
"1:\n\t"
"ldr r7, [%[a], r6]\n\t"
"ldr r5, [%[b], r6]\n\t"
"and r7, r3\n\t"
"and r5, r3\n\t"
"mov r4, r7\n\t"
"sub r7, r5\n\t"
"sbc r7, r7\n\t"
"add %[r], r7\n\t"
"mvn r7, r7\n\t"
"and r3, r7\n\t"
"sub r5, r4\n\t"
"sbc r7, r7\n\t"
"sub %[r], r7\n\t"
"mvn r7, r7\n\t"
"and r3, r7\n\t"
"sub r6, #4\n\t"
"cmp r6, #0\n\t"
"bge 1b\n\t"
: [r] "+r" (r)
: [a] "r" (a), [b] "r" (b)
: "r3", "r4", "r5", "r6", "r7"
);
return r;
}
/* Divide d in a and put remainder into r (m*d + r = a)
* m is not calculated as it is not needed at this time.
*
* a Nmber to be divided.
* d Number to divide with.
* m Multiplier result.
* r Remainder from the division.
* returns MP_OKAY indicating success.
*/
static WC_INLINE int sp_3072_div_48(const sp_digit* a, const sp_digit* d, sp_digit* m,
sp_digit* r)
{
sp_digit t1[96], t2[49];
sp_digit div, r1;
int i;
(void)m;
div = d[47];
XMEMCPY(t1, a, sizeof(*t1) * 2 * 48);
for (i=47; i>=0; i--) {
r1 = div_3072_word_48(t1[48 + i], t1[48 + i - 1], div);
sp_3072_mul_d_48(t2, d, r1);
t1[48 + i] += sp_3072_sub_in_place_48(&t1[i], t2);
t1[48 + i] -= t2[48];
sp_3072_mask_48(t2, d, t1[48 + i]);
t1[48 + i] += sp_3072_add_48(&t1[i], &t1[i], t2);
sp_3072_mask_48(t2, d, t1[48 + i]);
t1[48 + i] += sp_3072_add_48(&t1[i], &t1[i], t2);
}
r1 = sp_3072_cmp_48(t1, d) >= 0;
sp_3072_cond_sub_48(r, t1, d, (sp_digit)0 - r1);
return MP_OKAY;
}
/* Reduce a modulo m into r. (r = a mod m)
*
* r A single precision number that is the reduced result.
* a A single precision number that is to be reduced.
* m A single precision number that is the modulus to reduce with.
* returns MP_OKAY indicating success.
*/
static WC_INLINE int sp_3072_mod_48(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
return sp_3072_div_48(a, m, NULL, r);
}
#ifdef WOLFSSL_SP_SMALL
/* Modular exponentiate a to the e mod m. (r = a^e mod m)
*
* r A single precision number that is the result of the operation.
* a A single precision number being exponentiated.
* e A single precision number that is the exponent.
* bits The number of bits in the exponent.
* m A single precision number that is the modulus.
* returns 0 on success and MEMORY_E on dynamic memory allocation failure.
*/
static int sp_3072_mod_exp_48(sp_digit* r, const sp_digit* a, const sp_digit* e,
int bits, const sp_digit* m, int reduceA)
{
#ifndef WOLFSSL_SMALL_STACK
sp_digit t[16][96];
#else
sp_digit* t[16];
sp_digit* td;
#endif
sp_digit* norm;
sp_digit mp = 1;
sp_digit n;
sp_digit mask;
int i;
int c, y;
int err = MP_OKAY;
#ifdef WOLFSSL_SMALL_STACK
td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 16 * 96, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (td == NULL) {
err = MEMORY_E;
}
#endif
if (err == MP_OKAY) {
#ifdef WOLFSSL_SMALL_STACK
for (i=0; i<16; i++) {
t[i] = td + i * 96;
}
#endif
norm = t[0];
sp_3072_mont_setup(m, &mp);
sp_3072_mont_norm_48(norm, m);
XMEMSET(t[1], 0, sizeof(sp_digit) * 48U);
if (reduceA != 0) {
err = sp_3072_mod_48(t[1] + 48, a, m);
if (err == MP_OKAY) {
err = sp_3072_mod_48(t[1], t[1], m);
}
}
else {
XMEMCPY(t[1] + 48, a, sizeof(sp_digit) * 48);
err = sp_3072_mod_48(t[1], t[1], m);
}
}
if (err == MP_OKAY) {
sp_3072_mont_sqr_48(t[ 2], t[ 1], m, mp);
sp_3072_mont_mul_48(t[ 3], t[ 2], t[ 1], m, mp);
sp_3072_mont_sqr_48(t[ 4], t[ 2], m, mp);
sp_3072_mont_mul_48(t[ 5], t[ 3], t[ 2], m, mp);
sp_3072_mont_sqr_48(t[ 6], t[ 3], m, mp);
sp_3072_mont_mul_48(t[ 7], t[ 4], t[ 3], m, mp);
sp_3072_mont_sqr_48(t[ 8], t[ 4], m, mp);
sp_3072_mont_mul_48(t[ 9], t[ 5], t[ 4], m, mp);
sp_3072_mont_sqr_48(t[10], t[ 5], m, mp);
sp_3072_mont_mul_48(t[11], t[ 6], t[ 5], m, mp);
sp_3072_mont_sqr_48(t[12], t[ 6], m, mp);
sp_3072_mont_mul_48(t[13], t[ 7], t[ 6], m, mp);
sp_3072_mont_sqr_48(t[14], t[ 7], m, mp);
sp_3072_mont_mul_48(t[15], t[ 8], t[ 7], m, mp);
i = (bits - 1) / 32;
n = e[i--];
c = bits & 31;
if (c == 0) {
c = 32;
}
c -= bits % 4;
if (c == 32) {
c = 28;
}
y = (int)(n >> c);
n <<= 32 - c;
XMEMCPY(r, t[y], sizeof(sp_digit) * 48);
for (; i>=0 || c>=4; ) {
if (c == 0) {
n = e[i--];
y = n >> 28;
n <<= 4;
c = 28;
}
else if (c < 4) {
y = n >> 28;
n = e[i--];
c = 4 - c;
y |= n >> (32 - c);
n <<= c;
c = 32 - c;
}
else {
y = (n >> 28) & 0xf;
n <<= 4;
c -= 4;
}
sp_3072_mont_sqr_48(r, r, m, mp);
sp_3072_mont_sqr_48(r, r, m, mp);
sp_3072_mont_sqr_48(r, r, m, mp);
sp_3072_mont_sqr_48(r, r, m, mp);
sp_3072_mont_mul_48(r, r, t[y], m, mp);
}
XMEMSET(&r[48], 0, sizeof(sp_digit) * 48U);
sp_3072_mont_reduce_48(r, m, mp);
mask = 0 - (sp_3072_cmp_48(r, m) >= 0);
sp_3072_cond_sub_48(r, r, m, mask);
}
#ifdef WOLFSSL_SMALL_STACK
if (td != NULL) {
XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
return err;
}
#else
/* Modular exponentiate a to the e mod m. (r = a^e mod m)
*
* r A single precision number that is the result of the operation.
* a A single precision number being exponentiated.
* e A single precision number that is the exponent.
* bits The number of bits in the exponent.
* m A single precision number that is the modulus.
* returns 0 on success and MEMORY_E on dynamic memory allocation failure.
*/
static int sp_3072_mod_exp_48(sp_digit* r, const sp_digit* a, const sp_digit* e,
int bits, const sp_digit* m, int reduceA)
{
#ifndef WOLFSSL_SMALL_STACK
sp_digit t[32][96];
#else
sp_digit* t[32];
sp_digit* td;
#endif
sp_digit* norm;
sp_digit mp = 1;
sp_digit n;
sp_digit mask;
int i;
int c, y;
int err = MP_OKAY;
#ifdef WOLFSSL_SMALL_STACK
td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 32 * 96, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (td == NULL) {
err = MEMORY_E;
}
#endif
if (err == MP_OKAY) {
#ifdef WOLFSSL_SMALL_STACK
for (i=0; i<32; i++) {
t[i] = td + i * 96;
}
#endif
norm = t[0];
sp_3072_mont_setup(m, &mp);
sp_3072_mont_norm_48(norm, m);
XMEMSET(t[1], 0, sizeof(sp_digit) * 48U);
if (reduceA != 0) {
err = sp_3072_mod_48(t[1] + 48, a, m);
if (err == MP_OKAY) {
err = sp_3072_mod_48(t[1], t[1], m);
}
}
else {
XMEMCPY(t[1] + 48, a, sizeof(sp_digit) * 48);
err = sp_3072_mod_48(t[1], t[1], m);
}
}
if (err == MP_OKAY) {
sp_3072_mont_sqr_48(t[ 2], t[ 1], m, mp);
sp_3072_mont_mul_48(t[ 3], t[ 2], t[ 1], m, mp);
sp_3072_mont_sqr_48(t[ 4], t[ 2], m, mp);
sp_3072_mont_mul_48(t[ 5], t[ 3], t[ 2], m, mp);
sp_3072_mont_sqr_48(t[ 6], t[ 3], m, mp);
sp_3072_mont_mul_48(t[ 7], t[ 4], t[ 3], m, mp);
sp_3072_mont_sqr_48(t[ 8], t[ 4], m, mp);
sp_3072_mont_mul_48(t[ 9], t[ 5], t[ 4], m, mp);
sp_3072_mont_sqr_48(t[10], t[ 5], m, mp);
sp_3072_mont_mul_48(t[11], t[ 6], t[ 5], m, mp);
sp_3072_mont_sqr_48(t[12], t[ 6], m, mp);
sp_3072_mont_mul_48(t[13], t[ 7], t[ 6], m, mp);
sp_3072_mont_sqr_48(t[14], t[ 7], m, mp);
sp_3072_mont_mul_48(t[15], t[ 8], t[ 7], m, mp);
sp_3072_mont_sqr_48(t[16], t[ 8], m, mp);
sp_3072_mont_mul_48(t[17], t[ 9], t[ 8], m, mp);
sp_3072_mont_sqr_48(t[18], t[ 9], m, mp);
sp_3072_mont_mul_48(t[19], t[10], t[ 9], m, mp);
sp_3072_mont_sqr_48(t[20], t[10], m, mp);
sp_3072_mont_mul_48(t[21], t[11], t[10], m, mp);
sp_3072_mont_sqr_48(t[22], t[11], m, mp);
sp_3072_mont_mul_48(t[23], t[12], t[11], m, mp);
sp_3072_mont_sqr_48(t[24], t[12], m, mp);
sp_3072_mont_mul_48(t[25], t[13], t[12], m, mp);
sp_3072_mont_sqr_48(t[26], t[13], m, mp);
sp_3072_mont_mul_48(t[27], t[14], t[13], m, mp);
sp_3072_mont_sqr_48(t[28], t[14], m, mp);
sp_3072_mont_mul_48(t[29], t[15], t[14], m, mp);
sp_3072_mont_sqr_48(t[30], t[15], m, mp);
sp_3072_mont_mul_48(t[31], t[16], t[15], m, mp);
i = (bits - 1) / 32;
n = e[i--];
c = bits & 31;
if (c == 0) {
c = 32;
}
c -= bits % 5;
if (c == 32) {
c = 27;
}
y = (int)(n >> c);
n <<= 32 - c;
XMEMCPY(r, t[y], sizeof(sp_digit) * 48);
for (; i>=0 || c>=5; ) {
if (c == 0) {
n = e[i--];
y = n >> 27;
n <<= 5;
c = 27;
}
else if (c < 5) {
y = n >> 27;
n = e[i--];
c = 5 - c;
y |= n >> (32 - c);
n <<= c;
c = 32 - c;
}
else {
y = (n >> 27) & 0x1f;
n <<= 5;
c -= 5;
}
sp_3072_mont_sqr_48(r, r, m, mp);
sp_3072_mont_sqr_48(r, r, m, mp);
sp_3072_mont_sqr_48(r, r, m, mp);
sp_3072_mont_sqr_48(r, r, m, mp);
sp_3072_mont_sqr_48(r, r, m, mp);
sp_3072_mont_mul_48(r, r, t[y], m, mp);
}
XMEMSET(&r[48], 0, sizeof(sp_digit) * 48U);
sp_3072_mont_reduce_48(r, m, mp);
mask = 0 - (sp_3072_cmp_48(r, m) >= 0);
sp_3072_cond_sub_48(r, r, m, mask);
}
#ifdef WOLFSSL_SMALL_STACK
if (td != NULL) {
XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
return err;
}
#endif /* WOLFSSL_SP_SMALL */
#endif /* (WOLFSSL_HAVE_SP_RSA || WOLFSSL_HAVE_SP_DH) && !WOLFSSL_RSA_PUBLIC_ONLY */
#if defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH)
/* r = 2^n mod m where n is the number of bits to reduce by.
* Given m must be 3072 bits, just need to subtract.
*
* r A single precision number.
* m A single precision number.
*/
static void sp_3072_mont_norm_96(sp_digit* r, const sp_digit* m)
{
XMEMSET(r, 0, sizeof(sp_digit) * 96);
/* r = 2^n mod m */
sp_3072_sub_in_place_96(r, m);
}
#endif /* WOLFSSL_HAVE_SP_RSA || WOLFSSL_HAVE_SP_DH */
/* Conditionally subtract b from a using the mask m.
* m is -1 to subtract and 0 when not copying.
*
* r A single precision number representing condition subtract result.
* a A single precision number to subtract from.
* b A single precision number to subtract.
* m Mask value to apply.
*/
SP_NOINLINE static sp_digit sp_3072_cond_sub_96(sp_digit* r, const sp_digit* a,
const sp_digit* b, sp_digit m)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r5, #1\n\t"
"lsl r5, r5, #8\n\t"
"add r5, #128\n\t"
"mov r8, r5\n\t"
"mov r7, #0\n\t"
"1:\n\t"
"ldr r6, [%[b], r7]\n\t"
"and r6, %[m]\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r5, [%[a], r7]\n\t"
"sbc r5, r6\n\t"
"sbc %[c], %[c]\n\t"
"str r5, [%[r], r7]\n\t"
"add r7, #4\n\t"
"cmp r7, r8\n\t"
"blt 1b\n\t"
: [c] "+r" (c)
: [r] "r" (r), [a] "r" (a), [b] "r" (b), [m] "r" (m)
: "memory", "r5", "r6", "r7", "r8"
);
return c;
}
/* Reduce the number back to 3072 bits using Montgomery reduction.
*
* a A single precision number to reduce in place.
* m The single precision number representing the modulus.
* mp The digit representing the negative inverse of m mod 2^n.
*/
SP_NOINLINE static void sp_3072_mont_reduce_96(sp_digit* a, const sp_digit* m,
sp_digit mp)
{
sp_digit ca = 0;
__asm__ __volatile__ (
"mov r8, %[mp]\n\t"
"mov r12, %[ca]\n\t"
"mov r14, %[m]\n\t"
"mov r9, %[a]\n\t"
"mov r4, #0\n\t"
"# i = 0\n\t"
"mov r11, r4\n\t"
"\n1:\n\t"
"mov r5, #0\n\t"
"mov %[ca], #0\n\t"
"# mu = a[i] * mp\n\t"
"mov %[mp], r8\n\t"
"ldr %[a], [%[a]]\n\t"
"mul %[mp], %[a]\n\t"
"mov %[m], r14\n\t"
"mov r10, r9\n\t"
"\n2:\n\t"
"# a[i+j] += m[j] * mu\n\t"
"mov %[a], r10\n\t"
"ldr %[a], [%[a]]\n\t"
"mov %[ca], #0\n\t"
"mov r4, r5\n\t"
"mov r5, #0\n\t"
"# Multiply m[j] and mu - Start\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r6, %[mp], #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add %[a], r7\n\t"
"adc r5, %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add %[a], r6\n\t"
"adc r5, r7\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r6, %[mp], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r5, r7\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add %[a], r6\n\t"
"adc r5, r7\n\t"
"# Multiply m[j] and mu - Done\n\t"
"add r4, %[a]\n\t"
"adc r5, %[ca]\n\t"
"mov %[a], r10\n\t"
"str r4, [%[a]]\n\t"
"mov r6, #4\n\t"
"add %[m], #4\n\t"
"add r10, r6\n\t"
"mov r4, #1\n\t"
"lsl r4, r4, #8\n\t"
"add r4, #124\n\t"
"add r4, r9\n\t"
"cmp r10, r4\n\t"
"blt 2b\n\t"
"# a[i+95] += m[95] * mu\n\t"
"mov %[ca], #0\n\t"
"mov r4, r12\n\t"
"mov %[a], #0\n\t"
"# Multiply m[95] and mu - Start\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r6, %[mp], #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r5, r7\n\t"
"adc r4, %[ca]\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r5, r6\n\t"
"adc r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r6, %[mp], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r5, r6\n\t"
"adc r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"# Multiply m[95] and mu - Done\n\t"
"mov %[ca], %[a]\n\t"
"mov %[a], r10\n\t"
"ldr r7, [%[a], #4]\n\t"
"ldr %[a], [%[a]]\n\t"
"mov r6, #0\n\t"
"add r5, %[a]\n\t"
"adc r7, r4\n\t"
"adc %[ca], r6\n\t"
"mov %[a], r10\n\t"
"str r5, [%[a]]\n\t"
"str r7, [%[a], #4]\n\t"
"# i += 1\n\t"
"mov r6, #4\n\t"
"add r9, r6\n\t"
"add r11, r6\n\t"
"mov r12, %[ca]\n\t"
"mov %[a], r9\n\t"
"mov r4, #1\n\t"
"lsl r4, r4, #8\n\t"
"add r4, #128\n\t"
"cmp r11, r4\n\t"
"blt 1b\n\t"
"mov %[m], r14\n\t"
: [ca] "+r" (ca), [a] "+r" (a)
: [m] "r" (m), [mp] "r" (mp)
: "memory", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14"
);
sp_3072_cond_sub_96(a - 96, a, m, (sp_digit)0 - ca);
}
/* Multiply two Montogmery form numbers mod the modulus (prime).
* (r = a * b mod m)
*
* r Result of multiplication.
* a First number to multiply in Montogmery form.
* b Second number to multiply in Montogmery form.
* m Modulus (prime).
* mp Montogmery mulitplier.
*/
static void sp_3072_mont_mul_96(sp_digit* r, const sp_digit* a, const sp_digit* b,
const sp_digit* m, sp_digit mp)
{
sp_3072_mul_96(r, a, b);
sp_3072_mont_reduce_96(r, m, mp);
}
/* Square the Montgomery form number. (r = a * a mod m)
*
* r Result of squaring.
* a Number to square in Montogmery form.
* m Modulus (prime).
* mp Montogmery mulitplier.
*/
static void sp_3072_mont_sqr_96(sp_digit* r, const sp_digit* a, const sp_digit* m,
sp_digit mp)
{
sp_3072_sqr_96(r, a);
sp_3072_mont_reduce_96(r, m, mp);
}
/* Divide the double width number (d1|d0) by the dividend. (d1|d0 / div)
*
* d1 The high order half of the number to divide.
* d0 The low order half of the number to divide.
* div The dividend.
* returns the result of the division.
*
* Note that this is an approximate div. It may give an answer 1 larger.
*/
SP_NOINLINE static sp_digit div_3072_word_96(sp_digit d1, sp_digit d0,
sp_digit div)
{
sp_digit r = 0;
__asm__ __volatile__ (
"lsr r5, %[div], #1\n\t"
"add r5, #1\n\t"
"mov r8, %[d0]\n\t"
"mov r9, %[d1]\n\t"
"# Do top 32\n\t"
"mov r6, r5\n\t"
"sub r6, %[d1]\n\t"
"sbc r6, r6\n\t"
"add %[r], %[r]\n\t"
"sub %[r], r6\n\t"
"and r6, r5\n\t"
"sub %[d1], r6\n\t"
"# Next 30 bits\n\t"
"mov r4, #29\n\t"
"1:\n\t"
"lsl %[d0], %[d0], #1\n\t"
"adc %[d1], %[d1]\n\t"
"mov r6, r5\n\t"
"sub r6, %[d1]\n\t"
"sbc r6, r6\n\t"
"add %[r], %[r]\n\t"
"sub %[r], r6\n\t"
"and r6, r5\n\t"
"sub %[d1], r6\n\t"
"sub r4, #1\n\t"
"bpl 1b\n\t"
"mov r7, #0\n\t"
"add %[r], %[r]\n\t"
"add %[r], #1\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"sub %[d1], r4\n\t"
"mov r4, %[d1]\n\t"
"mov %[d1], r9\n\t"
"sbc %[d1], r5\n\t"
"mov r5, %[d1]\n\t"
"add %[r], r5\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"mov r6, r9\n\t"
"sub r4, %[d1], r4\n\t"
"sbc r6, r5\n\t"
"mov r5, r6\n\t"
"add %[r], r5\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"mov r6, r9\n\t"
"sub r4, %[d1], r4\n\t"
"sbc r6, r5\n\t"
"mov r5, r6\n\t"
"add %[r], r5\n\t"
"mov r6, %[div]\n\t"
"sub r6, r4\n\t"
"sbc r6, r6\n\t"
"sub %[r], r6\n\t"
: [r] "+r" (r)
: [d1] "r" (d1), [d0] "r" (d0), [div] "r" (div)
: "r4", "r5", "r7", "r6", "r8", "r9"
);
return r;
}
/* AND m into each word of a and store in r.
*
* r A single precision integer.
* a A single precision integer.
* m Mask to AND against each digit.
*/
static void sp_3072_mask_96(sp_digit* r, const sp_digit* a, sp_digit m)
{
#ifdef WOLFSSL_SP_SMALL
int i;
for (i=0; i<96; i++) {
r[i] = a[i] & m;
}
#else
int i;
for (i = 0; i < 96; i += 8) {
r[i+0] = a[i+0] & m;
r[i+1] = a[i+1] & m;
r[i+2] = a[i+2] & m;
r[i+3] = a[i+3] & m;
r[i+4] = a[i+4] & m;
r[i+5] = a[i+5] & m;
r[i+6] = a[i+6] & m;
r[i+7] = a[i+7] & m;
}
#endif
}
/* Compare a with b in constant time.
*
* a A single precision integer.
* b A single precision integer.
* return -ve, 0 or +ve if a is less than, equal to or greater than b
* respectively.
*/
SP_NOINLINE static int32_t sp_3072_cmp_96(const sp_digit* a, const sp_digit* b)
{
sp_digit r = 0;
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mvn r3, r3\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #124\n\t"
"1:\n\t"
"ldr r7, [%[a], r6]\n\t"
"ldr r5, [%[b], r6]\n\t"
"and r7, r3\n\t"
"and r5, r3\n\t"
"mov r4, r7\n\t"
"sub r7, r5\n\t"
"sbc r7, r7\n\t"
"add %[r], r7\n\t"
"mvn r7, r7\n\t"
"and r3, r7\n\t"
"sub r5, r4\n\t"
"sbc r7, r7\n\t"
"sub %[r], r7\n\t"
"mvn r7, r7\n\t"
"and r3, r7\n\t"
"sub r6, #4\n\t"
"cmp r6, #0\n\t"
"bge 1b\n\t"
: [r] "+r" (r)
: [a] "r" (a), [b] "r" (b)
: "r3", "r4", "r5", "r6", "r7"
);
return r;
}
/* Divide d in a and put remainder into r (m*d + r = a)
* m is not calculated as it is not needed at this time.
*
* a Nmber to be divided.
* d Number to divide with.
* m Multiplier result.
* r Remainder from the division.
* returns MP_OKAY indicating success.
*/
static WC_INLINE int sp_3072_div_96(const sp_digit* a, const sp_digit* d, sp_digit* m,
sp_digit* r)
{
sp_digit t1[192], t2[97];
sp_digit div, r1;
int i;
(void)m;
div = d[95];
XMEMCPY(t1, a, sizeof(*t1) * 2 * 96);
for (i=95; i>=0; i--) {
r1 = div_3072_word_96(t1[96 + i], t1[96 + i - 1], div);
sp_3072_mul_d_96(t2, d, r1);
t1[96 + i] += sp_3072_sub_in_place_96(&t1[i], t2);
t1[96 + i] -= t2[96];
sp_3072_mask_96(t2, d, t1[96 + i]);
t1[96 + i] += sp_3072_add_96(&t1[i], &t1[i], t2);
sp_3072_mask_96(t2, d, t1[96 + i]);
t1[96 + i] += sp_3072_add_96(&t1[i], &t1[i], t2);
}
r1 = sp_3072_cmp_96(t1, d) >= 0;
sp_3072_cond_sub_96(r, t1, d, (sp_digit)0 - r1);
return MP_OKAY;
}
/* Reduce a modulo m into r. (r = a mod m)
*
* r A single precision number that is the reduced result.
* a A single precision number that is to be reduced.
* m A single precision number that is the modulus to reduce with.
* returns MP_OKAY indicating success.
*/
static WC_INLINE int sp_3072_mod_96(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
return sp_3072_div_96(a, m, NULL, r);
}
/* Divide d in a and put remainder into r (m*d + r = a)
* m is not calculated as it is not needed at this time.
*
* a Nmber to be divided.
* d Number to divide with.
* m Multiplier result.
* r Remainder from the division.
* returns MP_OKAY indicating success.
*/
static WC_INLINE int sp_3072_div_96_cond(const sp_digit* a, const sp_digit* d, sp_digit* m,
sp_digit* r)
{
sp_digit t1[192], t2[97];
sp_digit div, r1;
int i;
(void)m;
div = d[95];
XMEMCPY(t1, a, sizeof(*t1) * 2 * 96);
for (i=95; i>=0; i--) {
r1 = div_3072_word_96(t1[96 + i], t1[96 + i - 1], div);
sp_3072_mul_d_96(t2, d, r1);
t1[96 + i] += sp_3072_sub_in_place_96(&t1[i], t2);
t1[96 + i] -= t2[96];
if (t1[96 + i] != 0) {
t1[96 + i] += sp_3072_add_96(&t1[i], &t1[i], d);
if (t1[96 + i] != 0)
t1[96 + i] += sp_3072_add_96(&t1[i], &t1[i], d);
}
}
r1 = sp_3072_cmp_96(t1, d) >= 0;
sp_3072_cond_sub_96(r, t1, d, (sp_digit)0 - r1);
return MP_OKAY;
}
/* Reduce a modulo m into r. (r = a mod m)
*
* r A single precision number that is the reduced result.
* a A single precision number that is to be reduced.
* m A single precision number that is the modulus to reduce with.
* returns MP_OKAY indicating success.
*/
static WC_INLINE int sp_3072_mod_96_cond(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
return sp_3072_div_96_cond(a, m, NULL, r);
}
#if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || \
defined(WOLFSSL_HAVE_SP_DH)
#ifdef WOLFSSL_SP_SMALL
/* Modular exponentiate a to the e mod m. (r = a^e mod m)
*
* r A single precision number that is the result of the operation.
* a A single precision number being exponentiated.
* e A single precision number that is the exponent.
* bits The number of bits in the exponent.
* m A single precision number that is the modulus.
* returns 0 on success and MEMORY_E on dynamic memory allocation failure.
*/
static int sp_3072_mod_exp_96(sp_digit* r, const sp_digit* a, const sp_digit* e,
int bits, const sp_digit* m, int reduceA)
{
#ifndef WOLFSSL_SMALL_STACK
sp_digit t[16][192];
#else
sp_digit* t[16];
sp_digit* td;
#endif
sp_digit* norm;
sp_digit mp = 1;
sp_digit n;
sp_digit mask;
int i;
int c, y;
int err = MP_OKAY;
#ifdef WOLFSSL_SMALL_STACK
td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 16 * 192, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (td == NULL) {
err = MEMORY_E;
}
#endif
if (err == MP_OKAY) {
#ifdef WOLFSSL_SMALL_STACK
for (i=0; i<16; i++) {
t[i] = td + i * 192;
}
#endif
norm = t[0];
sp_3072_mont_setup(m, &mp);
sp_3072_mont_norm_96(norm, m);
XMEMSET(t[1], 0, sizeof(sp_digit) * 96U);
if (reduceA != 0) {
err = sp_3072_mod_96(t[1] + 96, a, m);
if (err == MP_OKAY) {
err = sp_3072_mod_96(t[1], t[1], m);
}
}
else {
XMEMCPY(t[1] + 96, a, sizeof(sp_digit) * 96);
err = sp_3072_mod_96(t[1], t[1], m);
}
}
if (err == MP_OKAY) {
sp_3072_mont_sqr_96(t[ 2], t[ 1], m, mp);
sp_3072_mont_mul_96(t[ 3], t[ 2], t[ 1], m, mp);
sp_3072_mont_sqr_96(t[ 4], t[ 2], m, mp);
sp_3072_mont_mul_96(t[ 5], t[ 3], t[ 2], m, mp);
sp_3072_mont_sqr_96(t[ 6], t[ 3], m, mp);
sp_3072_mont_mul_96(t[ 7], t[ 4], t[ 3], m, mp);
sp_3072_mont_sqr_96(t[ 8], t[ 4], m, mp);
sp_3072_mont_mul_96(t[ 9], t[ 5], t[ 4], m, mp);
sp_3072_mont_sqr_96(t[10], t[ 5], m, mp);
sp_3072_mont_mul_96(t[11], t[ 6], t[ 5], m, mp);
sp_3072_mont_sqr_96(t[12], t[ 6], m, mp);
sp_3072_mont_mul_96(t[13], t[ 7], t[ 6], m, mp);
sp_3072_mont_sqr_96(t[14], t[ 7], m, mp);
sp_3072_mont_mul_96(t[15], t[ 8], t[ 7], m, mp);
i = (bits - 1) / 32;
n = e[i--];
c = bits & 31;
if (c == 0) {
c = 32;
}
c -= bits % 4;
if (c == 32) {
c = 28;
}
y = (int)(n >> c);
n <<= 32 - c;
XMEMCPY(r, t[y], sizeof(sp_digit) * 96);
for (; i>=0 || c>=4; ) {
if (c == 0) {
n = e[i--];
y = n >> 28;
n <<= 4;
c = 28;
}
else if (c < 4) {
y = n >> 28;
n = e[i--];
c = 4 - c;
y |= n >> (32 - c);
n <<= c;
c = 32 - c;
}
else {
y = (n >> 28) & 0xf;
n <<= 4;
c -= 4;
}
sp_3072_mont_sqr_96(r, r, m, mp);
sp_3072_mont_sqr_96(r, r, m, mp);
sp_3072_mont_sqr_96(r, r, m, mp);
sp_3072_mont_sqr_96(r, r, m, mp);
sp_3072_mont_mul_96(r, r, t[y], m, mp);
}
XMEMSET(&r[96], 0, sizeof(sp_digit) * 96U);
sp_3072_mont_reduce_96(r, m, mp);
mask = 0 - (sp_3072_cmp_96(r, m) >= 0);
sp_3072_cond_sub_96(r, r, m, mask);
}
#ifdef WOLFSSL_SMALL_STACK
if (td != NULL) {
XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
return err;
}
#else
/* Modular exponentiate a to the e mod m. (r = a^e mod m)
*
* r A single precision number that is the result of the operation.
* a A single precision number being exponentiated.
* e A single precision number that is the exponent.
* bits The number of bits in the exponent.
* m A single precision number that is the modulus.
* returns 0 on success and MEMORY_E on dynamic memory allocation failure.
*/
static int sp_3072_mod_exp_96(sp_digit* r, const sp_digit* a, const sp_digit* e,
int bits, const sp_digit* m, int reduceA)
{
#ifndef WOLFSSL_SMALL_STACK
sp_digit t[32][192];
#else
sp_digit* t[32];
sp_digit* td;
#endif
sp_digit* norm;
sp_digit mp = 1;
sp_digit n;
sp_digit mask;
int i;
int c, y;
int err = MP_OKAY;
#ifdef WOLFSSL_SMALL_STACK
td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 32 * 192, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (td == NULL) {
err = MEMORY_E;
}
#endif
if (err == MP_OKAY) {
#ifdef WOLFSSL_SMALL_STACK
for (i=0; i<32; i++) {
t[i] = td + i * 192;
}
#endif
norm = t[0];
sp_3072_mont_setup(m, &mp);
sp_3072_mont_norm_96(norm, m);
XMEMSET(t[1], 0, sizeof(sp_digit) * 96U);
if (reduceA != 0) {
err = sp_3072_mod_96(t[1] + 96, a, m);
if (err == MP_OKAY) {
err = sp_3072_mod_96(t[1], t[1], m);
}
}
else {
XMEMCPY(t[1] + 96, a, sizeof(sp_digit) * 96);
err = sp_3072_mod_96(t[1], t[1], m);
}
}
if (err == MP_OKAY) {
sp_3072_mont_sqr_96(t[ 2], t[ 1], m, mp);
sp_3072_mont_mul_96(t[ 3], t[ 2], t[ 1], m, mp);
sp_3072_mont_sqr_96(t[ 4], t[ 2], m, mp);
sp_3072_mont_mul_96(t[ 5], t[ 3], t[ 2], m, mp);
sp_3072_mont_sqr_96(t[ 6], t[ 3], m, mp);
sp_3072_mont_mul_96(t[ 7], t[ 4], t[ 3], m, mp);
sp_3072_mont_sqr_96(t[ 8], t[ 4], m, mp);
sp_3072_mont_mul_96(t[ 9], t[ 5], t[ 4], m, mp);
sp_3072_mont_sqr_96(t[10], t[ 5], m, mp);
sp_3072_mont_mul_96(t[11], t[ 6], t[ 5], m, mp);
sp_3072_mont_sqr_96(t[12], t[ 6], m, mp);
sp_3072_mont_mul_96(t[13], t[ 7], t[ 6], m, mp);
sp_3072_mont_sqr_96(t[14], t[ 7], m, mp);
sp_3072_mont_mul_96(t[15], t[ 8], t[ 7], m, mp);
sp_3072_mont_sqr_96(t[16], t[ 8], m, mp);
sp_3072_mont_mul_96(t[17], t[ 9], t[ 8], m, mp);
sp_3072_mont_sqr_96(t[18], t[ 9], m, mp);
sp_3072_mont_mul_96(t[19], t[10], t[ 9], m, mp);
sp_3072_mont_sqr_96(t[20], t[10], m, mp);
sp_3072_mont_mul_96(t[21], t[11], t[10], m, mp);
sp_3072_mont_sqr_96(t[22], t[11], m, mp);
sp_3072_mont_mul_96(t[23], t[12], t[11], m, mp);
sp_3072_mont_sqr_96(t[24], t[12], m, mp);
sp_3072_mont_mul_96(t[25], t[13], t[12], m, mp);
sp_3072_mont_sqr_96(t[26], t[13], m, mp);
sp_3072_mont_mul_96(t[27], t[14], t[13], m, mp);
sp_3072_mont_sqr_96(t[28], t[14], m, mp);
sp_3072_mont_mul_96(t[29], t[15], t[14], m, mp);
sp_3072_mont_sqr_96(t[30], t[15], m, mp);
sp_3072_mont_mul_96(t[31], t[16], t[15], m, mp);
i = (bits - 1) / 32;
n = e[i--];
c = bits & 31;
if (c == 0) {
c = 32;
}
c -= bits % 5;
if (c == 32) {
c = 27;
}
y = (int)(n >> c);
n <<= 32 - c;
XMEMCPY(r, t[y], sizeof(sp_digit) * 96);
for (; i>=0 || c>=5; ) {
if (c == 0) {
n = e[i--];
y = n >> 27;
n <<= 5;
c = 27;
}
else if (c < 5) {
y = n >> 27;
n = e[i--];
c = 5 - c;
y |= n >> (32 - c);
n <<= c;
c = 32 - c;
}
else {
y = (n >> 27) & 0x1f;
n <<= 5;
c -= 5;
}
sp_3072_mont_sqr_96(r, r, m, mp);
sp_3072_mont_sqr_96(r, r, m, mp);
sp_3072_mont_sqr_96(r, r, m, mp);
sp_3072_mont_sqr_96(r, r, m, mp);
sp_3072_mont_sqr_96(r, r, m, mp);
sp_3072_mont_mul_96(r, r, t[y], m, mp);
}
XMEMSET(&r[96], 0, sizeof(sp_digit) * 96U);
sp_3072_mont_reduce_96(r, m, mp);
mask = 0 - (sp_3072_cmp_96(r, m) >= 0);
sp_3072_cond_sub_96(r, r, m, mask);
}
#ifdef WOLFSSL_SMALL_STACK
if (td != NULL) {
XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
return err;
}
#endif /* WOLFSSL_SP_SMALL */
#endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
#ifdef WOLFSSL_HAVE_SP_RSA
/* RSA public key operation.
*
* in Array of bytes representing the number to exponentiate, base.
* inLen Number of bytes in base.
* em Public exponent.
* mm Modulus.
* out Buffer to hold big-endian bytes of exponentiation result.
* Must be at least 384 bytes long.
* outLen Number of bytes in result.
* returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
* an array is too long and MEMORY_E when dynamic memory allocation fails.
*/
int sp_RsaPublic_3072(const byte* in, word32 inLen, mp_int* em, mp_int* mm,
byte* out, word32* outLen)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_digit a[192], m[96], r[192];
#else
sp_digit* d = NULL;
sp_digit* a;
sp_digit* m;
sp_digit* r;
#endif
sp_digit *ah;
sp_digit e[1];
int err = MP_OKAY;
if (*outLen < 384)
err = MP_TO_E;
if (err == MP_OKAY && (mp_count_bits(em) > 32 || inLen > 384 ||
mp_count_bits(mm) != 3072))
err = MP_READ_E;
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 96 * 5, NULL,
DYNAMIC_TYPE_RSA);
if (d == NULL)
err = MEMORY_E;
}
if (err == MP_OKAY) {
a = d;
r = a + 96 * 2;
m = r + 96 * 2;
}
#endif
if (err == MP_OKAY) {
ah = a + 96;
sp_3072_from_bin(ah, 96, in, inLen);
#if DIGIT_BIT >= 32
e[0] = em->dp[0];
#else
e[0] = em->dp[0];
if (em->used > 1) {
e[0] |= ((sp_digit)em->dp[1]) << DIGIT_BIT;
}
#endif
if (e[0] == 0) {
err = MP_EXPTMOD_E;
}
}
if (err == MP_OKAY) {
sp_3072_from_mp(m, 96, mm);
if (e[0] == 0x3) {
if (err == MP_OKAY) {
sp_3072_sqr_96(r, ah);
err = sp_3072_mod_96_cond(r, r, m);
}
if (err == MP_OKAY) {
sp_3072_mul_96(r, ah, r);
err = sp_3072_mod_96_cond(r, r, m);
}
}
else {
int i;
sp_digit mp;
sp_3072_mont_setup(m, &mp);
/* Convert to Montgomery form. */
XMEMSET(a, 0, sizeof(sp_digit) * 96);
err = sp_3072_mod_96_cond(a, a, m);
if (err == MP_OKAY) {
for (i = 31; i >= 0; i--) {
if (e[0] >> i) {
break;
}
}
XMEMCPY(r, a, sizeof(sp_digit) * 96);
for (i--; i>=0; i--) {
sp_3072_mont_sqr_96(r, r, m, mp);
if (((e[0] >> i) & 1) == 1) {
sp_3072_mont_mul_96(r, r, a, m, mp);
}
}
XMEMSET(&r[96], 0, sizeof(sp_digit) * 96);
sp_3072_mont_reduce_96(r, m, mp);
for (i = 95; i > 0; i--) {
if (r[i] != m[i]) {
break;
}
}
if (r[i] >= m[i]) {
sp_3072_sub_in_place_96(r, m);
}
}
}
}
if (err == MP_OKAY) {
sp_3072_to_bin(r, out);
*outLen = 384;
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (d != NULL) {
XFREE(d, NULL, DYNAMIC_TYPE_RSA);
}
#endif
return err;
}
#ifndef WOLFSSL_RSA_PUBLIC_ONLY
/* Conditionally add a and b using the mask m.
* m is -1 to add and 0 when not.
*
* r A single precision number representing conditional add result.
* a A single precision number to add with.
* b A single precision number to add.
* m Mask value to apply.
*/
SP_NOINLINE static sp_digit sp_3072_cond_add_48(sp_digit* r, const sp_digit* a, const sp_digit* b,
sp_digit m)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r5, #192\n\t"
"mov r8, r5\n\t"
"mov r7, #0\n\t"
"1:\n\t"
"ldr r6, [%[b], r7]\n\t"
"and r6, %[m]\n\t"
"mov r5, #0\n\t"
"sub r5, #1\n\t"
"add r5, %[c]\n\t"
"ldr r5, [%[a], r7]\n\t"
"adc r5, r6\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
"str r5, [%[r], r7]\n\t"
"add r7, #4\n\t"
"cmp r7, r8\n\t"
"blt 1b\n\t"
: [c] "+r" (c)
: [r] "r" (r), [a] "r" (a), [b] "r" (b), [m] "r" (m)
: "memory", "r5", "r6", "r7", "r8"
);
return c;
}
/* RSA private key operation.
*
* in Array of bytes representing the number to exponentiate, base.
* inLen Number of bytes in base.
* dm Private exponent.
* pm First prime.
* qm Second prime.
* dpm First prime's CRT exponent.
* dqm Second prime's CRT exponent.
* qim Inverse of second prime mod p.
* mm Modulus.
* out Buffer to hold big-endian bytes of exponentiation result.
* Must be at least 384 bytes long.
* outLen Number of bytes in result.
* returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
* an array is too long and MEMORY_E when dynamic memory allocation fails.
*/
int sp_RsaPrivate_3072(const byte* in, word32 inLen, mp_int* dm,
mp_int* pm, mp_int* qm, mp_int* dpm, mp_int* dqm, mp_int* qim, mp_int* mm,
byte* out, word32* outLen)
{
#if defined(SP_RSA_PRIVATE_EXP_D) || defined(RSA_LOW_MEM)
sp_digit* a;
sp_digit* d = NULL;
sp_digit* m;
sp_digit* r;
int err = MP_OKAY;
(void)pm;
(void)qm;
(void)dpm;
(void)dqm;
(void)qim;
if (*outLen < 384U) {
err = MP_TO_E;
}
if (err == MP_OKAY) {
if (mp_count_bits(dm) > 3072) {
err = MP_READ_E;
}
if (inLen > 384) {
err = MP_READ_E;
}
if (mp_count_bits(mm) != 3072) {
err = MP_READ_E;
}
}
if (err == MP_OKAY) {
d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 96 * 4, NULL,
DYNAMIC_TYPE_RSA);
if (d == NULL) {
err = MEMORY_E;
}
}
if (err == MP_OKAY) {
a = d + 96;
m = a + 192;
r = a;
sp_3072_from_bin(a, 96, in, inLen);
sp_3072_from_mp(d, 96, dm);
sp_3072_from_mp(m, 96, mm);
err = sp_3072_mod_exp_96(r, a, d, 3072, m, 0);
}
if (err == MP_OKAY) {
sp_3072_to_bin(r, out);
*outLen = 384;
}
if (d != NULL) {
XMEMSET(d, 0, sizeof(sp_digit) * 96);
XFREE(d, NULL, DYNAMIC_TYPE_RSA);
}
return err;
#else
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_digit a[96 * 2];
sp_digit p[48], q[48], dp[48];
sp_digit tmpa[96], tmpb[96];
#else
sp_digit* t = NULL;
sp_digit* a;
sp_digit* p;
sp_digit* q;
sp_digit* dp;
sp_digit* tmpa;
sp_digit* tmpb;
#endif
sp_digit* r;
sp_digit* qi;
sp_digit* dq;
sp_digit c;
int err = MP_OKAY;
(void)dm;
(void)mm;
if (*outLen < 384)
err = MP_TO_E;
if (err == MP_OKAY && (inLen > 384 || mp_count_bits(mm) != 3072))
err = MP_READ_E;
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 48 * 11, NULL,
DYNAMIC_TYPE_RSA);
if (t == NULL)
err = MEMORY_E;
}
if (err == MP_OKAY) {
a = t;
p = a + 96 * 2;
q = p + 48;
qi = dq = dp = q + 48;
tmpa = qi + 48;
tmpb = tmpa + 96;
r = t + 96;
}
#else
#endif
if (err == MP_OKAY) {
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
r = a;
qi = dq = dp;
#endif
sp_3072_from_bin(a, 96, in, inLen);
sp_3072_from_mp(p, 48, pm);
sp_3072_from_mp(q, 48, qm);
sp_3072_from_mp(dp, 48, dpm);
err = sp_3072_mod_exp_48(tmpa, a, dp, 1536, p, 1);
}
if (err == MP_OKAY) {
sp_3072_from_mp(dq, 48, dqm);
err = sp_3072_mod_exp_48(tmpb, a, dq, 1536, q, 1);
}
if (err == MP_OKAY) {
c = sp_3072_sub_in_place_48(tmpa, tmpb);
c += sp_3072_cond_add_48(tmpa, tmpa, p, c);
sp_3072_cond_add_48(tmpa, tmpa, p, c);
sp_3072_from_mp(qi, 48, qim);
sp_3072_mul_48(tmpa, tmpa, qi);
err = sp_3072_mod_48(tmpa, tmpa, p);
}
if (err == MP_OKAY) {
sp_3072_mul_48(tmpa, q, tmpa);
XMEMSET(&tmpb[48], 0, sizeof(sp_digit) * 48);
sp_3072_add_96(r, tmpb, tmpa);
sp_3072_to_bin(r, out);
*outLen = 384;
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (t != NULL) {
XMEMSET(t, 0, sizeof(sp_digit) * 48 * 11);
XFREE(t, NULL, DYNAMIC_TYPE_RSA);
}
#else
XMEMSET(tmpa, 0, sizeof(tmpa));
XMEMSET(tmpb, 0, sizeof(tmpb));
XMEMSET(p, 0, sizeof(p));
XMEMSET(q, 0, sizeof(q));
XMEMSET(dp, 0, sizeof(dp));
#endif
#endif /* SP_RSA_PRIVATE_EXP_D || RSA_LOW_MEM */
return err;
}
#endif /* WOLFSSL_RSA_PUBLIC_ONLY */
#endif /* WOLFSSL_HAVE_SP_RSA */
#if defined(WOLFSSL_HAVE_SP_DH) || (defined(WOLFSSL_HAVE_SP_RSA) && \
!defined(WOLFSSL_RSA_PUBLIC_ONLY))
/* Convert an array of sp_digit to an mp_int.
*
* a A single precision integer.
* r A multi-precision integer.
*/
static int sp_3072_to_mp(const sp_digit* a, mp_int* r)
{
int err;
err = mp_grow(r, (3072 + DIGIT_BIT - 1) / DIGIT_BIT);
if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
#if DIGIT_BIT == 32
XMEMCPY(r->dp, a, sizeof(sp_digit) * 96);
r->used = 96;
mp_clamp(r);
#elif DIGIT_BIT < 32
int i, j = 0, s = 0;
r->dp[0] = 0;
for (i = 0; i < 96; i++) {
r->dp[j] |= (mp_digit)(a[i] << s);
r->dp[j] &= (1L << DIGIT_BIT) - 1;
s = DIGIT_BIT - s;
r->dp[++j] = (mp_digit)(a[i] >> s);
while (s + DIGIT_BIT <= 32) {
s += DIGIT_BIT;
r->dp[j++] &= (1L << DIGIT_BIT) - 1;
if (s == SP_WORD_SIZE) {
r->dp[j] = 0;
}
else {
r->dp[j] = (mp_digit)(a[i] >> s);
}
}
s = 32 - s;
}
r->used = (3072 + DIGIT_BIT - 1) / DIGIT_BIT;
mp_clamp(r);
#else
int i, j = 0, s = 0;
r->dp[0] = 0;
for (i = 0; i < 96; i++) {
r->dp[j] |= ((mp_digit)a[i]) << s;
if (s + 32 >= DIGIT_BIT) {
#if DIGIT_BIT != 32 && DIGIT_BIT != 64
r->dp[j] &= (1L << DIGIT_BIT) - 1;
#endif
s = DIGIT_BIT - s;
r->dp[++j] = a[i] >> s;
s = 32 - s;
}
else {
s += 32;
}
}
r->used = (3072 + DIGIT_BIT - 1) / DIGIT_BIT;
mp_clamp(r);
#endif
}
return err;
}
/* Perform the modular exponentiation for Diffie-Hellman.
*
* base Base. MP integer.
* exp Exponent. MP integer.
* mod Modulus. MP integer.
* res Result. MP integer.
* returns 0 on success, MP_READ_E if there are too many bytes in an array
* and MEMORY_E if memory allocation fails.
*/
int sp_ModExp_3072(mp_int* base, mp_int* exp, mp_int* mod, mp_int* res)
{
int err = MP_OKAY;
sp_digit b[192], e[96], m[96];
sp_digit* r = b;
int expBits = mp_count_bits(exp);
if (mp_count_bits(base) > 3072) {
err = MP_READ_E;
}
if (err == MP_OKAY) {
if (expBits > 3072) {
err = MP_READ_E;
}
}
if (err == MP_OKAY) {
if (mp_count_bits(mod) != 3072) {
err = MP_READ_E;
}
}
if (err == MP_OKAY) {
sp_3072_from_mp(b, 96, base);
sp_3072_from_mp(e, 96, exp);
sp_3072_from_mp(m, 96, mod);
err = sp_3072_mod_exp_96(r, b, e, expBits, m, 0);
}
if (err == MP_OKAY) {
err = sp_3072_to_mp(r, res);
}
XMEMSET(e, 0, sizeof(e));
return err;
}
#ifdef WOLFSSL_HAVE_SP_DH
#ifdef HAVE_FFDHE_3072
static void sp_3072_lshift_96(sp_digit* r, sp_digit* a, byte n)
{
__asm__ __volatile__ (
"mov r6, #31\n\t"
"sub r6, r6, %[n]\n\t"
"add %[a], %[a], #255\n\t"
"add %[r], %[r], #255\n\t"
"add %[a], %[a], #65\n\t"
"add %[r], %[r], #65\n\t"
"ldr r3, [%[a], #60]\n\t"
"lsr r4, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r4, r4, r6\n\t"
"ldr r2, [%[a], #56]\n\t"
"str r4, [%[r], #64]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #52]\n\t"
"str r3, [%[r], #60]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #48]\n\t"
"str r2, [%[r], #56]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #44]\n\t"
"str r4, [%[r], #52]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #40]\n\t"
"str r3, [%[r], #48]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #36]\n\t"
"str r2, [%[r], #44]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #32]\n\t"
"str r4, [%[r], #40]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #28]\n\t"
"str r3, [%[r], #36]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #24]\n\t"
"str r2, [%[r], #32]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #20]\n\t"
"str r4, [%[r], #28]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #16]\n\t"
"str r3, [%[r], #24]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #12]\n\t"
"str r2, [%[r], #20]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #8]\n\t"
"str r4, [%[r], #16]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #4]\n\t"
"str r3, [%[r], #12]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #0]\n\t"
"str r2, [%[r], #8]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"sub %[a], %[a], #64\n\t"
"sub %[r], %[r], #64\n\t"
"ldr r2, [%[a], #60]\n\t"
"str r4, [%[r], #68]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #56]\n\t"
"str r3, [%[r], #64]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #52]\n\t"
"str r2, [%[r], #60]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #48]\n\t"
"str r4, [%[r], #56]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #44]\n\t"
"str r3, [%[r], #52]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #40]\n\t"
"str r2, [%[r], #48]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #36]\n\t"
"str r4, [%[r], #44]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #32]\n\t"
"str r3, [%[r], #40]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #28]\n\t"
"str r2, [%[r], #36]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #24]\n\t"
"str r4, [%[r], #32]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #20]\n\t"
"str r3, [%[r], #28]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #16]\n\t"
"str r2, [%[r], #24]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #12]\n\t"
"str r4, [%[r], #20]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #8]\n\t"
"str r3, [%[r], #16]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #4]\n\t"
"str r2, [%[r], #12]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #0]\n\t"
"str r4, [%[r], #8]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"sub %[a], %[a], #64\n\t"
"sub %[r], %[r], #64\n\t"
"ldr r4, [%[a], #60]\n\t"
"str r3, [%[r], #68]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #56]\n\t"
"str r2, [%[r], #64]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #52]\n\t"
"str r4, [%[r], #60]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #48]\n\t"
"str r3, [%[r], #56]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #44]\n\t"
"str r2, [%[r], #52]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #40]\n\t"
"str r4, [%[r], #48]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #36]\n\t"
"str r3, [%[r], #44]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #32]\n\t"
"str r2, [%[r], #40]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #28]\n\t"
"str r4, [%[r], #36]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #24]\n\t"
"str r3, [%[r], #32]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #20]\n\t"
"str r2, [%[r], #28]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #16]\n\t"
"str r4, [%[r], #24]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #12]\n\t"
"str r3, [%[r], #20]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #8]\n\t"
"str r2, [%[r], #16]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #4]\n\t"
"str r4, [%[r], #12]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #0]\n\t"
"str r3, [%[r], #8]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"sub %[a], %[a], #64\n\t"
"sub %[r], %[r], #64\n\t"
"ldr r3, [%[a], #60]\n\t"
"str r2, [%[r], #68]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #56]\n\t"
"str r4, [%[r], #64]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #52]\n\t"
"str r3, [%[r], #60]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #48]\n\t"
"str r2, [%[r], #56]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #44]\n\t"
"str r4, [%[r], #52]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #40]\n\t"
"str r3, [%[r], #48]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #36]\n\t"
"str r2, [%[r], #44]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #32]\n\t"
"str r4, [%[r], #40]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #28]\n\t"
"str r3, [%[r], #36]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #24]\n\t"
"str r2, [%[r], #32]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #20]\n\t"
"str r4, [%[r], #28]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #16]\n\t"
"str r3, [%[r], #24]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #12]\n\t"
"str r2, [%[r], #20]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #8]\n\t"
"str r4, [%[r], #16]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #4]\n\t"
"str r3, [%[r], #12]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #0]\n\t"
"str r2, [%[r], #8]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"sub %[a], %[a], #64\n\t"
"sub %[r], %[r], #64\n\t"
"ldr r2, [%[a], #60]\n\t"
"str r4, [%[r], #68]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #56]\n\t"
"str r3, [%[r], #64]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #52]\n\t"
"str r2, [%[r], #60]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #48]\n\t"
"str r4, [%[r], #56]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #44]\n\t"
"str r3, [%[r], #52]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #40]\n\t"
"str r2, [%[r], #48]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #36]\n\t"
"str r4, [%[r], #44]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #32]\n\t"
"str r3, [%[r], #40]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #28]\n\t"
"str r2, [%[r], #36]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #24]\n\t"
"str r4, [%[r], #32]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #20]\n\t"
"str r3, [%[r], #28]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #16]\n\t"
"str r2, [%[r], #24]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #12]\n\t"
"str r4, [%[r], #20]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #8]\n\t"
"str r3, [%[r], #16]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #4]\n\t"
"str r2, [%[r], #12]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #0]\n\t"
"str r4, [%[r], #8]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"sub %[a], %[a], #64\n\t"
"sub %[r], %[r], #64\n\t"
"ldr r4, [%[a], #60]\n\t"
"str r3, [%[r], #68]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #56]\n\t"
"str r2, [%[r], #64]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #52]\n\t"
"str r4, [%[r], #60]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #48]\n\t"
"str r3, [%[r], #56]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #44]\n\t"
"str r2, [%[r], #52]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #40]\n\t"
"str r4, [%[r], #48]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #36]\n\t"
"str r3, [%[r], #44]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #32]\n\t"
"str r2, [%[r], #40]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #28]\n\t"
"str r4, [%[r], #36]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #24]\n\t"
"str r3, [%[r], #32]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #20]\n\t"
"str r2, [%[r], #28]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #16]\n\t"
"str r4, [%[r], #24]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #12]\n\t"
"str r3, [%[r], #20]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #8]\n\t"
"str r2, [%[r], #16]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #4]\n\t"
"str r4, [%[r], #12]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #0]\n\t"
"str r3, [%[r], #8]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"str r4, [%[r]]\n\t"
"str r2, [%[r], #4]\n\t"
:
: [r] "r" (r), [a] "r" (a), [n] "r" (n)
: "memory", "r2", "r3", "r4", "r5", "r6"
);
}
/* Modular exponentiate 2 to the e mod m. (r = 2^e mod m)
*
* r A single precision number that is the result of the operation.
* e A single precision number that is the exponent.
* bits The number of bits in the exponent.
* m A single precision number that is the modulus.
* returns 0 on success and MEMORY_E on dynamic memory allocation failure.
*/
static int sp_3072_mod_exp_2_96(sp_digit* r, const sp_digit* e, int bits,
const sp_digit* m)
{
#ifndef WOLFSSL_SMALL_STACK
sp_digit nd[192];
sp_digit td[97];
#else
sp_digit* td;
#endif
sp_digit* norm;
sp_digit* tmp;
sp_digit mp = 1;
sp_digit n, o;
sp_digit mask;
int i;
int c, y;
int err = MP_OKAY;
#ifdef WOLFSSL_SMALL_STACK
td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 289, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (td == NULL) {
err = MEMORY_E;
}
#endif
if (err == MP_OKAY) {
#ifdef WOLFSSL_SMALL_STACK
norm = td;
tmp = td + 192;
#else
norm = nd;
tmp = td;
#endif
sp_3072_mont_setup(m, &mp);
sp_3072_mont_norm_96(norm, m);
i = (bits - 1) / 32;
n = e[i--];
c = bits & 31;
if (c == 0) {
c = 32;
}
c -= bits % 5;
if (c == 32) {
c = 27;
}
y = (int)(n >> c);
n <<= 32 - c;
sp_3072_lshift_96(r, norm, y);
for (; i>=0 || c>=5; ) {
if (c == 0) {
n = e[i--];
y = n >> 27;
n <<= 5;
c = 27;
}
else if (c < 5) {
y = n >> 27;
n = e[i--];
c = 5 - c;
y |= n >> (32 - c);
n <<= c;
c = 32 - c;
}
else {
y = (n >> 27) & 0x1f;
n <<= 5;
c -= 5;
}
sp_3072_mont_sqr_96(r, r, m, mp);
sp_3072_mont_sqr_96(r, r, m, mp);
sp_3072_mont_sqr_96(r, r, m, mp);
sp_3072_mont_sqr_96(r, r, m, mp);
sp_3072_mont_sqr_96(r, r, m, mp);
sp_3072_lshift_96(r, r, y);
sp_3072_mul_d_96(tmp, norm, r[96]);
r[96] = 0;
o = sp_3072_add_96(r, r, tmp);
sp_3072_cond_sub_96(r, r, m, (sp_digit)0 - o);
}
XMEMSET(&r[96], 0, sizeof(sp_digit) * 96U);
sp_3072_mont_reduce_96(r, m, mp);
mask = 0 - (sp_3072_cmp_96(r, m) >= 0);
sp_3072_cond_sub_96(r, r, m, mask);
}
#ifdef WOLFSSL_SMALL_STACK
if (td != NULL) {
XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
return err;
}
#endif /* HAVE_FFDHE_3072 */
/* Perform the modular exponentiation for Diffie-Hellman.
*
* base Base.
* exp Array of bytes that is the exponent.
* expLen Length of data, in bytes, in exponent.
* mod Modulus.
* out Buffer to hold big-endian bytes of exponentiation result.
* Must be at least 384 bytes long.
* outLen Length, in bytes, of exponentiation result.
* returns 0 on success, MP_READ_E if there are too many bytes in an array
* and MEMORY_E if memory allocation fails.
*/
int sp_DhExp_3072(mp_int* base, const byte* exp, word32 expLen,
mp_int* mod, byte* out, word32* outLen)
{
int err = MP_OKAY;
sp_digit b[192], e[96], m[96];
sp_digit* r = b;
word32 i;
if (mp_count_bits(base) > 3072) {
err = MP_READ_E;
}
if (err == MP_OKAY) {
if (expLen > 384) {
err = MP_READ_E;
}
}
if (err == MP_OKAY) {
if (mp_count_bits(mod) != 3072) {
err = MP_READ_E;
}
}
if (err == MP_OKAY) {
sp_3072_from_mp(b, 96, base);
sp_3072_from_bin(e, 96, exp, expLen);
sp_3072_from_mp(m, 96, mod);
#ifdef HAVE_FFDHE_3072
if (base->used == 1 && base->dp[0] == 2 && m[95] == (sp_digit)-1)
err = sp_3072_mod_exp_2_96(r, e, expLen * 8, m);
else
#endif
err = sp_3072_mod_exp_96(r, b, e, expLen * 8, m, 0);
}
if (err == MP_OKAY) {
sp_3072_to_bin(r, out);
*outLen = 384;
for (i=0; i<384 && out[i] == 0; i++) {
}
*outLen -= i;
XMEMMOVE(out, out + i, *outLen);
}
XMEMSET(e, 0, sizeof(e));
return err;
}
#endif /* WOLFSSL_HAVE_SP_DH */
/* Perform the modular exponentiation for Diffie-Hellman.
*
* base Base. MP integer.
* exp Exponent. MP integer.
* mod Modulus. MP integer.
* res Result. MP integer.
* returns 0 on success, MP_READ_E if there are too many bytes in an array
* and MEMORY_E if memory allocation fails.
*/
int sp_ModExp_1536(mp_int* base, mp_int* exp, mp_int* mod, mp_int* res)
{
int err = MP_OKAY;
sp_digit b[96], e[48], m[48];
sp_digit* r = b;
int expBits = mp_count_bits(exp);
if (mp_count_bits(base) > 1536) {
err = MP_READ_E;
}
if (err == MP_OKAY) {
if (expBits > 1536) {
err = MP_READ_E;
}
}
if (err == MP_OKAY) {
if (mp_count_bits(mod) != 1536) {
err = MP_READ_E;
}
}
if (err == MP_OKAY) {
sp_3072_from_mp(b, 48, base);
sp_3072_from_mp(e, 48, exp);
sp_3072_from_mp(m, 48, mod);
err = sp_3072_mod_exp_48(r, b, e, expBits, m, 0);
}
if (err == MP_OKAY) {
XMEMSET(r + 48, 0, sizeof(*r) * 48U);
err = sp_3072_to_mp(r, res);
res->used = mod->used;
mp_clamp(res);
}
XMEMSET(e, 0, sizeof(e));
return err;
}
#endif /* WOLFSSL_HAVE_SP_DH || (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) */
#endif /* !WOLFSSL_SP_NO_3072 */
#ifdef WOLFSSL_SP_4096
/* Read big endian unsigned byte array into r.
*
* r A single precision integer.
* size Maximum number of bytes to convert
* a Byte array.
* n Number of bytes in array to read.
*/
static void sp_4096_from_bin(sp_digit* r, int size, const byte* a, int n)
{
int i, j = 0;
word32 s = 0;
r[0] = 0;
for (i = n-1; i >= 0; i--) {
r[j] |= (((sp_digit)a[i]) << s);
if (s >= 24U) {
r[j] &= 0xffffffff;
s = 32U - s;
if (j + 1 >= size) {
break;
}
r[++j] = (sp_digit)a[i] >> s;
s = 8U - s;
}
else {
s += 8U;
}
}
for (j++; j < size; j++) {
r[j] = 0;
}
}
/* Convert an mp_int to an array of sp_digit.
*
* r A single precision integer.
* size Maximum number of bytes to convert
* a A multi-precision integer.
*/
static void sp_4096_from_mp(sp_digit* r, int size, const mp_int* a)
{
#if DIGIT_BIT == 32
int j;
XMEMCPY(r, a->dp, sizeof(sp_digit) * a->used);
for (j = a->used; j < size; j++) {
r[j] = 0;
}
#elif DIGIT_BIT > 32
int i, j = 0;
word32 s = 0;
r[0] = 0;
for (i = 0; i < a->used && j < size; i++) {
r[j] |= ((sp_digit)a->dp[i] << s);
r[j] &= 0xffffffff;
s = 32U - s;
if (j + 1 >= size) {
break;
}
/* lint allow cast of mismatch word32 and mp_digit */
r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
while ((s + 32U) <= (word32)DIGIT_BIT) {
s += 32U;
r[j] &= 0xffffffff;
if (j + 1 >= size) {
break;
}
if (s < (word32)DIGIT_BIT) {
/* lint allow cast of mismatch word32 and mp_digit */
r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
}
else {
r[++j] = 0L;
}
}
s = (word32)DIGIT_BIT - s;
}
for (j++; j < size; j++) {
r[j] = 0;
}
#else
int i, j = 0, s = 0;
r[0] = 0;
for (i = 0; i < a->used && j < size; i++) {
r[j] |= ((sp_digit)a->dp[i]) << s;
if (s + DIGIT_BIT >= 32) {
r[j] &= 0xffffffff;
if (j + 1 >= size) {
break;
}
s = 32 - s;
if (s == DIGIT_BIT) {
r[++j] = 0;
s = 0;
}
else {
r[++j] = a->dp[i] >> s;
s = DIGIT_BIT - s;
}
}
else {
s += DIGIT_BIT;
}
}
for (j++; j < size; j++) {
r[j] = 0;
}
#endif
}
/* Write r as big endian to byte array.
* Fixed length number of bytes written: 512
*
* r A single precision integer.
* a Byte array.
*/
static void sp_4096_to_bin(sp_digit* r, byte* a)
{
int i, j, s = 0, b;
j = 4096 / 8 - 1;
a[j] = 0;
for (i=0; i<128 && j>=0; i++) {
b = 0;
/* lint allow cast of mismatch sp_digit and int */
a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
b += 8 - s;
if (j < 0) {
break;
}
while (b < 32) {
a[j--] = (byte)(r[i] >> b);
b += 8;
if (j < 0) {
break;
}
}
s = 8 - (b - 32);
if (j >= 0) {
a[j] = 0;
}
if (s != 0) {
j++;
}
}
}
#ifndef WOLFSSL_SP_SMALL
/* Add b to a into r. (r = a + b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_4096_add_64(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r7, #0\n\t"
"mvn r7, r7\n\t"
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[b], #0]\n\t"
"add r4, r5\n\t"
"str r4, [%[r], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #4]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[b], #8]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #12]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[b], #16]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #20]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[b], #24]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #28]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #28]\n\t"
"ldr r4, [%[a], #32]\n\t"
"ldr r5, [%[b], #32]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #36]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #36]\n\t"
"ldr r4, [%[a], #40]\n\t"
"ldr r5, [%[b], #40]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #44]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #44]\n\t"
"ldr r4, [%[a], #48]\n\t"
"ldr r5, [%[b], #48]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #52]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #52]\n\t"
"ldr r4, [%[a], #56]\n\t"
"ldr r5, [%[b], #56]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #60]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #60]\n\t"
"ldr r4, [%[a], #64]\n\t"
"ldr r5, [%[b], #64]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #68]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #68]\n\t"
"ldr r4, [%[a], #72]\n\t"
"ldr r5, [%[b], #72]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #76]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #76]\n\t"
"ldr r4, [%[a], #80]\n\t"
"ldr r5, [%[b], #80]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #84]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #84]\n\t"
"ldr r4, [%[a], #88]\n\t"
"ldr r5, [%[b], #88]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #92]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #92]\n\t"
"ldr r4, [%[a], #96]\n\t"
"ldr r5, [%[b], #96]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #100]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #100]\n\t"
"ldr r4, [%[a], #104]\n\t"
"ldr r5, [%[b], #104]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #108]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #108]\n\t"
"ldr r4, [%[a], #112]\n\t"
"ldr r5, [%[b], #112]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #116]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #116]\n\t"
"ldr r4, [%[a], #120]\n\t"
"ldr r5, [%[b], #120]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #124]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #124]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
"add %[a], #0x80\n\t"
"add %[b], #0x80\n\t"
"add %[r], #0x80\n\t"
"add %[c], r7\n\t"
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[b], #0]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #4]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[b], #8]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #12]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[b], #16]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #20]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[b], #24]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #28]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #28]\n\t"
"ldr r4, [%[a], #32]\n\t"
"ldr r5, [%[b], #32]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #36]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #36]\n\t"
"ldr r4, [%[a], #40]\n\t"
"ldr r5, [%[b], #40]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #44]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #44]\n\t"
"ldr r4, [%[a], #48]\n\t"
"ldr r5, [%[b], #48]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #52]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #52]\n\t"
"ldr r4, [%[a], #56]\n\t"
"ldr r5, [%[b], #56]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #60]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #60]\n\t"
"ldr r4, [%[a], #64]\n\t"
"ldr r5, [%[b], #64]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #68]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #68]\n\t"
"ldr r4, [%[a], #72]\n\t"
"ldr r5, [%[b], #72]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #76]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #76]\n\t"
"ldr r4, [%[a], #80]\n\t"
"ldr r5, [%[b], #80]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #84]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #84]\n\t"
"ldr r4, [%[a], #88]\n\t"
"ldr r5, [%[b], #88]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #92]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #92]\n\t"
"ldr r4, [%[a], #96]\n\t"
"ldr r5, [%[b], #96]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #100]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #100]\n\t"
"ldr r4, [%[a], #104]\n\t"
"ldr r5, [%[b], #104]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #108]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #108]\n\t"
"ldr r4, [%[a], #112]\n\t"
"ldr r5, [%[b], #112]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #116]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #116]\n\t"
"ldr r4, [%[a], #120]\n\t"
"ldr r5, [%[b], #120]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #124]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #124]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5", "r7"
);
return c;
}
/* Sub b from a into r. (r = a - b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_4096_sub_in_place_128(sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"ldr r3, [%[a], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #0]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sub r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #0]\n\t"
"str r4, [%[a], #4]\n\t"
"ldr r3, [%[a], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #8]\n\t"
"ldr r6, [%[b], #12]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #8]\n\t"
"str r4, [%[a], #12]\n\t"
"ldr r3, [%[a], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #16]\n\t"
"ldr r6, [%[b], #20]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #16]\n\t"
"str r4, [%[a], #20]\n\t"
"ldr r3, [%[a], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #24]\n\t"
"ldr r6, [%[b], #28]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #24]\n\t"
"str r4, [%[a], #28]\n\t"
"ldr r3, [%[a], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #32]\n\t"
"ldr r6, [%[b], #36]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #32]\n\t"
"str r4, [%[a], #36]\n\t"
"ldr r3, [%[a], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #40]\n\t"
"ldr r6, [%[b], #44]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #40]\n\t"
"str r4, [%[a], #44]\n\t"
"ldr r3, [%[a], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #48]\n\t"
"ldr r6, [%[b], #52]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #48]\n\t"
"str r4, [%[a], #52]\n\t"
"ldr r3, [%[a], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #56]\n\t"
"ldr r6, [%[b], #60]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #56]\n\t"
"str r4, [%[a], #60]\n\t"
"ldr r3, [%[a], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #64]\n\t"
"ldr r6, [%[b], #68]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #64]\n\t"
"str r4, [%[a], #68]\n\t"
"ldr r3, [%[a], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #72]\n\t"
"ldr r6, [%[b], #76]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #72]\n\t"
"str r4, [%[a], #76]\n\t"
"ldr r3, [%[a], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #80]\n\t"
"ldr r6, [%[b], #84]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #80]\n\t"
"str r4, [%[a], #84]\n\t"
"ldr r3, [%[a], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #88]\n\t"
"ldr r6, [%[b], #92]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #88]\n\t"
"str r4, [%[a], #92]\n\t"
"ldr r3, [%[a], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #96]\n\t"
"ldr r6, [%[b], #100]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #96]\n\t"
"str r4, [%[a], #100]\n\t"
"ldr r3, [%[a], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #104]\n\t"
"ldr r6, [%[b], #108]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #104]\n\t"
"str r4, [%[a], #108]\n\t"
"ldr r3, [%[a], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #112]\n\t"
"ldr r6, [%[b], #116]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #112]\n\t"
"str r4, [%[a], #116]\n\t"
"ldr r3, [%[a], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #120]\n\t"
"ldr r6, [%[b], #124]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #120]\n\t"
"str r4, [%[a], #124]\n\t"
"sbc %[c], %[c]\n\t"
"add %[a], #0x80\n\t"
"add %[b], #0x80\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r3, [%[a], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #0]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #0]\n\t"
"str r4, [%[a], #4]\n\t"
"ldr r3, [%[a], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #8]\n\t"
"ldr r6, [%[b], #12]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #8]\n\t"
"str r4, [%[a], #12]\n\t"
"ldr r3, [%[a], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #16]\n\t"
"ldr r6, [%[b], #20]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #16]\n\t"
"str r4, [%[a], #20]\n\t"
"ldr r3, [%[a], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #24]\n\t"
"ldr r6, [%[b], #28]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #24]\n\t"
"str r4, [%[a], #28]\n\t"
"ldr r3, [%[a], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #32]\n\t"
"ldr r6, [%[b], #36]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #32]\n\t"
"str r4, [%[a], #36]\n\t"
"ldr r3, [%[a], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #40]\n\t"
"ldr r6, [%[b], #44]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #40]\n\t"
"str r4, [%[a], #44]\n\t"
"ldr r3, [%[a], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #48]\n\t"
"ldr r6, [%[b], #52]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #48]\n\t"
"str r4, [%[a], #52]\n\t"
"ldr r3, [%[a], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #56]\n\t"
"ldr r6, [%[b], #60]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #56]\n\t"
"str r4, [%[a], #60]\n\t"
"ldr r3, [%[a], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #64]\n\t"
"ldr r6, [%[b], #68]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #64]\n\t"
"str r4, [%[a], #68]\n\t"
"ldr r3, [%[a], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #72]\n\t"
"ldr r6, [%[b], #76]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #72]\n\t"
"str r4, [%[a], #76]\n\t"
"ldr r3, [%[a], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #80]\n\t"
"ldr r6, [%[b], #84]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #80]\n\t"
"str r4, [%[a], #84]\n\t"
"ldr r3, [%[a], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #88]\n\t"
"ldr r6, [%[b], #92]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #88]\n\t"
"str r4, [%[a], #92]\n\t"
"ldr r3, [%[a], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #96]\n\t"
"ldr r6, [%[b], #100]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #96]\n\t"
"str r4, [%[a], #100]\n\t"
"ldr r3, [%[a], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #104]\n\t"
"ldr r6, [%[b], #108]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #104]\n\t"
"str r4, [%[a], #108]\n\t"
"ldr r3, [%[a], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #112]\n\t"
"ldr r6, [%[b], #116]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #112]\n\t"
"str r4, [%[a], #116]\n\t"
"ldr r3, [%[a], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #120]\n\t"
"ldr r6, [%[b], #124]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #120]\n\t"
"str r4, [%[a], #124]\n\t"
"sbc %[c], %[c]\n\t"
"add %[a], #0x80\n\t"
"add %[b], #0x80\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r3, [%[a], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #0]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #0]\n\t"
"str r4, [%[a], #4]\n\t"
"ldr r3, [%[a], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #8]\n\t"
"ldr r6, [%[b], #12]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #8]\n\t"
"str r4, [%[a], #12]\n\t"
"ldr r3, [%[a], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #16]\n\t"
"ldr r6, [%[b], #20]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #16]\n\t"
"str r4, [%[a], #20]\n\t"
"ldr r3, [%[a], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #24]\n\t"
"ldr r6, [%[b], #28]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #24]\n\t"
"str r4, [%[a], #28]\n\t"
"ldr r3, [%[a], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #32]\n\t"
"ldr r6, [%[b], #36]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #32]\n\t"
"str r4, [%[a], #36]\n\t"
"ldr r3, [%[a], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #40]\n\t"
"ldr r6, [%[b], #44]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #40]\n\t"
"str r4, [%[a], #44]\n\t"
"ldr r3, [%[a], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #48]\n\t"
"ldr r6, [%[b], #52]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #48]\n\t"
"str r4, [%[a], #52]\n\t"
"ldr r3, [%[a], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #56]\n\t"
"ldr r6, [%[b], #60]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #56]\n\t"
"str r4, [%[a], #60]\n\t"
"ldr r3, [%[a], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #64]\n\t"
"ldr r6, [%[b], #68]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #64]\n\t"
"str r4, [%[a], #68]\n\t"
"ldr r3, [%[a], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #72]\n\t"
"ldr r6, [%[b], #76]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #72]\n\t"
"str r4, [%[a], #76]\n\t"
"ldr r3, [%[a], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #80]\n\t"
"ldr r6, [%[b], #84]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #80]\n\t"
"str r4, [%[a], #84]\n\t"
"ldr r3, [%[a], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #88]\n\t"
"ldr r6, [%[b], #92]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #88]\n\t"
"str r4, [%[a], #92]\n\t"
"ldr r3, [%[a], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #96]\n\t"
"ldr r6, [%[b], #100]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #96]\n\t"
"str r4, [%[a], #100]\n\t"
"ldr r3, [%[a], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #104]\n\t"
"ldr r6, [%[b], #108]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #104]\n\t"
"str r4, [%[a], #108]\n\t"
"ldr r3, [%[a], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #112]\n\t"
"ldr r6, [%[b], #116]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #112]\n\t"
"str r4, [%[a], #116]\n\t"
"ldr r3, [%[a], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #120]\n\t"
"ldr r6, [%[b], #124]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #120]\n\t"
"str r4, [%[a], #124]\n\t"
"sbc %[c], %[c]\n\t"
"add %[a], #0x80\n\t"
"add %[b], #0x80\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r3, [%[a], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #0]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #0]\n\t"
"str r4, [%[a], #4]\n\t"
"ldr r3, [%[a], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #8]\n\t"
"ldr r6, [%[b], #12]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #8]\n\t"
"str r4, [%[a], #12]\n\t"
"ldr r3, [%[a], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #16]\n\t"
"ldr r6, [%[b], #20]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #16]\n\t"
"str r4, [%[a], #20]\n\t"
"ldr r3, [%[a], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #24]\n\t"
"ldr r6, [%[b], #28]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #24]\n\t"
"str r4, [%[a], #28]\n\t"
"ldr r3, [%[a], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #32]\n\t"
"ldr r6, [%[b], #36]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #32]\n\t"
"str r4, [%[a], #36]\n\t"
"ldr r3, [%[a], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #40]\n\t"
"ldr r6, [%[b], #44]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #40]\n\t"
"str r4, [%[a], #44]\n\t"
"ldr r3, [%[a], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #48]\n\t"
"ldr r6, [%[b], #52]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #48]\n\t"
"str r4, [%[a], #52]\n\t"
"ldr r3, [%[a], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #56]\n\t"
"ldr r6, [%[b], #60]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #56]\n\t"
"str r4, [%[a], #60]\n\t"
"ldr r3, [%[a], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #64]\n\t"
"ldr r6, [%[b], #68]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #64]\n\t"
"str r4, [%[a], #68]\n\t"
"ldr r3, [%[a], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #72]\n\t"
"ldr r6, [%[b], #76]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #72]\n\t"
"str r4, [%[a], #76]\n\t"
"ldr r3, [%[a], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #80]\n\t"
"ldr r6, [%[b], #84]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #80]\n\t"
"str r4, [%[a], #84]\n\t"
"ldr r3, [%[a], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #88]\n\t"
"ldr r6, [%[b], #92]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #88]\n\t"
"str r4, [%[a], #92]\n\t"
"ldr r3, [%[a], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #96]\n\t"
"ldr r6, [%[b], #100]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #96]\n\t"
"str r4, [%[a], #100]\n\t"
"ldr r3, [%[a], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #104]\n\t"
"ldr r6, [%[b], #108]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #104]\n\t"
"str r4, [%[a], #108]\n\t"
"ldr r3, [%[a], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #112]\n\t"
"ldr r6, [%[b], #116]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #112]\n\t"
"str r4, [%[a], #116]\n\t"
"ldr r3, [%[a], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #120]\n\t"
"ldr r6, [%[b], #124]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #120]\n\t"
"str r4, [%[a], #124]\n\t"
"sbc %[c], %[c]\n\t"
: [c] "+r" (c), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r3", "r4", "r5", "r6"
);
return c;
}
/* Add b to a into r. (r = a + b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_4096_add_128(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r7, #0\n\t"
"mvn r7, r7\n\t"
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[b], #0]\n\t"
"add r4, r5\n\t"
"str r4, [%[r], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #4]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[b], #8]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #12]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[b], #16]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #20]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[b], #24]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #28]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #28]\n\t"
"ldr r4, [%[a], #32]\n\t"
"ldr r5, [%[b], #32]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #36]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #36]\n\t"
"ldr r4, [%[a], #40]\n\t"
"ldr r5, [%[b], #40]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #44]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #44]\n\t"
"ldr r4, [%[a], #48]\n\t"
"ldr r5, [%[b], #48]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #52]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #52]\n\t"
"ldr r4, [%[a], #56]\n\t"
"ldr r5, [%[b], #56]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #60]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #60]\n\t"
"ldr r4, [%[a], #64]\n\t"
"ldr r5, [%[b], #64]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #68]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #68]\n\t"
"ldr r4, [%[a], #72]\n\t"
"ldr r5, [%[b], #72]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #76]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #76]\n\t"
"ldr r4, [%[a], #80]\n\t"
"ldr r5, [%[b], #80]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #84]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #84]\n\t"
"ldr r4, [%[a], #88]\n\t"
"ldr r5, [%[b], #88]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #92]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #92]\n\t"
"ldr r4, [%[a], #96]\n\t"
"ldr r5, [%[b], #96]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #100]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #100]\n\t"
"ldr r4, [%[a], #104]\n\t"
"ldr r5, [%[b], #104]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #108]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #108]\n\t"
"ldr r4, [%[a], #112]\n\t"
"ldr r5, [%[b], #112]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #116]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #116]\n\t"
"ldr r4, [%[a], #120]\n\t"
"ldr r5, [%[b], #120]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #124]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #124]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
"add %[a], #0x80\n\t"
"add %[b], #0x80\n\t"
"add %[r], #0x80\n\t"
"add %[c], r7\n\t"
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[b], #0]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #4]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[b], #8]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #12]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[b], #16]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #20]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[b], #24]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #28]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #28]\n\t"
"ldr r4, [%[a], #32]\n\t"
"ldr r5, [%[b], #32]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #36]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #36]\n\t"
"ldr r4, [%[a], #40]\n\t"
"ldr r5, [%[b], #40]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #44]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #44]\n\t"
"ldr r4, [%[a], #48]\n\t"
"ldr r5, [%[b], #48]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #52]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #52]\n\t"
"ldr r4, [%[a], #56]\n\t"
"ldr r5, [%[b], #56]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #60]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #60]\n\t"
"ldr r4, [%[a], #64]\n\t"
"ldr r5, [%[b], #64]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #68]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #68]\n\t"
"ldr r4, [%[a], #72]\n\t"
"ldr r5, [%[b], #72]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #76]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #76]\n\t"
"ldr r4, [%[a], #80]\n\t"
"ldr r5, [%[b], #80]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #84]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #84]\n\t"
"ldr r4, [%[a], #88]\n\t"
"ldr r5, [%[b], #88]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #92]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #92]\n\t"
"ldr r4, [%[a], #96]\n\t"
"ldr r5, [%[b], #96]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #100]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #100]\n\t"
"ldr r4, [%[a], #104]\n\t"
"ldr r5, [%[b], #104]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #108]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #108]\n\t"
"ldr r4, [%[a], #112]\n\t"
"ldr r5, [%[b], #112]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #116]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #116]\n\t"
"ldr r4, [%[a], #120]\n\t"
"ldr r5, [%[b], #120]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #124]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #124]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
"add %[a], #0x80\n\t"
"add %[b], #0x80\n\t"
"add %[r], #0x80\n\t"
"add %[c], r7\n\t"
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[b], #0]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #4]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[b], #8]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #12]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[b], #16]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #20]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[b], #24]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #28]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #28]\n\t"
"ldr r4, [%[a], #32]\n\t"
"ldr r5, [%[b], #32]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #36]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #36]\n\t"
"ldr r4, [%[a], #40]\n\t"
"ldr r5, [%[b], #40]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #44]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #44]\n\t"
"ldr r4, [%[a], #48]\n\t"
"ldr r5, [%[b], #48]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #52]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #52]\n\t"
"ldr r4, [%[a], #56]\n\t"
"ldr r5, [%[b], #56]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #60]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #60]\n\t"
"ldr r4, [%[a], #64]\n\t"
"ldr r5, [%[b], #64]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #68]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #68]\n\t"
"ldr r4, [%[a], #72]\n\t"
"ldr r5, [%[b], #72]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #76]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #76]\n\t"
"ldr r4, [%[a], #80]\n\t"
"ldr r5, [%[b], #80]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #84]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #84]\n\t"
"ldr r4, [%[a], #88]\n\t"
"ldr r5, [%[b], #88]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #92]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #92]\n\t"
"ldr r4, [%[a], #96]\n\t"
"ldr r5, [%[b], #96]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #100]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #100]\n\t"
"ldr r4, [%[a], #104]\n\t"
"ldr r5, [%[b], #104]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #108]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #108]\n\t"
"ldr r4, [%[a], #112]\n\t"
"ldr r5, [%[b], #112]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #116]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #116]\n\t"
"ldr r4, [%[a], #120]\n\t"
"ldr r5, [%[b], #120]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #124]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #124]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
"add %[a], #0x80\n\t"
"add %[b], #0x80\n\t"
"add %[r], #0x80\n\t"
"add %[c], r7\n\t"
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[b], #0]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #4]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[b], #8]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #12]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[b], #16]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #20]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[b], #24]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #28]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #28]\n\t"
"ldr r4, [%[a], #32]\n\t"
"ldr r5, [%[b], #32]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #36]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #36]\n\t"
"ldr r4, [%[a], #40]\n\t"
"ldr r5, [%[b], #40]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #44]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #44]\n\t"
"ldr r4, [%[a], #48]\n\t"
"ldr r5, [%[b], #48]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #48]\n\t"
"ldr r4, [%[a], #52]\n\t"
"ldr r5, [%[b], #52]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #52]\n\t"
"ldr r4, [%[a], #56]\n\t"
"ldr r5, [%[b], #56]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #56]\n\t"
"ldr r4, [%[a], #60]\n\t"
"ldr r5, [%[b], #60]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #60]\n\t"
"ldr r4, [%[a], #64]\n\t"
"ldr r5, [%[b], #64]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #64]\n\t"
"ldr r4, [%[a], #68]\n\t"
"ldr r5, [%[b], #68]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #68]\n\t"
"ldr r4, [%[a], #72]\n\t"
"ldr r5, [%[b], #72]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #72]\n\t"
"ldr r4, [%[a], #76]\n\t"
"ldr r5, [%[b], #76]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #76]\n\t"
"ldr r4, [%[a], #80]\n\t"
"ldr r5, [%[b], #80]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #80]\n\t"
"ldr r4, [%[a], #84]\n\t"
"ldr r5, [%[b], #84]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #84]\n\t"
"ldr r4, [%[a], #88]\n\t"
"ldr r5, [%[b], #88]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #88]\n\t"
"ldr r4, [%[a], #92]\n\t"
"ldr r5, [%[b], #92]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #92]\n\t"
"ldr r4, [%[a], #96]\n\t"
"ldr r5, [%[b], #96]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #96]\n\t"
"ldr r4, [%[a], #100]\n\t"
"ldr r5, [%[b], #100]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #100]\n\t"
"ldr r4, [%[a], #104]\n\t"
"ldr r5, [%[b], #104]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #104]\n\t"
"ldr r4, [%[a], #108]\n\t"
"ldr r5, [%[b], #108]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #108]\n\t"
"ldr r4, [%[a], #112]\n\t"
"ldr r5, [%[b], #112]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #112]\n\t"
"ldr r4, [%[a], #116]\n\t"
"ldr r5, [%[b], #116]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #116]\n\t"
"ldr r4, [%[a], #120]\n\t"
"ldr r5, [%[b], #120]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #120]\n\t"
"ldr r4, [%[a], #124]\n\t"
"ldr r5, [%[b], #124]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #124]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5", "r7"
);
return c;
}
/* Multiply a and b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static void sp_4096_mul_64(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit tmp[64 * 2];
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"mov r8, r3\n\t"
"mov r11, %[r]\n\t"
"mov r9, %[a]\n\t"
"mov r10, %[b]\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, r9\n\t"
"mov r12, r6\n\t"
"\n1:\n\t"
"mov %[r], #0\n\t"
"mov r5, #0\n\t"
"mov r6, #252\n\t"
"mov %[a], r8\n\t"
"sub %[a], r6\n\t"
"sbc r6, r6\n\t"
"mvn r6, r6\n\t"
"and %[a], r6\n\t"
"mov %[b], r8\n\t"
"sub %[b], %[a]\n\t"
"add %[a], r9\n\t"
"add %[b], r10\n\t"
"\n2:\n\t"
"# Multiply Start\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [%[b]]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [%[b]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [%[b]]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [%[b]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Multiply Done\n\t"
"add %[a], #4\n\t"
"sub %[b], #4\n\t"
"cmp %[a], r12\n\t"
"beq 3f\n\t"
"mov r6, r8\n\t"
"add r6, r9\n\t"
"cmp %[a], r6\n\t"
"ble 2b\n\t"
"\n3:\n\t"
"mov %[r], r11\n\t"
"mov r7, r8\n\t"
"str r3, [%[r], r7]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"add r7, #4\n\t"
"mov r8, r7\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #248\n\t"
"cmp r7, r6\n\t"
"ble 1b\n\t"
"str r3, [%[r], r7]\n\t"
"mov %[a], r9\n\t"
"mov %[b], r10\n\t"
:
: [r] "r" (tmp), [a] "r" (a), [b] "r" (b)
: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12"
);
XMEMCPY(r, tmp, sizeof(tmp));
}
/* AND m into each word of a and store in r.
*
* r A single precision integer.
* a A single precision integer.
* m Mask to AND against each digit.
*/
static void sp_4096_mask_64(sp_digit* r, const sp_digit* a, sp_digit m)
{
#ifdef WOLFSSL_SP_SMALL
int i;
for (i=0; i<64; i++) {
r[i] = a[i] & m;
}
#else
int i;
for (i = 0; i < 64; i += 8) {
r[i+0] = a[i+0] & m;
r[i+1] = a[i+1] & m;
r[i+2] = a[i+2] & m;
r[i+3] = a[i+3] & m;
r[i+4] = a[i+4] & m;
r[i+5] = a[i+5] & m;
r[i+6] = a[i+6] & m;
r[i+7] = a[i+7] & m;
}
#endif
}
/* Multiply a and b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static void sp_4096_mul_128(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit* z0 = r;
sp_digit z1[128];
sp_digit a1[64];
sp_digit b1[64];
sp_digit z2[128];
sp_digit u, ca, cb;
ca = sp_2048_add_64(a1, a, &a[64]);
cb = sp_2048_add_64(b1, b, &b[64]);
u = ca & cb;
sp_2048_mul_64(z1, a1, b1);
sp_2048_mul_64(z2, &a[64], &b[64]);
sp_2048_mul_64(z0, a, b);
sp_2048_mask_64(r + 128, a1, 0 - cb);
sp_2048_mask_64(b1, b1, 0 - ca);
u += sp_2048_add_64(r + 128, r + 128, b1);
u += sp_4096_sub_in_place_128(z1, z2);
u += sp_4096_sub_in_place_128(z1, z0);
u += sp_4096_add_128(r + 64, r + 64, z1);
r[192] = u;
XMEMSET(r + 192 + 1, 0, sizeof(sp_digit) * (64 - 1));
(void)sp_4096_add_128(r + 128, r + 128, z2);
}
/* Square a and put result in r. (r = a * a)
*
* r A single precision integer.
* a A single precision integer.
*/
SP_NOINLINE static void sp_4096_sqr_64(sp_digit* r, const sp_digit* a)
{
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"mov r5, #0\n\t"
"mov r8, r3\n\t"
"mov r11, %[r]\n\t"
"mov r6, #2\n\t"
"lsl r6, r6, #8\n\t"
"neg r6, r6\n\t"
"add sp, r6\n\t"
"mov r10, sp\n\t"
"mov r9, %[a]\n\t"
"\n1:\n\t"
"mov %[r], #0\n\t"
"mov r6, #252\n\t"
"mov %[a], r8\n\t"
"sub %[a], r6\n\t"
"sbc r6, r6\n\t"
"mvn r6, r6\n\t"
"and %[a], r6\n\t"
"mov r2, r8\n\t"
"sub r2, %[a]\n\t"
"add %[a], r9\n\t"
"add r2, r9\n\t"
"\n2:\n\t"
"cmp r2, %[a]\n\t"
"beq 4f\n\t"
"# Multiply * 2: Start\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [r2]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [r2]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [r2]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [r2]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Multiply * 2: Done\n\t"
"bal 5f\n\t"
"\n4:\n\t"
"# Square: Start\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"lsr r6, r6, #16\n\t"
"mul r6, r6\n\t"
"add r3, r6\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"mul r7, r7\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"lsr r6, r6, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #15\n\t"
"lsl r6, r6, #17\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Square: Done\n\t"
"\n5:\n\t"
"add %[a], #4\n\t"
"sub r2, #4\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, r9\n\t"
"cmp %[a], r6\n\t"
"beq 3f\n\t"
"cmp %[a], r2\n\t"
"bgt 3f\n\t"
"mov r7, r8\n\t"
"add r7, r9\n\t"
"cmp %[a], r7\n\t"
"ble 2b\n\t"
"\n3:\n\t"
"mov %[r], r10\n\t"
"mov r7, r8\n\t"
"str r3, [%[r], r7]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"mov r5, #0\n\t"
"add r7, #4\n\t"
"mov r8, r7\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #248\n\t"
"cmp r7, r6\n\t"
"ble 1b\n\t"
"mov %[a], r9\n\t"
"str r3, [%[r], r7]\n\t"
"mov %[r], r11\n\t"
"mov %[a], r10\n\t"
"mov r3, #1\n\t"
"lsl r3, r3, #8\n\t"
"add r3, #252\n\t"
"\n4:\n\t"
"ldr r6, [%[a], r3]\n\t"
"str r6, [%[r], r3]\n\t"
"sub r3, #4\n\t"
"bge 4b\n\t"
"mov r6, #2\n\t"
"lsl r6, r6, #8\n\t"
"add sp, r6\n\t"
:
: [r] "r" (r), [a] "r" (a)
: "memory", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11"
);
}
/* Square a and put result in r. (r = a * a)
*
* r A single precision integer.
* a A single precision integer.
*/
SP_NOINLINE static void sp_4096_sqr_128(sp_digit* r, const sp_digit* a)
{
sp_digit* z0 = r;
sp_digit z2[128];
sp_digit z1[128];
sp_digit a1[64];
sp_digit u;
u = sp_2048_add_64(a1, a, &a[64]);
sp_2048_sqr_64(z1, a1);
sp_2048_sqr_64(z2, &a[64]);
sp_2048_sqr_64(z0, a);
sp_2048_mask_64(r + 128, a1, 0 - u);
u += sp_2048_add_64(r + 128, r + 128, r + 128);
u += sp_4096_sub_in_place_128(z1, z2);
u += sp_4096_sub_in_place_128(z1, z0);
u += sp_4096_add_128(r + 64, r + 64, z1);
r[192] = u;
XMEMSET(r + 192 + 1, 0, sizeof(sp_digit) * (64 - 1));
(void)sp_4096_add_128(r + 128, r + 128, z2);
}
#endif /* !WOLFSSL_SP_SMALL */
#ifdef WOLFSSL_SP_SMALL
/* Add b to a into r. (r = a + b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_4096_add_128(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r6, %[a]\n\t"
"mov r7, #0\n\t"
"mov r4, #2\n\t"
"lsl r4, #8\n\t"
"sub r7, #1\n\t"
"add r6, r4\n\t"
"\n1:\n\t"
"add %[c], r7\n\t"
"ldr r4, [%[a]]\n\t"
"ldr r5, [%[b]]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r]]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
"add %[a], #4\n\t"
"add %[b], #4\n\t"
"add %[r], #4\n\t"
"cmp %[a], r6\n\t"
"bne 1b\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5", "r6", "r7"
);
return c;
}
#endif /* WOLFSSL_SP_SMALL */
#ifdef WOLFSSL_SP_SMALL
/* Sub b from a into a. (a -= b)
*
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_4096_sub_in_place_128(sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r7, %[a]\n\t"
"mov r5, #2\n\t"
"lsl r5, #8\n\t"
"add r7, r5\n\t"
"\n1:\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r3, [%[a]]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b]]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a]]\n\t"
"str r4, [%[a], #4]\n\t"
"sbc %[c], %[c]\n\t"
"add %[a], #8\n\t"
"add %[b], #8\n\t"
"cmp %[a], r7\n\t"
"bne 1b\n\t"
: [c] "+r" (c), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r3", "r4", "r5", "r6", "r7"
);
return c;
}
#endif /* WOLFSSL_SP_SMALL */
#ifdef WOLFSSL_SP_SMALL
/* Multiply a and b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static void sp_4096_mul_128(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit tmp[128 * 2];
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"mov r8, r3\n\t"
"mov r11, %[r]\n\t"
"mov r9, %[a]\n\t"
"mov r10, %[b]\n\t"
"mov r6, #2\n\t"
"lsl r6, r6, #8\n\t"
"add r6, r9\n\t"
"mov r12, r6\n\t"
"\n1:\n\t"
"mov %[r], #0\n\t"
"mov r5, #0\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #252\n\t"
"mov %[a], r8\n\t"
"sub %[a], r6\n\t"
"sbc r6, r6\n\t"
"mvn r6, r6\n\t"
"and %[a], r6\n\t"
"mov %[b], r8\n\t"
"sub %[b], %[a]\n\t"
"add %[a], r9\n\t"
"add %[b], r10\n\t"
"\n2:\n\t"
"# Multiply Start\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [%[b]]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [%[b]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [%[b]]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [%[b]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Multiply Done\n\t"
"add %[a], #4\n\t"
"sub %[b], #4\n\t"
"cmp %[a], r12\n\t"
"beq 3f\n\t"
"mov r6, r8\n\t"
"add r6, r9\n\t"
"cmp %[a], r6\n\t"
"ble 2b\n\t"
"\n3:\n\t"
"mov %[r], r11\n\t"
"mov r7, r8\n\t"
"str r3, [%[r], r7]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"add r7, #4\n\t"
"mov r8, r7\n\t"
"mov r6, #3\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #248\n\t"
"cmp r7, r6\n\t"
"ble 1b\n\t"
"str r3, [%[r], r7]\n\t"
"mov %[a], r9\n\t"
"mov %[b], r10\n\t"
:
: [r] "r" (tmp), [a] "r" (a), [b] "r" (b)
: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12"
);
XMEMCPY(r, tmp, sizeof(tmp));
}
/* Square a and put result in r. (r = a * a)
*
* r A single precision integer.
* a A single precision integer.
*/
SP_NOINLINE static void sp_4096_sqr_128(sp_digit* r, const sp_digit* a)
{
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"mov r5, #0\n\t"
"mov r8, r3\n\t"
"mov r11, %[r]\n\t"
"mov r6, #4\n\t"
"lsl r6, r6, #8\n\t"
"neg r6, r6\n\t"
"add sp, r6\n\t"
"mov r10, sp\n\t"
"mov r9, %[a]\n\t"
"\n1:\n\t"
"mov %[r], #0\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #252\n\t"
"mov %[a], r8\n\t"
"sub %[a], r6\n\t"
"sbc r6, r6\n\t"
"mvn r6, r6\n\t"
"and %[a], r6\n\t"
"mov r2, r8\n\t"
"sub r2, %[a]\n\t"
"add %[a], r9\n\t"
"add r2, r9\n\t"
"\n2:\n\t"
"cmp r2, %[a]\n\t"
"beq 4f\n\t"
"# Multiply * 2: Start\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [r2]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [r2]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [r2]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [r2]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Multiply * 2: Done\n\t"
"bal 5f\n\t"
"\n4:\n\t"
"# Square: Start\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"lsr r6, r6, #16\n\t"
"mul r6, r6\n\t"
"add r3, r6\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"mul r7, r7\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"lsr r6, r6, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #15\n\t"
"lsl r6, r6, #17\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Square: Done\n\t"
"\n5:\n\t"
"add %[a], #4\n\t"
"sub r2, #4\n\t"
"mov r6, #2\n\t"
"lsl r6, r6, #8\n\t"
"add r6, r9\n\t"
"cmp %[a], r6\n\t"
"beq 3f\n\t"
"cmp %[a], r2\n\t"
"bgt 3f\n\t"
"mov r7, r8\n\t"
"add r7, r9\n\t"
"cmp %[a], r7\n\t"
"ble 2b\n\t"
"\n3:\n\t"
"mov %[r], r10\n\t"
"mov r7, r8\n\t"
"str r3, [%[r], r7]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"mov r5, #0\n\t"
"add r7, #4\n\t"
"mov r8, r7\n\t"
"mov r6, #3\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #248\n\t"
"cmp r7, r6\n\t"
"ble 1b\n\t"
"mov %[a], r9\n\t"
"str r3, [%[r], r7]\n\t"
"mov %[r], r11\n\t"
"mov %[a], r10\n\t"
"mov r3, #3\n\t"
"lsl r3, r3, #8\n\t"
"add r3, #252\n\t"
"\n4:\n\t"
"ldr r6, [%[a], r3]\n\t"
"str r6, [%[r], r3]\n\t"
"sub r3, #4\n\t"
"bge 4b\n\t"
"mov r6, #4\n\t"
"lsl r6, r6, #8\n\t"
"add sp, r6\n\t"
:
: [r] "r" (r), [a] "r" (a)
: "memory", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11"
);
}
#endif /* WOLFSSL_SP_SMALL */
/* Caclulate the bottom digit of -1/a mod 2^n.
*
* a A single precision number.
* rho Bottom word of inverse.
*/
static void sp_4096_mont_setup(const sp_digit* a, sp_digit* rho)
{
sp_digit x, b;
b = a[0];
x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
x *= 2 - b * x; /* here x*a==1 mod 2**8 */
x *= 2 - b * x; /* here x*a==1 mod 2**16 */
x *= 2 - b * x; /* here x*a==1 mod 2**32 */
/* rho = -1/m mod b */
*rho = -x;
}
/* Mul a by digit b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision digit.
*/
SP_NOINLINE static void sp_4096_mul_d_128(sp_digit* r, const sp_digit* a,
sp_digit b)
{
__asm__ __volatile__ (
"mov r6, #2\n\t"
"lsl r6, r6, #8\n\t"
"add r6, %[a]\n\t"
"mov r8, %[r]\n\t"
"mov r9, r6\n\t"
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"1:\n\t"
"mov %[r], #0\n\t"
"mov r5, #0\n\t"
"# A[] * B\n\t"
"ldr r6, [%[a]]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, %[b], #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"lsr r7, %[b], #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, %[b], #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"lsl r7, %[b], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# A[] * B - Done\n\t"
"mov %[r], r8\n\t"
"str r3, [%[r]]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"add %[r], #4\n\t"
"add %[a], #4\n\t"
"mov r8, %[r]\n\t"
"cmp %[a], r9\n\t"
"blt 1b\n\t"
"str r3, [%[r]]\n\t"
: [r] "+r" (r), [a] "+r" (a)
: [b] "r" (b)
: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9"
);
}
#if defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH)
/* r = 2^n mod m where n is the number of bits to reduce by.
* Given m must be 4096 bits, just need to subtract.
*
* r A single precision number.
* m A single precision number.
*/
static void sp_4096_mont_norm_128(sp_digit* r, const sp_digit* m)
{
XMEMSET(r, 0, sizeof(sp_digit) * 128);
/* r = 2^n mod m */
sp_4096_sub_in_place_128(r, m);
}
#endif /* WOLFSSL_HAVE_SP_RSA || WOLFSSL_HAVE_SP_DH */
/* Conditionally subtract b from a using the mask m.
* m is -1 to subtract and 0 when not copying.
*
* r A single precision number representing condition subtract result.
* a A single precision number to subtract from.
* b A single precision number to subtract.
* m Mask value to apply.
*/
SP_NOINLINE static sp_digit sp_4096_cond_sub_128(sp_digit* r, const sp_digit* a,
const sp_digit* b, sp_digit m)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r5, #2\n\t"
"lsl r5, r5, #8\n\t"
"mov r8, r5\n\t"
"mov r7, #0\n\t"
"1:\n\t"
"ldr r6, [%[b], r7]\n\t"
"and r6, %[m]\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r5, [%[a], r7]\n\t"
"sbc r5, r6\n\t"
"sbc %[c], %[c]\n\t"
"str r5, [%[r], r7]\n\t"
"add r7, #4\n\t"
"cmp r7, r8\n\t"
"blt 1b\n\t"
: [c] "+r" (c)
: [r] "r" (r), [a] "r" (a), [b] "r" (b), [m] "r" (m)
: "memory", "r5", "r6", "r7", "r8"
);
return c;
}
/* Reduce the number back to 4096 bits using Montgomery reduction.
*
* a A single precision number to reduce in place.
* m The single precision number representing the modulus.
* mp The digit representing the negative inverse of m mod 2^n.
*/
SP_NOINLINE static void sp_4096_mont_reduce_128(sp_digit* a, const sp_digit* m,
sp_digit mp)
{
sp_digit ca = 0;
__asm__ __volatile__ (
"mov r8, %[mp]\n\t"
"mov r12, %[ca]\n\t"
"mov r14, %[m]\n\t"
"mov r9, %[a]\n\t"
"mov r4, #0\n\t"
"# i = 0\n\t"
"mov r11, r4\n\t"
"\n1:\n\t"
"mov r5, #0\n\t"
"mov %[ca], #0\n\t"
"# mu = a[i] * mp\n\t"
"mov %[mp], r8\n\t"
"ldr %[a], [%[a]]\n\t"
"mul %[mp], %[a]\n\t"
"mov %[m], r14\n\t"
"mov r10, r9\n\t"
"\n2:\n\t"
"# a[i+j] += m[j] * mu\n\t"
"mov %[a], r10\n\t"
"ldr %[a], [%[a]]\n\t"
"mov %[ca], #0\n\t"
"mov r4, r5\n\t"
"mov r5, #0\n\t"
"# Multiply m[j] and mu - Start\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r6, %[mp], #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add %[a], r7\n\t"
"adc r5, %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add %[a], r6\n\t"
"adc r5, r7\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r6, %[mp], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r5, r7\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add %[a], r6\n\t"
"adc r5, r7\n\t"
"# Multiply m[j] and mu - Done\n\t"
"add r4, %[a]\n\t"
"adc r5, %[ca]\n\t"
"mov %[a], r10\n\t"
"str r4, [%[a]]\n\t"
"mov r6, #4\n\t"
"add %[m], #4\n\t"
"add r10, r6\n\t"
"mov r4, #1\n\t"
"lsl r4, r4, #8\n\t"
"add r4, #252\n\t"
"add r4, r9\n\t"
"cmp r10, r4\n\t"
"blt 2b\n\t"
"# a[i+127] += m[127] * mu\n\t"
"mov %[ca], #0\n\t"
"mov r4, r12\n\t"
"mov %[a], #0\n\t"
"# Multiply m[127] and mu - Start\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r6, %[mp], #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r5, r7\n\t"
"adc r4, %[ca]\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r5, r6\n\t"
"adc r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r6, %[mp], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r5, r6\n\t"
"adc r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"# Multiply m[127] and mu - Done\n\t"
"mov %[ca], %[a]\n\t"
"mov %[a], r10\n\t"
"ldr r7, [%[a], #4]\n\t"
"ldr %[a], [%[a]]\n\t"
"mov r6, #0\n\t"
"add r5, %[a]\n\t"
"adc r7, r4\n\t"
"adc %[ca], r6\n\t"
"mov %[a], r10\n\t"
"str r5, [%[a]]\n\t"
"str r7, [%[a], #4]\n\t"
"# i += 1\n\t"
"mov r6, #4\n\t"
"add r9, r6\n\t"
"add r11, r6\n\t"
"mov r12, %[ca]\n\t"
"mov %[a], r9\n\t"
"mov r4, #2\n\t"
"lsl r4, r4, #8\n\t"
"cmp r11, r4\n\t"
"blt 1b\n\t"
"mov %[m], r14\n\t"
: [ca] "+r" (ca), [a] "+r" (a)
: [m] "r" (m), [mp] "r" (mp)
: "memory", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14"
);
sp_4096_cond_sub_128(a - 128, a, m, (sp_digit)0 - ca);
}
/* Multiply two Montogmery form numbers mod the modulus (prime).
* (r = a * b mod m)
*
* r Result of multiplication.
* a First number to multiply in Montogmery form.
* b Second number to multiply in Montogmery form.
* m Modulus (prime).
* mp Montogmery mulitplier.
*/
static void sp_4096_mont_mul_128(sp_digit* r, const sp_digit* a, const sp_digit* b,
const sp_digit* m, sp_digit mp)
{
sp_4096_mul_128(r, a, b);
sp_4096_mont_reduce_128(r, m, mp);
}
/* Square the Montgomery form number. (r = a * a mod m)
*
* r Result of squaring.
* a Number to square in Montogmery form.
* m Modulus (prime).
* mp Montogmery mulitplier.
*/
static void sp_4096_mont_sqr_128(sp_digit* r, const sp_digit* a, const sp_digit* m,
sp_digit mp)
{
sp_4096_sqr_128(r, a);
sp_4096_mont_reduce_128(r, m, mp);
}
/* Divide the double width number (d1|d0) by the dividend. (d1|d0 / div)
*
* d1 The high order half of the number to divide.
* d0 The low order half of the number to divide.
* div The dividend.
* returns the result of the division.
*
* Note that this is an approximate div. It may give an answer 1 larger.
*/
SP_NOINLINE static sp_digit div_4096_word_128(sp_digit d1, sp_digit d0,
sp_digit div)
{
sp_digit r = 0;
__asm__ __volatile__ (
"lsr r5, %[div], #1\n\t"
"add r5, #1\n\t"
"mov r8, %[d0]\n\t"
"mov r9, %[d1]\n\t"
"# Do top 32\n\t"
"mov r6, r5\n\t"
"sub r6, %[d1]\n\t"
"sbc r6, r6\n\t"
"add %[r], %[r]\n\t"
"sub %[r], r6\n\t"
"and r6, r5\n\t"
"sub %[d1], r6\n\t"
"# Next 30 bits\n\t"
"mov r4, #29\n\t"
"1:\n\t"
"lsl %[d0], %[d0], #1\n\t"
"adc %[d1], %[d1]\n\t"
"mov r6, r5\n\t"
"sub r6, %[d1]\n\t"
"sbc r6, r6\n\t"
"add %[r], %[r]\n\t"
"sub %[r], r6\n\t"
"and r6, r5\n\t"
"sub %[d1], r6\n\t"
"sub r4, #1\n\t"
"bpl 1b\n\t"
"mov r7, #0\n\t"
"add %[r], %[r]\n\t"
"add %[r], #1\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"sub %[d1], r4\n\t"
"mov r4, %[d1]\n\t"
"mov %[d1], r9\n\t"
"sbc %[d1], r5\n\t"
"mov r5, %[d1]\n\t"
"add %[r], r5\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"mov r6, r9\n\t"
"sub r4, %[d1], r4\n\t"
"sbc r6, r5\n\t"
"mov r5, r6\n\t"
"add %[r], r5\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"mov r6, r9\n\t"
"sub r4, %[d1], r4\n\t"
"sbc r6, r5\n\t"
"mov r5, r6\n\t"
"add %[r], r5\n\t"
"mov r6, %[div]\n\t"
"sub r6, r4\n\t"
"sbc r6, r6\n\t"
"sub %[r], r6\n\t"
: [r] "+r" (r)
: [d1] "r" (d1), [d0] "r" (d0), [div] "r" (div)
: "r4", "r5", "r7", "r6", "r8", "r9"
);
return r;
}
/* AND m into each word of a and store in r.
*
* r A single precision integer.
* a A single precision integer.
* m Mask to AND against each digit.
*/
static void sp_4096_mask_128(sp_digit* r, const sp_digit* a, sp_digit m)
{
#ifdef WOLFSSL_SP_SMALL
int i;
for (i=0; i<128; i++) {
r[i] = a[i] & m;
}
#else
int i;
for (i = 0; i < 128; i += 8) {
r[i+0] = a[i+0] & m;
r[i+1] = a[i+1] & m;
r[i+2] = a[i+2] & m;
r[i+3] = a[i+3] & m;
r[i+4] = a[i+4] & m;
r[i+5] = a[i+5] & m;
r[i+6] = a[i+6] & m;
r[i+7] = a[i+7] & m;
}
#endif
}
/* Compare a with b in constant time.
*
* a A single precision integer.
* b A single precision integer.
* return -ve, 0 or +ve if a is less than, equal to or greater than b
* respectively.
*/
SP_NOINLINE static int32_t sp_4096_cmp_128(const sp_digit* a, const sp_digit* b)
{
sp_digit r = 0;
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mvn r3, r3\n\t"
"mov r6, #1\n\t"
"lsl r6, r6, #8\n\t"
"add r6, #252\n\t"
"1:\n\t"
"ldr r7, [%[a], r6]\n\t"
"ldr r5, [%[b], r6]\n\t"
"and r7, r3\n\t"
"and r5, r3\n\t"
"mov r4, r7\n\t"
"sub r7, r5\n\t"
"sbc r7, r7\n\t"
"add %[r], r7\n\t"
"mvn r7, r7\n\t"
"and r3, r7\n\t"
"sub r5, r4\n\t"
"sbc r7, r7\n\t"
"sub %[r], r7\n\t"
"mvn r7, r7\n\t"
"and r3, r7\n\t"
"sub r6, #4\n\t"
"cmp r6, #0\n\t"
"bge 1b\n\t"
: [r] "+r" (r)
: [a] "r" (a), [b] "r" (b)
: "r3", "r4", "r5", "r6", "r7"
);
return r;
}
/* Divide d in a and put remainder into r (m*d + r = a)
* m is not calculated as it is not needed at this time.
*
* a Nmber to be divided.
* d Number to divide with.
* m Multiplier result.
* r Remainder from the division.
* returns MP_OKAY indicating success.
*/
static WC_INLINE int sp_4096_div_128(const sp_digit* a, const sp_digit* d, sp_digit* m,
sp_digit* r)
{
sp_digit t1[256], t2[129];
sp_digit div, r1;
int i;
(void)m;
div = d[127];
XMEMCPY(t1, a, sizeof(*t1) * 2 * 128);
for (i=127; i>=0; i--) {
r1 = div_4096_word_128(t1[128 + i], t1[128 + i - 1], div);
sp_4096_mul_d_128(t2, d, r1);
t1[128 + i] += sp_4096_sub_in_place_128(&t1[i], t2);
t1[128 + i] -= t2[128];
sp_4096_mask_128(t2, d, t1[128 + i]);
t1[128 + i] += sp_4096_add_128(&t1[i], &t1[i], t2);
sp_4096_mask_128(t2, d, t1[128 + i]);
t1[128 + i] += sp_4096_add_128(&t1[i], &t1[i], t2);
}
r1 = sp_4096_cmp_128(t1, d) >= 0;
sp_4096_cond_sub_128(r, t1, d, (sp_digit)0 - r1);
return MP_OKAY;
}
/* Reduce a modulo m into r. (r = a mod m)
*
* r A single precision number that is the reduced result.
* a A single precision number that is to be reduced.
* m A single precision number that is the modulus to reduce with.
* returns MP_OKAY indicating success.
*/
static WC_INLINE int sp_4096_mod_128(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
return sp_4096_div_128(a, m, NULL, r);
}
/* Divide d in a and put remainder into r (m*d + r = a)
* m is not calculated as it is not needed at this time.
*
* a Nmber to be divided.
* d Number to divide with.
* m Multiplier result.
* r Remainder from the division.
* returns MP_OKAY indicating success.
*/
static WC_INLINE int sp_4096_div_128_cond(const sp_digit* a, const sp_digit* d, sp_digit* m,
sp_digit* r)
{
sp_digit t1[256], t2[129];
sp_digit div, r1;
int i;
(void)m;
div = d[127];
XMEMCPY(t1, a, sizeof(*t1) * 2 * 128);
for (i=127; i>=0; i--) {
r1 = div_4096_word_128(t1[128 + i], t1[128 + i - 1], div);
sp_4096_mul_d_128(t2, d, r1);
t1[128 + i] += sp_4096_sub_in_place_128(&t1[i], t2);
t1[128 + i] -= t2[128];
if (t1[128 + i] != 0) {
t1[128 + i] += sp_4096_add_128(&t1[i], &t1[i], d);
if (t1[128 + i] != 0)
t1[128 + i] += sp_4096_add_128(&t1[i], &t1[i], d);
}
}
r1 = sp_4096_cmp_128(t1, d) >= 0;
sp_4096_cond_sub_128(r, t1, d, (sp_digit)0 - r1);
return MP_OKAY;
}
/* Reduce a modulo m into r. (r = a mod m)
*
* r A single precision number that is the reduced result.
* a A single precision number that is to be reduced.
* m A single precision number that is the modulus to reduce with.
* returns MP_OKAY indicating success.
*/
static WC_INLINE int sp_4096_mod_128_cond(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
return sp_4096_div_128_cond(a, m, NULL, r);
}
#if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || \
defined(WOLFSSL_HAVE_SP_DH)
#ifdef WOLFSSL_SP_SMALL
/* Modular exponentiate a to the e mod m. (r = a^e mod m)
*
* r A single precision number that is the result of the operation.
* a A single precision number being exponentiated.
* e A single precision number that is the exponent.
* bits The number of bits in the exponent.
* m A single precision number that is the modulus.
* returns 0 on success and MEMORY_E on dynamic memory allocation failure.
*/
static int sp_4096_mod_exp_128(sp_digit* r, const sp_digit* a, const sp_digit* e,
int bits, const sp_digit* m, int reduceA)
{
#ifndef WOLFSSL_SMALL_STACK
sp_digit t[16][256];
#else
sp_digit* t[16];
sp_digit* td;
#endif
sp_digit* norm;
sp_digit mp = 1;
sp_digit n;
sp_digit mask;
int i;
int c, y;
int err = MP_OKAY;
#ifdef WOLFSSL_SMALL_STACK
td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 16 * 256, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (td == NULL) {
err = MEMORY_E;
}
#endif
if (err == MP_OKAY) {
#ifdef WOLFSSL_SMALL_STACK
for (i=0; i<16; i++) {
t[i] = td + i * 256;
}
#endif
norm = t[0];
sp_4096_mont_setup(m, &mp);
sp_4096_mont_norm_128(norm, m);
XMEMSET(t[1], 0, sizeof(sp_digit) * 128U);
if (reduceA != 0) {
err = sp_4096_mod_128(t[1] + 128, a, m);
if (err == MP_OKAY) {
err = sp_4096_mod_128(t[1], t[1], m);
}
}
else {
XMEMCPY(t[1] + 128, a, sizeof(sp_digit) * 128);
err = sp_4096_mod_128(t[1], t[1], m);
}
}
if (err == MP_OKAY) {
sp_4096_mont_sqr_128(t[ 2], t[ 1], m, mp);
sp_4096_mont_mul_128(t[ 3], t[ 2], t[ 1], m, mp);
sp_4096_mont_sqr_128(t[ 4], t[ 2], m, mp);
sp_4096_mont_mul_128(t[ 5], t[ 3], t[ 2], m, mp);
sp_4096_mont_sqr_128(t[ 6], t[ 3], m, mp);
sp_4096_mont_mul_128(t[ 7], t[ 4], t[ 3], m, mp);
sp_4096_mont_sqr_128(t[ 8], t[ 4], m, mp);
sp_4096_mont_mul_128(t[ 9], t[ 5], t[ 4], m, mp);
sp_4096_mont_sqr_128(t[10], t[ 5], m, mp);
sp_4096_mont_mul_128(t[11], t[ 6], t[ 5], m, mp);
sp_4096_mont_sqr_128(t[12], t[ 6], m, mp);
sp_4096_mont_mul_128(t[13], t[ 7], t[ 6], m, mp);
sp_4096_mont_sqr_128(t[14], t[ 7], m, mp);
sp_4096_mont_mul_128(t[15], t[ 8], t[ 7], m, mp);
i = (bits - 1) / 32;
n = e[i--];
c = bits & 31;
if (c == 0) {
c = 32;
}
c -= bits % 4;
if (c == 32) {
c = 28;
}
y = (int)(n >> c);
n <<= 32 - c;
XMEMCPY(r, t[y], sizeof(sp_digit) * 128);
for (; i>=0 || c>=4; ) {
if (c == 0) {
n = e[i--];
y = n >> 28;
n <<= 4;
c = 28;
}
else if (c < 4) {
y = n >> 28;
n = e[i--];
c = 4 - c;
y |= n >> (32 - c);
n <<= c;
c = 32 - c;
}
else {
y = (n >> 28) & 0xf;
n <<= 4;
c -= 4;
}
sp_4096_mont_sqr_128(r, r, m, mp);
sp_4096_mont_sqr_128(r, r, m, mp);
sp_4096_mont_sqr_128(r, r, m, mp);
sp_4096_mont_sqr_128(r, r, m, mp);
sp_4096_mont_mul_128(r, r, t[y], m, mp);
}
XMEMSET(&r[128], 0, sizeof(sp_digit) * 128U);
sp_4096_mont_reduce_128(r, m, mp);
mask = 0 - (sp_4096_cmp_128(r, m) >= 0);
sp_4096_cond_sub_128(r, r, m, mask);
}
#ifdef WOLFSSL_SMALL_STACK
if (td != NULL) {
XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
return err;
}
#else
/* Modular exponentiate a to the e mod m. (r = a^e mod m)
*
* r A single precision number that is the result of the operation.
* a A single precision number being exponentiated.
* e A single precision number that is the exponent.
* bits The number of bits in the exponent.
* m A single precision number that is the modulus.
* returns 0 on success and MEMORY_E on dynamic memory allocation failure.
*/
static int sp_4096_mod_exp_128(sp_digit* r, const sp_digit* a, const sp_digit* e,
int bits, const sp_digit* m, int reduceA)
{
#ifndef WOLFSSL_SMALL_STACK
sp_digit t[32][256];
#else
sp_digit* t[32];
sp_digit* td;
#endif
sp_digit* norm;
sp_digit mp = 1;
sp_digit n;
sp_digit mask;
int i;
int c, y;
int err = MP_OKAY;
#ifdef WOLFSSL_SMALL_STACK
td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 32 * 256, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (td == NULL) {
err = MEMORY_E;
}
#endif
if (err == MP_OKAY) {
#ifdef WOLFSSL_SMALL_STACK
for (i=0; i<32; i++) {
t[i] = td + i * 256;
}
#endif
norm = t[0];
sp_4096_mont_setup(m, &mp);
sp_4096_mont_norm_128(norm, m);
XMEMSET(t[1], 0, sizeof(sp_digit) * 128U);
if (reduceA != 0) {
err = sp_4096_mod_128(t[1] + 128, a, m);
if (err == MP_OKAY) {
err = sp_4096_mod_128(t[1], t[1], m);
}
}
else {
XMEMCPY(t[1] + 128, a, sizeof(sp_digit) * 128);
err = sp_4096_mod_128(t[1], t[1], m);
}
}
if (err == MP_OKAY) {
sp_4096_mont_sqr_128(t[ 2], t[ 1], m, mp);
sp_4096_mont_mul_128(t[ 3], t[ 2], t[ 1], m, mp);
sp_4096_mont_sqr_128(t[ 4], t[ 2], m, mp);
sp_4096_mont_mul_128(t[ 5], t[ 3], t[ 2], m, mp);
sp_4096_mont_sqr_128(t[ 6], t[ 3], m, mp);
sp_4096_mont_mul_128(t[ 7], t[ 4], t[ 3], m, mp);
sp_4096_mont_sqr_128(t[ 8], t[ 4], m, mp);
sp_4096_mont_mul_128(t[ 9], t[ 5], t[ 4], m, mp);
sp_4096_mont_sqr_128(t[10], t[ 5], m, mp);
sp_4096_mont_mul_128(t[11], t[ 6], t[ 5], m, mp);
sp_4096_mont_sqr_128(t[12], t[ 6], m, mp);
sp_4096_mont_mul_128(t[13], t[ 7], t[ 6], m, mp);
sp_4096_mont_sqr_128(t[14], t[ 7], m, mp);
sp_4096_mont_mul_128(t[15], t[ 8], t[ 7], m, mp);
sp_4096_mont_sqr_128(t[16], t[ 8], m, mp);
sp_4096_mont_mul_128(t[17], t[ 9], t[ 8], m, mp);
sp_4096_mont_sqr_128(t[18], t[ 9], m, mp);
sp_4096_mont_mul_128(t[19], t[10], t[ 9], m, mp);
sp_4096_mont_sqr_128(t[20], t[10], m, mp);
sp_4096_mont_mul_128(t[21], t[11], t[10], m, mp);
sp_4096_mont_sqr_128(t[22], t[11], m, mp);
sp_4096_mont_mul_128(t[23], t[12], t[11], m, mp);
sp_4096_mont_sqr_128(t[24], t[12], m, mp);
sp_4096_mont_mul_128(t[25], t[13], t[12], m, mp);
sp_4096_mont_sqr_128(t[26], t[13], m, mp);
sp_4096_mont_mul_128(t[27], t[14], t[13], m, mp);
sp_4096_mont_sqr_128(t[28], t[14], m, mp);
sp_4096_mont_mul_128(t[29], t[15], t[14], m, mp);
sp_4096_mont_sqr_128(t[30], t[15], m, mp);
sp_4096_mont_mul_128(t[31], t[16], t[15], m, mp);
i = (bits - 1) / 32;
n = e[i--];
c = bits & 31;
if (c == 0) {
c = 32;
}
c -= bits % 5;
if (c == 32) {
c = 27;
}
y = (int)(n >> c);
n <<= 32 - c;
XMEMCPY(r, t[y], sizeof(sp_digit) * 128);
for (; i>=0 || c>=5; ) {
if (c == 0) {
n = e[i--];
y = n >> 27;
n <<= 5;
c = 27;
}
else if (c < 5) {
y = n >> 27;
n = e[i--];
c = 5 - c;
y |= n >> (32 - c);
n <<= c;
c = 32 - c;
}
else {
y = (n >> 27) & 0x1f;
n <<= 5;
c -= 5;
}
sp_4096_mont_sqr_128(r, r, m, mp);
sp_4096_mont_sqr_128(r, r, m, mp);
sp_4096_mont_sqr_128(r, r, m, mp);
sp_4096_mont_sqr_128(r, r, m, mp);
sp_4096_mont_sqr_128(r, r, m, mp);
sp_4096_mont_mul_128(r, r, t[y], m, mp);
}
XMEMSET(&r[128], 0, sizeof(sp_digit) * 128U);
sp_4096_mont_reduce_128(r, m, mp);
mask = 0 - (sp_4096_cmp_128(r, m) >= 0);
sp_4096_cond_sub_128(r, r, m, mask);
}
#ifdef WOLFSSL_SMALL_STACK
if (td != NULL) {
XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
return err;
}
#endif /* WOLFSSL_SP_SMALL */
#endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
#ifdef WOLFSSL_HAVE_SP_RSA
/* RSA public key operation.
*
* in Array of bytes representing the number to exponentiate, base.
* inLen Number of bytes in base.
* em Public exponent.
* mm Modulus.
* out Buffer to hold big-endian bytes of exponentiation result.
* Must be at least 512 bytes long.
* outLen Number of bytes in result.
* returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
* an array is too long and MEMORY_E when dynamic memory allocation fails.
*/
int sp_RsaPublic_4096(const byte* in, word32 inLen, mp_int* em, mp_int* mm,
byte* out, word32* outLen)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_digit a[256], m[128], r[256];
#else
sp_digit* d = NULL;
sp_digit* a;
sp_digit* m;
sp_digit* r;
#endif
sp_digit *ah;
sp_digit e[1];
int err = MP_OKAY;
if (*outLen < 512)
err = MP_TO_E;
if (err == MP_OKAY && (mp_count_bits(em) > 32 || inLen > 512 ||
mp_count_bits(mm) != 4096))
err = MP_READ_E;
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 128 * 5, NULL,
DYNAMIC_TYPE_RSA);
if (d == NULL)
err = MEMORY_E;
}
if (err == MP_OKAY) {
a = d;
r = a + 128 * 2;
m = r + 128 * 2;
}
#endif
if (err == MP_OKAY) {
ah = a + 128;
sp_4096_from_bin(ah, 128, in, inLen);
#if DIGIT_BIT >= 32
e[0] = em->dp[0];
#else
e[0] = em->dp[0];
if (em->used > 1) {
e[0] |= ((sp_digit)em->dp[1]) << DIGIT_BIT;
}
#endif
if (e[0] == 0) {
err = MP_EXPTMOD_E;
}
}
if (err == MP_OKAY) {
sp_4096_from_mp(m, 128, mm);
if (e[0] == 0x3) {
if (err == MP_OKAY) {
sp_4096_sqr_128(r, ah);
err = sp_4096_mod_128_cond(r, r, m);
}
if (err == MP_OKAY) {
sp_4096_mul_128(r, ah, r);
err = sp_4096_mod_128_cond(r, r, m);
}
}
else {
int i;
sp_digit mp;
sp_4096_mont_setup(m, &mp);
/* Convert to Montgomery form. */
XMEMSET(a, 0, sizeof(sp_digit) * 128);
err = sp_4096_mod_128_cond(a, a, m);
if (err == MP_OKAY) {
for (i = 31; i >= 0; i--) {
if (e[0] >> i) {
break;
}
}
XMEMCPY(r, a, sizeof(sp_digit) * 128);
for (i--; i>=0; i--) {
sp_4096_mont_sqr_128(r, r, m, mp);
if (((e[0] >> i) & 1) == 1) {
sp_4096_mont_mul_128(r, r, a, m, mp);
}
}
XMEMSET(&r[128], 0, sizeof(sp_digit) * 128);
sp_4096_mont_reduce_128(r, m, mp);
for (i = 127; i > 0; i--) {
if (r[i] != m[i]) {
break;
}
}
if (r[i] >= m[i]) {
sp_4096_sub_in_place_128(r, m);
}
}
}
}
if (err == MP_OKAY) {
sp_4096_to_bin(r, out);
*outLen = 512;
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (d != NULL) {
XFREE(d, NULL, DYNAMIC_TYPE_RSA);
}
#endif
return err;
}
#ifndef WOLFSSL_RSA_PUBLIC_ONLY
/* Conditionally add a and b using the mask m.
* m is -1 to add and 0 when not.
*
* r A single precision number representing conditional add result.
* a A single precision number to add with.
* b A single precision number to add.
* m Mask value to apply.
*/
SP_NOINLINE static sp_digit sp_4096_cond_add_64(sp_digit* r, const sp_digit* a, const sp_digit* b,
sp_digit m)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r5, #1\n\t"
"lsl r5, r5, #8\n\t"
"mov r8, r5\n\t"
"mov r7, #0\n\t"
"1:\n\t"
"ldr r6, [%[b], r7]\n\t"
"and r6, %[m]\n\t"
"mov r5, #0\n\t"
"sub r5, #1\n\t"
"add r5, %[c]\n\t"
"ldr r5, [%[a], r7]\n\t"
"adc r5, r6\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
"str r5, [%[r], r7]\n\t"
"add r7, #4\n\t"
"cmp r7, r8\n\t"
"blt 1b\n\t"
: [c] "+r" (c)
: [r] "r" (r), [a] "r" (a), [b] "r" (b), [m] "r" (m)
: "memory", "r5", "r6", "r7", "r8"
);
return c;
}
/* RSA private key operation.
*
* in Array of bytes representing the number to exponentiate, base.
* inLen Number of bytes in base.
* dm Private exponent.
* pm First prime.
* qm Second prime.
* dpm First prime's CRT exponent.
* dqm Second prime's CRT exponent.
* qim Inverse of second prime mod p.
* mm Modulus.
* out Buffer to hold big-endian bytes of exponentiation result.
* Must be at least 512 bytes long.
* outLen Number of bytes in result.
* returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
* an array is too long and MEMORY_E when dynamic memory allocation fails.
*/
int sp_RsaPrivate_4096(const byte* in, word32 inLen, mp_int* dm,
mp_int* pm, mp_int* qm, mp_int* dpm, mp_int* dqm, mp_int* qim, mp_int* mm,
byte* out, word32* outLen)
{
#if defined(SP_RSA_PRIVATE_EXP_D) || defined(RSA_LOW_MEM)
sp_digit* a;
sp_digit* d = NULL;
sp_digit* m;
sp_digit* r;
int err = MP_OKAY;
(void)pm;
(void)qm;
(void)dpm;
(void)dqm;
(void)qim;
if (*outLen < 512U) {
err = MP_TO_E;
}
if (err == MP_OKAY) {
if (mp_count_bits(dm) > 4096) {
err = MP_READ_E;
}
if (inLen > 512) {
err = MP_READ_E;
}
if (mp_count_bits(mm) != 4096) {
err = MP_READ_E;
}
}
if (err == MP_OKAY) {
d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 128 * 4, NULL,
DYNAMIC_TYPE_RSA);
if (d == NULL) {
err = MEMORY_E;
}
}
if (err == MP_OKAY) {
a = d + 128;
m = a + 256;
r = a;
sp_4096_from_bin(a, 128, in, inLen);
sp_4096_from_mp(d, 128, dm);
sp_4096_from_mp(m, 128, mm);
err = sp_4096_mod_exp_128(r, a, d, 4096, m, 0);
}
if (err == MP_OKAY) {
sp_4096_to_bin(r, out);
*outLen = 512;
}
if (d != NULL) {
XMEMSET(d, 0, sizeof(sp_digit) * 128);
XFREE(d, NULL, DYNAMIC_TYPE_RSA);
}
return err;
#else
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_digit a[128 * 2];
sp_digit p[64], q[64], dp[64];
sp_digit tmpa[128], tmpb[128];
#else
sp_digit* t = NULL;
sp_digit* a;
sp_digit* p;
sp_digit* q;
sp_digit* dp;
sp_digit* tmpa;
sp_digit* tmpb;
#endif
sp_digit* r;
sp_digit* qi;
sp_digit* dq;
sp_digit c;
int err = MP_OKAY;
(void)dm;
(void)mm;
if (*outLen < 512)
err = MP_TO_E;
if (err == MP_OKAY && (inLen > 512 || mp_count_bits(mm) != 4096))
err = MP_READ_E;
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 64 * 11, NULL,
DYNAMIC_TYPE_RSA);
if (t == NULL)
err = MEMORY_E;
}
if (err == MP_OKAY) {
a = t;
p = a + 128 * 2;
q = p + 64;
qi = dq = dp = q + 64;
tmpa = qi + 64;
tmpb = tmpa + 128;
r = t + 128;
}
#else
#endif
if (err == MP_OKAY) {
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
r = a;
qi = dq = dp;
#endif
sp_4096_from_bin(a, 128, in, inLen);
sp_4096_from_mp(p, 64, pm);
sp_4096_from_mp(q, 64, qm);
sp_4096_from_mp(dp, 64, dpm);
err = sp_2048_mod_exp_64(tmpa, a, dp, 2048, p, 1);
}
if (err == MP_OKAY) {
sp_4096_from_mp(dq, 64, dqm);
err = sp_2048_mod_exp_64(tmpb, a, dq, 2048, q, 1);
}
if (err == MP_OKAY) {
c = sp_2048_sub_in_place_64(tmpa, tmpb);
c += sp_4096_cond_add_64(tmpa, tmpa, p, c);
sp_4096_cond_add_64(tmpa, tmpa, p, c);
sp_2048_from_mp(qi, 64, qim);
sp_2048_mul_64(tmpa, tmpa, qi);
err = sp_2048_mod_64(tmpa, tmpa, p);
}
if (err == MP_OKAY) {
sp_2048_mul_64(tmpa, q, tmpa);
XMEMSET(&tmpb[64], 0, sizeof(sp_digit) * 64);
sp_4096_add_128(r, tmpb, tmpa);
sp_4096_to_bin(r, out);
*outLen = 512;
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (t != NULL) {
XMEMSET(t, 0, sizeof(sp_digit) * 64 * 11);
XFREE(t, NULL, DYNAMIC_TYPE_RSA);
}
#else
XMEMSET(tmpa, 0, sizeof(tmpa));
XMEMSET(tmpb, 0, sizeof(tmpb));
XMEMSET(p, 0, sizeof(p));
XMEMSET(q, 0, sizeof(q));
XMEMSET(dp, 0, sizeof(dp));
#endif
#endif /* SP_RSA_PRIVATE_EXP_D || RSA_LOW_MEM */
return err;
}
#endif /* WOLFSSL_RSA_PUBLIC_ONLY */
#endif /* WOLFSSL_HAVE_SP_RSA */
#if defined(WOLFSSL_HAVE_SP_DH) || (defined(WOLFSSL_HAVE_SP_RSA) && \
!defined(WOLFSSL_RSA_PUBLIC_ONLY))
/* Convert an array of sp_digit to an mp_int.
*
* a A single precision integer.
* r A multi-precision integer.
*/
static int sp_4096_to_mp(const sp_digit* a, mp_int* r)
{
int err;
err = mp_grow(r, (4096 + DIGIT_BIT - 1) / DIGIT_BIT);
if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
#if DIGIT_BIT == 32
XMEMCPY(r->dp, a, sizeof(sp_digit) * 128);
r->used = 128;
mp_clamp(r);
#elif DIGIT_BIT < 32
int i, j = 0, s = 0;
r->dp[0] = 0;
for (i = 0; i < 128; i++) {
r->dp[j] |= (mp_digit)(a[i] << s);
r->dp[j] &= (1L << DIGIT_BIT) - 1;
s = DIGIT_BIT - s;
r->dp[++j] = (mp_digit)(a[i] >> s);
while (s + DIGIT_BIT <= 32) {
s += DIGIT_BIT;
r->dp[j++] &= (1L << DIGIT_BIT) - 1;
if (s == SP_WORD_SIZE) {
r->dp[j] = 0;
}
else {
r->dp[j] = (mp_digit)(a[i] >> s);
}
}
s = 32 - s;
}
r->used = (4096 + DIGIT_BIT - 1) / DIGIT_BIT;
mp_clamp(r);
#else
int i, j = 0, s = 0;
r->dp[0] = 0;
for (i = 0; i < 128; i++) {
r->dp[j] |= ((mp_digit)a[i]) << s;
if (s + 32 >= DIGIT_BIT) {
#if DIGIT_BIT != 32 && DIGIT_BIT != 64
r->dp[j] &= (1L << DIGIT_BIT) - 1;
#endif
s = DIGIT_BIT - s;
r->dp[++j] = a[i] >> s;
s = 32 - s;
}
else {
s += 32;
}
}
r->used = (4096 + DIGIT_BIT - 1) / DIGIT_BIT;
mp_clamp(r);
#endif
}
return err;
}
/* Perform the modular exponentiation for Diffie-Hellman.
*
* base Base. MP integer.
* exp Exponent. MP integer.
* mod Modulus. MP integer.
* res Result. MP integer.
* returns 0 on success, MP_READ_E if there are too many bytes in an array
* and MEMORY_E if memory allocation fails.
*/
int sp_ModExp_4096(mp_int* base, mp_int* exp, mp_int* mod, mp_int* res)
{
int err = MP_OKAY;
sp_digit b[256], e[128], m[128];
sp_digit* r = b;
int expBits = mp_count_bits(exp);
if (mp_count_bits(base) > 4096) {
err = MP_READ_E;
}
if (err == MP_OKAY) {
if (expBits > 4096) {
err = MP_READ_E;
}
}
if (err == MP_OKAY) {
if (mp_count_bits(mod) != 4096) {
err = MP_READ_E;
}
}
if (err == MP_OKAY) {
sp_4096_from_mp(b, 128, base);
sp_4096_from_mp(e, 128, exp);
sp_4096_from_mp(m, 128, mod);
err = sp_4096_mod_exp_128(r, b, e, expBits, m, 0);
}
if (err == MP_OKAY) {
err = sp_4096_to_mp(r, res);
}
XMEMSET(e, 0, sizeof(e));
return err;
}
#ifdef WOLFSSL_HAVE_SP_DH
#ifdef HAVE_FFDHE_4096
static void sp_4096_lshift_128(sp_digit* r, sp_digit* a, byte n)
{
__asm__ __volatile__ (
"mov r6, #31\n\t"
"sub r6, r6, %[n]\n\t"
"add %[a], %[a], #255\n\t"
"add %[r], %[r], #255\n\t"
"add %[a], %[a], #193\n\t"
"add %[r], %[r], #193\n\t"
"ldr r3, [%[a], #60]\n\t"
"lsr r4, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r4, r4, r6\n\t"
"ldr r2, [%[a], #56]\n\t"
"str r4, [%[r], #64]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #52]\n\t"
"str r3, [%[r], #60]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #48]\n\t"
"str r2, [%[r], #56]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #44]\n\t"
"str r4, [%[r], #52]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #40]\n\t"
"str r3, [%[r], #48]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #36]\n\t"
"str r2, [%[r], #44]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #32]\n\t"
"str r4, [%[r], #40]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #28]\n\t"
"str r3, [%[r], #36]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #24]\n\t"
"str r2, [%[r], #32]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #20]\n\t"
"str r4, [%[r], #28]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #16]\n\t"
"str r3, [%[r], #24]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #12]\n\t"
"str r2, [%[r], #20]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #8]\n\t"
"str r4, [%[r], #16]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #4]\n\t"
"str r3, [%[r], #12]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #0]\n\t"
"str r2, [%[r], #8]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"sub %[a], %[a], #64\n\t"
"sub %[r], %[r], #64\n\t"
"ldr r2, [%[a], #60]\n\t"
"str r4, [%[r], #68]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #56]\n\t"
"str r3, [%[r], #64]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #52]\n\t"
"str r2, [%[r], #60]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #48]\n\t"
"str r4, [%[r], #56]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #44]\n\t"
"str r3, [%[r], #52]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #40]\n\t"
"str r2, [%[r], #48]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #36]\n\t"
"str r4, [%[r], #44]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #32]\n\t"
"str r3, [%[r], #40]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #28]\n\t"
"str r2, [%[r], #36]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #24]\n\t"
"str r4, [%[r], #32]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #20]\n\t"
"str r3, [%[r], #28]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #16]\n\t"
"str r2, [%[r], #24]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #12]\n\t"
"str r4, [%[r], #20]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #8]\n\t"
"str r3, [%[r], #16]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #4]\n\t"
"str r2, [%[r], #12]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #0]\n\t"
"str r4, [%[r], #8]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"sub %[a], %[a], #64\n\t"
"sub %[r], %[r], #64\n\t"
"ldr r4, [%[a], #60]\n\t"
"str r3, [%[r], #68]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #56]\n\t"
"str r2, [%[r], #64]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #52]\n\t"
"str r4, [%[r], #60]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #48]\n\t"
"str r3, [%[r], #56]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #44]\n\t"
"str r2, [%[r], #52]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #40]\n\t"
"str r4, [%[r], #48]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #36]\n\t"
"str r3, [%[r], #44]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #32]\n\t"
"str r2, [%[r], #40]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #28]\n\t"
"str r4, [%[r], #36]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #24]\n\t"
"str r3, [%[r], #32]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #20]\n\t"
"str r2, [%[r], #28]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #16]\n\t"
"str r4, [%[r], #24]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #12]\n\t"
"str r3, [%[r], #20]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #8]\n\t"
"str r2, [%[r], #16]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #4]\n\t"
"str r4, [%[r], #12]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #0]\n\t"
"str r3, [%[r], #8]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"sub %[a], %[a], #64\n\t"
"sub %[r], %[r], #64\n\t"
"ldr r3, [%[a], #60]\n\t"
"str r2, [%[r], #68]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #56]\n\t"
"str r4, [%[r], #64]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #52]\n\t"
"str r3, [%[r], #60]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #48]\n\t"
"str r2, [%[r], #56]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #44]\n\t"
"str r4, [%[r], #52]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #40]\n\t"
"str r3, [%[r], #48]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #36]\n\t"
"str r2, [%[r], #44]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #32]\n\t"
"str r4, [%[r], #40]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #28]\n\t"
"str r3, [%[r], #36]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #24]\n\t"
"str r2, [%[r], #32]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #20]\n\t"
"str r4, [%[r], #28]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #16]\n\t"
"str r3, [%[r], #24]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #12]\n\t"
"str r2, [%[r], #20]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #8]\n\t"
"str r4, [%[r], #16]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #4]\n\t"
"str r3, [%[r], #12]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #0]\n\t"
"str r2, [%[r], #8]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"sub %[a], %[a], #64\n\t"
"sub %[r], %[r], #64\n\t"
"ldr r2, [%[a], #60]\n\t"
"str r4, [%[r], #68]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #56]\n\t"
"str r3, [%[r], #64]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #52]\n\t"
"str r2, [%[r], #60]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #48]\n\t"
"str r4, [%[r], #56]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #44]\n\t"
"str r3, [%[r], #52]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #40]\n\t"
"str r2, [%[r], #48]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #36]\n\t"
"str r4, [%[r], #44]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #32]\n\t"
"str r3, [%[r], #40]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #28]\n\t"
"str r2, [%[r], #36]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #24]\n\t"
"str r4, [%[r], #32]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #20]\n\t"
"str r3, [%[r], #28]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #16]\n\t"
"str r2, [%[r], #24]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #12]\n\t"
"str r4, [%[r], #20]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #8]\n\t"
"str r3, [%[r], #16]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #4]\n\t"
"str r2, [%[r], #12]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #0]\n\t"
"str r4, [%[r], #8]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"sub %[a], %[a], #64\n\t"
"sub %[r], %[r], #64\n\t"
"ldr r4, [%[a], #60]\n\t"
"str r3, [%[r], #68]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #56]\n\t"
"str r2, [%[r], #64]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #52]\n\t"
"str r4, [%[r], #60]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #48]\n\t"
"str r3, [%[r], #56]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #44]\n\t"
"str r2, [%[r], #52]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #40]\n\t"
"str r4, [%[r], #48]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #36]\n\t"
"str r3, [%[r], #44]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #32]\n\t"
"str r2, [%[r], #40]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #28]\n\t"
"str r4, [%[r], #36]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #24]\n\t"
"str r3, [%[r], #32]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #20]\n\t"
"str r2, [%[r], #28]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #16]\n\t"
"str r4, [%[r], #24]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #12]\n\t"
"str r3, [%[r], #20]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #8]\n\t"
"str r2, [%[r], #16]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #4]\n\t"
"str r4, [%[r], #12]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #0]\n\t"
"str r3, [%[r], #8]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"sub %[a], %[a], #64\n\t"
"sub %[r], %[r], #64\n\t"
"ldr r3, [%[a], #60]\n\t"
"str r2, [%[r], #68]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #56]\n\t"
"str r4, [%[r], #64]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #52]\n\t"
"str r3, [%[r], #60]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #48]\n\t"
"str r2, [%[r], #56]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #44]\n\t"
"str r4, [%[r], #52]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #40]\n\t"
"str r3, [%[r], #48]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #36]\n\t"
"str r2, [%[r], #44]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #32]\n\t"
"str r4, [%[r], #40]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #28]\n\t"
"str r3, [%[r], #36]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #24]\n\t"
"str r2, [%[r], #32]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #20]\n\t"
"str r4, [%[r], #28]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #16]\n\t"
"str r3, [%[r], #24]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #12]\n\t"
"str r2, [%[r], #20]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #8]\n\t"
"str r4, [%[r], #16]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #4]\n\t"
"str r3, [%[r], #12]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #0]\n\t"
"str r2, [%[r], #8]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"sub %[a], %[a], #64\n\t"
"sub %[r], %[r], #64\n\t"
"ldr r2, [%[a], #60]\n\t"
"str r4, [%[r], #68]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #56]\n\t"
"str r3, [%[r], #64]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #52]\n\t"
"str r2, [%[r], #60]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #48]\n\t"
"str r4, [%[r], #56]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #44]\n\t"
"str r3, [%[r], #52]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #40]\n\t"
"str r2, [%[r], #48]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #36]\n\t"
"str r4, [%[r], #44]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #32]\n\t"
"str r3, [%[r], #40]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #28]\n\t"
"str r2, [%[r], #36]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #24]\n\t"
"str r4, [%[r], #32]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #20]\n\t"
"str r3, [%[r], #28]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #16]\n\t"
"str r2, [%[r], #24]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #12]\n\t"
"str r4, [%[r], #20]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"ldr r4, [%[a], #8]\n\t"
"str r3, [%[r], #16]\n\t"
"lsr r5, r4, #1\n\t"
"lsl r4, r4, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r2, r2, r5\n\t"
"ldr r3, [%[a], #4]\n\t"
"str r2, [%[r], #12]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r4, r4, r5\n\t"
"ldr r2, [%[a], #0]\n\t"
"str r4, [%[r], #8]\n\t"
"lsr r5, r2, #1\n\t"
"lsl r2, r2, %[n]\n\t"
"lsr r5, r5, r6\n\t"
"orr r3, r3, r5\n\t"
"str r2, [%[r]]\n\t"
"str r3, [%[r], #4]\n\t"
:
: [r] "r" (r), [a] "r" (a), [n] "r" (n)
: "memory", "r2", "r3", "r4", "r5", "r6"
);
}
/* Modular exponentiate 2 to the e mod m. (r = 2^e mod m)
*
* r A single precision number that is the result of the operation.
* e A single precision number that is the exponent.
* bits The number of bits in the exponent.
* m A single precision number that is the modulus.
* returns 0 on success and MEMORY_E on dynamic memory allocation failure.
*/
static int sp_4096_mod_exp_2_128(sp_digit* r, const sp_digit* e, int bits,
const sp_digit* m)
{
#ifndef WOLFSSL_SMALL_STACK
sp_digit nd[256];
sp_digit td[129];
#else
sp_digit* td;
#endif
sp_digit* norm;
sp_digit* tmp;
sp_digit mp = 1;
sp_digit n, o;
sp_digit mask;
int i;
int c, y;
int err = MP_OKAY;
#ifdef WOLFSSL_SMALL_STACK
td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 385, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (td == NULL) {
err = MEMORY_E;
}
#endif
if (err == MP_OKAY) {
#ifdef WOLFSSL_SMALL_STACK
norm = td;
tmp = td + 256;
#else
norm = nd;
tmp = td;
#endif
sp_4096_mont_setup(m, &mp);
sp_4096_mont_norm_128(norm, m);
i = (bits - 1) / 32;
n = e[i--];
c = bits & 31;
if (c == 0) {
c = 32;
}
c -= bits % 5;
if (c == 32) {
c = 27;
}
y = (int)(n >> c);
n <<= 32 - c;
sp_4096_lshift_128(r, norm, y);
for (; i>=0 || c>=5; ) {
if (c == 0) {
n = e[i--];
y = n >> 27;
n <<= 5;
c = 27;
}
else if (c < 5) {
y = n >> 27;
n = e[i--];
c = 5 - c;
y |= n >> (32 - c);
n <<= c;
c = 32 - c;
}
else {
y = (n >> 27) & 0x1f;
n <<= 5;
c -= 5;
}
sp_4096_mont_sqr_128(r, r, m, mp);
sp_4096_mont_sqr_128(r, r, m, mp);
sp_4096_mont_sqr_128(r, r, m, mp);
sp_4096_mont_sqr_128(r, r, m, mp);
sp_4096_mont_sqr_128(r, r, m, mp);
sp_4096_lshift_128(r, r, y);
sp_4096_mul_d_128(tmp, norm, r[128]);
r[128] = 0;
o = sp_4096_add_128(r, r, tmp);
sp_4096_cond_sub_128(r, r, m, (sp_digit)0 - o);
}
XMEMSET(&r[128], 0, sizeof(sp_digit) * 128U);
sp_4096_mont_reduce_128(r, m, mp);
mask = 0 - (sp_4096_cmp_128(r, m) >= 0);
sp_4096_cond_sub_128(r, r, m, mask);
}
#ifdef WOLFSSL_SMALL_STACK
if (td != NULL) {
XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
return err;
}
#endif /* HAVE_FFDHE_4096 */
/* Perform the modular exponentiation for Diffie-Hellman.
*
* base Base.
* exp Array of bytes that is the exponent.
* expLen Length of data, in bytes, in exponent.
* mod Modulus.
* out Buffer to hold big-endian bytes of exponentiation result.
* Must be at least 512 bytes long.
* outLen Length, in bytes, of exponentiation result.
* returns 0 on success, MP_READ_E if there are too many bytes in an array
* and MEMORY_E if memory allocation fails.
*/
int sp_DhExp_4096(mp_int* base, const byte* exp, word32 expLen,
mp_int* mod, byte* out, word32* outLen)
{
int err = MP_OKAY;
sp_digit b[256], e[128], m[128];
sp_digit* r = b;
word32 i;
if (mp_count_bits(base) > 4096) {
err = MP_READ_E;
}
if (err == MP_OKAY) {
if (expLen > 512) {
err = MP_READ_E;
}
}
if (err == MP_OKAY) {
if (mp_count_bits(mod) != 4096) {
err = MP_READ_E;
}
}
if (err == MP_OKAY) {
sp_4096_from_mp(b, 128, base);
sp_4096_from_bin(e, 128, exp, expLen);
sp_4096_from_mp(m, 128, mod);
#ifdef HAVE_FFDHE_4096
if (base->used == 1 && base->dp[0] == 2 && m[127] == (sp_digit)-1)
err = sp_4096_mod_exp_2_128(r, e, expLen * 8, m);
else
#endif
err = sp_4096_mod_exp_128(r, b, e, expLen * 8, m, 0);
}
if (err == MP_OKAY) {
sp_4096_to_bin(r, out);
*outLen = 512;
for (i=0; i<512 && out[i] == 0; i++) {
}
*outLen -= i;
XMEMMOVE(out, out + i, *outLen);
}
XMEMSET(e, 0, sizeof(e));
return err;
}
#endif /* WOLFSSL_HAVE_SP_DH */
#endif /* WOLFSSL_HAVE_SP_DH || (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) */
#endif /* WOLFSSL_SP_4096 */
#endif /* WOLFSSL_HAVE_SP_RSA || WOLFSSL_HAVE_SP_DH */
#ifdef WOLFSSL_HAVE_SP_ECC
#ifndef WOLFSSL_SP_NO_256
/* Point structure to use. */
typedef struct sp_point_256 {
sp_digit x[2 * 8];
sp_digit y[2 * 8];
sp_digit z[2 * 8];
int infinity;
} sp_point_256;
/* The modulus (prime) of the curve P256. */
static const sp_digit p256_mod[8] = {
0xffffffff,0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,
0x00000001,0xffffffff
};
/* The Montogmery normalizer for modulus of the curve P256. */
static const sp_digit p256_norm_mod[8] = {
0x00000001,0x00000000,0x00000000,0xffffffff,0xffffffff,0xffffffff,
0xfffffffe,0x00000000
};
/* The Montogmery multiplier for modulus of the curve P256. */
static const sp_digit p256_mp_mod = 0x00000001;
#if defined(WOLFSSL_VALIDATE_ECC_KEYGEN) || defined(HAVE_ECC_SIGN) || \
defined(HAVE_ECC_VERIFY)
/* The order of the curve P256. */
static const sp_digit p256_order[8] = {
0xfc632551,0xf3b9cac2,0xa7179e84,0xbce6faad,0xffffffff,0xffffffff,
0x00000000,0xffffffff
};
#endif
/* The order of the curve P256 minus 2. */
static const sp_digit p256_order2[8] = {
0xfc63254f,0xf3b9cac2,0xa7179e84,0xbce6faad,0xffffffff,0xffffffff,
0x00000000,0xffffffff
};
#if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
/* The Montogmery normalizer for order of the curve P256. */
static const sp_digit p256_norm_order[8] = {
0x039cdaaf,0x0c46353d,0x58e8617b,0x43190552,0x00000000,0x00000000,
0xffffffff,0x00000000
};
#endif
#if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
/* The Montogmery multiplier for order of the curve P256. */
static const sp_digit p256_mp_order = 0xee00bc4f;
#endif
/* The base point of curve P256. */
static const sp_point_256 p256_base = {
/* X ordinate */
{
0xd898c296,0xf4a13945,0x2deb33a0,0x77037d81,0x63a440f2,0xf8bce6e5,
0xe12c4247,0x6b17d1f2,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
},
/* Y ordinate */
{
0x37bf51f5,0xcbb64068,0x6b315ece,0x2bce3357,0x7c0f9e16,0x8ee7eb4a,
0xfe1a7f9b,0x4fe342e2,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
},
/* Z ordinate */
{
0x00000001,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
0x00000000,0x00000000,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
},
/* infinity */
0
};
#if defined(HAVE_ECC_CHECK_KEY) || defined(HAVE_COMP_KEY)
static const sp_digit p256_b[8] = {
0x27d2604b,0x3bce3c3e,0xcc53b0f6,0x651d06b0,0x769886bc,0xb3ebbd55,
0xaa3a93e7,0x5ac635d8
};
#endif
static int sp_256_point_new_ex_8(void* heap, sp_point_256* sp, sp_point_256** p)
{
int ret = MP_OKAY;
(void)heap;
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
(void)sp;
*p = (sp_point_256*)XMALLOC(sizeof(sp_point_256), heap, DYNAMIC_TYPE_ECC);
#else
*p = sp;
#endif
if (*p == NULL) {
ret = MEMORY_E;
}
return ret;
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
/* Allocate memory for point and return error. */
#define sp_256_point_new_8(heap, sp, p) sp_256_point_new_ex_8((heap), NULL, &(p))
#else
/* Set pointer to data and return no error. */
#define sp_256_point_new_8(heap, sp, p) sp_256_point_new_ex_8((heap), &(sp), &(p))
#endif
static void sp_256_point_free_8(sp_point_256* p, int clear, void* heap)
{
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
/* If valid pointer then clear point data if requested and free data. */
if (p != NULL) {
if (clear != 0) {
XMEMSET(p, 0, sizeof(*p));
}
XFREE(p, heap, DYNAMIC_TYPE_ECC);
}
#else
/* Clear point data if requested. */
if (clear != 0) {
XMEMSET(p, 0, sizeof(*p));
}
#endif
(void)heap;
}
/* Multiply a number by Montogmery normalizer mod modulus (prime).
*
* r The resulting Montgomery form number.
* a The number to convert.
* m The modulus (prime).
*/
static int sp_256_mod_mul_norm_8(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
int64_t t[8];
int64_t a64[8];
int64_t o;
(void)m;
a64[0] = a[0];
a64[1] = a[1];
a64[2] = a[2];
a64[3] = a[3];
a64[4] = a[4];
a64[5] = a[5];
a64[6] = a[6];
a64[7] = a[7];
/* 1 1 0 -1 -1 -1 -1 0 */
t[0] = 0 + a64[0] + a64[1] - a64[3] - a64[4] - a64[5] - a64[6];
/* 0 1 1 0 -1 -1 -1 -1 */
t[1] = 0 + a64[1] + a64[2] - a64[4] - a64[5] - a64[6] - a64[7];
/* 0 0 1 1 0 -1 -1 -1 */
t[2] = 0 + a64[2] + a64[3] - a64[5] - a64[6] - a64[7];
/* -1 -1 0 2 2 1 0 -1 */
t[3] = 0 - a64[0] - a64[1] + 2 * a64[3] + 2 * a64[4] + a64[5] - a64[7];
/* 0 -1 -1 0 2 2 1 0 */
t[4] = 0 - a64[1] - a64[2] + 2 * a64[4] + 2 * a64[5] + a64[6];
/* 0 0 -1 -1 0 2 2 1 */
t[5] = 0 - a64[2] - a64[3] + 2 * a64[5] + 2 * a64[6] + a64[7];
/* -1 -1 0 0 0 1 3 2 */
t[6] = 0 - a64[0] - a64[1] + a64[5] + 3 * a64[6] + 2 * a64[7];
/* 1 0 -1 -1 -1 -1 0 3 */
t[7] = 0 + a64[0] - a64[2] - a64[3] - a64[4] - a64[5] + 3 * a64[7];
t[1] += t[0] >> 32; t[0] &= 0xffffffff;
t[2] += t[1] >> 32; t[1] &= 0xffffffff;
t[3] += t[2] >> 32; t[2] &= 0xffffffff;
t[4] += t[3] >> 32; t[3] &= 0xffffffff;
t[5] += t[4] >> 32; t[4] &= 0xffffffff;
t[6] += t[5] >> 32; t[5] &= 0xffffffff;
t[7] += t[6] >> 32; t[6] &= 0xffffffff;
o = t[7] >> 32; t[7] &= 0xffffffff;
t[0] += o;
t[3] -= o;
t[6] -= o;
t[7] += o;
t[1] += t[0] >> 32; t[0] &= 0xffffffff;
t[2] += t[1] >> 32; t[1] &= 0xffffffff;
t[3] += t[2] >> 32; t[2] &= 0xffffffff;
t[4] += t[3] >> 32; t[3] &= 0xffffffff;
t[5] += t[4] >> 32; t[4] &= 0xffffffff;
t[6] += t[5] >> 32; t[5] &= 0xffffffff;
t[7] += t[6] >> 32; t[6] &= 0xffffffff;
r[0] = t[0];
r[1] = t[1];
r[2] = t[2];
r[3] = t[3];
r[4] = t[4];
r[5] = t[5];
r[6] = t[6];
r[7] = t[7];
return MP_OKAY;
}
/* Convert an mp_int to an array of sp_digit.
*
* r A single precision integer.
* size Maximum number of bytes to convert
* a A multi-precision integer.
*/
static void sp_256_from_mp(sp_digit* r, int size, const mp_int* a)
{
#if DIGIT_BIT == 32
int j;
XMEMCPY(r, a->dp, sizeof(sp_digit) * a->used);
for (j = a->used; j < size; j++) {
r[j] = 0;
}
#elif DIGIT_BIT > 32
int i, j = 0;
word32 s = 0;
r[0] = 0;
for (i = 0; i < a->used && j < size; i++) {
r[j] |= ((sp_digit)a->dp[i] << s);
r[j] &= 0xffffffff;
s = 32U - s;
if (j + 1 >= size) {
break;
}
/* lint allow cast of mismatch word32 and mp_digit */
r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
while ((s + 32U) <= (word32)DIGIT_BIT) {
s += 32U;
r[j] &= 0xffffffff;
if (j + 1 >= size) {
break;
}
if (s < (word32)DIGIT_BIT) {
/* lint allow cast of mismatch word32 and mp_digit */
r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
}
else {
r[++j] = 0L;
}
}
s = (word32)DIGIT_BIT - s;
}
for (j++; j < size; j++) {
r[j] = 0;
}
#else
int i, j = 0, s = 0;
r[0] = 0;
for (i = 0; i < a->used && j < size; i++) {
r[j] |= ((sp_digit)a->dp[i]) << s;
if (s + DIGIT_BIT >= 32) {
r[j] &= 0xffffffff;
if (j + 1 >= size) {
break;
}
s = 32 - s;
if (s == DIGIT_BIT) {
r[++j] = 0;
s = 0;
}
else {
r[++j] = a->dp[i] >> s;
s = DIGIT_BIT - s;
}
}
else {
s += DIGIT_BIT;
}
}
for (j++; j < size; j++) {
r[j] = 0;
}
#endif
}
/* Convert a point of type ecc_point to type sp_point_256.
*
* p Point of type sp_point_256 (result).
* pm Point of type ecc_point.
*/
static void sp_256_point_from_ecc_point_8(sp_point_256* p, const ecc_point* pm)
{
XMEMSET(p->x, 0, sizeof(p->x));
XMEMSET(p->y, 0, sizeof(p->y));
XMEMSET(p->z, 0, sizeof(p->z));
sp_256_from_mp(p->x, 8, pm->x);
sp_256_from_mp(p->y, 8, pm->y);
sp_256_from_mp(p->z, 8, pm->z);
p->infinity = 0;
}
/* Convert an array of sp_digit to an mp_int.
*
* a A single precision integer.
* r A multi-precision integer.
*/
static int sp_256_to_mp(const sp_digit* a, mp_int* r)
{
int err;
err = mp_grow(r, (256 + DIGIT_BIT - 1) / DIGIT_BIT);
if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
#if DIGIT_BIT == 32
XMEMCPY(r->dp, a, sizeof(sp_digit) * 8);
r->used = 8;
mp_clamp(r);
#elif DIGIT_BIT < 32
int i, j = 0, s = 0;
r->dp[0] = 0;
for (i = 0; i < 8; i++) {
r->dp[j] |= (mp_digit)(a[i] << s);
r->dp[j] &= (1L << DIGIT_BIT) - 1;
s = DIGIT_BIT - s;
r->dp[++j] = (mp_digit)(a[i] >> s);
while (s + DIGIT_BIT <= 32) {
s += DIGIT_BIT;
r->dp[j++] &= (1L << DIGIT_BIT) - 1;
if (s == SP_WORD_SIZE) {
r->dp[j] = 0;
}
else {
r->dp[j] = (mp_digit)(a[i] >> s);
}
}
s = 32 - s;
}
r->used = (256 + DIGIT_BIT - 1) / DIGIT_BIT;
mp_clamp(r);
#else
int i, j = 0, s = 0;
r->dp[0] = 0;
for (i = 0; i < 8; i++) {
r->dp[j] |= ((mp_digit)a[i]) << s;
if (s + 32 >= DIGIT_BIT) {
#if DIGIT_BIT != 32 && DIGIT_BIT != 64
r->dp[j] &= (1L << DIGIT_BIT) - 1;
#endif
s = DIGIT_BIT - s;
r->dp[++j] = a[i] >> s;
s = 32 - s;
}
else {
s += 32;
}
}
r->used = (256 + DIGIT_BIT - 1) / DIGIT_BIT;
mp_clamp(r);
#endif
}
return err;
}
/* Convert a point of type sp_point_256 to type ecc_point.
*
* p Point of type sp_point_256.
* pm Point of type ecc_point (result).
* returns MEMORY_E when allocation of memory in ecc_point fails otherwise
* MP_OKAY.
*/
static int sp_256_point_to_ecc_point_8(const sp_point_256* p, ecc_point* pm)
{
int err;
err = sp_256_to_mp(p->x, pm->x);
if (err == MP_OKAY) {
err = sp_256_to_mp(p->y, pm->y);
}
if (err == MP_OKAY) {
err = sp_256_to_mp(p->z, pm->z);
}
return err;
}
/* Multiply a and b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static void sp_256_mul_8(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit tmp[8 * 2];
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"mov r8, r3\n\t"
"mov r11, %[r]\n\t"
"mov r9, %[a]\n\t"
"mov r10, %[b]\n\t"
"mov r6, #32\n\t"
"add r6, r9\n\t"
"mov r12, r6\n\t"
"\n1:\n\t"
"mov %[r], #0\n\t"
"mov r5, #0\n\t"
"mov r6, #28\n\t"
"mov %[a], r8\n\t"
"sub %[a], r6\n\t"
"sbc r6, r6\n\t"
"mvn r6, r6\n\t"
"and %[a], r6\n\t"
"mov %[b], r8\n\t"
"sub %[b], %[a]\n\t"
"add %[a], r9\n\t"
"add %[b], r10\n\t"
"\n2:\n\t"
"# Multiply Start\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [%[b]]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [%[b]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [%[b]]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [%[b]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Multiply Done\n\t"
"add %[a], #4\n\t"
"sub %[b], #4\n\t"
"cmp %[a], r12\n\t"
"beq 3f\n\t"
"mov r6, r8\n\t"
"add r6, r9\n\t"
"cmp %[a], r6\n\t"
"ble 2b\n\t"
"\n3:\n\t"
"mov %[r], r11\n\t"
"mov r7, r8\n\t"
"str r3, [%[r], r7]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"add r7, #4\n\t"
"mov r8, r7\n\t"
"mov r6, #56\n\t"
"cmp r7, r6\n\t"
"ble 1b\n\t"
"str r3, [%[r], r7]\n\t"
"mov %[a], r9\n\t"
"mov %[b], r10\n\t"
:
: [r] "r" (tmp), [a] "r" (a), [b] "r" (b)
: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12"
);
XMEMCPY(r, tmp, sizeof(tmp));
}
/* Conditionally subtract b from a using the mask m.
* m is -1 to subtract and 0 when not copying.
*
* r A single precision number representing condition subtract result.
* a A single precision number to subtract from.
* b A single precision number to subtract.
* m Mask value to apply.
*/
SP_NOINLINE static sp_digit sp_256_cond_sub_8(sp_digit* r, const sp_digit* a,
const sp_digit* b, sp_digit m)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r5, #32\n\t"
"mov r8, r5\n\t"
"mov r7, #0\n\t"
"1:\n\t"
"ldr r6, [%[b], r7]\n\t"
"and r6, %[m]\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r5, [%[a], r7]\n\t"
"sbc r5, r6\n\t"
"sbc %[c], %[c]\n\t"
"str r5, [%[r], r7]\n\t"
"add r7, #4\n\t"
"cmp r7, r8\n\t"
"blt 1b\n\t"
: [c] "+r" (c)
: [r] "r" (r), [a] "r" (a), [b] "r" (b), [m] "r" (m)
: "memory", "r5", "r6", "r7", "r8"
);
return c;
}
/* Reduce the number back to 256 bits using Montgomery reduction.
*
* a A single precision number to reduce in place.
* m The single precision number representing the modulus.
* mp The digit representing the negative inverse of m mod 2^n.
*/
SP_NOINLINE static void sp_256_mont_reduce_8(sp_digit* a, const sp_digit* m,
sp_digit mp)
{
(void)mp;
(void)m;
__asm__ __volatile__ (
"mov r2, #0\n\t"
"mov r1, #0\n\t"
"# i = 0\n\t"
"mov r8, r2\n\t"
"\n1:\n\t"
"mov r4, #0\n\t"
"# mu = a[i] * 1 (mp) = a[i]\n\t"
"ldr r3, [%[a]]\n\t"
"# a[i+0] += -1 * mu\n\t"
"mov r5, r3\n\t"
"str r4, [%[a], #0]\n\t"
"# a[i+1] += -1 * mu\n\t"
"ldr r6, [%[a], #4]\n\t"
"mov r4, r3\n\t"
"sub r5, r3\n\t"
"sbc r4, r2\n\t"
"add r5, r6\n\t"
"adc r4, r2\n\t"
"str r5, [%[a], #4]\n\t"
"# a[i+2] += -1 * mu\n\t"
"ldr r6, [%[a], #8]\n\t"
"mov r5, r3\n\t"
"sub r4, r3\n\t"
"sbc r5, r2\n\t"
"add r4, r6\n\t"
"adc r5, r2\n\t"
"str r4, [%[a], #8]\n\t"
"# a[i+3] += 0 * mu\n\t"
"ldr r6, [%[a], #12]\n\t"
"mov r4, #0\n\t"
"add r5, r6\n\t"
"adc r4, r2\n\t"
"str r5, [%[a], #12]\n\t"
"# a[i+4] += 0 * mu\n\t"
"ldr r6, [%[a], #16]\n\t"
"mov r5, #0\n\t"
"add r4, r6\n\t"
"adc r5, r2\n\t"
"str r4, [%[a], #16]\n\t"
"# a[i+5] += 0 * mu\n\t"
"ldr r6, [%[a], #20]\n\t"
"mov r4, #0\n\t"
"add r5, r6\n\t"
"adc r4, r2\n\t"
"str r5, [%[a], #20]\n\t"
"# a[i+6] += 1 * mu\n\t"
"ldr r6, [%[a], #24]\n\t"
"mov r5, #0\n\t"
"add r4, r3\n\t"
"adc r5, r2\n\t"
"add r4, r6\n\t"
"adc r5, r2\n\t"
"str r4, [%[a], #24]\n\t"
"# a[i+7] += -1 * mu\n\t"
"ldr r6, [%[a], #28]\n\t"
"ldr r7, [%[a], #32]\n\t"
"add r4, r1, r3\n\t"
"mov r1, #0\n\t"
"adc r1, r2\n\t"
"sub r5, r3\n\t"
"sbc r4, r2\n\t"
"sbc r1, r2\n\t"
"add r5, r6\n\t"
"adc r4, r7\n\t"
"adc r1, r2\n\t"
"str r5, [%[a], #28]\n\t"
"str r4, [%[a], #32]\n\t"
"# i += 1\n\t"
"mov r6, #4\n\t"
"add r8, r6\n\t"
"add %[a], #4\n\t"
"mov r6, #32\n\t"
"cmp r8, r6\n\t"
"blt 1b\n\t"
"sub %[a], #32\n\t"
"mov r3, r1\n\t"
"sub r1, #1\n\t"
"mvn r1, r1\n\t"
"ldr r5, [%[a],#32]\n\t"
"ldr r4, [%[a],#36]\n\t"
"ldr r6, [%[a],#40]\n\t"
"ldr r7, [%[a],#44]\n\t"
"sub r5, r1\n\t"
"sbc r4, r1\n\t"
"sbc r6, r1\n\t"
"sbc r7, r2\n\t"
"str r5, [%[a],#0]\n\t"
"str r4, [%[a],#4]\n\t"
"str r6, [%[a],#8]\n\t"
"str r7, [%[a],#12]\n\t"
"ldr r5, [%[a],#48]\n\t"
"ldr r4, [%[a],#52]\n\t"
"ldr r6, [%[a],#56]\n\t"
"ldr r7, [%[a],#60]\n\t"
"sbc r5, r2\n\t"
"sbc r4, r2\n\t"
"sbc r6, r3\n\t"
"sbc r7, r1\n\t"
"str r5, [%[a],#16]\n\t"
"str r4, [%[a],#20]\n\t"
"str r6, [%[a],#24]\n\t"
"str r7, [%[a],#28]\n\t"
: [a] "+r" (a)
:
: "memory", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8"
);
(void)m;
(void)mp;
}
/* Reduce the number back to 256 bits using Montgomery reduction.
*
* a A single precision number to reduce in place.
* m The single precision number representing the modulus.
* mp The digit representing the negative inverse of m mod 2^n.
*/
SP_NOINLINE static void sp_256_mont_reduce_order_8(sp_digit* a, const sp_digit* m,
sp_digit mp)
{
sp_digit ca = 0;
__asm__ __volatile__ (
"mov r8, %[mp]\n\t"
"mov r12, %[ca]\n\t"
"mov r14, %[m]\n\t"
"mov r9, %[a]\n\t"
"mov r4, #0\n\t"
"# i = 0\n\t"
"mov r11, r4\n\t"
"\n1:\n\t"
"mov r5, #0\n\t"
"mov %[ca], #0\n\t"
"# mu = a[i] * mp\n\t"
"mov %[mp], r8\n\t"
"ldr %[a], [%[a]]\n\t"
"mul %[mp], %[a]\n\t"
"mov %[m], r14\n\t"
"mov r10, r9\n\t"
"\n2:\n\t"
"# a[i+j] += m[j] * mu\n\t"
"mov %[a], r10\n\t"
"ldr %[a], [%[a]]\n\t"
"mov %[ca], #0\n\t"
"mov r4, r5\n\t"
"mov r5, #0\n\t"
"# Multiply m[j] and mu - Start\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r6, %[mp], #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add %[a], r7\n\t"
"adc r5, %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add %[a], r6\n\t"
"adc r5, r7\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r6, %[mp], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r5, r7\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add %[a], r6\n\t"
"adc r5, r7\n\t"
"# Multiply m[j] and mu - Done\n\t"
"add r4, %[a]\n\t"
"adc r5, %[ca]\n\t"
"mov %[a], r10\n\t"
"str r4, [%[a]]\n\t"
"mov r6, #4\n\t"
"add %[m], #4\n\t"
"add r10, r6\n\t"
"mov r4, #28\n\t"
"add r4, r9\n\t"
"cmp r10, r4\n\t"
"blt 2b\n\t"
"# a[i+7] += m[7] * mu\n\t"
"mov %[ca], #0\n\t"
"mov r4, r12\n\t"
"mov %[a], #0\n\t"
"# Multiply m[7] and mu - Start\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r6, %[mp], #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r5, r7\n\t"
"adc r4, %[ca]\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r5, r6\n\t"
"adc r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r6, %[mp], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r5, r6\n\t"
"adc r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"# Multiply m[7] and mu - Done\n\t"
"mov %[ca], %[a]\n\t"
"mov %[a], r10\n\t"
"ldr r7, [%[a], #4]\n\t"
"ldr %[a], [%[a]]\n\t"
"mov r6, #0\n\t"
"add r5, %[a]\n\t"
"adc r7, r4\n\t"
"adc %[ca], r6\n\t"
"mov %[a], r10\n\t"
"str r5, [%[a]]\n\t"
"str r7, [%[a], #4]\n\t"
"# i += 1\n\t"
"mov r6, #4\n\t"
"add r9, r6\n\t"
"add r11, r6\n\t"
"mov r12, %[ca]\n\t"
"mov %[a], r9\n\t"
"mov r4, #32\n\t"
"cmp r11, r4\n\t"
"blt 1b\n\t"
"mov %[m], r14\n\t"
: [ca] "+r" (ca), [a] "+r" (a)
: [m] "r" (m), [mp] "r" (mp)
: "memory", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14"
);
sp_256_cond_sub_8(a - 8, a, m, (sp_digit)0 - ca);
}
/* Multiply two Montogmery form numbers mod the modulus (prime).
* (r = a * b mod m)
*
* r Result of multiplication.
* a First number to multiply in Montogmery form.
* b Second number to multiply in Montogmery form.
* m Modulus (prime).
* mp Montogmery mulitplier.
*/
static void sp_256_mont_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b,
const sp_digit* m, sp_digit mp)
{
sp_256_mul_8(r, a, b);
sp_256_mont_reduce_8(r, m, mp);
}
/* Square a and put result in r. (r = a * a)
*
* r A single precision integer.
* a A single precision integer.
*/
SP_NOINLINE static void sp_256_sqr_8(sp_digit* r, const sp_digit* a)
{
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"mov r5, #0\n\t"
"mov r8, r3\n\t"
"mov r11, %[r]\n\t"
"mov r6, #64\n\t"
"neg r6, r6\n\t"
"add sp, r6\n\t"
"mov r10, sp\n\t"
"mov r9, %[a]\n\t"
"\n1:\n\t"
"mov %[r], #0\n\t"
"mov r6, #28\n\t"
"mov %[a], r8\n\t"
"sub %[a], r6\n\t"
"sbc r6, r6\n\t"
"mvn r6, r6\n\t"
"and %[a], r6\n\t"
"mov r2, r8\n\t"
"sub r2, %[a]\n\t"
"add %[a], r9\n\t"
"add r2, r9\n\t"
"\n2:\n\t"
"cmp r2, %[a]\n\t"
"beq 4f\n\t"
"# Multiply * 2: Start\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [r2]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [r2]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [r2]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [r2]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Multiply * 2: Done\n\t"
"bal 5f\n\t"
"\n4:\n\t"
"# Square: Start\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"lsr r6, r6, #16\n\t"
"mul r6, r6\n\t"
"add r3, r6\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"mul r7, r7\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"lsr r6, r6, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #15\n\t"
"lsl r6, r6, #17\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Square: Done\n\t"
"\n5:\n\t"
"add %[a], #4\n\t"
"sub r2, #4\n\t"
"mov r6, #32\n\t"
"add r6, r9\n\t"
"cmp %[a], r6\n\t"
"beq 3f\n\t"
"cmp %[a], r2\n\t"
"bgt 3f\n\t"
"mov r7, r8\n\t"
"add r7, r9\n\t"
"cmp %[a], r7\n\t"
"ble 2b\n\t"
"\n3:\n\t"
"mov %[r], r10\n\t"
"mov r7, r8\n\t"
"str r3, [%[r], r7]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"mov r5, #0\n\t"
"add r7, #4\n\t"
"mov r8, r7\n\t"
"mov r6, #56\n\t"
"cmp r7, r6\n\t"
"ble 1b\n\t"
"mov %[a], r9\n\t"
"str r3, [%[r], r7]\n\t"
"mov %[r], r11\n\t"
"mov %[a], r10\n\t"
"mov r3, #60\n\t"
"\n4:\n\t"
"ldr r6, [%[a], r3]\n\t"
"str r6, [%[r], r3]\n\t"
"sub r3, #4\n\t"
"bge 4b\n\t"
"mov r6, #64\n\t"
"add sp, r6\n\t"
:
: [r] "r" (r), [a] "r" (a)
: "memory", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11"
);
}
/* Square the Montgomery form number. (r = a * a mod m)
*
* r Result of squaring.
* a Number to square in Montogmery form.
* m Modulus (prime).
* mp Montogmery mulitplier.
*/
static void sp_256_mont_sqr_8(sp_digit* r, const sp_digit* a, const sp_digit* m,
sp_digit mp)
{
sp_256_sqr_8(r, a);
sp_256_mont_reduce_8(r, m, mp);
}
#if !defined(WOLFSSL_SP_SMALL) || defined(HAVE_COMP_KEY)
/* Square the Montgomery form number a number of times. (r = a ^ n mod m)
*
* r Result of squaring.
* a Number to square in Montogmery form.
* n Number of times to square.
* m Modulus (prime).
* mp Montogmery mulitplier.
*/
static void sp_256_mont_sqr_n_8(sp_digit* r, const sp_digit* a, int n,
const sp_digit* m, sp_digit mp)
{
sp_256_mont_sqr_8(r, a, m, mp);
for (; n > 1; n--) {
sp_256_mont_sqr_8(r, r, m, mp);
}
}
#endif /* !WOLFSSL_SP_SMALL || HAVE_COMP_KEY */
#ifdef WOLFSSL_SP_SMALL
/* Mod-2 for the P256 curve. */
static const uint32_t p256_mod_minus_2[8] = {
0xfffffffdU,0xffffffffU,0xffffffffU,0x00000000U,0x00000000U,0x00000000U,
0x00000001U,0xffffffffU
};
#endif /* !WOLFSSL_SP_SMALL */
/* Invert the number, in Montgomery form, modulo the modulus (prime) of the
* P256 curve. (r = 1 / a mod m)
*
* r Inverse result.
* a Number to invert.
* td Temporary data.
*/
static void sp_256_mont_inv_8(sp_digit* r, const sp_digit* a, sp_digit* td)
{
#ifdef WOLFSSL_SP_SMALL
sp_digit* t = td;
int i;
XMEMCPY(t, a, sizeof(sp_digit) * 8);
for (i=254; i>=0; i--) {
sp_256_mont_sqr_8(t, t, p256_mod, p256_mp_mod);
if (p256_mod_minus_2[i / 32] & ((sp_digit)1 << (i % 32)))
sp_256_mont_mul_8(t, t, a, p256_mod, p256_mp_mod);
}
XMEMCPY(r, t, sizeof(sp_digit) * 8);
#else
sp_digit* t1 = td;
sp_digit* t2 = td + 2 * 8;
sp_digit* t3 = td + 4 * 8;
/* 0x2 */
sp_256_mont_sqr_8(t1, a, p256_mod, p256_mp_mod);
/* 0x3 */
sp_256_mont_mul_8(t2, t1, a, p256_mod, p256_mp_mod);
/* 0xc */
sp_256_mont_sqr_n_8(t1, t2, 2, p256_mod, p256_mp_mod);
/* 0xd */
sp_256_mont_mul_8(t3, t1, a, p256_mod, p256_mp_mod);
/* 0xf */
sp_256_mont_mul_8(t2, t2, t1, p256_mod, p256_mp_mod);
/* 0xf0 */
sp_256_mont_sqr_n_8(t1, t2, 4, p256_mod, p256_mp_mod);
/* 0xfd */
sp_256_mont_mul_8(t3, t3, t1, p256_mod, p256_mp_mod);
/* 0xff */
sp_256_mont_mul_8(t2, t2, t1, p256_mod, p256_mp_mod);
/* 0xff00 */
sp_256_mont_sqr_n_8(t1, t2, 8, p256_mod, p256_mp_mod);
/* 0xfffd */
sp_256_mont_mul_8(t3, t3, t1, p256_mod, p256_mp_mod);
/* 0xffff */
sp_256_mont_mul_8(t2, t2, t1, p256_mod, p256_mp_mod);
/* 0xffff0000 */
sp_256_mont_sqr_n_8(t1, t2, 16, p256_mod, p256_mp_mod);
/* 0xfffffffd */
sp_256_mont_mul_8(t3, t3, t1, p256_mod, p256_mp_mod);
/* 0xffffffff */
sp_256_mont_mul_8(t2, t2, t1, p256_mod, p256_mp_mod);
/* 0xffffffff00000000 */
sp_256_mont_sqr_n_8(t1, t2, 32, p256_mod, p256_mp_mod);
/* 0xffffffffffffffff */
sp_256_mont_mul_8(t2, t2, t1, p256_mod, p256_mp_mod);
/* 0xffffffff00000001 */
sp_256_mont_mul_8(r, t1, a, p256_mod, p256_mp_mod);
/* 0xffffffff000000010000000000000000000000000000000000000000 */
sp_256_mont_sqr_n_8(r, r, 160, p256_mod, p256_mp_mod);
/* 0xffffffff00000001000000000000000000000000ffffffffffffffff */
sp_256_mont_mul_8(r, r, t2, p256_mod, p256_mp_mod);
/* 0xffffffff00000001000000000000000000000000ffffffffffffffff00000000 */
sp_256_mont_sqr_n_8(r, r, 32, p256_mod, p256_mp_mod);
/* 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffd */
sp_256_mont_mul_8(r, r, t3, p256_mod, p256_mp_mod);
#endif /* WOLFSSL_SP_SMALL */
}
/* Compare a with b in constant time.
*
* a A single precision integer.
* b A single precision integer.
* return -ve, 0 or +ve if a is less than, equal to or greater than b
* respectively.
*/
SP_NOINLINE static int32_t sp_256_cmp_8(const sp_digit* a, const sp_digit* b)
{
sp_digit r = 0;
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mvn r3, r3\n\t"
"mov r6, #28\n\t"
"1:\n\t"
"ldr r7, [%[a], r6]\n\t"
"ldr r5, [%[b], r6]\n\t"
"and r7, r3\n\t"
"and r5, r3\n\t"
"mov r4, r7\n\t"
"sub r7, r5\n\t"
"sbc r7, r7\n\t"
"add %[r], r7\n\t"
"mvn r7, r7\n\t"
"and r3, r7\n\t"
"sub r5, r4\n\t"
"sbc r7, r7\n\t"
"sub %[r], r7\n\t"
"mvn r7, r7\n\t"
"and r3, r7\n\t"
"sub r6, #4\n\t"
"cmp r6, #0\n\t"
"bge 1b\n\t"
: [r] "+r" (r)
: [a] "r" (a), [b] "r" (b)
: "r3", "r4", "r5", "r6", "r7"
);
return r;
}
/* Normalize the values in each word to 32.
*
* a Array of sp_digit to normalize.
*/
#define sp_256_norm_8(a)
/* Map the Montgomery form projective coordinate point to an affine point.
*
* r Resulting affine coordinate point.
* p Montgomery form projective coordinate point.
* t Temporary ordinate data.
*/
static void sp_256_map_8(sp_point_256* r, const sp_point_256* p, sp_digit* t)
{
sp_digit* t1 = t;
sp_digit* t2 = t + 2*8;
int32_t n;
sp_256_mont_inv_8(t1, p->z, t + 2*8);
sp_256_mont_sqr_8(t2, t1, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(t1, t2, t1, p256_mod, p256_mp_mod);
/* x /= z^2 */
sp_256_mont_mul_8(r->x, p->x, t2, p256_mod, p256_mp_mod);
XMEMSET(r->x + 8, 0, sizeof(r->x) / 2U);
sp_256_mont_reduce_8(r->x, p256_mod, p256_mp_mod);
/* Reduce x to less than modulus */
n = sp_256_cmp_8(r->x, p256_mod);
sp_256_cond_sub_8(r->x, r->x, p256_mod, 0 - ((n >= 0) ?
(sp_digit)1 : (sp_digit)0));
sp_256_norm_8(r->x);
/* y /= z^3 */
sp_256_mont_mul_8(r->y, p->y, t1, p256_mod, p256_mp_mod);
XMEMSET(r->y + 8, 0, sizeof(r->y) / 2U);
sp_256_mont_reduce_8(r->y, p256_mod, p256_mp_mod);
/* Reduce y to less than modulus */
n = sp_256_cmp_8(r->y, p256_mod);
sp_256_cond_sub_8(r->y, r->y, p256_mod, 0 - ((n >= 0) ?
(sp_digit)1 : (sp_digit)0));
sp_256_norm_8(r->y);
XMEMSET(r->z, 0, sizeof(r->z));
r->z[0] = 1;
}
#ifdef WOLFSSL_SP_SMALL
/* Add b to a into r. (r = a + b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_256_add_8(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r6, %[a]\n\t"
"mov r7, #0\n\t"
"add r6, #32\n\t"
"sub r7, #1\n\t"
"\n1:\n\t"
"add %[c], r7\n\t"
"ldr r4, [%[a]]\n\t"
"ldr r5, [%[b]]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r]]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
"add %[a], #4\n\t"
"add %[b], #4\n\t"
"add %[r], #4\n\t"
"cmp %[a], r6\n\t"
"bne 1b\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5", "r6", "r7"
);
return c;
}
#else
/* Add b to a into r. (r = a + b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_256_add_8(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[b], #0]\n\t"
"add r4, r5\n\t"
"str r4, [%[r], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #4]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[b], #8]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #12]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[b], #16]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #20]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[b], #24]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #28]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #28]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5"
);
return c;
}
#endif /* WOLFSSL_SP_SMALL */
/* Add two Montgomery form numbers (r = a + b % m).
*
* r Result of addition.
* a First number to add in Montogmery form.
* b Second number to add in Montogmery form.
* m Modulus (prime).
*/
SP_NOINLINE static void sp_256_mont_add_8(sp_digit* r, const sp_digit* a, const sp_digit* b,
const sp_digit* m)
{
(void)m;
__asm__ __volatile__ (
"mov r3, #0\n\t"
"ldr r4, [%[a],#0]\n\t"
"ldr r5, [%[a],#4]\n\t"
"ldr r6, [%[b],#0]\n\t"
"ldr r7, [%[b],#4]\n\t"
"add r4, r6\n\t"
"adc r5, r7\n\t"
"str r4, [%[r],#0]\n\t"
"str r5, [%[r],#4]\n\t"
"ldr r4, [%[a],#8]\n\t"
"ldr r5, [%[a],#12]\n\t"
"ldr r6, [%[b],#8]\n\t"
"ldr r7, [%[b],#12]\n\t"
"adc r4, r6\n\t"
"adc r5, r7\n\t"
"str r4, [%[r],#8]\n\t"
"str r5, [%[r],#12]\n\t"
"ldr r4, [%[a],#16]\n\t"
"ldr r5, [%[a],#20]\n\t"
"ldr r6, [%[b],#16]\n\t"
"ldr r7, [%[b],#20]\n\t"
"adc r4, r6\n\t"
"adc r5, r7\n\t"
"mov r8, r4\n\t"
"mov r9, r5\n\t"
"ldr r4, [%[a],#24]\n\t"
"ldr r5, [%[a],#28]\n\t"
"ldr r6, [%[b],#24]\n\t"
"ldr r7, [%[b],#28]\n\t"
"adc r4, r6\n\t"
"adc r5, r7\n\t"
"mov r10, r4\n\t"
"mov r11, r5\n\t"
"adc r3, r3\n\t"
"mov r6, r3\n\t"
"sub r3, #1\n\t"
"mvn r3, r3\n\t"
"mov r7, #0\n\t"
"ldr r4, [%[r],#0]\n\t"
"ldr r5, [%[r],#4]\n\t"
"sub r4, r3\n\t"
"sbc r5, r3\n\t"
"str r4, [%[r],#0]\n\t"
"str r5, [%[r],#4]\n\t"
"ldr r4, [%[r],#8]\n\t"
"ldr r5, [%[r],#12]\n\t"
"sbc r4, r3\n\t"
"sbc r5, r7\n\t"
"str r4, [%[r],#8]\n\t"
"str r5, [%[r],#12]\n\t"
"mov r4, r8\n\t"
"mov r5, r9\n\t"
"sbc r4, r7\n\t"
"sbc r5, r7\n\t"
"str r4, [%[r],#16]\n\t"
"str r5, [%[r],#20]\n\t"
"mov r4, r10\n\t"
"mov r5, r11\n\t"
"sbc r4, r6\n\t"
"sbc r5, r3\n\t"
"str r4, [%[r],#24]\n\t"
"str r5, [%[r],#28]\n\t"
:
: [r] "r" (r), [a] "r" (a), [b] "r" (b)
: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11"
);
}
/* Double a Montgomery form number (r = a + a % m).
*
* r Result of doubling.
* a Number to double in Montogmery form.
* m Modulus (prime).
*/
SP_NOINLINE static void sp_256_mont_dbl_8(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
(void)m;
__asm__ __volatile__ (
"ldr r4, [%[a],#0]\n\t"
"ldr r5, [%[a],#4]\n\t"
"ldr r6, [%[a],#8]\n\t"
"ldr r7, [%[a],#12]\n\t"
"add r4, r4\n\t"
"adc r5, r5\n\t"
"adc r6, r6\n\t"
"adc r7, r7\n\t"
"str r4, [%[r],#0]\n\t"
"str r5, [%[r],#4]\n\t"
"str r6, [%[r],#8]\n\t"
"str r7, [%[r],#12]\n\t"
"ldr r4, [%[a],#16]\n\t"
"ldr r5, [%[a],#20]\n\t"
"ldr r6, [%[a],#24]\n\t"
"ldr r7, [%[a],#28]\n\t"
"adc r4, r4\n\t"
"adc r5, r5\n\t"
"adc r6, r6\n\t"
"adc r7, r7\n\t"
"mov r8, r4\n\t"
"mov r9, r5\n\t"
"mov r10, r6\n\t"
"mov r11, r7\n\t"
"mov r3, #0\n\t"
"mov r7, #0\n\t"
"adc r3, r3\n\t"
"mov r2, r3\n\t"
"sub r3, #1\n\t"
"mvn r3, r3\n\t"
"ldr r4, [%[r],#0]\n\t"
"ldr r5, [%[r],#4]\n\t"
"ldr r6, [%[r],#8]\n\t"
"sub r4, r3\n\t"
"sbc r5, r3\n\t"
"sbc r6, r3\n\t"
"str r4, [%[r],#0]\n\t"
"str r5, [%[r],#4]\n\t"
"str r6, [%[r],#8]\n\t"
"ldr r4, [%[r],#12]\n\t"
"mov r5, r8\n\t"
"mov r6, r9\n\t"
"sbc r4, r7\n\t"
"sbc r5, r7\n\t"
"sbc r6, r7\n\t"
"str r4, [%[r],#12]\n\t"
"str r5, [%[r],#16]\n\t"
"str r6, [%[r],#20]\n\t"
"mov r4, r10\n\t"
"mov r5, r11\n\t"
"sbc r4, r2\n\t"
"sbc r5, r3\n\t"
"str r4, [%[r],#24]\n\t"
"str r5, [%[r],#28]\n\t"
:
: [r] "r" (r), [a] "r" (a)
: "memory", "r3", "r2", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11"
);
}
/* Triple a Montgomery form number (r = a + a + a % m).
*
* r Result of Tripling.
* a Number to triple in Montogmery form.
* m Modulus (prime).
*/
SP_NOINLINE static void sp_256_mont_tpl_8(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
(void)m;
__asm__ __volatile__ (
"ldr r6, [%[a],#0]\n\t"
"ldr r7, [%[a],#4]\n\t"
"ldr r4, [%[a],#8]\n\t"
"ldr r5, [%[a],#12]\n\t"
"add r6, r6\n\t"
"adc r7, r7\n\t"
"adc r4, r4\n\t"
"adc r5, r5\n\t"
"mov r8, r4\n\t"
"mov r9, r5\n\t"
"ldr r2, [%[a],#16]\n\t"
"ldr r3, [%[a],#20]\n\t"
"ldr r4, [%[a],#24]\n\t"
"ldr r5, [%[a],#28]\n\t"
"adc r2, r2\n\t"
"adc r3, r3\n\t"
"adc r4, r4\n\t"
"adc r5, r5\n\t"
"mov r10, r2\n\t"
"mov r11, r3\n\t"
"mov r12, r4\n\t"
"mov r14, r5\n\t"
"mov r3, #0\n\t"
"mov r5, #0\n\t"
"adc r3, r3\n\t"
"mov r4, r3\n\t"
"sub r3, #1\n\t"
"mvn r3, r3\n\t"
"sub r6, r3\n\t"
"sbc r7, r3\n\t"
"mov r2, r8\n\t"
"sbc r2, r3\n\t"
"mov r8, r2\n\t"
"mov r2, r9\n\t"
"sbc r2, r5\n\t"
"mov r9, r2\n\t"
"mov r2, r10\n\t"
"sbc r2, r5\n\t"
"mov r10, r2\n\t"
"mov r2, r11\n\t"
"sbc r2, r5\n\t"
"mov r11, r2\n\t"
"mov r2, r12\n\t"
"sbc r2, r4\n\t"
"mov r12, r2\n\t"
"mov r2, r14\n\t"
"sbc r2, r3\n\t"
"mov r14, r2\n\t"
"ldr r2, [%[a],#0]\n\t"
"ldr r3, [%[a],#4]\n\t"
"add r6, r2\n\t"
"adc r7, r3\n\t"
"ldr r2, [%[a],#8]\n\t"
"ldr r3, [%[a],#12]\n\t"
"mov r4, r8\n\t"
"mov r5, r9\n\t"
"adc r2, r4\n\t"
"adc r3, r5\n\t"
"mov r8, r2\n\t"
"mov r9, r3\n\t"
"ldr r2, [%[a],#16]\n\t"
"ldr r3, [%[a],#20]\n\t"
"mov r4, r10\n\t"
"mov r5, r11\n\t"
"adc r2, r4\n\t"
"adc r3, r5\n\t"
"mov r10, r2\n\t"
"mov r11, r3\n\t"
"ldr r2, [%[a],#24]\n\t"
"ldr r3, [%[a],#28]\n\t"
"mov r4, r12\n\t"
"mov r5, r14\n\t"
"adc r2, r4\n\t"
"adc r3, r5\n\t"
"mov r12, r2\n\t"
"mov r14, r3\n\t"
"mov r3, #0\n\t"
"mov r5, #0\n\t"
"adc r3, r3\n\t"
"mov r4, r3\n\t"
"sub r3, #1\n\t"
"mvn r3, r3\n\t"
"sub r6, r3\n\t"
"str r6, [%[r],#0]\n\t"
"sbc r7, r3\n\t"
"str r7, [%[r],#4]\n\t"
"mov r2, r8\n\t"
"sbc r2, r3\n\t"
"str r2, [%[r],#8]\n\t"
"mov r2, r9\n\t"
"sbc r2, r5\n\t"
"str r2, [%[r],#12]\n\t"
"mov r2, r10\n\t"
"sbc r2, r5\n\t"
"str r2, [%[r],#16]\n\t"
"mov r2, r11\n\t"
"sbc r2, r5\n\t"
"str r2, [%[r],#20]\n\t"
"mov r2, r12\n\t"
"sbc r2, r4\n\t"
"str r2, [%[r],#24]\n\t"
"mov r2, r14\n\t"
"sbc r2, r3\n\t"
"str r2, [%[r],#28]\n\t"
:
: [r] "r" (r), [a] "r" (a)
: "memory", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14"
);
}
/* Subtract two Montgomery form numbers (r = a - b % m).
*
* r Result of subtration.
* a Number to subtract from in Montogmery form.
* b Number to subtract with in Montogmery form.
* m Modulus (prime).
*/
SP_NOINLINE static void sp_256_mont_sub_8(sp_digit* r, const sp_digit* a, const sp_digit* b,
const sp_digit* m)
{
(void)m;
__asm__ __volatile__ (
"ldr r4, [%[a],#0]\n\t"
"ldr r5, [%[a],#4]\n\t"
"ldr r6, [%[b],#0]\n\t"
"ldr r7, [%[b],#4]\n\t"
"sub r4, r6\n\t"
"sbc r5, r7\n\t"
"str r4, [%[r],#0]\n\t"
"str r5, [%[r],#4]\n\t"
"ldr r4, [%[a],#8]\n\t"
"ldr r5, [%[a],#12]\n\t"
"ldr r6, [%[b],#8]\n\t"
"ldr r7, [%[b],#12]\n\t"
"sbc r4, r6\n\t"
"sbc r5, r7\n\t"
"str r4, [%[r],#8]\n\t"
"str r5, [%[r],#12]\n\t"
"ldr r4, [%[a],#16]\n\t"
"ldr r5, [%[a],#20]\n\t"
"ldr r6, [%[b],#16]\n\t"
"ldr r7, [%[b],#20]\n\t"
"sbc r4, r6\n\t"
"sbc r5, r7\n\t"
"mov r8, r4\n\t"
"mov r9, r5\n\t"
"ldr r4, [%[a],#24]\n\t"
"ldr r5, [%[a],#28]\n\t"
"ldr r6, [%[b],#24]\n\t"
"ldr r7, [%[b],#28]\n\t"
"sbc r4, r6\n\t"
"sbc r5, r7\n\t"
"mov r10, r4\n\t"
"mov r11, r5\n\t"
"sbc r3, r3\n\t"
"lsr r7, r3, #31\n\t"
"mov r6, #0\n\t"
"ldr r4, [%[r],#0]\n\t"
"ldr r5, [%[r],#4]\n\t"
"add r4, r3\n\t"
"adc r5, r3\n\t"
"str r4, [%[r],#0]\n\t"
"str r5, [%[r],#4]\n\t"
"ldr r4, [%[r],#8]\n\t"
"ldr r5, [%[r],#12]\n\t"
"adc r4, r3\n\t"
"adc r5, r6\n\t"
"str r4, [%[r],#8]\n\t"
"str r5, [%[r],#12]\n\t"
"mov r4, r8\n\t"
"mov r5, r9\n\t"
"adc r4, r6\n\t"
"adc r5, r6\n\t"
"str r4, [%[r],#16]\n\t"
"str r5, [%[r],#20]\n\t"
"mov r4, r10\n\t"
"mov r5, r11\n\t"
"adc r4, r7\n\t"
"adc r5, r3\n\t"
"str r4, [%[r],#24]\n\t"
"str r5, [%[r],#28]\n\t"
:
: [r] "r" (r), [a] "r" (a), [b] "r" (b)
: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11"
);
}
/* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m)
*
* r Result of division by 2.
* a Number to divide.
* m Modulus (prime).
*/
SP_NOINLINE static void sp_256_div2_8(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
__asm__ __volatile__ (
"ldr r7, [%[a], #0]\n\t"
"lsl r7, r7, #31\n\t"
"lsr r7, r7, #31\n\t"
"mov r5, #0\n\t"
"sub r5, r7\n\t"
"mov r7, #0\n\t"
"lsl r6, r5, #31\n\t"
"lsr r6, r6, #31\n\t"
"ldr r3, [%[a], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"add r3, r5\n\t"
"adc r4, r5\n\t"
"str r3, [%[r], #0]\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r3, [%[a], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"adc r3, r5\n\t"
"adc r4, r7\n\t"
"str r3, [%[r], #8]\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r3, [%[a], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"adc r3, r7\n\t"
"adc r4, r7\n\t"
"str r3, [%[r], #16]\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r3, [%[a], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"adc r3, r6\n\t"
"adc r4, r5\n\t"
"adc r7, r7\n\t"
"lsl r7, r7, #31\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, #31\n\t"
"lsr r6, r4, #1\n\t"
"lsl r4, r4, #31\n\t"
"orr r5, r4\n\t"
"orr r6, r7\n\t"
"mov r7, r3\n\t"
"str r5, [%[r], #24]\n\t"
"str r6, [%[r], #28]\n\t"
"ldr r3, [%[a], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, #31\n\t"
"lsr r6, r4, #1\n\t"
"lsl r4, r4, #31\n\t"
"orr r5, r4\n\t"
"orr r6, r7\n\t"
"mov r7, r3\n\t"
"str r5, [%[r], #16]\n\t"
"str r6, [%[r], #20]\n\t"
"ldr r3, [%[a], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"lsr r5, r3, #1\n\t"
"lsl r3, r3, #31\n\t"
"lsr r6, r4, #1\n\t"
"lsl r4, r4, #31\n\t"
"orr r5, r4\n\t"
"orr r6, r7\n\t"
"mov r7, r3\n\t"
"str r5, [%[r], #8]\n\t"
"str r6, [%[r], #12]\n\t"
"ldr r3, [%[r], #0]\n\t"
"ldr r4, [%[r], #4]\n\t"
"lsr r5, r3, #1\n\t"
"lsr r6, r4, #1\n\t"
"lsl r4, r4, #31\n\t"
"orr r5, r4\n\t"
"orr r6, r7\n\t"
"str r5, [%[r], #0]\n\t"
"str r6, [%[r], #4]\n\t"
:
: [r] "r" (r), [a] "r" (a), [m] "r" (m)
: "memory", "r3", "r4", "r5", "r6", "r7"
);
}
/* Double the Montgomery form projective point p.
*
* r Result of doubling point.
* p Point to double.
* t Temporary ordinate data.
*/
static void sp_256_proj_point_dbl_8(sp_point_256* r, const sp_point_256* p, sp_digit* t)
{
sp_digit* t1 = t;
sp_digit* t2 = t + 2*8;
sp_digit* x;
sp_digit* y;
sp_digit* z;
x = r->x;
y = r->y;
z = r->z;
/* Put infinity into result. */
if (r != p) {
r->infinity = p->infinity;
}
/* T1 = Z * Z */
sp_256_mont_sqr_8(t1, p->z, p256_mod, p256_mp_mod);
/* Z = Y * Z */
sp_256_mont_mul_8(z, p->y, p->z, p256_mod, p256_mp_mod);
/* Z = 2Z */
sp_256_mont_dbl_8(z, z, p256_mod);
/* T2 = X - T1 */
sp_256_mont_sub_8(t2, p->x, t1, p256_mod);
/* T1 = X + T1 */
sp_256_mont_add_8(t1, p->x, t1, p256_mod);
/* T2 = T1 * T2 */
sp_256_mont_mul_8(t2, t1, t2, p256_mod, p256_mp_mod);
/* T1 = 3T2 */
sp_256_mont_tpl_8(t1, t2, p256_mod);
/* Y = 2Y */
sp_256_mont_dbl_8(y, p->y, p256_mod);
/* Y = Y * Y */
sp_256_mont_sqr_8(y, y, p256_mod, p256_mp_mod);
/* T2 = Y * Y */
sp_256_mont_sqr_8(t2, y, p256_mod, p256_mp_mod);
/* T2 = T2/2 */
sp_256_div2_8(t2, t2, p256_mod);
/* Y = Y * X */
sp_256_mont_mul_8(y, y, p->x, p256_mod, p256_mp_mod);
/* X = T1 * T1 */
sp_256_mont_sqr_8(x, t1, p256_mod, p256_mp_mod);
/* X = X - Y */
sp_256_mont_sub_8(x, x, y, p256_mod);
/* X = X - Y */
sp_256_mont_sub_8(x, x, y, p256_mod);
/* Y = Y - X */
sp_256_mont_sub_8(y, y, x, p256_mod);
/* Y = Y * T1 */
sp_256_mont_mul_8(y, y, t1, p256_mod, p256_mp_mod);
/* Y = Y - T2 */
sp_256_mont_sub_8(y, y, t2, p256_mod);
}
#ifdef WOLFSSL_SP_SMALL
/* Sub b from a into r. (r = a - b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_256_sub_8(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r6, %[a]\n\t"
"add r6, #32\n\t"
"\n1:\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r4, [%[a]]\n\t"
"ldr r5, [%[b]]\n\t"
"sbc r4, r5\n\t"
"str r4, [%[r]]\n\t"
"sbc %[c], %[c]\n\t"
"add %[a], #4\n\t"
"add %[b], #4\n\t"
"add %[r], #4\n\t"
"cmp %[a], r6\n\t"
"bne 1b\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5", "r6"
);
return c;
}
#else
/* Sub b from a into r. (r = a - b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_256_sub_8(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[a], #4]\n\t"
"ldr r6, [%[b], #0]\n\t"
"ldr r7, [%[b], #4]\n\t"
"sub r4, r6\n\t"
"sbc r5, r7\n\t"
"str r4, [%[r], #0]\n\t"
"str r5, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[a], #12]\n\t"
"ldr r6, [%[b], #8]\n\t"
"ldr r7, [%[b], #12]\n\t"
"sbc r4, r6\n\t"
"sbc r5, r7\n\t"
"str r4, [%[r], #8]\n\t"
"str r5, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[a], #20]\n\t"
"ldr r6, [%[b], #16]\n\t"
"ldr r7, [%[b], #20]\n\t"
"sbc r4, r6\n\t"
"sbc r5, r7\n\t"
"str r4, [%[r], #16]\n\t"
"str r5, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[a], #28]\n\t"
"ldr r6, [%[b], #24]\n\t"
"ldr r7, [%[b], #28]\n\t"
"sbc r4, r6\n\t"
"sbc r5, r7\n\t"
"str r4, [%[r], #24]\n\t"
"str r5, [%[r], #28]\n\t"
"sbc %[c], %[c]\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5", "r6", "r7"
);
return c;
}
#endif /* WOLFSSL_SP_SMALL */
/* Compare two numbers to determine if they are equal.
* Constant time implementation.
*
* a First number to compare.
* b Second number to compare.
* returns 1 when equal and 0 otherwise.
*/
static int sp_256_cmp_equal_8(const sp_digit* a, const sp_digit* b)
{
return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2]) | (a[3] ^ b[3]) |
(a[4] ^ b[4]) | (a[5] ^ b[5]) | (a[6] ^ b[6]) | (a[7] ^ b[7])) == 0;
}
/* Add two Montgomery form projective points.
*
* r Result of addition.
* p First point to add.
* q Second point to add.
* t Temporary ordinate data.
*/
static void sp_256_proj_point_add_8(sp_point_256* r, const sp_point_256* p, const sp_point_256* q,
sp_digit* t)
{
const sp_point_256* ap[2];
sp_point_256* rp[2];
sp_digit* t1 = t;
sp_digit* t2 = t + 2*8;
sp_digit* t3 = t + 4*8;
sp_digit* t4 = t + 6*8;
sp_digit* t5 = t + 8*8;
sp_digit* x;
sp_digit* y;
sp_digit* z;
int i;
/* Ensure only the first point is the same as the result. */
if (q == r) {
const sp_point_256* a = p;
p = q;
q = a;
}
/* Check double */
(void)sp_256_sub_8(t1, p256_mod, q->y);
sp_256_norm_8(t1);
if ((sp_256_cmp_equal_8(p->x, q->x) & sp_256_cmp_equal_8(p->z, q->z) &
(sp_256_cmp_equal_8(p->y, q->y) | sp_256_cmp_equal_8(p->y, t1))) != 0) {
sp_256_proj_point_dbl_8(r, p, t);
}
else {
rp[0] = r;
/*lint allow cast to different type of pointer*/
rp[1] = (sp_point_256*)t; /*lint !e9087 !e740*/
XMEMSET(rp[1], 0, sizeof(sp_point_256));
x = rp[p->infinity | q->infinity]->x;
y = rp[p->infinity | q->infinity]->y;
z = rp[p->infinity | q->infinity]->z;
ap[0] = p;
ap[1] = q;
for (i=0; i<8; i++) {
r->x[i] = ap[p->infinity]->x[i];
}
for (i=0; i<8; i++) {
r->y[i] = ap[p->infinity]->y[i];
}
for (i=0; i<8; i++) {
r->z[i] = ap[p->infinity]->z[i];
}
r->infinity = ap[p->infinity]->infinity;
/* U1 = X1*Z2^2 */
sp_256_mont_sqr_8(t1, q->z, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(t3, t1, q->z, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(t1, t1, x, p256_mod, p256_mp_mod);
/* U2 = X2*Z1^2 */
sp_256_mont_sqr_8(t2, z, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(t4, t2, z, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(t2, t2, q->x, p256_mod, p256_mp_mod);
/* S1 = Y1*Z2^3 */
sp_256_mont_mul_8(t3, t3, y, p256_mod, p256_mp_mod);
/* S2 = Y2*Z1^3 */
sp_256_mont_mul_8(t4, t4, q->y, p256_mod, p256_mp_mod);
/* H = U2 - U1 */
sp_256_mont_sub_8(t2, t2, t1, p256_mod);
/* R = S2 - S1 */
sp_256_mont_sub_8(t4, t4, t3, p256_mod);
/* Z3 = H*Z1*Z2 */
sp_256_mont_mul_8(z, z, q->z, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(z, z, t2, p256_mod, p256_mp_mod);
/* X3 = R^2 - H^3 - 2*U1*H^2 */
sp_256_mont_sqr_8(x, t4, p256_mod, p256_mp_mod);
sp_256_mont_sqr_8(t5, t2, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(y, t1, t5, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(t5, t5, t2, p256_mod, p256_mp_mod);
sp_256_mont_sub_8(x, x, t5, p256_mod);
sp_256_mont_dbl_8(t1, y, p256_mod);
sp_256_mont_sub_8(x, x, t1, p256_mod);
/* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
sp_256_mont_sub_8(y, y, x, p256_mod);
sp_256_mont_mul_8(y, y, t4, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(t5, t5, t3, p256_mod, p256_mp_mod);
sp_256_mont_sub_8(y, y, t5, p256_mod);
}
}
/* Multiply the point by the scalar and return the result.
* If map is true then convert result to affine coordinates.
*
* r Resulting point.
* g Point to multiply.
* k Scalar to multiply by.
* map Indicates whether to convert result to affine.
* heap Heap to use for allocation.
* returns MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
static int sp_256_ecc_mulmod_fast_8(sp_point_256* r, const sp_point_256* g, const sp_digit* k,
int map, void* heap)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_point_256 td[16];
sp_point_256 rtd;
sp_digit tmpd[2 * 8 * 5];
#endif
sp_point_256* t;
sp_point_256* rt;
sp_digit* tmp;
sp_digit n;
int i;
int c, y;
int err;
(void)heap;
err = sp_256_point_new_8(heap, rtd, rt);
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
t = (sp_point_256*)XMALLOC(sizeof(sp_point_256) * 16, heap, DYNAMIC_TYPE_ECC);
if (t == NULL)
err = MEMORY_E;
tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 8 * 5, heap,
DYNAMIC_TYPE_ECC);
if (tmp == NULL)
err = MEMORY_E;
#else
t = td;
tmp = tmpd;
#endif
if (err == MP_OKAY) {
/* t[0] = {0, 0, 1} * norm */
XMEMSET(&t[0], 0, sizeof(t[0]));
t[0].infinity = 1;
/* t[1] = {g->x, g->y, g->z} * norm */
(void)sp_256_mod_mul_norm_8(t[1].x, g->x, p256_mod);
(void)sp_256_mod_mul_norm_8(t[1].y, g->y, p256_mod);
(void)sp_256_mod_mul_norm_8(t[1].z, g->z, p256_mod);
t[1].infinity = 0;
sp_256_proj_point_dbl_8(&t[ 2], &t[ 1], tmp);
t[ 2].infinity = 0;
sp_256_proj_point_add_8(&t[ 3], &t[ 2], &t[ 1], tmp);
t[ 3].infinity = 0;
sp_256_proj_point_dbl_8(&t[ 4], &t[ 2], tmp);
t[ 4].infinity = 0;
sp_256_proj_point_add_8(&t[ 5], &t[ 3], &t[ 2], tmp);
t[ 5].infinity = 0;
sp_256_proj_point_dbl_8(&t[ 6], &t[ 3], tmp);
t[ 6].infinity = 0;
sp_256_proj_point_add_8(&t[ 7], &t[ 4], &t[ 3], tmp);
t[ 7].infinity = 0;
sp_256_proj_point_dbl_8(&t[ 8], &t[ 4], tmp);
t[ 8].infinity = 0;
sp_256_proj_point_add_8(&t[ 9], &t[ 5], &t[ 4], tmp);
t[ 9].infinity = 0;
sp_256_proj_point_dbl_8(&t[10], &t[ 5], tmp);
t[10].infinity = 0;
sp_256_proj_point_add_8(&t[11], &t[ 6], &t[ 5], tmp);
t[11].infinity = 0;
sp_256_proj_point_dbl_8(&t[12], &t[ 6], tmp);
t[12].infinity = 0;
sp_256_proj_point_add_8(&t[13], &t[ 7], &t[ 6], tmp);
t[13].infinity = 0;
sp_256_proj_point_dbl_8(&t[14], &t[ 7], tmp);
t[14].infinity = 0;
sp_256_proj_point_add_8(&t[15], &t[ 8], &t[ 7], tmp);
t[15].infinity = 0;
i = 6;
n = k[i+1] << 0;
c = 28;
y = n >> 28;
XMEMCPY(rt, &t[y], sizeof(sp_point_256));
n <<= 4;
for (; i>=0 || c>=4; ) {
if (c < 4) {
n |= k[i--];
c += 32;
}
y = (n >> 28) & 0xf;
n <<= 4;
c -= 4;
sp_256_proj_point_dbl_8(rt, rt, tmp);
sp_256_proj_point_dbl_8(rt, rt, tmp);
sp_256_proj_point_dbl_8(rt, rt, tmp);
sp_256_proj_point_dbl_8(rt, rt, tmp);
sp_256_proj_point_add_8(rt, rt, &t[y], tmp);
}
if (map != 0) {
sp_256_map_8(r, rt, tmp);
}
else {
XMEMCPY(r, rt, sizeof(sp_point_256));
}
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (tmp != NULL) {
XMEMSET(tmp, 0, sizeof(sp_digit) * 2 * 8 * 5);
XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
}
if (t != NULL) {
XMEMSET(t, 0, sizeof(sp_point_256) * 16);
XFREE(t, heap, DYNAMIC_TYPE_ECC);
}
#else
ForceZero(tmpd, sizeof(tmpd));
ForceZero(td, sizeof(td));
#endif
sp_256_point_free_8(rt, 1, heap);
return err;
}
/* A table entry for pre-computed points. */
typedef struct sp_table_entry_256 {
sp_digit x[8];
sp_digit y[8];
} sp_table_entry_256;
#ifdef FP_ECC
/* Double the Montgomery form projective point p a number of times.
*
* r Result of repeated doubling of point.
* p Point to double.
* n Number of times to double
* t Temporary ordinate data.
*/
static void sp_256_proj_point_dbl_n_8(sp_point_256* p, int n, sp_digit* t)
{
sp_digit* w = t;
sp_digit* a = t + 2*8;
sp_digit* b = t + 4*8;
sp_digit* t1 = t + 6*8;
sp_digit* t2 = t + 8*8;
sp_digit* x;
sp_digit* y;
sp_digit* z;
x = p->x;
y = p->y;
z = p->z;
/* Y = 2*Y */
sp_256_mont_dbl_8(y, y, p256_mod);
/* W = Z^4 */
sp_256_mont_sqr_8(w, z, p256_mod, p256_mp_mod);
sp_256_mont_sqr_8(w, w, p256_mod, p256_mp_mod);
#ifndef WOLFSSL_SP_SMALL
while (--n > 0)
#else
while (--n >= 0)
#endif
{
/* A = 3*(X^2 - W) */
sp_256_mont_sqr_8(t1, x, p256_mod, p256_mp_mod);
sp_256_mont_sub_8(t1, t1, w, p256_mod);
sp_256_mont_tpl_8(a, t1, p256_mod);
/* B = X*Y^2 */
sp_256_mont_sqr_8(t1, y, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(b, t1, x, p256_mod, p256_mp_mod);
/* X = A^2 - 2B */
sp_256_mont_sqr_8(x, a, p256_mod, p256_mp_mod);
sp_256_mont_dbl_8(t2, b, p256_mod);
sp_256_mont_sub_8(x, x, t2, p256_mod);
/* Z = Z*Y */
sp_256_mont_mul_8(z, z, y, p256_mod, p256_mp_mod);
/* t2 = Y^4 */
sp_256_mont_sqr_8(t1, t1, p256_mod, p256_mp_mod);
#ifdef WOLFSSL_SP_SMALL
if (n != 0)
#endif
{
/* W = W*Y^4 */
sp_256_mont_mul_8(w, w, t1, p256_mod, p256_mp_mod);
}
/* y = 2*A*(B - X) - Y^4 */
sp_256_mont_sub_8(y, b, x, p256_mod);
sp_256_mont_mul_8(y, y, a, p256_mod, p256_mp_mod);
sp_256_mont_dbl_8(y, y, p256_mod);
sp_256_mont_sub_8(y, y, t1, p256_mod);
}
#ifndef WOLFSSL_SP_SMALL
/* A = 3*(X^2 - W) */
sp_256_mont_sqr_8(t1, x, p256_mod, p256_mp_mod);
sp_256_mont_sub_8(t1, t1, w, p256_mod);
sp_256_mont_tpl_8(a, t1, p256_mod);
/* B = X*Y^2 */
sp_256_mont_sqr_8(t1, y, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(b, t1, x, p256_mod, p256_mp_mod);
/* X = A^2 - 2B */
sp_256_mont_sqr_8(x, a, p256_mod, p256_mp_mod);
sp_256_mont_dbl_8(t2, b, p256_mod);
sp_256_mont_sub_8(x, x, t2, p256_mod);
/* Z = Z*Y */
sp_256_mont_mul_8(z, z, y, p256_mod, p256_mp_mod);
/* t2 = Y^4 */
sp_256_mont_sqr_8(t1, t1, p256_mod, p256_mp_mod);
/* y = 2*A*(B - X) - Y^4 */
sp_256_mont_sub_8(y, b, x, p256_mod);
sp_256_mont_mul_8(y, y, a, p256_mod, p256_mp_mod);
sp_256_mont_dbl_8(y, y, p256_mod);
sp_256_mont_sub_8(y, y, t1, p256_mod);
#endif
/* Y = Y/2 */
sp_256_div2_8(y, y, p256_mod);
}
#endif /* FP_ECC */
/* Add two Montgomery form projective points. The second point has a q value of
* one.
* Only the first point can be the same pointer as the result point.
*
* r Result of addition.
* p First point to add.
* q Second point to add.
* t Temporary ordinate data.
*/
static void sp_256_proj_point_add_qz1_8(sp_point_256* r, const sp_point_256* p,
const sp_point_256* q, sp_digit* t)
{
const sp_point_256* ap[2];
sp_point_256* rp[2];
sp_digit* t1 = t;
sp_digit* t2 = t + 2*8;
sp_digit* t3 = t + 4*8;
sp_digit* t4 = t + 6*8;
sp_digit* t5 = t + 8*8;
sp_digit* x;
sp_digit* y;
sp_digit* z;
int i;
/* Check double */
(void)sp_256_sub_8(t1, p256_mod, q->y);
sp_256_norm_8(t1);
if ((sp_256_cmp_equal_8(p->x, q->x) & sp_256_cmp_equal_8(p->z, q->z) &
(sp_256_cmp_equal_8(p->y, q->y) | sp_256_cmp_equal_8(p->y, t1))) != 0) {
sp_256_proj_point_dbl_8(r, p, t);
}
else {
rp[0] = r;
/*lint allow cast to different type of pointer*/
rp[1] = (sp_point_256*)t; /*lint !e9087 !e740*/
XMEMSET(rp[1], 0, sizeof(sp_point_256));
x = rp[p->infinity | q->infinity]->x;
y = rp[p->infinity | q->infinity]->y;
z = rp[p->infinity | q->infinity]->z;
ap[0] = p;
ap[1] = q;
for (i=0; i<8; i++) {
r->x[i] = ap[p->infinity]->x[i];
}
for (i=0; i<8; i++) {
r->y[i] = ap[p->infinity]->y[i];
}
for (i=0; i<8; i++) {
r->z[i] = ap[p->infinity]->z[i];
}
r->infinity = ap[p->infinity]->infinity;
/* U2 = X2*Z1^2 */
sp_256_mont_sqr_8(t2, z, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(t4, t2, z, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(t2, t2, q->x, p256_mod, p256_mp_mod);
/* S2 = Y2*Z1^3 */
sp_256_mont_mul_8(t4, t4, q->y, p256_mod, p256_mp_mod);
/* H = U2 - X1 */
sp_256_mont_sub_8(t2, t2, x, p256_mod);
/* R = S2 - Y1 */
sp_256_mont_sub_8(t4, t4, y, p256_mod);
/* Z3 = H*Z1 */
sp_256_mont_mul_8(z, z, t2, p256_mod, p256_mp_mod);
/* X3 = R^2 - H^3 - 2*X1*H^2 */
sp_256_mont_sqr_8(t1, t4, p256_mod, p256_mp_mod);
sp_256_mont_sqr_8(t5, t2, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(t3, x, t5, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(t5, t5, t2, p256_mod, p256_mp_mod);
sp_256_mont_sub_8(x, t1, t5, p256_mod);
sp_256_mont_dbl_8(t1, t3, p256_mod);
sp_256_mont_sub_8(x, x, t1, p256_mod);
/* Y3 = R*(X1*H^2 - X3) - Y1*H^3 */
sp_256_mont_sub_8(t3, t3, x, p256_mod);
sp_256_mont_mul_8(t3, t3, t4, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(t5, t5, y, p256_mod, p256_mp_mod);
sp_256_mont_sub_8(y, t3, t5, p256_mod);
}
}
#ifdef WOLFSSL_SP_SMALL
#ifdef FP_ECC
/* Convert the projective point to affine.
* Ordinates are in Montgomery form.
*
* a Point to convert.
* t Temporary data.
*/
static void sp_256_proj_to_affine_8(sp_point_256* a, sp_digit* t)
{
sp_digit* t1 = t;
sp_digit* t2 = t + 2 * 8;
sp_digit* tmp = t + 4 * 8;
sp_256_mont_inv_8(t1, a->z, tmp);
sp_256_mont_sqr_8(t2, t1, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(t1, t2, t1, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(a->x, a->x, t2, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(a->y, a->y, t1, p256_mod, p256_mp_mod);
XMEMCPY(a->z, p256_norm_mod, sizeof(p256_norm_mod));
}
/* Generate the pre-computed table of points for the base point.
*
* a The base point.
* table Place to store generated point data.
* tmp Temporary data.
* heap Heap to use for allocation.
*/
static int sp_256_gen_stripe_table_8(const sp_point_256* a,
sp_table_entry_256* table, sp_digit* tmp, void* heap)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_point_256 td, s1d, s2d;
#endif
sp_point_256* t;
sp_point_256* s1 = NULL;
sp_point_256* s2 = NULL;
int i, j;
int err;
(void)heap;
err = sp_256_point_new_8(heap, td, t);
if (err == MP_OKAY) {
err = sp_256_point_new_8(heap, s1d, s1);
}
if (err == MP_OKAY) {
err = sp_256_point_new_8(heap, s2d, s2);
}
if (err == MP_OKAY) {
err = sp_256_mod_mul_norm_8(t->x, a->x, p256_mod);
}
if (err == MP_OKAY) {
err = sp_256_mod_mul_norm_8(t->y, a->y, p256_mod);
}
if (err == MP_OKAY) {
err = sp_256_mod_mul_norm_8(t->z, a->z, p256_mod);
}
if (err == MP_OKAY) {
t->infinity = 0;
sp_256_proj_to_affine_8(t, tmp);
XMEMCPY(s1->z, p256_norm_mod, sizeof(p256_norm_mod));
s1->infinity = 0;
XMEMCPY(s2->z, p256_norm_mod, sizeof(p256_norm_mod));
s2->infinity = 0;
/* table[0] = {0, 0, infinity} */
XMEMSET(&table[0], 0, sizeof(sp_table_entry_256));
/* table[1] = Affine version of 'a' in Montgomery form */
XMEMCPY(table[1].x, t->x, sizeof(table->x));
XMEMCPY(table[1].y, t->y, sizeof(table->y));
for (i=1; i<4; i++) {
sp_256_proj_point_dbl_n_8(t, 64, tmp);
sp_256_proj_to_affine_8(t, tmp);
XMEMCPY(table[1<<i].x, t->x, sizeof(table->x));
XMEMCPY(table[1<<i].y, t->y, sizeof(table->y));
}
for (i=1; i<4; i++) {
XMEMCPY(s1->x, table[1<<i].x, sizeof(table->x));
XMEMCPY(s1->y, table[1<<i].y, sizeof(table->y));
for (j=(1<<i)+1; j<(1<<(i+1)); j++) {
XMEMCPY(s2->x, table[j-(1<<i)].x, sizeof(table->x));
XMEMCPY(s2->y, table[j-(1<<i)].y, sizeof(table->y));
sp_256_proj_point_add_qz1_8(t, s1, s2, tmp);
sp_256_proj_to_affine_8(t, tmp);
XMEMCPY(table[j].x, t->x, sizeof(table->x));
XMEMCPY(table[j].y, t->y, sizeof(table->y));
}
}
}
sp_256_point_free_8(s2, 0, heap);
sp_256_point_free_8(s1, 0, heap);
sp_256_point_free_8( t, 0, heap);
return err;
}
#endif /* FP_ECC */
/* Multiply the point by the scalar and return the result.
* If map is true then convert result to affine coordinates.
*
* r Resulting point.
* k Scalar to multiply by.
* map Indicates whether to convert result to affine.
* heap Heap to use for allocation.
* returns MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
static int sp_256_ecc_mulmod_stripe_8(sp_point_256* r, const sp_point_256* g,
const sp_table_entry_256* table, const sp_digit* k, int map, void* heap)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_point_256 rtd;
sp_point_256 pd;
sp_digit td[2 * 8 * 5];
#endif
sp_point_256* rt;
sp_point_256* p = NULL;
sp_digit* t;
int i, j;
int y, x;
int err;
(void)g;
(void)heap;
err = sp_256_point_new_8(heap, rtd, rt);
if (err == MP_OKAY) {
err = sp_256_point_new_8(heap, pd, p);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 8 * 5, heap,
DYNAMIC_TYPE_ECC);
if (t == NULL) {
err = MEMORY_E;
}
#else
t = td;
#endif
if (err == MP_OKAY) {
XMEMCPY(p->z, p256_norm_mod, sizeof(p256_norm_mod));
XMEMCPY(rt->z, p256_norm_mod, sizeof(p256_norm_mod));
y = 0;
for (j=0,x=63; j<4; j++,x+=64) {
y |= ((k[x / 32] >> (x % 32)) & 1) << j;
}
XMEMCPY(rt->x, table[y].x, sizeof(table[y].x));
XMEMCPY(rt->y, table[y].y, sizeof(table[y].y));
rt->infinity = !y;
for (i=62; i>=0; i--) {
y = 0;
for (j=0,x=i; j<4; j++,x+=64) {
y |= ((k[x / 32] >> (x % 32)) & 1) << j;
}
sp_256_proj_point_dbl_8(rt, rt, t);
XMEMCPY(p->x, table[y].x, sizeof(table[y].x));
XMEMCPY(p->y, table[y].y, sizeof(table[y].y));
p->infinity = !y;
sp_256_proj_point_add_qz1_8(rt, rt, p, t);
}
if (map != 0) {
sp_256_map_8(r, rt, t);
}
else {
XMEMCPY(r, rt, sizeof(sp_point_256));
}
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (t != NULL) {
XFREE(t, heap, DYNAMIC_TYPE_ECC);
}
#endif
sp_256_point_free_8(p, 0, heap);
sp_256_point_free_8(rt, 0, heap);
return err;
}
#ifdef FP_ECC
#ifndef FP_ENTRIES
#define FP_ENTRIES 16
#endif
typedef struct sp_cache_256_t {
sp_digit x[8];
sp_digit y[8];
sp_table_entry_256 table[16];
uint32_t cnt;
int set;
} sp_cache_256_t;
static THREAD_LS_T sp_cache_256_t sp_cache_256[FP_ENTRIES];
static THREAD_LS_T int sp_cache_256_last = -1;
static THREAD_LS_T int sp_cache_256_inited = 0;
#ifndef HAVE_THREAD_LS
static volatile int initCacheMutex_256 = 0;
static wolfSSL_Mutex sp_cache_256_lock;
#endif
static void sp_ecc_get_cache_256(const sp_point_256* g, sp_cache_256_t** cache)
{
int i, j;
uint32_t least;
if (sp_cache_256_inited == 0) {
for (i=0; i<FP_ENTRIES; i++) {
sp_cache_256[i].set = 0;
}
sp_cache_256_inited = 1;
}
/* Compare point with those in cache. */
for (i=0; i<FP_ENTRIES; i++) {
if (!sp_cache_256[i].set)
continue;
if (sp_256_cmp_equal_8(g->x, sp_cache_256[i].x) &
sp_256_cmp_equal_8(g->y, sp_cache_256[i].y)) {
sp_cache_256[i].cnt++;
break;
}
}
/* No match. */
if (i == FP_ENTRIES) {
/* Find empty entry. */
i = (sp_cache_256_last + 1) % FP_ENTRIES;
for (; i != sp_cache_256_last; i=(i+1)%FP_ENTRIES) {
if (!sp_cache_256[i].set) {
break;
}
}
/* Evict least used. */
if (i == sp_cache_256_last) {
least = sp_cache_256[0].cnt;
for (j=1; j<FP_ENTRIES; j++) {
if (sp_cache_256[j].cnt < least) {
i = j;
least = sp_cache_256[i].cnt;
}
}
}
XMEMCPY(sp_cache_256[i].x, g->x, sizeof(sp_cache_256[i].x));
XMEMCPY(sp_cache_256[i].y, g->y, sizeof(sp_cache_256[i].y));
sp_cache_256[i].set = 1;
sp_cache_256[i].cnt = 1;
}
*cache = &sp_cache_256[i];
sp_cache_256_last = i;
}
#endif /* FP_ECC */
/* Multiply the base point of P256 by the scalar and return the result.
* If map is true then convert result to affine coordinates.
*
* r Resulting point.
* g Point to multiply.
* k Scalar to multiply by.
* map Indicates whether to convert result to affine.
* heap Heap to use for allocation.
* returns MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
static int sp_256_ecc_mulmod_8(sp_point_256* r, const sp_point_256* g, const sp_digit* k,
int map, void* heap)
{
#ifndef FP_ECC
return sp_256_ecc_mulmod_fast_8(r, g, k, map, heap);
#else
sp_digit tmp[2 * 8 * 5];
sp_cache_256_t* cache;
int err = MP_OKAY;
#ifndef HAVE_THREAD_LS
if (initCacheMutex_256 == 0) {
wc_InitMutex(&sp_cache_256_lock);
initCacheMutex_256 = 1;
}
if (wc_LockMutex(&sp_cache_256_lock) != 0)
err = BAD_MUTEX_E;
#endif /* HAVE_THREAD_LS */
if (err == MP_OKAY) {
sp_ecc_get_cache_256(g, &cache);
if (cache->cnt == 2)
sp_256_gen_stripe_table_8(g, cache->table, tmp, heap);
#ifndef HAVE_THREAD_LS
wc_UnLockMutex(&sp_cache_256_lock);
#endif /* HAVE_THREAD_LS */
if (cache->cnt < 2) {
err = sp_256_ecc_mulmod_fast_8(r, g, k, map, heap);
}
else {
err = sp_256_ecc_mulmod_stripe_8(r, g, cache->table, k,
map, heap);
}
}
return err;
#endif
}
#else
#ifdef FP_ECC
/* Generate the pre-computed table of points for the base point.
*
* a The base point.
* table Place to store generated point data.
* tmp Temporary data.
* heap Heap to use for allocation.
*/
static int sp_256_gen_stripe_table_8(const sp_point_256* a,
sp_table_entry_256* table, sp_digit* tmp, void* heap)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_point_256 td, s1d, s2d;
#endif
sp_point_256* t;
sp_point_256* s1 = NULL;
sp_point_256* s2 = NULL;
int i, j;
int err;
(void)heap;
err = sp_256_point_new_8(heap, td, t);
if (err == MP_OKAY) {
err = sp_256_point_new_8(heap, s1d, s1);
}
if (err == MP_OKAY) {
err = sp_256_point_new_8(heap, s2d, s2);
}
if (err == MP_OKAY) {
err = sp_256_mod_mul_norm_8(t->x, a->x, p256_mod);
}
if (err == MP_OKAY) {
err = sp_256_mod_mul_norm_8(t->y, a->y, p256_mod);
}
if (err == MP_OKAY) {
err = sp_256_mod_mul_norm_8(t->z, a->z, p256_mod);
}
if (err == MP_OKAY) {
t->infinity = 0;
sp_256_proj_to_affine_8(t, tmp);
XMEMCPY(s1->z, p256_norm_mod, sizeof(p256_norm_mod));
s1->infinity = 0;
XMEMCPY(s2->z, p256_norm_mod, sizeof(p256_norm_mod));
s2->infinity = 0;
/* table[0] = {0, 0, infinity} */
XMEMSET(&table[0], 0, sizeof(sp_table_entry_256));
/* table[1] = Affine version of 'a' in Montgomery form */
XMEMCPY(table[1].x, t->x, sizeof(table->x));
XMEMCPY(table[1].y, t->y, sizeof(table->y));
for (i=1; i<8; i++) {
sp_256_proj_point_dbl_n_8(t, 32, tmp);
sp_256_proj_to_affine_8(t, tmp);
XMEMCPY(table[1<<i].x, t->x, sizeof(table->x));
XMEMCPY(table[1<<i].y, t->y, sizeof(table->y));
}
for (i=1; i<8; i++) {
XMEMCPY(s1->x, table[1<<i].x, sizeof(table->x));
XMEMCPY(s1->y, table[1<<i].y, sizeof(table->y));
for (j=(1<<i)+1; j<(1<<(i+1)); j++) {
XMEMCPY(s2->x, table[j-(1<<i)].x, sizeof(table->x));
XMEMCPY(s2->y, table[j-(1<<i)].y, sizeof(table->y));
sp_256_proj_point_add_qz1_8(t, s1, s2, tmp);
sp_256_proj_to_affine_8(t, tmp);
XMEMCPY(table[j].x, t->x, sizeof(table->x));
XMEMCPY(table[j].y, t->y, sizeof(table->y));
}
}
}
sp_256_point_free_8(s2, 0, heap);
sp_256_point_free_8(s1, 0, heap);
sp_256_point_free_8( t, 0, heap);
return err;
}
#endif /* FP_ECC */
/* Multiply the point by the scalar and return the result.
* If map is true then convert result to affine coordinates.
*
* r Resulting point.
* k Scalar to multiply by.
* map Indicates whether to convert result to affine.
* heap Heap to use for allocation.
* returns MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
static int sp_256_ecc_mulmod_stripe_8(sp_point_256* r, const sp_point_256* g,
const sp_table_entry_256* table, const sp_digit* k, int map, void* heap)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_point_256 rtd;
sp_point_256 pd;
sp_digit td[2 * 8 * 5];
#endif
sp_point_256* rt;
sp_point_256* p = NULL;
sp_digit* t;
int i, j;
int y, x;
int err;
(void)g;
(void)heap;
err = sp_256_point_new_8(heap, rtd, rt);
if (err == MP_OKAY) {
err = sp_256_point_new_8(heap, pd, p);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 8 * 5, heap,
DYNAMIC_TYPE_ECC);
if (t == NULL) {
err = MEMORY_E;
}
#else
t = td;
#endif
if (err == MP_OKAY) {
XMEMCPY(p->z, p256_norm_mod, sizeof(p256_norm_mod));
XMEMCPY(rt->z, p256_norm_mod, sizeof(p256_norm_mod));
y = 0;
for (j=0,x=31; j<8; j++,x+=32) {
y |= ((k[x / 32] >> (x % 32)) & 1) << j;
}
XMEMCPY(rt->x, table[y].x, sizeof(table[y].x));
XMEMCPY(rt->y, table[y].y, sizeof(table[y].y));
rt->infinity = !y;
for (i=30; i>=0; i--) {
y = 0;
for (j=0,x=i; j<8; j++,x+=32) {
y |= ((k[x / 32] >> (x % 32)) & 1) << j;
}
sp_256_proj_point_dbl_8(rt, rt, t);
XMEMCPY(p->x, table[y].x, sizeof(table[y].x));
XMEMCPY(p->y, table[y].y, sizeof(table[y].y));
p->infinity = !y;
sp_256_proj_point_add_qz1_8(rt, rt, p, t);
}
if (map != 0) {
sp_256_map_8(r, rt, t);
}
else {
XMEMCPY(r, rt, sizeof(sp_point_256));
}
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (t != NULL) {
XFREE(t, heap, DYNAMIC_TYPE_ECC);
}
#endif
sp_256_point_free_8(p, 0, heap);
sp_256_point_free_8(rt, 0, heap);
return err;
}
#ifdef FP_ECC
#ifndef FP_ENTRIES
#define FP_ENTRIES 16
#endif
typedef struct sp_cache_256_t {
sp_digit x[8];
sp_digit y[8];
sp_table_entry_256 table[256];
uint32_t cnt;
int set;
} sp_cache_256_t;
static THREAD_LS_T sp_cache_256_t sp_cache_256[FP_ENTRIES];
static THREAD_LS_T int sp_cache_256_last = -1;
static THREAD_LS_T int sp_cache_256_inited = 0;
#ifndef HAVE_THREAD_LS
static volatile int initCacheMutex_256 = 0;
static wolfSSL_Mutex sp_cache_256_lock;
#endif
static void sp_ecc_get_cache_256(const sp_point_256* g, sp_cache_256_t** cache)
{
int i, j;
uint32_t least;
if (sp_cache_256_inited == 0) {
for (i=0; i<FP_ENTRIES; i++) {
sp_cache_256[i].set = 0;
}
sp_cache_256_inited = 1;
}
/* Compare point with those in cache. */
for (i=0; i<FP_ENTRIES; i++) {
if (!sp_cache_256[i].set)
continue;
if (sp_256_cmp_equal_8(g->x, sp_cache_256[i].x) &
sp_256_cmp_equal_8(g->y, sp_cache_256[i].y)) {
sp_cache_256[i].cnt++;
break;
}
}
/* No match. */
if (i == FP_ENTRIES) {
/* Find empty entry. */
i = (sp_cache_256_last + 1) % FP_ENTRIES;
for (; i != sp_cache_256_last; i=(i+1)%FP_ENTRIES) {
if (!sp_cache_256[i].set) {
break;
}
}
/* Evict least used. */
if (i == sp_cache_256_last) {
least = sp_cache_256[0].cnt;
for (j=1; j<FP_ENTRIES; j++) {
if (sp_cache_256[j].cnt < least) {
i = j;
least = sp_cache_256[i].cnt;
}
}
}
XMEMCPY(sp_cache_256[i].x, g->x, sizeof(sp_cache_256[i].x));
XMEMCPY(sp_cache_256[i].y, g->y, sizeof(sp_cache_256[i].y));
sp_cache_256[i].set = 1;
sp_cache_256[i].cnt = 1;
}
*cache = &sp_cache_256[i];
sp_cache_256_last = i;
}
#endif /* FP_ECC */
/* Multiply the base point of P256 by the scalar and return the result.
* If map is true then convert result to affine coordinates.
*
* r Resulting point.
* g Point to multiply.
* k Scalar to multiply by.
* map Indicates whether to convert result to affine.
* heap Heap to use for allocation.
* returns MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
static int sp_256_ecc_mulmod_8(sp_point_256* r, const sp_point_256* g, const sp_digit* k,
int map, void* heap)
{
#ifndef FP_ECC
return sp_256_ecc_mulmod_fast_8(r, g, k, map, heap);
#else
sp_digit tmp[2 * 8 * 5];
sp_cache_256_t* cache;
int err = MP_OKAY;
#ifndef HAVE_THREAD_LS
if (initCacheMutex_256 == 0) {
wc_InitMutex(&sp_cache_256_lock);
initCacheMutex_256 = 1;
}
if (wc_LockMutex(&sp_cache_256_lock) != 0)
err = BAD_MUTEX_E;
#endif /* HAVE_THREAD_LS */
if (err == MP_OKAY) {
sp_ecc_get_cache_256(g, &cache);
if (cache->cnt == 2)
sp_256_gen_stripe_table_8(g, cache->table, tmp, heap);
#ifndef HAVE_THREAD_LS
wc_UnLockMutex(&sp_cache_256_lock);
#endif /* HAVE_THREAD_LS */
if (cache->cnt < 2) {
err = sp_256_ecc_mulmod_fast_8(r, g, k, map, heap);
}
else {
err = sp_256_ecc_mulmod_stripe_8(r, g, cache->table, k,
map, heap);
}
}
return err;
#endif
}
#endif /* WOLFSSL_SP_SMALL */
/* Multiply the point by the scalar and return the result.
* If map is true then convert result to affine coordinates.
*
* km Scalar to multiply by.
* p Point to multiply.
* r Resulting point.
* map Indicates whether to convert result to affine.
* heap Heap to use for allocation.
* returns MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
int sp_ecc_mulmod_256(mp_int* km, ecc_point* gm, ecc_point* r, int map,
void* heap)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_point_256 p;
sp_digit kd[8];
#endif
sp_point_256* point;
sp_digit* k = NULL;
int err = MP_OKAY;
err = sp_256_point_new_8(heap, p, point);
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 8, heap,
DYNAMIC_TYPE_ECC);
if (k == NULL)
err = MEMORY_E;
}
#else
k = kd;
#endif
if (err == MP_OKAY) {
sp_256_from_mp(k, 8, km);
sp_256_point_from_ecc_point_8(point, gm);
err = sp_256_ecc_mulmod_8(point, point, k, map, heap);
}
if (err == MP_OKAY) {
err = sp_256_point_to_ecc_point_8(point, r);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (k != NULL) {
XFREE(k, heap, DYNAMIC_TYPE_ECC);
}
#endif
sp_256_point_free_8(point, 0, heap);
return err;
}
#ifdef WOLFSSL_SP_SMALL
static const sp_table_entry_256 p256_table[16] = {
/* 0 */
{ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } },
/* 1 */
{ { 0x18a9143c,0x79e730d4,0x5fedb601,0x75ba95fc,0x77622510,0x79fb732b,
0xa53755c6,0x18905f76 },
{ 0xce95560a,0xddf25357,0xba19e45c,0x8b4ab8e4,0xdd21f325,0xd2e88688,
0x25885d85,0x8571ff18 } },
/* 2 */
{ { 0x16a0d2bb,0x4f922fc5,0x1a623499,0x0d5cc16c,0x57c62c8b,0x9241cf3a,
0xfd1b667f,0x2f5e6961 },
{ 0xf5a01797,0x5c15c70b,0x60956192,0x3d20b44d,0x071fdb52,0x04911b37,
0x8d6f0f7b,0xf648f916 } },
/* 3 */
{ { 0xe137bbbc,0x9e566847,0x8a6a0bec,0xe434469e,0x79d73463,0xb1c42761,
0x133d0015,0x5abe0285 },
{ 0xc04c7dab,0x92aa837c,0x43260c07,0x573d9f4c,0x78e6cc37,0x0c931562,
0x6b6f7383,0x94bb725b } },
/* 4 */
{ { 0xbfe20925,0x62a8c244,0x8fdce867,0x91c19ac3,0xdd387063,0x5a96a5d5,
0x21d324f6,0x61d587d4 },
{ 0xa37173ea,0xe87673a2,0x53778b65,0x23848008,0x05bab43e,0x10f8441e,
0x4621efbe,0xfa11fe12 } },
/* 5 */
{ { 0x2cb19ffd,0x1c891f2b,0xb1923c23,0x01ba8d5b,0x8ac5ca8e,0xb6d03d67,
0x1f13bedc,0x586eb04c },
{ 0x27e8ed09,0x0c35c6e5,0x1819ede2,0x1e81a33c,0x56c652fa,0x278fd6c0,
0x70864f11,0x19d5ac08 } },
/* 6 */
{ { 0xd2b533d5,0x62577734,0xa1bdddc0,0x673b8af6,0xa79ec293,0x577e7c9a,
0xc3b266b1,0xbb6de651 },
{ 0xb65259b3,0xe7e9303a,0xd03a7480,0xd6a0afd3,0x9b3cfc27,0xc5ac83d1,
0x5d18b99b,0x60b4619a } },
/* 7 */
{ { 0x1ae5aa1c,0xbd6a38e1,0x49e73658,0xb8b7652b,0xee5f87ed,0x0b130014,
0xaeebffcd,0x9d0f27b2 },
{ 0x7a730a55,0xca924631,0xddbbc83a,0x9c955b2f,0xac019a71,0x07c1dfe0,
0x356ec48d,0x244a566d } },
/* 8 */
{ { 0xf4f8b16a,0x56f8410e,0xc47b266a,0x97241afe,0x6d9c87c1,0x0a406b8e,
0xcd42ab1b,0x803f3e02 },
{ 0x04dbec69,0x7f0309a8,0x3bbad05f,0xa83b85f7,0xad8e197f,0xc6097273,
0x5067adc1,0xc097440e } },
/* 9 */
{ { 0xc379ab34,0x846a56f2,0x841df8d1,0xa8ee068b,0x176c68ef,0x20314459,
0x915f1f30,0xf1af32d5 },
{ 0x5d75bd50,0x99c37531,0xf72f67bc,0x837cffba,0x48d7723f,0x0613a418,
0xe2d41c8b,0x23d0f130 } },
/* 10 */
{ { 0xd5be5a2b,0xed93e225,0x5934f3c6,0x6fe79983,0x22626ffc,0x43140926,
0x7990216a,0x50bbb4d9 },
{ 0xe57ec63e,0x378191c6,0x181dcdb2,0x65422c40,0x0236e0f6,0x41a8099b,
0x01fe49c3,0x2b100118 } },
/* 11 */
{ { 0x9b391593,0xfc68b5c5,0x598270fc,0xc385f5a2,0xd19adcbb,0x7144f3aa,
0x83fbae0c,0xdd558999 },
{ 0x74b82ff4,0x93b88b8e,0x71e734c9,0xd2e03c40,0x43c0322a,0x9a7a9eaf,
0x149d6041,0xe6e4c551 } },
/* 12 */
{ { 0x80ec21fe,0x5fe14bfe,0xc255be82,0xf6ce116a,0x2f4a5d67,0x98bc5a07,
0xdb7e63af,0xfad27148 },
{ 0x29ab05b3,0x90c0b6ac,0x4e251ae6,0x37a9a83c,0xc2aade7d,0x0a7dc875,
0x9f0e1a84,0x77387de3 } },
/* 13 */
{ { 0xa56c0dd7,0x1e9ecc49,0x46086c74,0xa5cffcd8,0xf505aece,0x8f7a1408,
0xbef0c47e,0xb37b85c0 },
{ 0xcc0e6a8f,0x3596b6e4,0x6b388f23,0xfd6d4bbf,0xc39cef4e,0xaba453fa,
0xf9f628d5,0x9c135ac8 } },
/* 14 */
{ { 0x95c8f8be,0x0a1c7294,0x3bf362bf,0x2961c480,0xdf63d4ac,0x9e418403,
0x91ece900,0xc109f9cb },
{ 0x58945705,0xc2d095d0,0xddeb85c0,0xb9083d96,0x7a40449b,0x84692b8d,
0x2eee1ee1,0x9bc3344f } },
/* 15 */
{ { 0x42913074,0x0d5ae356,0x48a542b1,0x55491b27,0xb310732a,0x469ca665,
0x5f1a4cc1,0x29591d52 },
{ 0xb84f983f,0xe76f5b6b,0x9f5f84e1,0xbe7eef41,0x80baa189,0x1200d496,
0x18ef332c,0x6376551f } },
};
/* Multiply the base point of P256 by the scalar and return the result.
* If map is true then convert result to affine coordinates.
*
* r Resulting point.
* k Scalar to multiply by.
* map Indicates whether to convert result to affine.
* heap Heap to use for allocation.
* returns MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
static int sp_256_ecc_mulmod_base_8(sp_point_256* r, const sp_digit* k,
int map, void* heap)
{
return sp_256_ecc_mulmod_stripe_8(r, &p256_base, p256_table,
k, map, heap);
}
#else
static const sp_table_entry_256 p256_table[256] = {
/* 0 */
{ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } },
/* 1 */
{ { 0x18a9143c,0x79e730d4,0x5fedb601,0x75ba95fc,0x77622510,0x79fb732b,
0xa53755c6,0x18905f76 },
{ 0xce95560a,0xddf25357,0xba19e45c,0x8b4ab8e4,0xdd21f325,0xd2e88688,
0x25885d85,0x8571ff18 } },
/* 2 */
{ { 0x4147519a,0x20288602,0x26b372f0,0xd0981eac,0xa785ebc8,0xa9d4a7ca,
0xdbdf58e9,0xd953c50d },
{ 0xfd590f8f,0x9d6361cc,0x44e6c917,0x72e9626b,0x22eb64cf,0x7fd96110,
0x9eb288f3,0x863ebb7e } },
/* 3 */
{ { 0x5cdb6485,0x7856b623,0x2f0a2f97,0x808f0ea2,0x4f7e300b,0x3e68d954,
0xb5ff80a0,0x00076055 },
{ 0x838d2010,0x7634eb9b,0x3243708a,0x54014fbb,0x842a6606,0xe0e47d39,
0x34373ee0,0x83087761 } },
/* 4 */
{ { 0x16a0d2bb,0x4f922fc5,0x1a623499,0x0d5cc16c,0x57c62c8b,0x9241cf3a,
0xfd1b667f,0x2f5e6961 },
{ 0xf5a01797,0x5c15c70b,0x60956192,0x3d20b44d,0x071fdb52,0x04911b37,
0x8d6f0f7b,0xf648f916 } },
/* 5 */
{ { 0xe137bbbc,0x9e566847,0x8a6a0bec,0xe434469e,0x79d73463,0xb1c42761,
0x133d0015,0x5abe0285 },
{ 0xc04c7dab,0x92aa837c,0x43260c07,0x573d9f4c,0x78e6cc37,0x0c931562,
0x6b6f7383,0x94bb725b } },
/* 6 */
{ { 0x720f141c,0xbbf9b48f,0x2df5bc74,0x6199b3cd,0x411045c4,0xdc3f6129,
0x2f7dc4ef,0xcdd6bbcb },
{ 0xeaf436fd,0xcca6700b,0xb99326be,0x6f647f6d,0x014f2522,0x0c0fa792,
0x4bdae5f6,0xa361bebd } },
/* 7 */
{ { 0x597c13c7,0x28aa2558,0x50b7c3e1,0xc38d635f,0xf3c09d1d,0x07039aec,
0xc4b5292c,0xba12ca09 },
{ 0x59f91dfd,0x9e408fa4,0xceea07fb,0x3af43b66,0x9d780b29,0x1eceb089,
0x701fef4b,0x53ebb99d } },
/* 8 */
{ { 0xb0e63d34,0x4fe7ee31,0xa9e54fab,0xf4600572,0xd5e7b5a4,0xc0493334,
0x06d54831,0x8589fb92 },
{ 0x6583553a,0xaa70f5cc,0xe25649e5,0x0879094a,0x10044652,0xcc904507,
0x02541c4f,0xebb0696d } },
/* 9 */
{ { 0xac1647c5,0x4616ca15,0xc4cf5799,0xb8127d47,0x764dfbac,0xdc666aa3,
0xd1b27da3,0xeb2820cb },
{ 0x6a87e008,0x9406f8d8,0x922378f3,0xd87dfa9d,0x80ccecb2,0x56ed2e42,
0x55a7da1d,0x1f28289b } },
/* 10 */
{ { 0x3b89da99,0xabbaa0c0,0xb8284022,0xa6f2d79e,0xb81c05e8,0x27847862,
0x05e54d63,0x337a4b59 },
{ 0x21f7794a,0x3c67500d,0x7d6d7f61,0x207005b7,0x04cfd6e8,0x0a5a3781,
0xf4c2fbd6,0x0d65e0d5 } },
/* 11 */
{ { 0xb5275d38,0xd9d09bbe,0x0be0a358,0x4268a745,0x973eb265,0xf0762ff4,
0x52f4a232,0xc23da242 },
{ 0x0b94520c,0x5da1b84f,0xb05bd78e,0x09666763,0x94d29ea1,0x3a4dcb86,
0xc790cff1,0x19de3b8c } },
/* 12 */
{ { 0x26c5fe04,0x183a716c,0x3bba1bdb,0x3b28de0b,0xa4cb712c,0x7432c586,
0x91fccbfd,0xe34dcbd4 },
{ 0xaaa58403,0xb408d46b,0x82e97a53,0x9a697486,0x36aaa8af,0x9e390127,
0x7b4e0f7f,0xe7641f44 } },
/* 13 */
{ { 0xdf64ba59,0x7d753941,0x0b0242fc,0xd33f10ec,0xa1581859,0x4f06dfc6,
0x052a57bf,0x4a12df57 },
{ 0x9439dbd0,0xbfa6338f,0xbde53e1f,0xd3c24bd4,0x21f1b314,0xfd5e4ffa,
0xbb5bea46,0x6af5aa93 } },
/* 14 */
{ { 0x10c91999,0xda10b699,0x2a580491,0x0a24b440,0xb8cc2090,0x3e0094b4,
0x66a44013,0x5fe3475a },
{ 0xf93e7b4b,0xb0f8cabd,0x7c23f91a,0x292b501a,0xcd1e6263,0x42e889ae,
0xecfea916,0xb544e308 } },
/* 15 */
{ { 0x16ddfdce,0x6478c6e9,0xf89179e6,0x2c329166,0x4d4e67e1,0x4e8d6e76,
0xa6b0c20b,0xe0b6b2bd },
{ 0xbb7efb57,0x0d312df2,0x790c4007,0x1aac0dde,0x679bc944,0xf90336ad,
0x25a63774,0x71c023de } },
/* 16 */
{ { 0xbfe20925,0x62a8c244,0x8fdce867,0x91c19ac3,0xdd387063,0x5a96a5d5,
0x21d324f6,0x61d587d4 },
{ 0xa37173ea,0xe87673a2,0x53778b65,0x23848008,0x05bab43e,0x10f8441e,
0x4621efbe,0xfa11fe12 } },
/* 17 */
{ { 0x2cb19ffd,0x1c891f2b,0xb1923c23,0x01ba8d5b,0x8ac5ca8e,0xb6d03d67,
0x1f13bedc,0x586eb04c },
{ 0x27e8ed09,0x0c35c6e5,0x1819ede2,0x1e81a33c,0x56c652fa,0x278fd6c0,
0x70864f11,0x19d5ac08 } },
/* 18 */
{ { 0x309a4e1f,0x1e99f581,0xe9270074,0xab7de71b,0xefd28d20,0x26a5ef0b,
0x7f9c563f,0xe7c0073f },
{ 0x0ef59f76,0x1f6d663a,0x20fcb050,0x669b3b54,0x7a6602d4,0xc08c1f7a,
0xc65b3c0a,0xe08504fe } },
/* 19 */
{ { 0xa031b3ca,0xf098f68d,0xe6da6d66,0x6d1cab9e,0x94f246e8,0x5bfd81fa,
0x5b0996b4,0x78f01882 },
{ 0x3a25787f,0xb7eefde4,0x1dccac9b,0x8016f80d,0xb35bfc36,0x0cea4877,
0x7e94747a,0x43a773b8 } },
/* 20 */
{ { 0xd2b533d5,0x62577734,0xa1bdddc0,0x673b8af6,0xa79ec293,0x577e7c9a,
0xc3b266b1,0xbb6de651 },
{ 0xb65259b3,0xe7e9303a,0xd03a7480,0xd6a0afd3,0x9b3cfc27,0xc5ac83d1,
0x5d18b99b,0x60b4619a } },
/* 21 */
{ { 0x1ae5aa1c,0xbd6a38e1,0x49e73658,0xb8b7652b,0xee5f87ed,0x0b130014,
0xaeebffcd,0x9d0f27b2 },
{ 0x7a730a55,0xca924631,0xddbbc83a,0x9c955b2f,0xac019a71,0x07c1dfe0,
0x356ec48d,0x244a566d } },
/* 22 */
{ { 0xeacf1f96,0x6db0394a,0x024c271c,0x9f2122a9,0x82cbd3b9,0x2626ac1b,
0x3581ef69,0x45e58c87 },
{ 0xa38f9dbc,0xd3ff479d,0xe888a040,0xa8aaf146,0x46e0bed7,0x945adfb2,
0xc1e4b7a4,0xc040e21c } },
/* 23 */
{ { 0x6f8117b6,0x847af000,0x73a35433,0x651969ff,0x1d9475eb,0x482b3576,
0x682c6ec7,0x1cdf5c97 },
{ 0x11f04839,0x7db775b4,0x48de1698,0x7dbeacf4,0xb70b3219,0xb2921dd1,
0xa92dff3d,0x046755f8 } },
/* 24 */
{ { 0xbce8ffcd,0xcc8ac5d2,0x2fe61a82,0x0d53c48b,0x7202d6c7,0xf6f16172,
0x3b83a5f3,0x046e5e11 },
{ 0xd8007f01,0xe7b8ff64,0x5af43183,0x7fb1ef12,0x35e1a03c,0x045c5ea6,
0x303d005b,0x6e0106c3 } },
/* 25 */
{ { 0x88dd73b1,0x48c73584,0x995ed0d9,0x7670708f,0xc56a2ab7,0x38385ea8,
0xe901cf1f,0x442594ed },
{ 0x12d4b65b,0xf8faa2c9,0x96c90c37,0x94c2343b,0x5e978d1f,0xd326e4a1,
0x4c2ee68e,0xa796fa51 } },
/* 26 */
{ { 0x823addd7,0x359fb604,0xe56693b3,0x9e2a6183,0x3cbf3c80,0xf885b78e,
0xc69766e9,0xe4ad2da9 },
{ 0x8e048a61,0x357f7f42,0xc092d9a0,0x082d198c,0xc03ed8ef,0xfc3a1af4,
0xc37b5143,0xc5e94046 } },
/* 27 */
{ { 0x2be75f9e,0x476a538c,0xcb123a78,0x6fd1a9e8,0xb109c04b,0xd85e4df0,
0xdb464747,0x63283daf },
{ 0xbaf2df15,0xce728cf7,0x0ad9a7f4,0xe592c455,0xe834bcc3,0xfab226ad,
0x1981a938,0x68bd19ab } },
/* 28 */
{ { 0x1887d659,0xc08ead51,0xb359305a,0x3374d5f4,0xcfe74fe3,0x96986981,
0x3c6fdfd6,0x495292f5 },
{ 0x1acec896,0x4a878c9e,0xec5b4484,0xd964b210,0x664d60a7,0x6696f7e2,
0x26036837,0x0ec7530d } },
/* 29 */
{ { 0xad2687bb,0x2da13a05,0xf32e21fa,0xa1f83b6a,0x1dd4607b,0x390f5ef5,
0x64863f0b,0x0f6207a6 },
{ 0x0f138233,0xbd67e3bb,0x272aa718,0xdd66b96c,0x26ec88ae,0x8ed00407,
0x08ed6dcf,0xff0db072 } },
/* 30 */
{ { 0x4c95d553,0x749fa101,0x5d680a8a,0xa44052fd,0xff3b566f,0x183b4317,
0x88740ea3,0x313b513c },
{ 0x08d11549,0xb402e2ac,0xb4dee21c,0x071ee10b,0x47f2320e,0x26b987dd,
0x86f19f81,0x2d3abcf9 } },
/* 31 */
{ { 0x815581a2,0x4c288501,0x632211af,0x9a0a6d56,0x0cab2e99,0x19ba7a0f,
0xded98cdf,0xc036fa10 },
{ 0xc1fbd009,0x29ae08ba,0x06d15816,0x0b68b190,0x9b9e0d8f,0xc2eb3277,
0xb6d40194,0xa6b2a2c4 } },
/* 32 */
{ { 0x6d3549cf,0xd433e50f,0xfacd665e,0x6f33696f,0xce11fcb4,0x695bfdac,
0xaf7c9860,0x810ee252 },
{ 0x7159bb2c,0x65450fe1,0x758b357b,0xf7dfbebe,0xd69fea72,0x2b057e74,
0x92731745,0xd485717a } },
/* 33 */
{ { 0xf0cb5a98,0x11741a8a,0x1f3110bf,0xd3da8f93,0xab382adf,0x1994e2cb,
0x2f9a604e,0x6a6045a7 },
{ 0xa2b2411d,0x170c0d3f,0x510e96e0,0xbe0eb83e,0x8865b3cc,0x3bcc9f73,
0xf9e15790,0xd3e45cfa } },
/* 34 */
{ { 0xe83f7669,0xce1f69bb,0x72877d6b,0x09f8ae82,0x3244278d,0x9548ae54,
0xe3c2c19c,0x207755de },
{ 0x6fef1945,0x87bd61d9,0xb12d28c3,0x18813cef,0x72df64aa,0x9fbcd1d6,
0x7154b00d,0x48dc5ee5 } },
/* 35 */
{ { 0xf7e5a199,0x123790bf,0x989ccbb7,0xe0efb8cf,0x0a519c79,0xc27a2bfe,
0xdff6f445,0xf2fb0aed },
{ 0xf0b5025f,0x41c09575,0x40fa9f22,0x550543d7,0x380bfbd0,0x8fa3c8ad,
0xdb28d525,0xa13e9015 } },
/* 36 */
{ { 0xa2b65cbc,0xf9f7a350,0x2a464226,0x0b04b972,0xe23f07a1,0x265ce241,
0x1497526f,0x2bf0d6b0 },
{ 0x4b216fb7,0xd3d4dd3f,0xfbdda26a,0xf7d7b867,0x6708505c,0xaeb7b83f,
0x162fe89f,0x42a94a5a } },
/* 37 */
{ { 0xeaadf191,0x5846ad0b,0x25a268d7,0x0f8a4890,0x494dc1f6,0xe8603050,
0xc65ede3d,0x2c2dd969 },
{ 0x93849c17,0x6d02171d,0x1da250dd,0x460488ba,0x3c3a5485,0x4810c706,
0x42c56dbc,0xf437fa1f } },
/* 38 */
{ { 0x4a0f7dab,0x6aa0d714,0x1776e9ac,0x0f049793,0xf5f39786,0x52c0a050,
0x54707aa8,0xaaf45b33 },
{ 0xc18d364a,0x85e37c33,0x3e497165,0xd40b9b06,0x15ec5444,0xf4171681,
0xf4f272bc,0xcdf6310d } },
/* 39 */
{ { 0x8ea8b7ef,0x7473c623,0x85bc2287,0x08e93518,0x2bda8e34,0x41956772,
0xda9e2ff2,0xf0d008ba },
{ 0x2414d3b1,0x2912671d,0xb019ea76,0xb3754985,0x453bcbdb,0x5c61b96d,
0xca887b8b,0x5bd5c2f5 } },
/* 40 */
{ { 0xf49a3154,0xef0f469e,0x6e2b2e9a,0x3e85a595,0xaa924a9c,0x45aaec1e,
0xa09e4719,0xaa12dfc8 },
{ 0x4df69f1d,0x26f27227,0xa2ff5e73,0xe0e4c82c,0xb7a9dd44,0xb9d8ce73,
0xe48ca901,0x6c036e73 } },
/* 41 */
{ { 0x0f6e3138,0x5cfae12a,0x25ad345a,0x6966ef00,0x45672bc5,0x8993c64b,
0x96afbe24,0x292ff658 },
{ 0x5e213402,0xd5250d44,0x4392c9fe,0xf6580e27,0xda1c72e8,0x097b397f,
0x311b7276,0x644e0c90 } },
/* 42 */
{ { 0xa47153f0,0xe1e421e1,0x920418c9,0xb86c3b79,0x705d7672,0x93bdce87,
0xcab79a77,0xf25ae793 },
{ 0x6d869d0c,0x1f3194a3,0x4986c264,0x9d55c882,0x096e945e,0x49fb5ea3,
0x13db0a3e,0x39b8e653 } },
/* 43 */
{ { 0xb6fd2e59,0x37754200,0x9255c98f,0x35e2c066,0x0e2a5739,0xd9dab21a,
0x0f19db06,0x39122f2f },
{ 0x03cad53c,0xcfbce1e0,0xe65c17e3,0x225b2c0f,0x9aa13877,0x72baf1d2,
0xce80ff8d,0x8de80af8 } },
/* 44 */
{ { 0x207bbb76,0xafbea8d9,0x21782758,0x921c7e7c,0x1c0436b1,0xdfa2b74b,
0x2e368c04,0x87194906 },
{ 0xa3993df5,0xb5f928bb,0xf3b3d26a,0x639d75b5,0x85b55050,0x011aa78a,
0x5b74fde1,0xfc315e6a } },
/* 45 */
{ { 0xe8d6ecfa,0x561fd41a,0x1aec7f86,0x5f8c44f6,0x4924741d,0x98452a7b,
0xee389088,0xe6d4a7ad },
{ 0x4593c75d,0x60552ed1,0xdd271162,0x70a70da4,0x7ba2c7db,0xd2aede93,
0x9be2ae57,0x35dfaf9a } },
/* 46 */
{ { 0xaa736636,0x6b956fcd,0xae2cab7e,0x09f51d97,0x0f349966,0xfb10bf41,
0x1c830d2b,0x1da5c7d7 },
{ 0x3cce6825,0x5c41e483,0xf9573c3b,0x15ad118f,0xf23036b8,0xa28552c7,
0xdbf4b9d6,0x7077c0fd } },
/* 47 */
{ { 0x46b9661c,0xbf63ff8d,0x0d2cfd71,0xa1dfd36b,0xa847f8f7,0x0373e140,
0xe50efe44,0x53a8632e },
{ 0x696d8051,0x0976ff68,0xc74f468a,0xdaec0c95,0x5e4e26bd,0x62994dc3,
0x34e1fcc1,0x028ca76d } },
/* 48 */
{ { 0xfc9877ee,0xd11d47dc,0x801d0002,0xc8b36210,0x54c260b6,0xd002c117,
0x6962f046,0x04c17cd8 },
{ 0xb0daddf5,0x6d9bd094,0x24ce55c0,0xbea23575,0x72da03b5,0x663356e6,
0xfed97474,0xf7ba4de9 } },
/* 49 */
{ { 0xebe1263f,0xd0dbfa34,0x71ae7ce6,0x55763735,0x82a6f523,0xd2440553,
0x52131c41,0xe31f9600 },
{ 0xea6b6ec6,0xd1bb9216,0x73c2fc44,0x37a1d12e,0x89d0a294,0xc10e7eac,
0xce34d47b,0xaa3a6259 } },
/* 50 */
{ { 0x36f3dcd3,0xfbcf9df5,0xd2bf7360,0x6ceded50,0xdf504f5b,0x491710fa,
0x7e79daee,0x2398dd62 },
{ 0x6d09569e,0xcf4705a3,0x5149f769,0xea0619bb,0x35f6034c,0xff9c0377,
0x1c046210,0x5717f5b2 } },
/* 51 */
{ { 0x21dd895e,0x9fe229c9,0x40c28451,0x8e518500,0x1d637ecd,0xfa13d239,
0x0e3c28de,0x660a2c56 },
{ 0xd67fcbd0,0x9cca88ae,0x0ea9f096,0xc8472478,0x72e92b4d,0x32b2f481,
0x4f522453,0x624ee54c } },
/* 52 */
{ { 0xd897eccc,0x09549ce4,0x3f9880aa,0x4d49d1d9,0x043a7c20,0x723c2423,
0x92bdfbc0,0x4f392afb },
{ 0x7de44fd9,0x6969f8fa,0x57b32156,0xb66cfbe4,0x368ebc3c,0xdb2fa803,
0xccdb399c,0x8a3e7977 } },
/* 53 */
{ { 0x06c4b125,0xdde1881f,0xf6e3ca8c,0xae34e300,0x5c7a13e9,0xef6999de,
0x70c24404,0x3888d023 },
{ 0x44f91081,0x76280356,0x5f015504,0x3d9fcf61,0x632cd36e,0x1827edc8,
0x18102336,0xa5e62e47 } },
/* 54 */
{ { 0x2facd6c8,0x1a825ee3,0x54bcbc66,0x699c6354,0x98df9931,0x0ce3edf7,
0x466a5adc,0x2c4768e6 },
{ 0x90a64bc9,0xb346ff8c,0xe4779f5c,0x630a6020,0xbc05e884,0xd949d064,
0xf9e652a0,0x7b5e6441 } },
/* 55 */
{ { 0x1d28444a,0x2169422c,0xbe136a39,0xe996c5d8,0xfb0c7fce,0x2387afe5,
0x0c8d744a,0xb8af73cb },
{ 0x338b86fd,0x5fde83aa,0xa58a5cff,0xfee3f158,0x20ac9433,0xc9ee8f6f,
0x7f3f0895,0xa036395f } },
/* 56 */
{ { 0xa10f7770,0x8c73c6bb,0xa12a0e24,0xa6f16d81,0x51bc2b9f,0x100df682,
0x875fb533,0x4be36b01 },
{ 0x9fb56dbb,0x9226086e,0x07e7a4f8,0x306fef8b,0x66d52f20,0xeeaccc05,
0x1bdc00c0,0x8cbc9a87 } },
/* 57 */
{ { 0xc0dac4ab,0xe131895c,0x712ff112,0xa874a440,0x6a1cee57,0x6332ae7c,
0x0c0835f8,0x44e7553e },
{ 0x7734002d,0x6d503fff,0x0b34425c,0x9d35cb8b,0x0e8738b5,0x95f70276,
0x5eb8fc18,0x470a683a } },
/* 58 */
{ { 0x90513482,0x81b761dc,0x01e9276a,0x0287202a,0x0ce73083,0xcda441ee,
0xc63dc6ef,0x16410690 },
{ 0x6d06a2ed,0xf5034a06,0x189b100b,0xdd4d7745,0xab8218c9,0xd914ae72,
0x7abcbb4f,0xd73479fd } },
/* 59 */
{ { 0x5ad4c6e5,0x7edefb16,0x5b06d04d,0x262cf08f,0x8575cb14,0x12ed5bb1,
0x0771666b,0x816469e3 },
{ 0x561e291e,0xd7ab9d79,0xc1de1661,0xeb9daf22,0x135e0513,0xf49827eb,
0xf0dd3f9c,0x0a36dd23 } },
/* 60 */
{ { 0x41d5533c,0x098d32c7,0x8684628f,0x7c5f5a9e,0xe349bd11,0x39a228ad,
0xfdbab118,0xe331dfd6 },
{ 0x6bcc6ed8,0x5100ab68,0xef7a260e,0x7160c3bd,0xbce850d7,0x9063d9a7,
0x492e3389,0xd3b4782a } },
/* 61 */
{ { 0xf3821f90,0xa149b6e8,0x66eb7aad,0x92edd9ed,0x1a013116,0x0bb66953,
0x4c86a5bd,0x7281275a },
{ 0xd3ff47e5,0x503858f7,0x61016441,0x5e1616bc,0x7dfd9bb1,0x62b0f11a,
0xce145059,0x2c062e7e } },
/* 62 */
{ { 0x0159ac2e,0xa76f996f,0xcbdb2713,0x281e7736,0x08e46047,0x2ad6d288,
0x2c4e7ef1,0x282a35f9 },
{ 0xc0ce5cd2,0x9c354b1e,0x1379c229,0xcf99efc9,0x3e82c11e,0x992caf38,
0x554d2abd,0xc71cd513 } },
/* 63 */
{ { 0x09b578f4,0x4885de9c,0xe3affa7a,0x1884e258,0x59182f1f,0x8f76b1b7,
0xcf47f3a3,0xc50f6740 },
{ 0x374b68ea,0xa9c4adf3,0x69965fe2,0xa406f323,0x85a53050,0x2f86a222,
0x212958dc,0xb9ecb3a7 } },
/* 64 */
{ { 0xf4f8b16a,0x56f8410e,0xc47b266a,0x97241afe,0x6d9c87c1,0x0a406b8e,
0xcd42ab1b,0x803f3e02 },
{ 0x04dbec69,0x7f0309a8,0x3bbad05f,0xa83b85f7,0xad8e197f,0xc6097273,
0x5067adc1,0xc097440e } },
/* 65 */
{ { 0xc379ab34,0x846a56f2,0x841df8d1,0xa8ee068b,0x176c68ef,0x20314459,
0x915f1f30,0xf1af32d5 },
{ 0x5d75bd50,0x99c37531,0xf72f67bc,0x837cffba,0x48d7723f,0x0613a418,
0xe2d41c8b,0x23d0f130 } },
/* 66 */
{ { 0xf41500d9,0x857ab6ed,0xfcbeada8,0x0d890ae5,0x89725951,0x52fe8648,
0xc0a3fadd,0xb0288dd6 },
{ 0x650bcb08,0x85320f30,0x695d6e16,0x71af6313,0xb989aa76,0x31f520a7,
0xf408c8d2,0xffd3724f } },
/* 67 */
{ { 0xb458e6cb,0x53968e64,0x317a5d28,0x992dad20,0x7aa75f56,0x3814ae0b,
0xd78c26df,0xf5590f4a },
{ 0xcf0ba55a,0x0fc24bd3,0x0c778bae,0x0fc4724a,0x683b674a,0x1ce9864f,
0xf6f74a20,0x18d6da54 } },
/* 68 */
{ { 0xd5be5a2b,0xed93e225,0x5934f3c6,0x6fe79983,0x22626ffc,0x43140926,
0x7990216a,0x50bbb4d9 },
{ 0xe57ec63e,0x378191c6,0x181dcdb2,0x65422c40,0x0236e0f6,0x41a8099b,
0x01fe49c3,0x2b100118 } },
/* 69 */
{ { 0x9b391593,0xfc68b5c5,0x598270fc,0xc385f5a2,0xd19adcbb,0x7144f3aa,
0x83fbae0c,0xdd558999 },
{ 0x74b82ff4,0x93b88b8e,0x71e734c9,0xd2e03c40,0x43c0322a,0x9a7a9eaf,
0x149d6041,0xe6e4c551 } },
/* 70 */
{ { 0x1e9af288,0x55f655bb,0xf7ada931,0x647e1a64,0xcb2820e5,0x43697e4b,
0x07ed56ff,0x51e00db1 },
{ 0x771c327e,0x43d169b8,0x4a96c2ad,0x29cdb20b,0x3deb4779,0xc07d51f5,
0x49829177,0xe22f4241 } },
/* 71 */
{ { 0x635f1abb,0xcd45e8f4,0x68538874,0x7edc0cb5,0xb5a8034d,0xc9472c1f,
0x52dc48c9,0xf709373d },
{ 0xa8af30d6,0x401966bb,0xf137b69c,0x95bf5f4a,0x9361c47e,0x3966162a,
0xe7275b11,0xbd52d288 } },
/* 72 */
{ { 0x9c5fa877,0xab155c7a,0x7d3a3d48,0x17dad672,0x73d189d8,0x43f43f9e,
0xc8aa77a6,0xa0d0f8e4 },
{ 0xcc94f92d,0x0bbeafd8,0x0c4ddb3a,0xd818c8be,0xb82eba14,0x22cc65f8,
0x946d6a00,0xa56c78c7 } },
/* 73 */
{ { 0x0dd09529,0x2962391b,0x3daddfcf,0x803e0ea6,0x5b5bf481,0x2c77351f,
0x731a367a,0xd8befdf8 },
{ 0xfc0157f4,0xab919d42,0xfec8e650,0xf51caed7,0x02d48b0a,0xcdf9cb40,
0xce9f6478,0x854a68a5 } },
/* 74 */
{ { 0x63506ea5,0xdc35f67b,0xa4fe0d66,0x9286c489,0xfe95cd4d,0x3f101d3b,
0x98846a95,0x5cacea0b },
{ 0x9ceac44d,0xa90df60c,0x354d1c3a,0x3db29af4,0xad5dbabe,0x08dd3de8,
0x35e4efa9,0xe4982d12 } },
/* 75 */
{ { 0xc34cd55e,0x23104a22,0x2680d132,0x58695bb3,0x1fa1d943,0xfb345afa,
0x16b20499,0x8046b7f6 },
{ 0x38e7d098,0xb533581e,0xf46f0b70,0xd7f61e8d,0x44cb78c4,0x30dea9ea,
0x9082af55,0xeb17ca7b } },
/* 76 */
{ { 0x76a145b9,0x1751b598,0xc1bc71ec,0xa5cf6b0f,0x392715bb,0xd3e03565,
0xfab5e131,0x097b00ba },
{ 0x565f69e1,0xaa66c8e9,0xb5be5199,0x77e8f75a,0xda4fd984,0x6033ba11,
0xafdbcc9e,0xf95c747b } },
/* 77 */
{ { 0xbebae45e,0x558f01d3,0xc4bc6955,0xa8ebe9f0,0xdbc64fc6,0xaeb705b1,
0x566ed837,0x3512601e },
{ 0xfa1161cd,0x9336f1e1,0x4c65ef87,0x328ab8d5,0x724f21e5,0x4757eee2,
0x6068ab6b,0x0ef97123 } },
/* 78 */
{ { 0x54ca4226,0x02598cf7,0xf8642c8e,0x5eede138,0x468e1790,0x48963f74,
0x3b4fbc95,0xfc16d933 },
{ 0xe7c800ca,0xbe96fb31,0x2678adaa,0x13806331,0x6ff3e8b5,0x3d624497,
0xb95d7a17,0x14ca4af1 } },
/* 79 */
{ { 0xbd2f81d5,0x7a4771ba,0x01f7d196,0x1a5f9d69,0xcad9c907,0xd898bef7,
0xf59c231d,0x4057b063 },
{ 0x89c05c0a,0xbffd82fe,0x1dc0df85,0xe4911c6f,0xa35a16db,0x3befccae,
0xf1330b13,0x1c3b5d64 } },
/* 80 */
{ { 0x80ec21fe,0x5fe14bfe,0xc255be82,0xf6ce116a,0x2f4a5d67,0x98bc5a07,
0xdb7e63af,0xfad27148 },
{ 0x29ab05b3,0x90c0b6ac,0x4e251ae6,0x37a9a83c,0xc2aade7d,0x0a7dc875,
0x9f0e1a84,0x77387de3 } },
/* 81 */
{ { 0xa56c0dd7,0x1e9ecc49,0x46086c74,0xa5cffcd8,0xf505aece,0x8f7a1408,
0xbef0c47e,0xb37b85c0 },
{ 0xcc0e6a8f,0x3596b6e4,0x6b388f23,0xfd6d4bbf,0xc39cef4e,0xaba453fa,
0xf9f628d5,0x9c135ac8 } },
/* 82 */
{ { 0x84e35743,0x32aa3202,0x85a3cdef,0x320d6ab1,0x1df19819,0xb821b176,
0xc433851f,0x5721361f },
{ 0x71fc9168,0x1f0db36a,0x5e5c403c,0x5f98ba73,0x37bcd8f5,0xf64ca87e,
0xe6bb11bd,0xdcbac3c9 } },
/* 83 */
{ { 0x4518cbe2,0xf01d9968,0x9c9eb04e,0xd242fc18,0xe47feebf,0x727663c7,
0x2d626862,0xb8c1c89e },
{ 0xc8e1d569,0x51a58bdd,0xb7d88cd0,0x563809c8,0xf11f31eb,0x26c27fd9,
0x2f9422d4,0x5d23bbda } },
/* 84 */
{ { 0x95c8f8be,0x0a1c7294,0x3bf362bf,0x2961c480,0xdf63d4ac,0x9e418403,
0x91ece900,0xc109f9cb },
{ 0x58945705,0xc2d095d0,0xddeb85c0,0xb9083d96,0x7a40449b,0x84692b8d,
0x2eee1ee1,0x9bc3344f } },
/* 85 */
{ { 0x42913074,0x0d5ae356,0x48a542b1,0x55491b27,0xb310732a,0x469ca665,
0x5f1a4cc1,0x29591d52 },
{ 0xb84f983f,0xe76f5b6b,0x9f5f84e1,0xbe7eef41,0x80baa189,0x1200d496,
0x18ef332c,0x6376551f } },
/* 86 */
{ { 0x562976cc,0xbda5f14e,0x0ef12c38,0x22bca3e6,0x6cca9852,0xbbfa3064,
0x08e2987a,0xbdb79dc8 },
{ 0xcb06a772,0xfd2cb5c9,0xfe536dce,0x38f475aa,0x7c2b5db8,0xc2a3e022,
0xadd3c14a,0x8ee86001 } },
/* 87 */
{ { 0xa4ade873,0xcbe96981,0xc4fba48c,0x7ee9aa4d,0x5a054ba5,0x2cee2899,
0x6f77aa4b,0x92e51d7a },
{ 0x7190a34d,0x948bafa8,0xf6bd1ed1,0xd698f75b,0x0caf1144,0xd00ee6e3,
0x0a56aaaa,0x5182f86f } },
/* 88 */
{ { 0x7a4cc99c,0xfba6212c,0x3e6d9ca1,0xff609b68,0x5ac98c5a,0x5dbb27cb,
0x4073a6f2,0x91dcab5d },
{ 0x5f575a70,0x01b6cc3d,0x6f8d87fa,0x0cb36139,0x89981736,0x165d4e8c,
0x97974f2b,0x17a0cedb } },
/* 89 */
{ { 0x076c8d3a,0x38861e2a,0x210f924b,0x701aad39,0x13a835d9,0x94d0eae4,
0x7f4cdf41,0x2e8ce36c },
{ 0x037a862b,0x91273dab,0x60e4c8fa,0x01ba9bb7,0x33baf2dd,0xf9645388,
0x34f668f3,0xf4ccc6cb } },
/* 90 */
{ { 0xf1f79687,0x44ef525c,0x92efa815,0x7c595495,0xa5c78d29,0xe1231741,
0x9a0df3c9,0xac0db488 },
{ 0xdf01747f,0x86bfc711,0xef17df13,0x592b9358,0x5ccb6bb5,0xe5880e4f,
0x94c974a2,0x95a64a61 } },
/* 91 */
{ { 0xc15a4c93,0x72c1efda,0x82585141,0x40269b73,0x16cb0bad,0x6a8dfb1c,
0x29210677,0x231e54ba },
{ 0x8ae6d2dc,0xa70df917,0x39112918,0x4d6aa63f,0x5e5b7223,0xf627726b,
0xd8a731e1,0xab0be032 } },
/* 92 */
{ { 0x8d131f2d,0x097ad0e9,0x3b04f101,0x637f09e3,0xd5e9a748,0x1ac86196,
0x2cf6a679,0xf1bcc880 },
{ 0xe8daacb4,0x25c69140,0x60f65009,0x3c4e4055,0x477937a6,0x591cc8fc,
0x5aebb271,0x85169469 } },
/* 93 */
{ { 0xf1dcf593,0xde35c143,0xb018be3b,0x78202b29,0x9bdd9d3d,0xe9cdadc2,
0xdaad55d8,0x8f67d9d2 },
{ 0x7481ea5f,0x84111656,0xe34c590c,0xe7d2dde9,0x05053fa8,0xffdd43f4,
0xc0728b5d,0xf84572b9 } },
/* 94 */
{ { 0x97af71c9,0x5e1a7a71,0x7a736565,0xa1449444,0x0e1d5063,0xa1b4ae07,
0x616b2c19,0xedee2710 },
{ 0x11734121,0xb2f034f5,0x4a25e9f0,0x1cac6e55,0xa40c2ecf,0x8dc148f3,
0x44ebd7f4,0x9fd27e9b } },
/* 95 */
{ { 0xf6e2cb16,0x3cc7658a,0xfe5919b6,0xe3eb7d2c,0x168d5583,0x5a8c5816,
0x958ff387,0xa40c2fb6 },
{ 0xfedcc158,0x8c9ec560,0x55f23056,0x7ad804c6,0x9a307e12,0xd9396704,
0x7dc6decf,0x99bc9bb8 } },
/* 96 */
{ { 0x927dafc6,0x84a9521d,0x5c09cd19,0x52c1fb69,0xf9366dde,0x9d9581a0,
0xa16d7e64,0x9abe210b },
{ 0x48915220,0x480af84a,0x4dd816c6,0xfa73176a,0x1681ca5a,0xc7d53987,
0x87f344b0,0x7881c257 } },
/* 97 */
{ { 0xe0bcf3ff,0x93399b51,0x127f74f6,0x0d02cbc5,0xdd01d968,0x8fb465a2,
0xa30e8940,0x15e6e319 },
{ 0x3e0e05f4,0x646d6e0d,0x43588404,0xfad7bddc,0xc4f850d3,0xbe61c7d1,
0x191172ce,0x0e55facf } },
/* 98 */
{ { 0xf8787564,0x7e9d9806,0x31e85ce6,0x1a331721,0xb819e8d6,0x6b0158ca,
0x6fe96577,0xd73d0976 },
{ 0x1eb7206e,0x42483425,0xc618bb42,0xa519290f,0x5e30a520,0x5dcbb859,
0x8f15a50b,0x9250a374 } },
/* 99 */
{ { 0xbe577410,0xcaff08f8,0x5077a8c6,0xfd408a03,0xec0a63a4,0xf1f63289,
0xc1cc8c0b,0x77414082 },
{ 0xeb0991cd,0x05a40fa6,0x49fdc296,0xc1ca0866,0xb324fd40,0x3a68a3c7,
0x12eb20b9,0x8cb04f4d } },
/* 100 */
{ { 0x6906171c,0xb1c2d055,0xb0240c3f,0x9073e9cd,0xd8906841,0xdb8e6b4f,
0x47123b51,0xe4e429ef },
{ 0x38ec36f4,0x0b8dd53c,0xff4b6a27,0xf9d2dc01,0x879a9a48,0x5d066e07,
0x3c6e6552,0x37bca2ff } },
/* 101 */
{ { 0xdf562470,0x4cd2e3c7,0xc0964ac9,0x44f272a2,0x80c793be,0x7c6d5df9,
0x3002b22a,0x59913edc },
{ 0x5750592a,0x7a139a83,0xe783de02,0x99e01d80,0xea05d64f,0xcf8c0375,
0xb013e226,0x43786e4a } },
/* 102 */
{ { 0x9e56b5a6,0xff32b0ed,0xd9fc68f9,0x0750d9a6,0x597846a7,0xec15e845,
0xb7e79e7a,0x8638ca98 },
{ 0x0afc24b2,0x2f5ae096,0x4dace8f2,0x05398eaf,0xaecba78f,0x3b765dd0,
0x7b3aa6f0,0x1ecdd36a } },
/* 103 */
{ { 0x6c5ff2f3,0x5d3acd62,0x2873a978,0xa2d516c0,0xd2110d54,0xad94c9fa,
0xd459f32d,0xd85d0f85 },
{ 0x10b11da3,0x9f700b8d,0xa78318c4,0xd2c22c30,0x9208decd,0x556988f4,
0xb4ed3c62,0xa04f19c3 } },
/* 104 */
{ { 0xed7f93bd,0x087924c8,0x392f51f6,0xcb64ac5d,0x821b71af,0x7cae330a,
0x5c0950b0,0x92b2eeea },
{ 0x85b6e235,0x85ac4c94,0x2936c0f0,0xab2ca4a9,0xe0508891,0x80faa6b3,
0x5834276c,0x1ee78221 } },
/* 105 */
{ { 0xe63e79f7,0xa60a2e00,0xf399d906,0xf590e7b2,0x6607c09d,0x9021054a,
0x57a6e150,0xf3f2ced8 },
{ 0xf10d9b55,0x200510f3,0xd8642648,0x9d2fcfac,0xe8bd0e7c,0xe5631aa7,
0x3da3e210,0x0f56a454 } },
/* 106 */
{ { 0x1043e0df,0x5b21bffa,0x9c007e6d,0x6c74b6cc,0xd4a8517a,0x1a656ec0,
0x1969e263,0xbd8f1741 },
{ 0xbeb7494a,0x8a9bbb86,0x45f3b838,0x1567d46f,0xa4e5a79a,0xdf7a12a7,
0x30ccfa09,0x2d1a1c35 } },
/* 107 */
{ { 0x506508da,0x192e3813,0xa1d795a7,0x336180c4,0x7a9944b3,0xcddb5949,
0xb91fba46,0xa107a65e },
{ 0x0f94d639,0xe6d1d1c5,0x8a58b7d7,0x8b4af375,0xbd37ca1c,0x1a7c5584,
0xf87a9af2,0x183d760a } },
/* 108 */
{ { 0x0dde59a4,0x29d69711,0x0e8bef87,0xf1ad8d07,0x4f2ebe78,0x229b4963,
0xc269d754,0x1d44179d },
{ 0x8390d30e,0xb32dc0cf,0x0de8110c,0x0a3b2753,0x2bc0339a,0x31af1dc5,
0x9606d262,0x771f9cc2 } },
/* 109 */
{ { 0x85040739,0x99993e77,0x8026a939,0x44539db9,0xf5f8fc26,0xcf40f6f2,
0x0362718e,0x64427a31 },
{ 0x85428aa8,0x4f4f2d87,0xebfb49a8,0x7b7adc3f,0xf23d01ac,0x201b2c6d,
0x6ae90d6d,0x49d9b749 } },
/* 110 */
{ { 0x435d1099,0xcc78d8bc,0x8e8d1a08,0x2adbcd4e,0x2cb68a41,0x02c2e2a0,
0x3f605445,0x9037d81b },
{ 0x074c7b61,0x7cdbac27,0x57bfd72e,0xfe2031ab,0x596d5352,0x61ccec96,
0x7cc0639c,0x08c3de6a } },
/* 111 */
{ { 0xf6d552ab,0x20fdd020,0x05cd81f1,0x56baff98,0x91351291,0x06fb7c3e,
0x45796b2f,0xc6909442 },
{ 0x41231bd1,0x17b3ae9c,0x5cc58205,0x1eac6e87,0xf9d6a122,0x208837ab,
0xcafe3ac0,0x3fa3db02 } },
/* 112 */
{ { 0x05058880,0xd75a3e65,0x643943f2,0x7da365ef,0xfab24925,0x4147861c,
0xfdb808ff,0xc5c4bdb0 },
{ 0xb272b56b,0x73513e34,0x11b9043a,0xc8327e95,0xf8844969,0xfd8ce37d,
0x46c2b6b5,0x2d56db94 } },
/* 113 */
{ { 0xff46ac6b,0x2461782f,0x07a2e425,0xd19f7926,0x09a48de1,0xfafea3c4,
0xe503ba42,0x0f56bd9d },
{ 0x345cda49,0x137d4ed1,0x816f299d,0x821158fc,0xaeb43402,0xe7c6a54a,
0x1173b5f1,0x4003bb9d } },
/* 114 */
{ { 0xa0803387,0x3b8e8189,0x39cbd404,0xece115f5,0xd2877f21,0x4297208d,
0xa07f2f9e,0x53765522 },
{ 0xa8a4182d,0xa4980a21,0x3219df79,0xa2bbd07a,0x1a19a2d4,0x674d0a2e,
0x6c5d4549,0x7a056f58 } },
/* 115 */
{ { 0x9d8a2a47,0x646b2558,0xc3df2773,0x5b582948,0xabf0d539,0x51ec000e,
0x7a1a2675,0x77d482f1 },
{ 0x87853948,0xb8a1bd95,0x6cfbffee,0xa6f817bd,0x80681e47,0xab6ec057,
0x2b38b0e4,0x4115012b } },
/* 116 */
{ { 0x6de28ced,0x3c73f0f4,0x9b13ec47,0x1d5da760,0x6e5c6392,0x61b8ce9e,
0xfbea0946,0xcdf04572 },
{ 0x6c53c3b0,0x1cb3c58b,0x447b843c,0x97fe3c10,0x2cb9780e,0xfb2b8ae1,
0x97383109,0xee703dda } },
/* 117 */
{ { 0xff57e43a,0x34515140,0xb1b811b8,0xd44660d3,0x8f42b986,0x2b3b5dff,
0xa162ce21,0x2a0ad89d },
{ 0x6bc277ba,0x64e4a694,0xc141c276,0xc788c954,0xcabf6274,0x141aa64c,
0xac2b4659,0xd62d0b67 } },
/* 118 */
{ { 0x2c054ac4,0x39c5d87b,0xf27df788,0x57005859,0xb18128d6,0xedf7cbf3,
0x991c2426,0xb39a23f2 },
{ 0xf0b16ae5,0x95284a15,0xa136f51b,0x0c6a05b1,0xf2700783,0x1d63c137,
0xc0674cc5,0x04ed0092 } },
/* 119 */
{ { 0x9ae90393,0x1f4185d1,0x4a3d64e6,0x3047b429,0x9854fc14,0xae0001a6,
0x0177c387,0xa0a91fc1 },
{ 0xae2c831e,0xff0a3f01,0x2b727e16,0xbb76ae82,0x5a3075b4,0x8f12c8a1,
0x9ed20c41,0x084cf988 } },
/* 120 */
{ { 0xfca6becf,0xd98509de,0x7dffb328,0x2fceae80,0x4778e8b9,0x5d8a15c4,
0x73abf77e,0xd57955b2 },
{ 0x31b5d4f1,0x210da79e,0x3cfa7a1c,0xaa52f04b,0xdc27c20b,0xd4d12089,
0x02d141f1,0x8e14ea42 } },
/* 121 */
{ { 0xf2897042,0xeed50345,0x43402c4a,0x8d05331f,0xc8bdfb21,0xc8d9c194,
0x2aa4d158,0x597e1a37 },
{ 0xcf0bd68c,0x0327ec1a,0xab024945,0x6d4be0dc,0xc9fe3e84,0x5b9c8d7a,
0x199b4dea,0xca3f0236 } },
/* 122 */
{ { 0x6170bd20,0x592a10b5,0x6d3f5de7,0x0ea897f1,0x44b2ade2,0xa3363ff1,
0x309c07e4,0xbde7fd7e },
{ 0xb8f5432c,0x516bb6d2,0xe043444b,0x210dc1cb,0xf8f95b5a,0x3db01e6f,
0x0a7dd198,0xb623ad0e } },
/* 123 */
{ { 0x60c7b65b,0xa75bd675,0x23a4a289,0xab8c5590,0xd7b26795,0xf8220fd0,
0x58ec137b,0xd6aa2e46 },
{ 0x5138bb85,0x10abc00b,0xd833a95c,0x8c31d121,0x1702a32e,0xb24ff00b,
0x2dcc513a,0x111662e0 } },
/* 124 */
{ { 0xefb42b87,0x78114015,0x1b6c4dff,0xbd9f5d70,0xa7d7c129,0x66ecccd7,
0x94b750f8,0xdb3ee1cb },
{ 0xf34837cf,0xb26f3db0,0xb9578d4f,0xe7eed18b,0x7c56657d,0x5d2cdf93,
0x52206a59,0x886a6442 } },
/* 125 */
{ { 0x65b569ea,0x3c234cfb,0xf72119c1,0x20011141,0xa15a619e,0x8badc85d,
0x018a17bc,0xa70cf4eb },
{ 0x8c4a6a65,0x224f97ae,0x0134378f,0x36e5cf27,0x4f7e0960,0xbe3a609e,
0xd1747b77,0xaa4772ab } },
/* 126 */
{ { 0x7aa60cc0,0x67676131,0x0368115f,0xc7916361,0xbbc1bb5a,0xded98bb4,
0x30faf974,0x611a6ddc },
{ 0xc15ee47a,0x30e78cbc,0x4e0d96a5,0x2e896282,0x3dd9ed88,0x36f35adf,
0x16429c88,0x5cfffaf8 } },
/* 127 */
{ { 0x9b7a99cd,0xc0d54cff,0x843c45a1,0x7bf3b99d,0x62c739e1,0x038a908f,
0x7dc1994c,0x6e5a6b23 },
{ 0x0ba5db77,0xef8b454e,0xacf60d63,0xb7b8807f,0x76608378,0xe591c0c6,
0x242dabcc,0x481a238d } },
/* 128 */
{ { 0x35d0b34a,0xe3417bc0,0x8327c0a7,0x440b386b,0xac0362d1,0x8fb7262d,
0xe0cdf943,0x2c41114c },
{ 0xad95a0b1,0x2ba5cef1,0x67d54362,0xc09b37a8,0x01e486c9,0x26d6cdd2,
0x42ff9297,0x20477abf } },
/* 129 */
{ { 0x18d65dbf,0x2f75173c,0x339edad8,0x77bf940e,0xdcf1001c,0x7022d26b,
0xc77396b6,0xac66409a },
{ 0xc6261cc3,0x8b0bb36f,0x190e7e90,0x213f7bc9,0xa45e6c10,0x6541ceba,
0xcc122f85,0xce8e6975 } },
/* 130 */
{ { 0xbc0a67d2,0x0f121b41,0x444d248a,0x62d4760a,0x659b4737,0x0e044f1d,
0x250bb4a8,0x08fde365 },
{ 0x848bf287,0xaceec3da,0xd3369d6e,0xc2a62182,0x92449482,0x3582dfdc,
0x565d6cd7,0x2f7e2fd2 } },
/* 131 */
{ { 0xc3770fa7,0xae4b92db,0x379043f9,0x095e8d5c,0x17761171,0x54f34e9d,
0x907702ae,0xc65be92e },
{ 0xf6fd0a40,0x2758a303,0xbcce784b,0xe7d822e3,0x4f9767bf,0x7ae4f585,
0xd1193b3a,0x4bff8e47 } },
/* 132 */
{ { 0x00ff1480,0xcd41d21f,0x0754db16,0x2ab8fb7d,0xbbe0f3ea,0xac81d2ef,
0x5772967d,0x3e4e4ae6 },
{ 0x3c5303e6,0x7e18f36d,0x92262397,0x3bd9994b,0x1324c3c0,0x9ed70e26,
0x58ec6028,0x5388aefd } },
/* 133 */
{ { 0x5e5d7713,0xad1317eb,0x75de49da,0x09b985ee,0xc74fb261,0x32f5bc4f,
0x4f75be0e,0x5cf908d1 },
{ 0x8e657b12,0x76043510,0xb96ed9e6,0xbfd421a5,0x8970ccc2,0x0e29f51f,
0x60f00ce2,0xa698ba40 } },
/* 134 */
{ { 0xef748fec,0x73db1686,0x7e9d2cf9,0xe6e755a2,0xce265eff,0x630b6544,
0x7aebad8d,0xb142ef8a },
{ 0x17d5770a,0xad31af9f,0x2cb3412f,0x66af3b67,0xdf3359de,0x6bd60d1b,
0x58515075,0xd1896a96 } },
/* 135 */
{ { 0x33c41c08,0xec5957ab,0x5468e2e1,0x87de94ac,0xac472f6c,0x18816b73,
0x7981da39,0x267b0e0b },
{ 0x8e62b988,0x6e554e5d,0x116d21e7,0xd8ddc755,0x3d2a6f99,0x4610faf0,
0xa1119393,0xb54e287a } },
/* 136 */
{ { 0x178a876b,0x0a0122b5,0x085104b4,0x51ff96ff,0x14f29f76,0x050b31ab,
0x5f87d4e6,0x84abb28b },
{ 0x8270790a,0xd5ed439f,0x85e3f46b,0x2d6cb59d,0x6c1e2212,0x75f55c1b,
0x17655640,0xe5436f67 } },
/* 137 */
{ { 0x2286e8d5,0x53f9025e,0x864453be,0x353c95b4,0xe408e3a0,0xd832f5bd,
0x5b9ce99e,0x0404f68b },
{ 0xa781e8e5,0xcad33bde,0x163c2f5b,0x3cdf5018,0x0119caa3,0x57576960,
0x0ac1c701,0x3a4263df } },
/* 138 */
{ { 0x9aeb596d,0xc2965ecc,0x023c92b4,0x01ea03e7,0x2e013961,0x4704b4b6,
0x905ea367,0x0ca8fd3f },
{ 0x551b2b61,0x92523a42,0x390fcd06,0x1eb7a89c,0x0392a63e,0xe7f1d2be,
0x4ddb0c33,0x96dca264 } },
/* 139 */
{ { 0x387510af,0x203bb43a,0xa9a36a01,0x846feaa8,0x2f950378,0xd23a5770,
0x3aad59dc,0x4363e212 },
{ 0x40246a47,0xca43a1c7,0xe55dd24d,0xb362b8d2,0x5d8faf96,0xf9b08604,
0xd8bb98c4,0x840e115c } },
/* 140 */
{ { 0x1023e8a7,0xf12205e2,0xd8dc7a0b,0xc808a8cd,0x163a5ddf,0xe292a272,
0x30ded6d4,0x5e0d6abd },
{ 0x7cfc0f64,0x07a721c2,0x0e55ed88,0x42eec01d,0x1d1f9db2,0x26a7bef9,
0x2945a25a,0x7dea48f4 } },
/* 141 */
{ { 0xe5060a81,0xabdf6f1c,0xf8f95615,0xe79f9c72,0x06ac268b,0xcfd36c54,
0xebfd16d1,0xabc2a2be },
{ 0xd3e2eac7,0x8ac66f91,0xd2dd0466,0x6f10ba63,0x0282d31b,0x6790e377,
0x6c7eefc1,0x4ea35394 } },
/* 142 */
{ { 0x5266309d,0xed8a2f8d,0x81945a3e,0x0a51c6c0,0x578c5dc1,0xcecaf45a,
0x1c94ffc3,0x3a76e689 },
{ 0x7d7b0d0f,0x9aace8a4,0x8f584a5f,0x963ace96,0x4e697fbe,0x51a30c72,
0x465e6464,0x8212a10a } },
/* 143 */
{ { 0xcfab8caa,0xef7c61c3,0x0e142390,0x18eb8e84,0x7e9733ca,0xcd1dff67,
0x599cb164,0xaa7cab71 },
{ 0xbc837bd1,0x02fc9273,0xc36af5d7,0xc06407d0,0xf423da49,0x17621292,
0xfe0617c3,0x40e38073 } },
/* 144 */
{ { 0xa7bf9b7c,0xf4f80824,0x3fbe30d0,0x365d2320,0x97cf9ce3,0xbfbe5320,
0xb3055526,0xe3604700 },
{ 0x6cc6c2c7,0x4dcb9911,0xba4cbee6,0x72683708,0x637ad9ec,0xdcded434,
0xa3dee15f,0x6542d677 } },
/* 145 */
{ { 0x7b6c377a,0x3f32b6d0,0x903448be,0x6cb03847,0x20da8af7,0xd6fdd3a8,
0x09bb6f21,0xa6534aee },
{ 0x1035facf,0x30a1780d,0x9dcb47e6,0x35e55a33,0xc447f393,0x6ea50fe1,
0xdc9aef22,0xf3cb672f } },
/* 146 */
{ { 0x3b55fd83,0xeb3719fe,0x875ddd10,0xe0d7a46c,0x05cea784,0x33ac9fa9,
0xaae870e7,0x7cafaa2e },
{ 0x1d53b338,0x9b814d04,0xef87e6c6,0xe0acc0a0,0x11672b0f,0xfb93d108,
0xb9bd522e,0x0aab13c1 } },
/* 147 */
{ { 0xd2681297,0xddcce278,0xb509546a,0xcb350eb1,0x7661aaf2,0x2dc43173,
0x847012e9,0x4b91a602 },
{ 0x72f8ddcf,0xdcff1095,0x9a911af4,0x08ebf61e,0xc372430e,0x48f4360a,
0x72321cab,0x49534c53 } },
/* 148 */
{ { 0xf07b7e9d,0x83df7d71,0x13cd516f,0xa478efa3,0x6c047ee3,0x78ef264b,
0xd65ac5ee,0xcaf46c4f },
{ 0x92aa8266,0xa04d0c77,0x913684bb,0xedf45466,0xae4b16b0,0x56e65168,
0x04c6770f,0x14ce9e57 } },
/* 149 */
{ { 0x965e8f91,0x99445e3e,0xcb0f2492,0xd3aca1ba,0x90c8a0a0,0xd31cc70f,
0x3e4c9a71,0x1bb708a5 },
{ 0x558bdd7a,0xd5ca9e69,0x018a26b1,0x734a0508,0x4c9cf1ec,0xb093aa71,
0xda300102,0xf9d126f2 } },
/* 150 */
{ { 0xaff9563e,0x749bca7a,0xb49914a0,0xdd077afe,0xbf5f1671,0xe27a0311,
0x729ecc69,0x807afcb9 },
{ 0xc9b08b77,0x7f8a9337,0x443c7e38,0x86c3a785,0x476fd8ba,0x85fafa59,
0x6568cd8c,0x751adcd1 } },
/* 151 */
{ { 0x10715c0d,0x8aea38b4,0x8f7697f7,0xd113ea71,0x93fbf06d,0x665eab14,
0x2537743f,0x29ec4468 },
{ 0xb50bebbc,0x3d94719c,0xe4505422,0x399ee5bf,0x8d2dedb1,0x90cd5b3a,
0x92a4077d,0xff9370e3 } },
/* 152 */
{ { 0xc6b75b65,0x59a2d69b,0x266651c5,0x4188f8d5,0x3de9d7d2,0x28a9f33e,
0xa2a9d01a,0x9776478b },
{ 0x929af2c7,0x8852622d,0x4e690923,0x334f5d6d,0xa89a51e9,0xce6cc7e5,
0xac2f82fa,0x74a6313f } },
/* 153 */
{ { 0xb75f079c,0xb2f4dfdd,0x18e36fbb,0x85b07c95,0xe7cd36dd,0x1b6cfcf0,
0x0ff4863d,0xab75be15 },
{ 0x173fc9b7,0x81b367c0,0xd2594fd0,0xb90a7420,0xc4091236,0x15fdbf03,
0x0b4459f6,0x4ebeac2e } },
/* 154 */
{ { 0x5c9f2c53,0xeb6c5fe7,0x8eae9411,0xd2522011,0xf95ac5d8,0xc8887633,
0x2c1baffc,0xdf99887b },
{ 0x850aaecb,0xbb78eed2,0x01d6a272,0x9d49181b,0xb1cdbcac,0x978dd511,
0x779f4058,0x27b040a7 } },
/* 155 */
{ { 0xf73b2eb2,0x90405db7,0x8e1b2118,0xe0df8508,0x5962327e,0x501b7152,
0xe4cfa3f5,0xb393dd37 },
{ 0x3fd75165,0xa1230e7b,0xbcd33554,0xd66344c2,0x0f7b5022,0x6c36f1be,
0xd0463419,0x09588c12 } },
/* 156 */
{ { 0x02601c3b,0xe086093f,0xcf5c335f,0xfb0252f8,0x894aff28,0x955cf280,
0xdb9f648b,0x81c879a9 },
{ 0xc6f56c51,0x040e687c,0x3f17618c,0xfed47169,0x9059353b,0x44f88a41,
0x5fc11bc4,0xfa0d48f5 } },
/* 157 */
{ { 0xe1608e4d,0xbc6e1c9d,0x3582822c,0x010dda11,0x157ec2d7,0xf6b7ddc1,
0xb6a367d6,0x8ea0e156 },
{ 0x2383b3b4,0xa354e02f,0x3f01f53c,0x69966b94,0x2de03ca5,0x4ff6632b,
0xfa00b5ac,0x3f5ab924 } },
/* 158 */
{ { 0x59739efb,0x337bb0d9,0xe7ebec0d,0xc751b0f4,0x411a67d1,0x2da52dd6,
0x2b74256e,0x8bc76887 },
{ 0x82d3d253,0xa5be3b72,0xf58d779f,0xa9f679a1,0xe16767bb,0xa1cac168,
0x60fcf34f,0xb386f190 } },
/* 159 */
{ { 0x2fedcfc2,0x31f3c135,0x62f8af0d,0x5396bf62,0xe57288c2,0x9a02b4ea,
0x1b069c4d,0x4cb460f7 },
{ 0x5b8095ea,0xae67b4d3,0x6fc07603,0x92bbf859,0xb614a165,0xe1475f66,
0x95ef5223,0x52c0d508 } },
/* 160 */
{ { 0x15339848,0x231c210e,0x70778c8d,0xe87a28e8,0x6956e170,0x9d1de661,
0x2bb09c0b,0x4ac3c938 },
{ 0x6998987d,0x19be0551,0xae09f4d6,0x8b2376c4,0x1a3f933d,0x1de0b765,
0xe39705f4,0x380d94c7 } },
/* 161 */
{ { 0x81542e75,0x01a355aa,0xee01b9b7,0x96c724a1,0x624d7087,0x6b3a2977,
0xde2637af,0x2ce3e171 },
{ 0xf5d5bc1a,0xcfefeb49,0x2777e2b5,0xa655607e,0x9513756c,0x4feaac2f,
0x0b624e4d,0x2e6cd852 } },
/* 162 */
{ { 0x8c31c31d,0x3685954b,0x5bf21a0c,0x68533d00,0x75c79ec9,0x0bd7626e,
0x42c69d54,0xca177547 },
{ 0xf6d2dbb2,0xcc6edaff,0x174a9d18,0xfd0d8cbd,0xaa4578e8,0x875e8793,
0x9cab2ce6,0xa976a713 } },
/* 163 */
{ { 0x93fb353d,0x0a651f1b,0x57fcfa72,0xd75cab8b,0x31b15281,0xaa88cfa7,
0x0a1f4999,0x8720a717 },
{ 0x693e1b90,0x8c3e8d37,0x16f6dfc3,0xd345dc0b,0xb52a8742,0x8ea8d00a,
0xc769893c,0x9719ef29 } },
/* 164 */
{ { 0x58e35909,0x820eed8d,0x33ddc116,0x9366d8dc,0x6e205026,0xd7f999d0,
0xe15704c1,0xa5072976 },
{ 0xc4e70b2e,0x002a37ea,0x6890aa8a,0x84dcf657,0x645b2a5c,0xcd71bf18,
0xf7b77725,0x99389c9d } },
/* 165 */
{ { 0x7ada7a4b,0x238c08f2,0xfd389366,0x3abe9d03,0x766f512c,0x6b672e89,
0x202c82e4,0xa88806aa },
{ 0xd380184e,0x6602044a,0x126a8b85,0xa8cb78c4,0xad844f17,0x79d670c0,
0x4738dcfe,0x0043bffb } },
/* 166 */
{ { 0x36d5192e,0x8d59b5dc,0x4590b2af,0xacf885d3,0x11601781,0x83566d0a,
0xba6c4866,0x52f3ef01 },
{ 0x0edcb64d,0x3986732a,0x8068379f,0x0a482c23,0x7040f309,0x16cbe5fa,
0x9ef27e75,0x3296bd89 } },
/* 167 */
{ { 0x454d81d7,0x476aba89,0x51eb9b3c,0x9eade7ef,0x81c57986,0x619a21cd,
0xaee571e9,0x3b90febf },
{ 0x5496f7cb,0x9393023e,0x7fb51bc4,0x55be41d8,0x99beb5ce,0x03f1dd48,
0x9f810b18,0x6e88069d } },
/* 168 */
{ { 0xb43ea1db,0xce37ab11,0x5259d292,0x0a7ff1a9,0x8f84f186,0x851b0221,
0xdefaad13,0xa7222bea },
{ 0x2b0a9144,0xa2ac78ec,0xf2fa59c5,0x5a024051,0x6147ce38,0x91d1eca5,
0xbc2ac690,0xbe94d523 } },
/* 169 */
{ { 0x0b226ce7,0x72f4945e,0x967e8b70,0xb8afd747,0x85a6c63e,0xedea46f1,
0x9be8c766,0x7782defe },
{ 0x3db38626,0x760d2aa4,0x76f67ad1,0x460ae787,0x54499cdb,0x341b86fc,
0xa2892e4b,0x03838567 } },
/* 170 */
{ { 0x79ec1a0f,0x2d8daefd,0xceb39c97,0x3bbcd6fd,0x58f61a95,0xf5575ffc,
0xadf7b420,0xdbd986c4 },
{ 0x15f39eb7,0x81aa8814,0xb98d976c,0x6ee2fcf5,0xcf2f717d,0x5465475d,
0x6860bbd0,0x8e24d3c4 } },
/* 171 */
{ { 0x9a587390,0x749d8e54,0x0cbec588,0x12bb194f,0xb25983c6,0x46e07da4,
0x407bafc8,0x541a99c4 },
{ 0x624c8842,0xdb241692,0xd86c05ff,0x6044c12a,0x4f7fcf62,0xc59d14b4,
0xf57d35d1,0xc0092c49 } },
/* 172 */
{ { 0xdf2e61ef,0xd3cc75c3,0x2e1b35ca,0x7e8841c8,0x909f29f4,0xc62d30d1,
0x7286944d,0x75e40634 },
{ 0xbbc237d0,0xe7d41fc5,0xec4f01c9,0xc9537bf0,0x282bd534,0x91c51a16,
0xc7848586,0x5b7cb658 } },
/* 173 */
{ { 0x8a28ead1,0x964a7084,0xfd3b47f6,0x802dc508,0x767e5b39,0x9ae4bfd1,
0x8df097a1,0x7ae13eba },
{ 0xeadd384e,0xfd216ef8,0xb6b2ff06,0x0361a2d9,0x4bcdb5f3,0x204b9878,
0xe2a8e3fd,0x787d8074 } },
/* 174 */
{ { 0x757fbb1c,0xc5e25d6b,0xca201deb,0xe47bddb2,0x6d2233ff,0x4a55e9a3,
0x9ef28484,0x5c222819 },
{ 0x88315250,0x773d4a85,0x827097c1,0x21b21a2b,0xdef5d33f,0xab7c4ea1,
0xbaf0f2b0,0xe45d37ab } },
/* 175 */
{ { 0x28511c8a,0xd2df1e34,0xbdca6cd3,0xebb229c8,0x627c39a7,0x578a71a7,
0x84dfb9d3,0xed7bc122 },
{ 0x93dea561,0xcf22a6df,0xd48f0ed1,0x5443f18d,0x5bad23e8,0xd8b86140,
0x45ca6d27,0xaac97cc9 } },
/* 176 */
{ { 0xa16bd00a,0xeb54ea74,0xf5c0bcc1,0xd839e9ad,0x1f9bfc06,0x092bb7f1,
0x1163dc4e,0x318f97b3 },
{ 0xc30d7138,0xecc0c5be,0xabc30220,0x44e8df23,0xb0223606,0x2bb7972f,
0x9a84ff4d,0xfa41faa1 } },
/* 177 */
{ { 0xa6642269,0x4402d974,0x9bb783bd,0xc81814ce,0x7941e60b,0x398d38e4,
0x1d26e9e2,0x38bb6b2c },
{ 0x6a577f87,0xc64e4a25,0xdc11fe1c,0x8b52d253,0x62280728,0xff336abf,
0xce7601a5,0x94dd0905 } },
/* 178 */
{ { 0xde93f92a,0x156cf7dc,0x89b5f315,0xa01333cb,0xc995e750,0x02404df9,
0xd25c2ae9,0x92077867 },
{ 0x0bf39d44,0xe2471e01,0x96bb53d7,0x5f2c9020,0x5c9c3d8f,0x4c44b7b3,
0xd29beb51,0x81e8428b } },
/* 179 */
{ { 0xc477199f,0x6dd9c2ba,0x6b5ecdd9,0x8cb8eeee,0xee40fd0e,0x8af7db3f,
0xdbbfa4b1,0x1b94ab62 },
{ 0xce47f143,0x44f0d8b3,0x63f46163,0x51e623fc,0xcc599383,0xf18f270f,
0x055590ee,0x06a38e28 } },
/* 180 */
{ { 0xb3355b49,0x2e5b0139,0xb4ebf99b,0x20e26560,0xd269f3dc,0xc08ffa6b,
0x83d9d4f8,0xa7b36c20 },
{ 0x1b3e8830,0x64d15c3a,0xa89f9c0b,0xd5fceae1,0xe2d16930,0xcfeee4a2,
0xa2822a20,0xbe54c6b4 } },
/* 181 */
{ { 0x8d91167c,0xd6cdb3df,0xe7a6625e,0x517c3f79,0x346ac7f4,0x7105648f,
0xeae022bb,0xbf30a5ab },
{ 0x93828a68,0x8e7785be,0x7f3ef036,0x5161c332,0x592146b2,0xe11b5feb,
0x2732d13a,0xd1c820de } },
/* 182 */
{ { 0x9038b363,0x043e1347,0x6b05e519,0x58c11f54,0x6026cad1,0x4fe57abe,
0x68a18da3,0xb7d17bed },
{ 0xe29c2559,0x44ca5891,0x5bfffd84,0x4f7a0376,0x74e46948,0x498de4af,
0x6412cc64,0x3997fd5e } },
/* 183 */
{ { 0x8bd61507,0xf2074682,0x34a64d2a,0x29e132d5,0x8a8a15e3,0xffeddfb0,
0x3c6c13e8,0x0eeb8929 },
{ 0xa7e259f8,0xe9b69a3e,0xd13e7e67,0xce1db7e6,0xad1fa685,0x277318f6,
0xc922b6ef,0x228916f8 } },
/* 184 */
{ { 0x0a12ab5b,0x959ae25b,0x957bc136,0xcc11171f,0xd16e2b0c,0x8058429e,
0x6e93097e,0xec05ad1d },
{ 0xac3f3708,0x157ba5be,0x30b59d77,0x31baf935,0x118234e5,0x47b55237,
0x7ff11b37,0x7d314156 } },
/* 185 */
{ { 0xf6dfefab,0x7bd9c05c,0xdcb37707,0xbe2f2268,0x3a38bb95,0xe53ead97,
0x9bc1d7a3,0xe9ce66fc },
{ 0x6f6a02a1,0x75aa1576,0x60e600ed,0x38c087df,0x68cdc1b9,0xf8947f34,
0x72280651,0xd9650b01 } },
/* 186 */
{ { 0x5a057e60,0x504b4c4a,0x8def25e4,0xcbccc3be,0x17c1ccbd,0xa6353208,
0x804eb7a2,0x14d6699a },
{ 0xdb1f411a,0x2c8a8415,0xf80d769c,0x09fbaf0b,0x1c2f77ad,0xb4deef90,
0x0d43598a,0x6f4c6841 } },
/* 187 */
{ { 0x96c24a96,0x8726df4e,0xfcbd99a3,0x534dbc85,0x8b2ae30a,0x3c466ef2,
0x61189abb,0x4c4350fd },
{ 0xf855b8da,0x2967f716,0x463c38a1,0x41a42394,0xeae93343,0xc37e1413,
0x5a3118b5,0xa726d242 } },
/* 188 */
{ { 0x948c1086,0xdae6b3ee,0xcbd3a2e1,0xf1de503d,0x03d022f3,0x3f35ed3f,
0xcc6cf392,0x13639e82 },
{ 0xcdafaa86,0x9ac938fb,0x2654a258,0xf45bc5fb,0x45051329,0x1963b26e,
0xc1a335a3,0xca9365e1 } },
/* 189 */
{ { 0x4c3b2d20,0x3615ac75,0x904e241b,0x742a5417,0xcc9d071d,0xb08521c4,
0x970b72a5,0x9ce29c34 },
{ 0x6d3e0ad6,0x8cc81f73,0xf2f8434c,0x8060da9e,0x6ce862d9,0x35ed1d1a,
0xab42af98,0x48c4abd7 } },
/* 190 */
{ { 0x40c7485a,0xd221b0cc,0xe5274dbf,0xead455bb,0x9263d2e8,0x493c7698,
0xf67b33cb,0x78017c32 },
{ 0x930cb5ee,0xb9d35769,0x0c408ed2,0xc0d14e94,0x272f1a4d,0xf8b7bf55,
0xde5c1c04,0x53cd0454 } },
/* 191 */
{ { 0x5d28ccac,0xbcd585fa,0x005b746e,0x5f823e56,0xcd0123aa,0x7c79f0a1,
0xd3d7fa8f,0xeea465c1 },
{ 0x0551803b,0x7810659f,0x7ce6af70,0x6c0b599f,0x29288e70,0x4195a770,
0x7ae69193,0x1b6e42a4 } },
/* 192 */
{ { 0xf67d04c3,0x2e80937c,0x89eeb811,0x1e312be2,0x92594d60,0x56b5d887,
0x187fbd3d,0x0224da14 },
{ 0x0c5fe36f,0x87abb863,0x4ef51f5f,0x580f3c60,0xb3b429ec,0x964fb1bf,
0x42bfff33,0x60838ef0 } },
/* 193 */
{ { 0x7e0bbe99,0x432cb2f2,0x04aa39ee,0x7bda44f3,0x9fa93903,0x5f497c7a,
0x2d331643,0x636eb202 },
{ 0x93ae00aa,0xfcfd0e61,0x31ae6d2f,0x875a00fe,0x9f93901c,0xf43658a2,
0x39218bac,0x8844eeb6 } },
/* 194 */
{ { 0x6b3bae58,0x114171d2,0x17e39f3e,0x7db3df71,0x81a8eada,0xcd37bc7f,
0x51fb789e,0x27ba83dc },
{ 0xfbf54de5,0xa7df439f,0xb5fe1a71,0x7277030b,0xdb297a48,0x42ee8e35,
0x87f3a4ab,0xadb62d34 } },
/* 195 */
{ { 0xa175df2a,0x9b1168a2,0x618c32e9,0x082aa04f,0x146b0916,0xc9e4f2e7,
0x75e7c8b2,0xb990fd76 },
{ 0x4df37313,0x0829d96b,0xd0b40789,0x1c205579,0x78087711,0x66c9ae4a,
0x4d10d18d,0x81707ef9 } },
/* 196 */
{ { 0x03d6ff96,0x97d7cab2,0x0d843360,0x5b851bfc,0xd042db4b,0x268823c4,
0xd5a8aa5c,0x3792daea },
{ 0x941afa0b,0x52818865,0x42d83671,0xf3e9e741,0x5be4e0a7,0x17c82527,
0x94b001ba,0x5abd635e } },
/* 197 */
{ { 0x0ac4927c,0x727fa84e,0xa7c8cf23,0xe3886035,0x4adca0df,0xa4bcd5ea,
0x846ab610,0x5995bf21 },
{ 0x829dfa33,0xe90f860b,0x958fc18b,0xcaafe2ae,0x78630366,0x9b3baf44,
0xd483411e,0x44c32ca2 } },
/* 198 */
{ { 0xe40ed80c,0xa74a97f1,0x31d2ca82,0x5f938cb1,0x7c2d6ad9,0x53f2124b,
0x8082a54c,0x1f2162fb },
{ 0x720b173e,0x7e467cc5,0x085f12f9,0x40e8a666,0x4c9d65dc,0x8cebc20e,
0xc3e907c9,0x8f1d402b } },
/* 199 */
{ { 0xfbc4058a,0x4f592f9c,0x292f5670,0xb15e14b6,0xbc1d8c57,0xc55cfe37,
0x926edbf9,0xb1980f43 },
{ 0x32c76b09,0x98c33e09,0x33b07f78,0x1df5279d,0x863bb461,0x6f08ead4,
0x37448e45,0x2828ad9b } },
/* 200 */
{ { 0xc4cf4ac5,0x696722c4,0xdde64afb,0xf5ac1a3f,0xe0890832,0x0551baa2,
0x5a14b390,0x4973f127 },
{ 0x322eac5d,0xe59d8335,0x0bd9b568,0x5e07eef5,0xa2588393,0xab36720f,
0xdb168ac7,0x6dac8ed0 } },
/* 201 */
{ { 0xeda835ef,0xf7b545ae,0x1d10ed51,0x4aa113d2,0x13741b09,0x035a65e0,
0x20b9de4c,0x4b23ef59 },
{ 0x3c4c7341,0xe82bb680,0x3f58bc37,0xd457706d,0xa51e3ee8,0x73527863,
0xddf49a4e,0x4dd71534 } },
/* 202 */
{ { 0x95476cd9,0xbf944672,0xe31a725b,0x648d072f,0xfc4b67e0,0x1441c8b8,
0x2f4a4dbb,0xfd317000 },
{ 0x8995d0e1,0x1cb43ff4,0x0ef729aa,0x76e695d1,0x41798982,0xe0d5f976,
0x9569f365,0x14fac58c } },
/* 203 */
{ { 0xf312ae18,0xad9a0065,0xfcc93fc9,0x51958dc0,0x8a7d2846,0xd9a14240,
0x36abda50,0xed7c7651 },
{ 0x25d4abbc,0x46270f1a,0xf1a113ea,0x9b5dd8f3,0x5b51952f,0xc609b075,
0x4d2e9f53,0xfefcb7f7 } },
/* 204 */
{ { 0xba119185,0xbd09497a,0xaac45ba4,0xd54e8c30,0xaa521179,0x492479de,
0x87e0d80b,0x1801a57e },
{ 0xfcafffb0,0x073d3f8d,0xae255240,0x6cf33c0b,0x5b5fdfbc,0x781d763b,
0x1ead1064,0x9f8fc11e } },
/* 205 */
{ { 0x5e69544c,0x1583a171,0xf04b7813,0x0eaf8567,0x278a4c32,0x1e22a8fd,
0x3d3a69a9,0xa9d3809d },
{ 0x59a2da3b,0x936c2c2c,0x1895c847,0x38ccbcf6,0x63d50869,0x5e65244e,
0xe1178ef7,0x3006b9ae } },
/* 206 */
{ { 0xc9eead28,0x0bb1f2b0,0x89f4dfbc,0x7eef635d,0xb2ce8939,0x074757fd,
0x45f8f761,0x0ab85fd7 },
{ 0x3e5b4549,0xecda7c93,0x97922f21,0x4be2bb5c,0xb43b8040,0x261a1274,
0x11e942c2,0xb122d675 } },
/* 207 */
{ { 0x66a5ae7a,0x3be607be,0x76adcbe3,0x01e703fa,0x4eb6e5c5,0xaf904301,
0x097dbaec,0x9f599dc1 },
{ 0x0ff250ed,0x6d75b718,0x349a20dc,0x8eb91574,0x10b227a3,0x425605a4,
0x8a294b78,0x7d5528e0 } },
/* 208 */
{ { 0x20c26def,0xf0f58f66,0x582b2d1e,0x025585ea,0x01ce3881,0xfbe7d79b,
0x303f1730,0x28ccea01 },
{ 0x79644ba5,0xd1dabcd1,0x06fff0b8,0x1fc643e8,0x66b3e17b,0xa60a76fc,
0xa1d013bf,0xc18baf48 } },
/* 209 */
{ { 0x5dc4216d,0x34e638c8,0x206142ac,0x00c01067,0x95f5064a,0xd453a171,
0xb7a9596b,0x9def809d },
{ 0x67ab8d2c,0x41e8642e,0x6237a2b6,0xb4240433,0x64c4218b,0x7d506a6d,
0x68808ce5,0x0357f8b0 } },
/* 210 */
{ { 0x4cd2cc88,0x8e9dbe64,0xf0b8f39d,0xcc61c28d,0xcd30a0c8,0x4a309874,
0x1b489887,0xe4a01add },
{ 0xf57cd8f9,0x2ed1eeac,0xbd594c48,0x1b767d3e,0x7bd2f787,0xa7295c71,
0xce10cc30,0x466d7d79 } },
/* 211 */
{ { 0x9dada2c7,0x47d31892,0x8f9aa27d,0x4fa0a6c3,0x820a59e1,0x90e4fd28,
0x451ead1a,0xc672a522 },
{ 0x5d86b655,0x30607cc8,0xf9ad4af1,0xf0235d3b,0x571172a6,0x99a08680,
0xf2a67513,0x5e3d64fa } },
/* 212 */
{ { 0x9b3b4416,0xaa6410c7,0xeab26d99,0xcd8fcf85,0xdb656a74,0x5ebff74a,
0xeb8e42fc,0x6c8a7a95 },
{ 0xb02a63bd,0x10c60ba7,0x8b8f0047,0x6b2f2303,0x312d90b0,0x8c6c3738,
0xad82ca91,0x348ae422 } },
/* 213 */
{ { 0x5ccda2fb,0x7f474663,0x8e0726d2,0x22accaa1,0x492b1f20,0x85adf782,
0xd9ef2d2e,0xc1074de0 },
{ 0xae9a65b3,0xfcf3ce44,0x05d7151b,0xfd71e4ac,0xce6a9788,0xd4711f50,
0xc9e54ffc,0xfbadfbdb } },
/* 214 */
{ { 0x20a99363,0x1713f1cd,0x6cf22775,0xb915658f,0x24d359b2,0x968175cd,
0x83716fcd,0xb7f976b4 },
{ 0x5d6dbf74,0x5758e24d,0x71c3af36,0x8d23bafd,0x0243dfe3,0x48f47760,
0xcafcc805,0xf4d41b2e } },
/* 215 */
{ { 0xfdabd48d,0x51f1cf28,0x32c078a4,0xce81be36,0x117146e9,0x6ace2974,
0xe0160f10,0x180824ea },
{ 0x66e58358,0x0387698b,0xce6ca358,0x63568752,0x5e41e6c5,0x82380e34,
0x83cf6d25,0x67e5f639 } },
/* 216 */
{ { 0xcf4899ef,0xf89ccb8d,0x9ebb44c0,0x949015f0,0xb2598ec9,0x546f9276,
0x04c11fc6,0x9fef789a },
{ 0x53d2a071,0x6d367ecf,0xa4519b09,0xb10e1a7f,0x611e2eef,0xca6b3fb0,
0xa99c4e20,0xbc80c181 } },
/* 217 */
{ { 0xe5eb82e6,0x972536f8,0xf56cb920,0x1a484fc7,0x50b5da5e,0xc78e2171,
0x9f8cdf10,0x49270e62 },
{ 0xea6b50ad,0x1a39b7bb,0xa2388ffc,0x9a0284c1,0x8107197b,0x5403eb17,
0x61372f7f,0xd2ee52f9 } },
/* 218 */
{ { 0x88e0362a,0xd37cd285,0x8fa5d94d,0x442fa8a7,0xa434a526,0xaff836e5,
0xe5abb733,0xdfb478be },
{ 0x673eede6,0xa91f1ce7,0x2b5b2f04,0xa5390ad4,0x5530da2f,0x5e66f7bf,
0x08df473a,0xd9a140b4 } },
/* 219 */
{ { 0x6e8ea498,0x0e0221b5,0x3563ee09,0x62347829,0x335d2ade,0xe06b8391,
0x623f4b1a,0x760c058d },
{ 0xc198aa79,0x0b89b58c,0xf07aba7f,0xf74890d2,0xfde2556a,0x4e204110,
0x8f190409,0x7141982d } },
/* 220 */
{ { 0x4d4b0f45,0x6f0a0e33,0x392a94e1,0xd9280b38,0xb3c61d5e,0x3af324c6,
0x89d54e47,0x3af9d1ce },
{ 0x20930371,0xfd8f7981,0x21c17097,0xeda2664c,0xdc42309b,0x0e9545dc,
0x73957dd6,0xb1f815c3 } },
/* 221 */
{ { 0x89fec44a,0x84faa78e,0x3caa4caf,0xc8c2ae47,0xc1b6a624,0x691c807d,
0x1543f052,0xa41aed14 },
{ 0x7d5ffe04,0x42435399,0x625b6e20,0x8bacb2df,0x87817775,0x85d660be,
0x86fb60ef,0xd6e9c1dd } },
/* 222 */
{ { 0xc6853264,0x3aa2e97e,0xe2304a0b,0x771533b7,0xb8eae9be,0x1b912bb7,
0xae9bf8c2,0x9c9c6e10 },
{ 0xe030b74c,0xa2309a59,0x6a631e90,0x4ed7494d,0xa49b79f2,0x89f44b23,
0x40fa61b6,0x566bd596 } },
/* 223 */
{ { 0xc18061f3,0x066c0118,0x7c83fc70,0x190b25d3,0x27273245,0xf05fc8e0,
0xf525345e,0xcf2c7390 },
{ 0x10eb30cf,0xa09bceb4,0x0d77703a,0xcfd2ebba,0x150ff255,0xe842c43a,
0x8aa20979,0x02f51755 } },
/* 224 */
{ { 0xaddb7d07,0x396ef794,0x24455500,0x0b4fc742,0xc78aa3ce,0xfaff8eac,
0xe8d4d97d,0x14e9ada5 },
{ 0x2f7079e2,0xdaa480a1,0xe4b0800e,0x45baa3cd,0x7838157d,0x01765e2d,
0x8e9d9ae8,0xa0ad4fab } },
/* 225 */
{ { 0x4a653618,0x0bfb7621,0x31eaaa5f,0x1872813c,0x44949d5e,0x1553e737,
0x6e56ed1e,0xbcd530b8 },
{ 0x32e9c47b,0x169be853,0xb50059ab,0xdc2776fe,0x192bfbb4,0xcdba9761,
0x6979341d,0x909283cf } },
/* 226 */
{ { 0x76e81a13,0x67b00324,0x62171239,0x9bee1a99,0xd32e19d6,0x08ed361b,
0xace1549a,0x35eeb7c9 },
{ 0x7e4e5bdc,0x1280ae5a,0xb6ceec6e,0x2dcd2cd3,0x6e266bc1,0x52e4224c,
0x448ae864,0x9a8b2cf4 } },
/* 227 */
{ { 0x09d03b59,0xf6471bf2,0xb65af2ab,0xc90e62a3,0xebd5eec9,0xff7ff168,
0xd4491379,0x6bdb60f4 },
{ 0x8a55bc30,0xdadafebc,0x10097fe0,0xc79ead16,0x4c1e3bdd,0x42e19741,
0x94ba08a9,0x01ec3cfd } },
/* 228 */
{ { 0xdc9485c2,0xba6277eb,0x22fb10c7,0x48cc9a79,0x70a28d8a,0x4f61d60f,
0x475464f6,0xd1acb1c0 },
{ 0x26f36612,0xd26902b1,0xe0618d8b,0x59c3a44e,0x308357ee,0x4df8a813,
0x405626c2,0x7dcd079d } },
/* 229 */
{ { 0xf05a4b48,0x5ce7d4d3,0x37230772,0xadcd2952,0x812a915a,0xd18f7971,
0x377d19b8,0x0bf53589 },
{ 0x6c68ea73,0x35ecd95a,0x823a584d,0xc7f3bbca,0xf473a723,0x9fb674c6,
0xe16686fc,0xd28be4d9 } },
/* 230 */
{ { 0x38fa8e4b,0x5d2b9906,0x893fd8fc,0x559f186e,0x436fb6fc,0x3a6de2aa,
0x510f88ce,0xd76007aa },
{ 0x523a4988,0x2d10aab6,0x74dd0273,0xb455cf44,0xa3407278,0x7f467082,
0xb303bb01,0xf2b52f68 } },
/* 231 */
{ { 0x9835b4ca,0x0d57eafa,0xbb669cbc,0x2d2232fc,0xc6643198,0x8eeeb680,
0xcc5aed3a,0xd8dbe98e },
{ 0xc5a02709,0xcba9be3f,0xf5ba1fa8,0x30be68e5,0xf10ea852,0xfebd43cd,
0xee559705,0xe01593a3 } },
/* 232 */
{ { 0xea75a0a6,0xd3e5af50,0x57858033,0x512226ac,0xd0176406,0x6fe6d50f,
0xaeb8ef06,0xafec07b1 },
{ 0x80bb0a31,0x7fb99567,0x37309aae,0x6f1af3cc,0x01abf389,0x9153a15a,
0x6e2dbfdd,0xa71b9354 } },
/* 233 */
{ { 0x18f593d2,0xbf8e12e0,0xa078122b,0xd1a90428,0x0ba4f2ad,0x150505db,
0x628523d9,0x53a2005c },
{ 0xe7f2b935,0x07c8b639,0xc182961a,0x2bff975a,0x7518ca2c,0x86bceea7,
0x3d588e3d,0xbf47d19b } },
/* 234 */
{ { 0xdd7665d5,0x672967a7,0x2f2f4de5,0x4e303057,0x80d4903f,0x144005ae,
0x39c9a1b6,0x001c2c7f },
{ 0x69efc6d6,0x143a8014,0x7bc7a724,0xc810bdaa,0xa78150a4,0x5f65670b,
0x86ffb99b,0xfdadf8e7 } },
/* 235 */
{ { 0xffc00785,0xfd38cb88,0x3b48eb67,0x77fa7591,0xbf368fbc,0x0454d055,
0x5aa43c94,0x3a838e4d },
{ 0x3e97bb9a,0x56166329,0x441d94d9,0x9eb93363,0x0adb2a83,0x515591a6,
0x873e1da3,0x3cdb8257 } },
/* 236 */
{ { 0x7de77eab,0x137140a9,0x41648109,0xf7e1c50d,0xceb1d0df,0x762dcad2,
0xf1f57fba,0x5a60cc89 },
{ 0x40d45673,0x80b36382,0x5913c655,0x1b82be19,0xdd64b741,0x057284b8,
0xdbfd8fc0,0x922ff56f } },
/* 237 */
{ { 0xc9a129a1,0x1b265dee,0xcc284e04,0xa5b1ce57,0xcebfbe3c,0x04380c46,
0xf6c5cd62,0x72919a7d },
{ 0x8fb90f9a,0x298f453a,0x88e4031b,0xd719c00b,0x796f1856,0xe32c0e77,
0x3624089a,0x5e791780 } },
/* 238 */
{ { 0x7f63cdfb,0x5c16ec55,0xf1cae4fd,0x8e6a3571,0x560597ca,0xfce26bea,
0xe24c2fab,0x4e0a5371 },
{ 0xa5765357,0x276a40d3,0x0d73a2b4,0x3c89af44,0x41d11a32,0xb8f370ae,
0xd56604ee,0xf5ff7818 } },
/* 239 */
{ { 0x1a09df21,0xfbf3e3fe,0xe66e8e47,0x26d5d28e,0x29c89015,0x2096bd0a,
0x533f5e64,0xe41df0e9 },
{ 0xb3ba9e3f,0x305fda40,0x2604d895,0xf2340ceb,0x7f0367c7,0x0866e192,
0xac4f155f,0x8edd7d6e } },
/* 240 */
{ { 0x0bfc8ff3,0xc9a1dc0e,0xe936f42f,0x14efd82b,0xcca381ef,0x67016f7c,
0xed8aee96,0x1432c1ca },
{ 0x70b23c26,0xec684829,0x0735b273,0xa64fe873,0xeaef0f5a,0xe389f6e5,
0x5ac8d2c6,0xcaef480b } },
/* 241 */
{ { 0x75315922,0x5245c978,0x3063cca5,0xd8295171,0xb64ef2cb,0xf3ce60d0,
0x8efae236,0xd0ba177e },
{ 0xb1b3af60,0x53a9ae8f,0x3d2da20e,0x1a796ae5,0xdf9eef28,0x01d63605,
0x1c54ae16,0xf31c957c } },
/* 242 */
{ { 0x49cc4597,0xc0f58d52,0xbae0a028,0xdc5015b0,0x734a814a,0xefc5fc55,
0x96e17c3a,0x013404cb },
{ 0xc9a824bf,0xb29e2585,0x001eaed7,0xd593185e,0x61ef68ac,0x8d6ee682,
0x91933e6c,0x6f377c4b } },
/* 243 */
{ { 0xa8333fd2,0x9f93bad1,0x5a2a95b8,0xa8930202,0xeaf75ace,0x211e5037,
0xd2d09506,0x6dba3e4e },
{ 0xd04399cd,0xa48ef98c,0xe6b73ade,0x1811c66e,0xc17ecaf3,0x72f60752,
0x3becf4a7,0xf13cf342 } },
/* 244 */
{ { 0xa919e2eb,0xceeb9ec0,0xf62c0f68,0x83a9a195,0x7aba2299,0xcfba3bb6,
0x274bbad3,0xc83fa9a9 },
{ 0x62fa1ce0,0x0d7d1b0b,0x3418efbf,0xe58b60f5,0x52706f04,0xbfa8ef9e,
0x5d702683,0xb49d70f4 } },
/* 245 */
{ { 0xfad5513b,0x914c7510,0xb1751e2d,0x05f32eec,0xd9fb9d59,0x6d850418,
0x0c30f1cf,0x59cfadbb },
{ 0x55cb7fd6,0xe167ac23,0x820426a3,0x249367b8,0x90a78864,0xeaeec58c,
0x354a4b67,0x5babf362 } },
/* 246 */
{ { 0xee424865,0x37c981d1,0xf2e5577f,0x8b002878,0xb9e0c058,0x702970f1,
0x9026c8f0,0x6188c6a7 },
{ 0xd0f244da,0x06f9a19b,0xfb080873,0x1ecced5c,0x9f213637,0x35470f9b,
0xdf50b9d9,0x993fe475 } },
/* 247 */
{ { 0x9b2c3609,0x68e31cdf,0x2c46d4ea,0x84eb19c0,0x9a775101,0x7ac9ec1a,
0x4c80616b,0x81f76466 },
{ 0x75fbe978,0x1d7c2a5a,0xf183b356,0x6743fed3,0x501dd2bf,0x838d1f04,
0x5fe9060d,0x564a812a } },
/* 248 */
{ { 0xfa817d1d,0x7a5a64f4,0xbea82e0f,0x55f96844,0xcd57f9aa,0xb5ff5a0f,
0x00e51d6c,0x226bf3cf },
{ 0x2f2833cf,0xd6d1a9f9,0x4f4f89a8,0x20a0a35a,0x8f3f7f77,0x11536c49,
0xff257836,0x68779f47 } },
/* 249 */
{ { 0x73043d08,0x79b0c1c1,0x1fc020fa,0xa5446774,0x9a6d26d0,0xd3767e28,
0xeb092e0b,0x97bcb0d1 },
{ 0xf32ed3c3,0x2ab6eaa8,0xb281bc48,0xc8a4f151,0xbfa178f3,0x4d1bf4f3,
0x0a784655,0xa872ffe8 } },
/* 250 */
{ { 0xa32b2086,0xb1ab7935,0x8160f486,0xe1eb710e,0x3b6ae6be,0x9bd0cd91,
0xb732a36a,0x02812bfc },
{ 0xcf605318,0xa63fd7ca,0xfdfd6d1d,0x646e5d50,0x2102d619,0xa1d68398,
0xfe5396af,0x07391cc9 } },
/* 251 */
{ { 0x8b80d02b,0xc50157f0,0x62877f7f,0x6b8333d1,0x78d542ae,0x7aca1af8,
0x7e6d2a08,0x355d2adc },
{ 0x287386e1,0xb41f335a,0xf8e43275,0xfd272a94,0xe79989ea,0x286ca2cd,
0x7c2a3a79,0x3dc2b1e3 } },
/* 252 */
{ { 0x04581352,0xd689d21c,0x376782be,0x0a00c825,0x9fed701f,0x203bd590,
0x3ccd846b,0xc4786910 },
{ 0x24c768ed,0x5dba7708,0x6841f657,0x72feea02,0x6accce0e,0x73313ed5,
0xd5bb4d32,0xccc42968 } },
/* 253 */
{ { 0x3d7620b9,0x94e50de1,0x5992a56a,0xd89a5c8a,0x675487c9,0xdc007640,
0xaa4871cf,0xe147eb42 },
{ 0xacf3ae46,0x274ab4ee,0x50350fbe,0xfd4936fb,0x48c840ea,0xdf2afe47,
0x080e96e3,0x239ac047 } },
/* 254 */
{ { 0x2bfee8d4,0x481d1f35,0xfa7b0fec,0xce80b5cf,0x2ce9af3c,0x105c4c9e,
0xf5f7e59d,0xc55fa1a3 },
{ 0x8257c227,0x3186f14e,0x342be00b,0xc5b1653f,0xaa904fb2,0x09afc998,
0xd4f4b699,0x094cd99c } },
/* 255 */
{ { 0xd703beba,0x8a981c84,0x32ceb291,0x8631d150,0xe3bd49ec,0xa445f2c9,
0x42abad33,0xb90a30b6 },
{ 0xb4a5abf9,0xb465404f,0x75db7603,0x004750c3,0xca35d89f,0x6f9a42cc,
0x1b7924f7,0x019f8b9a } },
};
/* Multiply the base point of P256 by the scalar and return the result.
* If map is true then convert result to affine coordinates.
*
* r Resulting point.
* k Scalar to multiply by.
* map Indicates whether to convert result to affine.
* heap Heap to use for allocation.
* returns MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
static int sp_256_ecc_mulmod_base_8(sp_point_256* r, const sp_digit* k,
int map, void* heap)
{
return sp_256_ecc_mulmod_stripe_8(r, &p256_base, p256_table,
k, map, heap);
}
#endif
/* Multiply the base point of P256 by the scalar and return the result.
* If map is true then convert result to affine coordinates.
*
* km Scalar to multiply by.
* r Resulting point.
* map Indicates whether to convert result to affine.
* heap Heap to use for allocation.
* returns MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
int sp_ecc_mulmod_base_256(mp_int* km, ecc_point* r, int map, void* heap)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_point_256 p;
sp_digit kd[8];
#endif
sp_point_256* point;
sp_digit* k = NULL;
int err = MP_OKAY;
err = sp_256_point_new_8(heap, p, point);
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 8, heap,
DYNAMIC_TYPE_ECC);
if (k == NULL) {
err = MEMORY_E;
}
}
#else
k = kd;
#endif
if (err == MP_OKAY) {
sp_256_from_mp(k, 8, km);
err = sp_256_ecc_mulmod_base_8(point, k, map, heap);
}
if (err == MP_OKAY) {
err = sp_256_point_to_ecc_point_8(point, r);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (k != NULL) {
XFREE(k, heap, DYNAMIC_TYPE_ECC);
}
#endif
sp_256_point_free_8(point, 0, heap);
return err;
}
#if defined(WOLFSSL_VALIDATE_ECC_KEYGEN) || defined(HAVE_ECC_SIGN) || \
defined(HAVE_ECC_VERIFY)
/* Returns 1 if the number of zero.
* Implementation is constant time.
*
* a Number to check.
* returns 1 if the number is zero and 0 otherwise.
*/
static int sp_256_iszero_8(const sp_digit* a)
{
return (a[0] | a[1] | a[2] | a[3] | a[4] | a[5] | a[6] | a[7]) == 0;
}
#endif /* WOLFSSL_VALIDATE_ECC_KEYGEN || HAVE_ECC_SIGN || HAVE_ECC_VERIFY */
/* Add 1 to a. (a = a + 1)
*
* a A single precision integer.
*/
SP_NOINLINE static void sp_256_add_one_8(sp_digit* a)
{
__asm__ __volatile__ (
"mov r2, #1\n\t"
"ldr r1, [%[a], #0]\n\t"
"add r1, r2\n\t"
"mov r2, #0\n\t"
"str r1, [%[a], #0]\n\t"
"ldr r1, [%[a], #4]\n\t"
"adc r1, r2\n\t"
"str r1, [%[a], #4]\n\t"
"ldr r1, [%[a], #8]\n\t"
"adc r1, r2\n\t"
"str r1, [%[a], #8]\n\t"
"ldr r1, [%[a], #12]\n\t"
"adc r1, r2\n\t"
"str r1, [%[a], #12]\n\t"
"ldr r1, [%[a], #16]\n\t"
"adc r1, r2\n\t"
"str r1, [%[a], #16]\n\t"
"ldr r1, [%[a], #20]\n\t"
"adc r1, r2\n\t"
"str r1, [%[a], #20]\n\t"
"ldr r1, [%[a], #24]\n\t"
"adc r1, r2\n\t"
"str r1, [%[a], #24]\n\t"
"ldr r1, [%[a], #28]\n\t"
"adc r1, r2\n\t"
"str r1, [%[a], #28]\n\t"
:
: [a] "r" (a)
: "memory", "r1", "r2"
);
}
/* Read big endian unsigned byte array into r.
*
* r A single precision integer.
* size Maximum number of bytes to convert
* a Byte array.
* n Number of bytes in array to read.
*/
static void sp_256_from_bin(sp_digit* r, int size, const byte* a, int n)
{
int i, j = 0;
word32 s = 0;
r[0] = 0;
for (i = n-1; i >= 0; i--) {
r[j] |= (((sp_digit)a[i]) << s);
if (s >= 24U) {
r[j] &= 0xffffffff;
s = 32U - s;
if (j + 1 >= size) {
break;
}
r[++j] = (sp_digit)a[i] >> s;
s = 8U - s;
}
else {
s += 8U;
}
}
for (j++; j < size; j++) {
r[j] = 0;
}
}
/* Generates a scalar that is in the range 1..order-1.
*
* rng Random number generator.
* k Scalar value.
* returns RNG failures, MEMORY_E when memory allocation fails and
* MP_OKAY on success.
*/
static int sp_256_ecc_gen_k_8(WC_RNG* rng, sp_digit* k)
{
int err;
byte buf[32];
do {
err = wc_RNG_GenerateBlock(rng, buf, sizeof(buf));
if (err == 0) {
sp_256_from_bin(k, 8, buf, (int)sizeof(buf));
if (sp_256_cmp_8(k, p256_order2) < 0) {
sp_256_add_one_8(k);
break;
}
}
}
while (err == 0);
return err;
}
/* Makes a random EC key pair.
*
* rng Random number generator.
* priv Generated private value.
* pub Generated public point.
* heap Heap to use for allocation.
* returns ECC_INF_E when the point does not have the correct order, RNG
* failures, MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
int sp_ecc_make_key_256(WC_RNG* rng, mp_int* priv, ecc_point* pub, void* heap)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_point_256 p;
sp_digit kd[8];
#ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
sp_point_256 inf;
#endif
#endif
sp_point_256* point;
sp_digit* k = NULL;
#ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
sp_point_256* infinity;
#endif
int err;
(void)heap;
err = sp_256_point_new_8(heap, p, point);
#ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
if (err == MP_OKAY) {
err = sp_256_point_new_8(heap, inf, infinity);
}
#endif
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 8, heap,
DYNAMIC_TYPE_ECC);
if (k == NULL) {
err = MEMORY_E;
}
}
#else
k = kd;
#endif
if (err == MP_OKAY) {
err = sp_256_ecc_gen_k_8(rng, k);
}
if (err == MP_OKAY) {
err = sp_256_ecc_mulmod_base_8(point, k, 1, NULL);
}
#ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
if (err == MP_OKAY) {
err = sp_256_ecc_mulmod_8(infinity, point, p256_order, 1, NULL);
}
if (err == MP_OKAY) {
if ((sp_256_iszero_8(point->x) == 0) || (sp_256_iszero_8(point->y) == 0)) {
err = ECC_INF_E;
}
}
#endif
if (err == MP_OKAY) {
err = sp_256_to_mp(k, priv);
}
if (err == MP_OKAY) {
err = sp_256_point_to_ecc_point_8(point, pub);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (k != NULL) {
XFREE(k, heap, DYNAMIC_TYPE_ECC);
}
#endif
#ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
sp_256_point_free_8(infinity, 1, heap);
#endif
sp_256_point_free_8(point, 1, heap);
return err;
}
#ifdef HAVE_ECC_DHE
/* Write r as big endian to byte array.
* Fixed length number of bytes written: 32
*
* r A single precision integer.
* a Byte array.
*/
static void sp_256_to_bin(sp_digit* r, byte* a)
{
int i, j, s = 0, b;
j = 256 / 8 - 1;
a[j] = 0;
for (i=0; i<8 && j>=0; i++) {
b = 0;
/* lint allow cast of mismatch sp_digit and int */
a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
b += 8 - s;
if (j < 0) {
break;
}
while (b < 32) {
a[j--] = (byte)(r[i] >> b);
b += 8;
if (j < 0) {
break;
}
}
s = 8 - (b - 32);
if (j >= 0) {
a[j] = 0;
}
if (s != 0) {
j++;
}
}
}
/* Multiply the point by the scalar and serialize the X ordinate.
* The number is 0 padded to maximum size on output.
*
* priv Scalar to multiply the point by.
* pub Point to multiply.
* out Buffer to hold X ordinate.
* outLen On entry, size of the buffer in bytes.
* On exit, length of data in buffer in bytes.
* heap Heap to use for allocation.
* returns BUFFER_E if the buffer is to small for output size,
* MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
int sp_ecc_secret_gen_256(mp_int* priv, ecc_point* pub, byte* out,
word32* outLen, void* heap)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_point_256 p;
sp_digit kd[8];
#endif
sp_point_256* point = NULL;
sp_digit* k = NULL;
int err = MP_OKAY;
if (*outLen < 32U) {
err = BUFFER_E;
}
if (err == MP_OKAY) {
err = sp_256_point_new_8(heap, p, point);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 8, heap,
DYNAMIC_TYPE_ECC);
if (k == NULL)
err = MEMORY_E;
}
#else
k = kd;
#endif
if (err == MP_OKAY) {
sp_256_from_mp(k, 8, priv);
sp_256_point_from_ecc_point_8(point, pub);
err = sp_256_ecc_mulmod_8(point, point, k, 1, heap);
}
if (err == MP_OKAY) {
sp_256_to_bin(point->x, out);
*outLen = 32;
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (k != NULL) {
XFREE(k, heap, DYNAMIC_TYPE_ECC);
}
#endif
sp_256_point_free_8(point, 0, heap);
return err;
}
#endif /* HAVE_ECC_DHE */
#if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
#endif
#if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
#ifdef WOLFSSL_SP_SMALL
/* Sub b from a into a. (a -= b)
*
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_256_sub_in_place_8(sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r7, %[a]\n\t"
"add r7, #32\n\t"
"\n1:\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r3, [%[a]]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b]]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a]]\n\t"
"str r4, [%[a], #4]\n\t"
"sbc %[c], %[c]\n\t"
"add %[a], #8\n\t"
"add %[b], #8\n\t"
"cmp %[a], r7\n\t"
"bne 1b\n\t"
: [c] "+r" (c), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r3", "r4", "r5", "r6", "r7"
);
return c;
}
#else
/* Sub b from a into r. (r = a - b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_256_sub_in_place_8(sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"ldr r3, [%[a], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #0]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sub r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #0]\n\t"
"str r4, [%[a], #4]\n\t"
"ldr r3, [%[a], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #8]\n\t"
"ldr r6, [%[b], #12]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #8]\n\t"
"str r4, [%[a], #12]\n\t"
"ldr r3, [%[a], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #16]\n\t"
"ldr r6, [%[b], #20]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #16]\n\t"
"str r4, [%[a], #20]\n\t"
"ldr r3, [%[a], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #24]\n\t"
"ldr r6, [%[b], #28]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #24]\n\t"
"str r4, [%[a], #28]\n\t"
"sbc %[c], %[c]\n\t"
: [c] "+r" (c), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r3", "r4", "r5", "r6"
);
return c;
}
#endif /* WOLFSSL_SP_SMALL */
/* Mul a by digit b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision digit.
*/
SP_NOINLINE static void sp_256_mul_d_8(sp_digit* r, const sp_digit* a,
sp_digit b)
{
__asm__ __volatile__ (
"mov r6, #32\n\t"
"add r6, %[a]\n\t"
"mov r8, %[r]\n\t"
"mov r9, r6\n\t"
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"1:\n\t"
"mov %[r], #0\n\t"
"mov r5, #0\n\t"
"# A[] * B\n\t"
"ldr r6, [%[a]]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, %[b], #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"lsr r7, %[b], #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, %[b], #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"lsl r7, %[b], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# A[] * B - Done\n\t"
"mov %[r], r8\n\t"
"str r3, [%[r]]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"add %[r], #4\n\t"
"add %[a], #4\n\t"
"mov r8, %[r]\n\t"
"cmp %[a], r9\n\t"
"blt 1b\n\t"
"str r3, [%[r]]\n\t"
: [r] "+r" (r), [a] "+r" (a)
: [b] "r" (b)
: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9"
);
}
/* Divide the double width number (d1|d0) by the dividend. (d1|d0 / div)
*
* d1 The high order half of the number to divide.
* d0 The low order half of the number to divide.
* div The dividend.
* returns the result of the division.
*
* Note that this is an approximate div. It may give an answer 1 larger.
*/
SP_NOINLINE static sp_digit div_256_word_8(sp_digit d1, sp_digit d0,
sp_digit div)
{
sp_digit r = 0;
__asm__ __volatile__ (
"lsr r5, %[div], #1\n\t"
"add r5, #1\n\t"
"mov r8, %[d0]\n\t"
"mov r9, %[d1]\n\t"
"# Do top 32\n\t"
"mov r6, r5\n\t"
"sub r6, %[d1]\n\t"
"sbc r6, r6\n\t"
"add %[r], %[r]\n\t"
"sub %[r], r6\n\t"
"and r6, r5\n\t"
"sub %[d1], r6\n\t"
"# Next 30 bits\n\t"
"mov r4, #29\n\t"
"1:\n\t"
"lsl %[d0], %[d0], #1\n\t"
"adc %[d1], %[d1]\n\t"
"mov r6, r5\n\t"
"sub r6, %[d1]\n\t"
"sbc r6, r6\n\t"
"add %[r], %[r]\n\t"
"sub %[r], r6\n\t"
"and r6, r5\n\t"
"sub %[d1], r6\n\t"
"sub r4, #1\n\t"
"bpl 1b\n\t"
"mov r7, #0\n\t"
"add %[r], %[r]\n\t"
"add %[r], #1\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"sub %[d1], r4\n\t"
"mov r4, %[d1]\n\t"
"mov %[d1], r9\n\t"
"sbc %[d1], r5\n\t"
"mov r5, %[d1]\n\t"
"add %[r], r5\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"mov r6, r9\n\t"
"sub r4, %[d1], r4\n\t"
"sbc r6, r5\n\t"
"mov r5, r6\n\t"
"add %[r], r5\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"mov r6, r9\n\t"
"sub r4, %[d1], r4\n\t"
"sbc r6, r5\n\t"
"mov r5, r6\n\t"
"add %[r], r5\n\t"
"mov r6, %[div]\n\t"
"sub r6, r4\n\t"
"sbc r6, r6\n\t"
"sub %[r], r6\n\t"
: [r] "+r" (r)
: [d1] "r" (d1), [d0] "r" (d0), [div] "r" (div)
: "r4", "r5", "r7", "r6", "r8", "r9"
);
return r;
}
/* AND m into each word of a and store in r.
*
* r A single precision integer.
* a A single precision integer.
* m Mask to AND against each digit.
*/
static void sp_256_mask_8(sp_digit* r, const sp_digit* a, sp_digit m)
{
#ifdef WOLFSSL_SP_SMALL
int i;
for (i=0; i<8; i++) {
r[i] = a[i] & m;
}
#else
r[0] = a[0] & m;
r[1] = a[1] & m;
r[2] = a[2] & m;
r[3] = a[3] & m;
r[4] = a[4] & m;
r[5] = a[5] & m;
r[6] = a[6] & m;
r[7] = a[7] & m;
#endif
}
/* Divide d in a and put remainder into r (m*d + r = a)
* m is not calculated as it is not needed at this time.
*
* a Nmber to be divided.
* d Number to divide with.
* m Multiplier result.
* r Remainder from the division.
* returns MP_OKAY indicating success.
*/
static WC_INLINE int sp_256_div_8(const sp_digit* a, const sp_digit* d, sp_digit* m,
sp_digit* r)
{
sp_digit t1[16], t2[9];
sp_digit div, r1;
int i;
(void)m;
div = d[7];
XMEMCPY(t1, a, sizeof(*t1) * 2 * 8);
for (i=7; i>=0; i--) {
r1 = div_256_word_8(t1[8 + i], t1[8 + i - 1], div);
sp_256_mul_d_8(t2, d, r1);
t1[8 + i] += sp_256_sub_in_place_8(&t1[i], t2);
t1[8 + i] -= t2[8];
sp_256_mask_8(t2, d, t1[8 + i]);
t1[8 + i] += sp_256_add_8(&t1[i], &t1[i], t2);
sp_256_mask_8(t2, d, t1[8 + i]);
t1[8 + i] += sp_256_add_8(&t1[i], &t1[i], t2);
}
r1 = sp_256_cmp_8(t1, d) >= 0;
sp_256_cond_sub_8(r, t1, d, (sp_digit)0 - r1);
return MP_OKAY;
}
/* Reduce a modulo m into r. (r = a mod m)
*
* r A single precision number that is the reduced result.
* a A single precision number that is to be reduced.
* m A single precision number that is the modulus to reduce with.
* returns MP_OKAY indicating success.
*/
static WC_INLINE int sp_256_mod_8(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
return sp_256_div_8(a, m, NULL, r);
}
#endif
#if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
#ifdef WOLFSSL_SP_SMALL
/* Order-2 for the P256 curve. */
static const uint32_t p256_order_minus_2[8] = {
0xfc63254fU,0xf3b9cac2U,0xa7179e84U,0xbce6faadU,0xffffffffU,0xffffffffU,
0x00000000U,0xffffffffU
};
#else
/* The low half of the order-2 of the P256 curve. */
static const uint32_t p256_order_low[4] = {
0xfc63254fU,0xf3b9cac2U,0xa7179e84U,0xbce6faadU
};
#endif /* WOLFSSL_SP_SMALL */
/* Multiply two number mod the order of P256 curve. (r = a * b mod order)
*
* r Result of the multiplication.
* a First operand of the multiplication.
* b Second operand of the multiplication.
*/
static void sp_256_mont_mul_order_8(sp_digit* r, const sp_digit* a, const sp_digit* b)
{
sp_256_mul_8(r, a, b);
sp_256_mont_reduce_order_8(r, p256_order, p256_mp_order);
}
/* Square number mod the order of P256 curve. (r = a * a mod order)
*
* r Result of the squaring.
* a Number to square.
*/
static void sp_256_mont_sqr_order_8(sp_digit* r, const sp_digit* a)
{
sp_256_sqr_8(r, a);
sp_256_mont_reduce_order_8(r, p256_order, p256_mp_order);
}
#ifndef WOLFSSL_SP_SMALL
/* Square number mod the order of P256 curve a number of times.
* (r = a ^ n mod order)
*
* r Result of the squaring.
* a Number to square.
*/
static void sp_256_mont_sqr_n_order_8(sp_digit* r, const sp_digit* a, int n)
{
int i;
sp_256_mont_sqr_order_8(r, a);
for (i=1; i<n; i++) {
sp_256_mont_sqr_order_8(r, r);
}
}
#endif /* !WOLFSSL_SP_SMALL */
/* Invert the number, in Montgomery form, modulo the order of the P256 curve.
* (r = 1 / a mod order)
*
* r Inverse result.
* a Number to invert.
* td Temporary data.
*/
static void sp_256_mont_inv_order_8(sp_digit* r, const sp_digit* a,
sp_digit* td)
{
#ifdef WOLFSSL_SP_SMALL
sp_digit* t = td;
int i;
XMEMCPY(t, a, sizeof(sp_digit) * 8);
for (i=254; i>=0; i--) {
sp_256_mont_sqr_order_8(t, t);
if ((p256_order_minus_2[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
sp_256_mont_mul_order_8(t, t, a);
}
}
XMEMCPY(r, t, sizeof(sp_digit) * 8U);
#else
sp_digit* t = td;
sp_digit* t2 = td + 2 * 8;
sp_digit* t3 = td + 4 * 8;
int i;
/* t = a^2 */
sp_256_mont_sqr_order_8(t, a);
/* t = a^3 = t * a */
sp_256_mont_mul_order_8(t, t, a);
/* t2= a^c = t ^ 2 ^ 2 */
sp_256_mont_sqr_n_order_8(t2, t, 2);
/* t3= a^f = t2 * t */
sp_256_mont_mul_order_8(t3, t2, t);
/* t2= a^f0 = t3 ^ 2 ^ 4 */
sp_256_mont_sqr_n_order_8(t2, t3, 4);
/* t = a^ff = t2 * t3 */
sp_256_mont_mul_order_8(t, t2, t3);
/* t3= a^ff00 = t ^ 2 ^ 8 */
sp_256_mont_sqr_n_order_8(t2, t, 8);
/* t = a^ffff = t2 * t */
sp_256_mont_mul_order_8(t, t2, t);
/* t2= a^ffff0000 = t ^ 2 ^ 16 */
sp_256_mont_sqr_n_order_8(t2, t, 16);
/* t = a^ffffffff = t2 * t */
sp_256_mont_mul_order_8(t, t2, t);
/* t2= a^ffffffff0000000000000000 = t ^ 2 ^ 64 */
sp_256_mont_sqr_n_order_8(t2, t, 64);
/* t2= a^ffffffff00000000ffffffff = t2 * t */
sp_256_mont_mul_order_8(t2, t2, t);
/* t2= a^ffffffff00000000ffffffff00000000 = t2 ^ 2 ^ 32 */
sp_256_mont_sqr_n_order_8(t2, t2, 32);
/* t2= a^ffffffff00000000ffffffffffffffff = t2 * t */
sp_256_mont_mul_order_8(t2, t2, t);
/* t2= a^ffffffff00000000ffffffffffffffffbce6 */
for (i=127; i>=112; i--) {
sp_256_mont_sqr_order_8(t2, t2);
if (((sp_digit)p256_order_low[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
sp_256_mont_mul_order_8(t2, t2, a);
}
}
/* t2= a^ffffffff00000000ffffffffffffffffbce6f */
sp_256_mont_sqr_n_order_8(t2, t2, 4);
sp_256_mont_mul_order_8(t2, t2, t3);
/* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84 */
for (i=107; i>=64; i--) {
sp_256_mont_sqr_order_8(t2, t2);
if (((sp_digit)p256_order_low[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
sp_256_mont_mul_order_8(t2, t2, a);
}
}
/* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f */
sp_256_mont_sqr_n_order_8(t2, t2, 4);
sp_256_mont_mul_order_8(t2, t2, t3);
/* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2 */
for (i=59; i>=32; i--) {
sp_256_mont_sqr_order_8(t2, t2);
if (((sp_digit)p256_order_low[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
sp_256_mont_mul_order_8(t2, t2, a);
}
}
/* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2f */
sp_256_mont_sqr_n_order_8(t2, t2, 4);
sp_256_mont_mul_order_8(t2, t2, t3);
/* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63254 */
for (i=27; i>=0; i--) {
sp_256_mont_sqr_order_8(t2, t2);
if (((sp_digit)p256_order_low[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
sp_256_mont_mul_order_8(t2, t2, a);
}
}
/* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632540 */
sp_256_mont_sqr_n_order_8(t2, t2, 4);
/* r = a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63254f */
sp_256_mont_mul_order_8(r, t2, t3);
#endif /* WOLFSSL_SP_SMALL */
}
#endif /* HAVE_ECC_SIGN || HAVE_ECC_VERIFY */
#ifdef HAVE_ECC_SIGN
#ifndef SP_ECC_MAX_SIG_GEN
#define SP_ECC_MAX_SIG_GEN 64
#endif
/* Sign the hash using the private key.
* e = [hash, 256 bits] from binary
* r = (k.G)->x mod order
* s = (r * x + e) / k mod order
* The hash is truncated to the first 256 bits.
*
* hash Hash to sign.
* hashLen Length of the hash data.
* rng Random number generator.
* priv Private part of key - scalar.
* rm First part of result as an mp_int.
* sm Sirst part of result as an mp_int.
* heap Heap to use for allocation.
* returns RNG failures, MEMORY_E when memory allocation fails and
* MP_OKAY on success.
*/
int sp_ecc_sign_256(const byte* hash, word32 hashLen, WC_RNG* rng, mp_int* priv,
mp_int* rm, mp_int* sm, mp_int* km, void* heap)
{
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
sp_digit* d = NULL;
#else
sp_digit ed[2*8];
sp_digit xd[2*8];
sp_digit kd[2*8];
sp_digit rd[2*8];
sp_digit td[3 * 2*8];
sp_point_256 p;
#endif
sp_digit* e = NULL;
sp_digit* x = NULL;
sp_digit* k = NULL;
sp_digit* r = NULL;
sp_digit* tmp = NULL;
sp_point_256* point = NULL;
sp_digit carry;
sp_digit* s = NULL;
sp_digit* kInv = NULL;
int err = MP_OKAY;
int32_t c;
int i;
(void)heap;
err = sp_256_point_new_8(heap, p, point);
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 7 * 2 * 8, heap,
DYNAMIC_TYPE_ECC);
if (d == NULL) {
err = MEMORY_E;
}
}
#endif
if (err == MP_OKAY) {
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
e = d + 0 * 8;
x = d + 2 * 8;
k = d + 4 * 8;
r = d + 6 * 8;
tmp = d + 8 * 8;
#else
e = ed;
x = xd;
k = kd;
r = rd;
tmp = td;
#endif
s = e;
kInv = k;
if (hashLen > 32U) {
hashLen = 32U;
}
sp_256_from_bin(e, 8, hash, (int)hashLen);
}
for (i = SP_ECC_MAX_SIG_GEN; err == MP_OKAY && i > 0; i--) {
sp_256_from_mp(x, 8, priv);
/* New random point. */
if (km == NULL || mp_iszero(km)) {
err = sp_256_ecc_gen_k_8(rng, k);
}
else {
sp_256_from_mp(k, 8, km);
mp_zero(km);
}
if (err == MP_OKAY) {
err = sp_256_ecc_mulmod_base_8(point, k, 1, NULL);
}
if (err == MP_OKAY) {
/* r = point->x mod order */
XMEMCPY(r, point->x, sizeof(sp_digit) * 8U);
sp_256_norm_8(r);
c = sp_256_cmp_8(r, p256_order);
sp_256_cond_sub_8(r, r, p256_order, 0L - (sp_digit)(c >= 0));
sp_256_norm_8(r);
/* Conv k to Montgomery form (mod order) */
sp_256_mul_8(k, k, p256_norm_order);
err = sp_256_mod_8(k, k, p256_order);
}
if (err == MP_OKAY) {
sp_256_norm_8(k);
/* kInv = 1/k mod order */
sp_256_mont_inv_order_8(kInv, k, tmp);
sp_256_norm_8(kInv);
/* s = r * x + e */
sp_256_mul_8(x, x, r);
err = sp_256_mod_8(x, x, p256_order);
}
if (err == MP_OKAY) {
sp_256_norm_8(x);
carry = sp_256_add_8(s, e, x);
sp_256_cond_sub_8(s, s, p256_order, 0 - carry);
sp_256_norm_8(s);
c = sp_256_cmp_8(s, p256_order);
sp_256_cond_sub_8(s, s, p256_order, 0L - (sp_digit)(c >= 0));
sp_256_norm_8(s);
/* s = s * k^-1 mod order */
sp_256_mont_mul_order_8(s, s, kInv);
sp_256_norm_8(s);
/* Check that signature is usable. */
if (sp_256_iszero_8(s) == 0) {
break;
}
}
}
if (i == 0) {
err = RNG_FAILURE_E;
}
if (err == MP_OKAY) {
err = sp_256_to_mp(r, rm);
}
if (err == MP_OKAY) {
err = sp_256_to_mp(s, sm);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (d != NULL) {
XMEMSET(d, 0, sizeof(sp_digit) * 8 * 8);
XFREE(d, heap, DYNAMIC_TYPE_ECC);
}
#else
XMEMSET(e, 0, sizeof(sp_digit) * 2U * 8U);
XMEMSET(x, 0, sizeof(sp_digit) * 2U * 8U);
XMEMSET(k, 0, sizeof(sp_digit) * 2U * 8U);
XMEMSET(r, 0, sizeof(sp_digit) * 2U * 8U);
XMEMSET(r, 0, sizeof(sp_digit) * 2U * 8U);
XMEMSET(tmp, 0, sizeof(sp_digit) * 3U * 2U * 8U);
#endif
sp_256_point_free_8(point, 1, heap);
return err;
}
#endif /* HAVE_ECC_SIGN */
#ifdef HAVE_ECC_VERIFY
/* Verify the signature values with the hash and public key.
* e = Truncate(hash, 256)
* u1 = e/s mod order
* u2 = r/s mod order
* r == (u1.G + u2.Q)->x mod order
* Optimization: Leave point in projective form.
* (x, y, 1) == (x' / z'*z', y' / z'*z'*z', z' / z')
* (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x'
* The hash is truncated to the first 256 bits.
*
* hash Hash to sign.
* hashLen Length of the hash data.
* rng Random number generator.
* priv Private part of key - scalar.
* rm First part of result as an mp_int.
* sm Sirst part of result as an mp_int.
* heap Heap to use for allocation.
* returns RNG failures, MEMORY_E when memory allocation fails and
* MP_OKAY on success.
*/
int sp_ecc_verify_256(const byte* hash, word32 hashLen, mp_int* pX,
mp_int* pY, mp_int* pZ, mp_int* r, mp_int* sm, int* res, void* heap)
{
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
sp_digit* d = NULL;
#else
sp_digit u1d[2*8];
sp_digit u2d[2*8];
sp_digit sd[2*8];
sp_digit tmpd[2*8 * 5];
sp_point_256 p1d;
sp_point_256 p2d;
#endif
sp_digit* u1 = NULL;
sp_digit* u2 = NULL;
sp_digit* s = NULL;
sp_digit* tmp = NULL;
sp_point_256* p1;
sp_point_256* p2 = NULL;
sp_digit carry;
int32_t c;
int err;
err = sp_256_point_new_8(heap, p1d, p1);
if (err == MP_OKAY) {
err = sp_256_point_new_8(heap, p2d, p2);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 16 * 8, heap,
DYNAMIC_TYPE_ECC);
if (d == NULL) {
err = MEMORY_E;
}
}
#endif
if (err == MP_OKAY) {
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
u1 = d + 0 * 8;
u2 = d + 2 * 8;
s = d + 4 * 8;
tmp = d + 6 * 8;
#else
u1 = u1d;
u2 = u2d;
s = sd;
tmp = tmpd;
#endif
if (hashLen > 32U) {
hashLen = 32U;
}
sp_256_from_bin(u1, 8, hash, (int)hashLen);
sp_256_from_mp(u2, 8, r);
sp_256_from_mp(s, 8, sm);
sp_256_from_mp(p2->x, 8, pX);
sp_256_from_mp(p2->y, 8, pY);
sp_256_from_mp(p2->z, 8, pZ);
{
sp_256_mul_8(s, s, p256_norm_order);
}
err = sp_256_mod_8(s, s, p256_order);
}
if (err == MP_OKAY) {
sp_256_norm_8(s);
{
sp_256_mont_inv_order_8(s, s, tmp);
sp_256_mont_mul_order_8(u1, u1, s);
sp_256_mont_mul_order_8(u2, u2, s);
}
err = sp_256_ecc_mulmod_base_8(p1, u1, 0, heap);
}
if (err == MP_OKAY) {
err = sp_256_ecc_mulmod_8(p2, p2, u2, 0, heap);
}
if (err == MP_OKAY) {
{
sp_256_proj_point_add_8(p1, p1, p2, tmp);
if (sp_256_iszero_8(p1->z)) {
if (sp_256_iszero_8(p1->x) && sp_256_iszero_8(p1->y)) {
sp_256_proj_point_dbl_8(p1, p2, tmp);
}
else {
/* Y ordinate is not used from here - don't set. */
p1->x[0] = 0;
p1->x[1] = 0;
p1->x[2] = 0;
p1->x[3] = 0;
p1->x[4] = 0;
p1->x[5] = 0;
p1->x[6] = 0;
p1->x[7] = 0;
XMEMCPY(p1->z, p256_norm_mod, sizeof(p256_norm_mod));
}
}
}
/* (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x' */
/* Reload r and convert to Montgomery form. */
sp_256_from_mp(u2, 8, r);
err = sp_256_mod_mul_norm_8(u2, u2, p256_mod);
}
if (err == MP_OKAY) {
/* u1 = r.z'.z' mod prime */
sp_256_mont_sqr_8(p1->z, p1->z, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(u1, u2, p1->z, p256_mod, p256_mp_mod);
*res = (int)(sp_256_cmp_8(p1->x, u1) == 0);
if (*res == 0) {
/* Reload r and add order. */
sp_256_from_mp(u2, 8, r);
carry = sp_256_add_8(u2, u2, p256_order);
/* Carry means result is greater than mod and is not valid. */
if (carry == 0) {
sp_256_norm_8(u2);
/* Compare with mod and if greater or equal then not valid. */
c = sp_256_cmp_8(u2, p256_mod);
if (c < 0) {
/* Convert to Montogomery form */
err = sp_256_mod_mul_norm_8(u2, u2, p256_mod);
if (err == MP_OKAY) {
/* u1 = (r + 1*order).z'.z' mod prime */
sp_256_mont_mul_8(u1, u2, p1->z, p256_mod,
p256_mp_mod);
*res = (int)(sp_256_cmp_8(p1->x, u1) == 0);
}
}
}
}
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (d != NULL)
XFREE(d, heap, DYNAMIC_TYPE_ECC);
#endif
sp_256_point_free_8(p1, 0, heap);
sp_256_point_free_8(p2, 0, heap);
return err;
}
#endif /* HAVE_ECC_VERIFY */
#ifdef HAVE_ECC_CHECK_KEY
/* Check that the x and y oridinates are a valid point on the curve.
*
* point EC point.
* heap Heap to use if dynamically allocating.
* returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
* not on the curve and MP_OKAY otherwise.
*/
static int sp_256_ecc_is_point_8(sp_point_256* point, void* heap)
{
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
sp_digit* d = NULL;
#else
sp_digit t1d[2*8];
sp_digit t2d[2*8];
#endif
sp_digit* t1;
sp_digit* t2;
int err = MP_OKAY;
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 8 * 4, heap, DYNAMIC_TYPE_ECC);
if (d == NULL) {
err = MEMORY_E;
}
#endif
if (err == MP_OKAY) {
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
t1 = d + 0 * 8;
t2 = d + 2 * 8;
#else
(void)heap;
t1 = t1d;
t2 = t2d;
#endif
sp_256_sqr_8(t1, point->y);
(void)sp_256_mod_8(t1, t1, p256_mod);
sp_256_sqr_8(t2, point->x);
(void)sp_256_mod_8(t2, t2, p256_mod);
sp_256_mul_8(t2, t2, point->x);
(void)sp_256_mod_8(t2, t2, p256_mod);
(void)sp_256_sub_8(t2, p256_mod, t2);
sp_256_mont_add_8(t1, t1, t2, p256_mod);
sp_256_mont_add_8(t1, t1, point->x, p256_mod);
sp_256_mont_add_8(t1, t1, point->x, p256_mod);
sp_256_mont_add_8(t1, t1, point->x, p256_mod);
if (sp_256_cmp_8(t1, p256_b) != 0) {
err = MP_VAL;
}
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (d != NULL) {
XFREE(d, heap, DYNAMIC_TYPE_ECC);
}
#endif
return err;
}
/* Check that the x and y oridinates are a valid point on the curve.
*
* pX X ordinate of EC point.
* pY Y ordinate of EC point.
* returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
* not on the curve and MP_OKAY otherwise.
*/
int sp_ecc_is_point_256(mp_int* pX, mp_int* pY)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_point_256 pubd;
#endif
sp_point_256* pub;
byte one[1] = { 1 };
int err;
err = sp_256_point_new_8(NULL, pubd, pub);
if (err == MP_OKAY) {
sp_256_from_mp(pub->x, 8, pX);
sp_256_from_mp(pub->y, 8, pY);
sp_256_from_bin(pub->z, 8, one, (int)sizeof(one));
err = sp_256_ecc_is_point_8(pub, NULL);
}
sp_256_point_free_8(pub, 0, NULL);
return err;
}
/* Check that the private scalar generates the EC point (px, py), the point is
* on the curve and the point has the correct order.
*
* pX X ordinate of EC point.
* pY Y ordinate of EC point.
* privm Private scalar that generates EC point.
* returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
* not on the curve, ECC_INF_E if the point does not have the correct order,
* ECC_PRIV_KEY_E when the private scalar doesn't generate the EC point and
* MP_OKAY otherwise.
*/
int sp_ecc_check_key_256(mp_int* pX, mp_int* pY, mp_int* privm, void* heap)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_digit privd[8];
sp_point_256 pubd;
sp_point_256 pd;
#endif
sp_digit* priv = NULL;
sp_point_256* pub;
sp_point_256* p = NULL;
byte one[1] = { 1 };
int err;
err = sp_256_point_new_8(heap, pubd, pub);
if (err == MP_OKAY) {
err = sp_256_point_new_8(heap, pd, p);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
priv = (sp_digit*)XMALLOC(sizeof(sp_digit) * 8, heap,
DYNAMIC_TYPE_ECC);
if (priv == NULL) {
err = MEMORY_E;
}
}
#endif
if (err == MP_OKAY) {
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
priv = privd;
#endif
sp_256_from_mp(pub->x, 8, pX);
sp_256_from_mp(pub->y, 8, pY);
sp_256_from_bin(pub->z, 8, one, (int)sizeof(one));
sp_256_from_mp(priv, 8, privm);
/* Check point at infinitiy. */
if ((sp_256_iszero_8(pub->x) != 0) &&
(sp_256_iszero_8(pub->y) != 0)) {
err = ECC_INF_E;
}
}
if (err == MP_OKAY) {
/* Check range of X and Y */
if (sp_256_cmp_8(pub->x, p256_mod) >= 0 ||
sp_256_cmp_8(pub->y, p256_mod) >= 0) {
err = ECC_OUT_OF_RANGE_E;
}
}
if (err == MP_OKAY) {
/* Check point is on curve */
err = sp_256_ecc_is_point_8(pub, heap);
}
if (err == MP_OKAY) {
/* Point * order = infinity */
err = sp_256_ecc_mulmod_8(p, pub, p256_order, 1, heap);
}
if (err == MP_OKAY) {
/* Check result is infinity */
if ((sp_256_iszero_8(p->x) == 0) ||
(sp_256_iszero_8(p->y) == 0)) {
err = ECC_INF_E;
}
}
if (err == MP_OKAY) {
/* Base * private = point */
err = sp_256_ecc_mulmod_base_8(p, priv, 1, heap);
}
if (err == MP_OKAY) {
/* Check result is public key */
if (sp_256_cmp_8(p->x, pub->x) != 0 ||
sp_256_cmp_8(p->y, pub->y) != 0) {
err = ECC_PRIV_KEY_E;
}
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (priv != NULL) {
XFREE(priv, heap, DYNAMIC_TYPE_ECC);
}
#endif
sp_256_point_free_8(p, 0, heap);
sp_256_point_free_8(pub, 0, heap);
return err;
}
#endif
#ifdef WOLFSSL_PUBLIC_ECC_ADD_DBL
/* Add two projective EC points together.
* (pX, pY, pZ) + (qX, qY, qZ) = (rX, rY, rZ)
*
* pX First EC point's X ordinate.
* pY First EC point's Y ordinate.
* pZ First EC point's Z ordinate.
* qX Second EC point's X ordinate.
* qY Second EC point's Y ordinate.
* qZ Second EC point's Z ordinate.
* rX Resultant EC point's X ordinate.
* rY Resultant EC point's Y ordinate.
* rZ Resultant EC point's Z ordinate.
* returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
*/
int sp_ecc_proj_add_point_256(mp_int* pX, mp_int* pY, mp_int* pZ,
mp_int* qX, mp_int* qY, mp_int* qZ,
mp_int* rX, mp_int* rY, mp_int* rZ)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_digit tmpd[2 * 8 * 5];
sp_point_256 pd;
sp_point_256 qd;
#endif
sp_digit* tmp;
sp_point_256* p;
sp_point_256* q = NULL;
int err;
err = sp_256_point_new_8(NULL, pd, p);
if (err == MP_OKAY) {
err = sp_256_point_new_8(NULL, qd, q);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 8 * 5, NULL,
DYNAMIC_TYPE_ECC);
if (tmp == NULL) {
err = MEMORY_E;
}
}
#else
tmp = tmpd;
#endif
if (err == MP_OKAY) {
sp_256_from_mp(p->x, 8, pX);
sp_256_from_mp(p->y, 8, pY);
sp_256_from_mp(p->z, 8, pZ);
sp_256_from_mp(q->x, 8, qX);
sp_256_from_mp(q->y, 8, qY);
sp_256_from_mp(q->z, 8, qZ);
sp_256_proj_point_add_8(p, p, q, tmp);
}
if (err == MP_OKAY) {
err = sp_256_to_mp(p->x, rX);
}
if (err == MP_OKAY) {
err = sp_256_to_mp(p->y, rY);
}
if (err == MP_OKAY) {
err = sp_256_to_mp(p->z, rZ);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (tmp != NULL) {
XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
}
#endif
sp_256_point_free_8(q, 0, NULL);
sp_256_point_free_8(p, 0, NULL);
return err;
}
/* Double a projective EC point.
* (pX, pY, pZ) + (pX, pY, pZ) = (rX, rY, rZ)
*
* pX EC point's X ordinate.
* pY EC point's Y ordinate.
* pZ EC point's Z ordinate.
* rX Resultant EC point's X ordinate.
* rY Resultant EC point's Y ordinate.
* rZ Resultant EC point's Z ordinate.
* returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
*/
int sp_ecc_proj_dbl_point_256(mp_int* pX, mp_int* pY, mp_int* pZ,
mp_int* rX, mp_int* rY, mp_int* rZ)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_digit tmpd[2 * 8 * 2];
sp_point_256 pd;
#endif
sp_digit* tmp;
sp_point_256* p;
int err;
err = sp_256_point_new_8(NULL, pd, p);
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 8 * 2, NULL,
DYNAMIC_TYPE_ECC);
if (tmp == NULL) {
err = MEMORY_E;
}
}
#else
tmp = tmpd;
#endif
if (err == MP_OKAY) {
sp_256_from_mp(p->x, 8, pX);
sp_256_from_mp(p->y, 8, pY);
sp_256_from_mp(p->z, 8, pZ);
sp_256_proj_point_dbl_8(p, p, tmp);
}
if (err == MP_OKAY) {
err = sp_256_to_mp(p->x, rX);
}
if (err == MP_OKAY) {
err = sp_256_to_mp(p->y, rY);
}
if (err == MP_OKAY) {
err = sp_256_to_mp(p->z, rZ);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (tmp != NULL) {
XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
}
#endif
sp_256_point_free_8(p, 0, NULL);
return err;
}
/* Map a projective EC point to affine in place.
* pZ will be one.
*
* pX EC point's X ordinate.
* pY EC point's Y ordinate.
* pZ EC point's Z ordinate.
* returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
*/
int sp_ecc_map_256(mp_int* pX, mp_int* pY, mp_int* pZ)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_digit tmpd[2 * 8 * 4];
sp_point_256 pd;
#endif
sp_digit* tmp;
sp_point_256* p;
int err;
err = sp_256_point_new_8(NULL, pd, p);
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 8 * 4, NULL,
DYNAMIC_TYPE_ECC);
if (tmp == NULL) {
err = MEMORY_E;
}
}
#else
tmp = tmpd;
#endif
if (err == MP_OKAY) {
sp_256_from_mp(p->x, 8, pX);
sp_256_from_mp(p->y, 8, pY);
sp_256_from_mp(p->z, 8, pZ);
sp_256_map_8(p, p, tmp);
}
if (err == MP_OKAY) {
err = sp_256_to_mp(p->x, pX);
}
if (err == MP_OKAY) {
err = sp_256_to_mp(p->y, pY);
}
if (err == MP_OKAY) {
err = sp_256_to_mp(p->z, pZ);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (tmp != NULL) {
XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
}
#endif
sp_256_point_free_8(p, 0, NULL);
return err;
}
#endif /* WOLFSSL_PUBLIC_ECC_ADD_DBL */
#ifdef HAVE_COMP_KEY
/* Find the square root of a number mod the prime of the curve.
*
* y The number to operate on and the result.
* returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
*/
static int sp_256_mont_sqrt_8(sp_digit* y)
{
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
sp_digit* d;
#else
sp_digit t1d[2 * 8];
sp_digit t2d[2 * 8];
#endif
sp_digit* t1;
sp_digit* t2;
int err = MP_OKAY;
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 4 * 8, NULL, DYNAMIC_TYPE_ECC);
if (d == NULL) {
err = MEMORY_E;
}
#endif
if (err == MP_OKAY) {
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
t1 = d + 0 * 8;
t2 = d + 2 * 8;
#else
t1 = t1d;
t2 = t2d;
#endif
{
/* t2 = y ^ 0x2 */
sp_256_mont_sqr_8(t2, y, p256_mod, p256_mp_mod);
/* t1 = y ^ 0x3 */
sp_256_mont_mul_8(t1, t2, y, p256_mod, p256_mp_mod);
/* t2 = y ^ 0xc */
sp_256_mont_sqr_n_8(t2, t1, 2, p256_mod, p256_mp_mod);
/* t1 = y ^ 0xf */
sp_256_mont_mul_8(t1, t1, t2, p256_mod, p256_mp_mod);
/* t2 = y ^ 0xf0 */
sp_256_mont_sqr_n_8(t2, t1, 4, p256_mod, p256_mp_mod);
/* t1 = y ^ 0xff */
sp_256_mont_mul_8(t1, t1, t2, p256_mod, p256_mp_mod);
/* t2 = y ^ 0xff00 */
sp_256_mont_sqr_n_8(t2, t1, 8, p256_mod, p256_mp_mod);
/* t1 = y ^ 0xffff */
sp_256_mont_mul_8(t1, t1, t2, p256_mod, p256_mp_mod);
/* t2 = y ^ 0xffff0000 */
sp_256_mont_sqr_n_8(t2, t1, 16, p256_mod, p256_mp_mod);
/* t1 = y ^ 0xffffffff */
sp_256_mont_mul_8(t1, t1, t2, p256_mod, p256_mp_mod);
/* t1 = y ^ 0xffffffff00000000 */
sp_256_mont_sqr_n_8(t1, t1, 32, p256_mod, p256_mp_mod);
/* t1 = y ^ 0xffffffff00000001 */
sp_256_mont_mul_8(t1, t1, y, p256_mod, p256_mp_mod);
/* t1 = y ^ 0xffffffff00000001000000000000000000000000 */
sp_256_mont_sqr_n_8(t1, t1, 96, p256_mod, p256_mp_mod);
/* t1 = y ^ 0xffffffff00000001000000000000000000000001 */
sp_256_mont_mul_8(t1, t1, y, p256_mod, p256_mp_mod);
sp_256_mont_sqr_n_8(y, t1, 94, p256_mod, p256_mp_mod);
}
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (d != NULL) {
XFREE(d, NULL, DYNAMIC_TYPE_ECC);
}
#endif
return err;
}
/* Uncompress the point given the X ordinate.
*
* xm X ordinate.
* odd Whether the Y ordinate is odd.
* ym Calculated Y ordinate.
* returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
*/
int sp_ecc_uncompress_256(mp_int* xm, int odd, mp_int* ym)
{
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
sp_digit* d;
#else
sp_digit xd[2 * 8];
sp_digit yd[2 * 8];
#endif
sp_digit* x = NULL;
sp_digit* y = NULL;
int err = MP_OKAY;
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 4 * 8, NULL, DYNAMIC_TYPE_ECC);
if (d == NULL) {
err = MEMORY_E;
}
#endif
if (err == MP_OKAY) {
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
x = d + 0 * 8;
y = d + 2 * 8;
#else
x = xd;
y = yd;
#endif
sp_256_from_mp(x, 8, xm);
err = sp_256_mod_mul_norm_8(x, x, p256_mod);
}
if (err == MP_OKAY) {
/* y = x^3 */
{
sp_256_mont_sqr_8(y, x, p256_mod, p256_mp_mod);
sp_256_mont_mul_8(y, y, x, p256_mod, p256_mp_mod);
}
/* y = x^3 - 3x */
sp_256_mont_sub_8(y, y, x, p256_mod);
sp_256_mont_sub_8(y, y, x, p256_mod);
sp_256_mont_sub_8(y, y, x, p256_mod);
/* y = x^3 - 3x + b */
err = sp_256_mod_mul_norm_8(x, p256_b, p256_mod);
}
if (err == MP_OKAY) {
sp_256_mont_add_8(y, y, x, p256_mod);
/* y = sqrt(x^3 - 3x + b) */
err = sp_256_mont_sqrt_8(y);
}
if (err == MP_OKAY) {
XMEMSET(y + 8, 0, 8U * sizeof(sp_digit));
sp_256_mont_reduce_8(y, p256_mod, p256_mp_mod);
if ((((word32)y[0] ^ (word32)odd) & 1U) != 0U) {
sp_256_mont_sub_8(y, p256_mod, y, p256_mod);
}
err = sp_256_to_mp(y, ym);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (d != NULL) {
XFREE(d, NULL, DYNAMIC_TYPE_ECC);
}
#endif
return err;
}
#endif
#endif /* !WOLFSSL_SP_NO_256 */
#ifdef WOLFSSL_SP_384
/* Point structure to use. */
typedef struct sp_point_384 {
sp_digit x[2 * 12];
sp_digit y[2 * 12];
sp_digit z[2 * 12];
int infinity;
} sp_point_384;
/* The modulus (prime) of the curve P384. */
static const sp_digit p384_mod[12] = {
0xffffffff,0x00000000,0x00000000,0xffffffff,0xfffffffe,0xffffffff,
0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff
};
/* The Montogmery normalizer for modulus of the curve P384. */
static const sp_digit p384_norm_mod[12] = {
0x00000001,0xffffffff,0xffffffff,0x00000000,0x00000001,0x00000000,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000
};
/* The Montogmery multiplier for modulus of the curve P384. */
static sp_digit p384_mp_mod = 0x00000001;
#if defined(WOLFSSL_VALIDATE_ECC_KEYGEN) || defined(HAVE_ECC_SIGN) || \
defined(HAVE_ECC_VERIFY)
/* The order of the curve P384. */
static const sp_digit p384_order[12] = {
0xccc52973,0xecec196a,0x48b0a77a,0x581a0db2,0xf4372ddf,0xc7634d81,
0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff
};
#endif
/* The order of the curve P384 minus 2. */
static const sp_digit p384_order2[12] = {
0xccc52971,0xecec196a,0x48b0a77a,0x581a0db2,0xf4372ddf,0xc7634d81,
0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff
};
#if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
/* The Montogmery normalizer for order of the curve P384. */
static const sp_digit p384_norm_order[12] = {
0x333ad68d,0x1313e695,0xb74f5885,0xa7e5f24d,0x0bc8d220,0x389cb27e,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000
};
#endif
#if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
/* The Montogmery multiplier for order of the curve P384. */
static sp_digit p384_mp_order = 0xe88fdc45;
#endif
/* The base point of curve P384. */
static const sp_point_384 p384_base = {
/* X ordinate */
{
0x72760ab7,0x3a545e38,0xbf55296c,0x5502f25d,0x82542a38,0x59f741e0,
0x8ba79b98,0x6e1d3b62,0xf320ad74,0x8eb1c71e,0xbe8b0537,0xaa87ca22,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
},
/* Y ordinate */
{
0x90ea0e5f,0x7a431d7c,0x1d7e819d,0x0a60b1ce,0xb5f0b8c0,0xe9da3113,
0x289a147c,0xf8f41dbd,0x9292dc29,0x5d9e98bf,0x96262c6f,0x3617de4a,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
},
/* Z ordinate */
{
0x00000001,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
},
/* infinity */
0
};
#if defined(HAVE_ECC_CHECK_KEY) || defined(HAVE_COMP_KEY)
static const sp_digit p384_b[12] = {
0xd3ec2aef,0x2a85c8ed,0x8a2ed19d,0xc656398d,0x5013875a,0x0314088f,
0xfe814112,0x181d9c6e,0xe3f82d19,0x988e056b,0xe23ee7e4,0xb3312fa7
};
#endif
static int sp_384_point_new_ex_12(void* heap, sp_point_384* sp, sp_point_384** p)
{
int ret = MP_OKAY;
(void)heap;
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
(void)sp;
*p = (sp_point_384*)XMALLOC(sizeof(sp_point_384), heap, DYNAMIC_TYPE_ECC);
#else
*p = sp;
#endif
if (*p == NULL) {
ret = MEMORY_E;
}
return ret;
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
/* Allocate memory for point and return error. */
#define sp_384_point_new_12(heap, sp, p) sp_384_point_new_ex_12((heap), NULL, &(p))
#else
/* Set pointer to data and return no error. */
#define sp_384_point_new_12(heap, sp, p) sp_384_point_new_ex_12((heap), &(sp), &(p))
#endif
static void sp_384_point_free_12(sp_point_384* p, int clear, void* heap)
{
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
/* If valid pointer then clear point data if requested and free data. */
if (p != NULL) {
if (clear != 0) {
XMEMSET(p, 0, sizeof(*p));
}
XFREE(p, heap, DYNAMIC_TYPE_ECC);
}
#else
/* Clear point data if requested. */
if (clear != 0) {
XMEMSET(p, 0, sizeof(*p));
}
#endif
(void)heap;
}
/* Multiply a number by Montogmery normalizer mod modulus (prime).
*
* r The resulting Montgomery form number.
* a The number to convert.
* m The modulus (prime).
* returns MEMORY_E when memory allocation fails and MP_OKAY otherwise.
*/
static int sp_384_mod_mul_norm_12(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
int64_t* t;
#else
int64_t t[12];
#endif
int64_t o;
int err = MP_OKAY;
(void)m;
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
t = (int64_t*)XMALLOC(sizeof(int64_t) * 12, NULL, DYNAMIC_TYPE_ECC);
if (t == NULL) {
err = MEMORY_E;
}
#endif
if (err == MP_OKAY) {
/* 1 0 0 0 0 0 0 0 1 1 0 -1 */
t[0] = 0 + (uint64_t)a[0] + (uint64_t)a[8] + (uint64_t)a[9] - (uint64_t)a[11];
/* -1 1 0 0 0 0 0 0 -1 0 1 1 */
t[1] = 0 - (uint64_t)a[0] + (uint64_t)a[1] - (uint64_t)a[8] + (uint64_t)a[10] + (uint64_t)a[11];
/* 0 -1 1 0 0 0 0 0 0 -1 0 1 */
t[2] = 0 - (uint64_t)a[1] + (uint64_t)a[2] - (uint64_t)a[9] + (uint64_t)a[11];
/* 1 0 -1 1 0 0 0 0 1 1 -1 -1 */
t[3] = 0 + (uint64_t)a[0] - (uint64_t)a[2] + (uint64_t)a[3] + (uint64_t)a[8] + (uint64_t)a[9] - (uint64_t)a[10] - (uint64_t)a[11];
/* 1 1 0 -1 1 0 0 0 1 2 1 -2 */
t[4] = 0 + (uint64_t)a[0] + (uint64_t)a[1] - (uint64_t)a[3] + (uint64_t)a[4] + (uint64_t)a[8] + 2 * (uint64_t)a[9] + (uint64_t)a[10] - 2 * (uint64_t)a[11];
/* 0 1 1 0 -1 1 0 0 0 1 2 1 */
t[5] = 0 + (uint64_t)a[1] + (uint64_t)a[2] - (uint64_t)a[4] + (uint64_t)a[5] + (uint64_t)a[9] + 2 * (uint64_t)a[10] + (uint64_t)a[11];
/* 0 0 1 1 0 -1 1 0 0 0 1 2 */
t[6] = 0 + (uint64_t)a[2] + (uint64_t)a[3] - (uint64_t)a[5] + (uint64_t)a[6] + (uint64_t)a[10] + 2 * (uint64_t)a[11];
/* 0 0 0 1 1 0 -1 1 0 0 0 1 */
t[7] = 0 + (uint64_t)a[3] + (uint64_t)a[4] - (uint64_t)a[6] + (uint64_t)a[7] + (uint64_t)a[11];
/* 0 0 0 0 1 1 0 -1 1 0 0 0 */
t[8] = 0 + (uint64_t)a[4] + (uint64_t)a[5] - (uint64_t)a[7] + (uint64_t)a[8];
/* 0 0 0 0 0 1 1 0 -1 1 0 0 */
t[9] = 0 + (uint64_t)a[5] + (uint64_t)a[6] - (uint64_t)a[8] + (uint64_t)a[9];
/* 0 0 0 0 0 0 1 1 0 -1 1 0 */
t[10] = 0 + (uint64_t)a[6] + (uint64_t)a[7] - (uint64_t)a[9] + (uint64_t)a[10];
/* 0 0 0 0 0 0 0 1 1 0 -1 1 */
t[11] = 0 + (uint64_t)a[7] + (uint64_t)a[8] - (uint64_t)a[10] + (uint64_t)a[11];
t[1] += t[0] >> 32; t[0] &= 0xffffffff;
t[2] += t[1] >> 32; t[1] &= 0xffffffff;
t[3] += t[2] >> 32; t[2] &= 0xffffffff;
t[4] += t[3] >> 32; t[3] &= 0xffffffff;
t[5] += t[4] >> 32; t[4] &= 0xffffffff;
t[6] += t[5] >> 32; t[5] &= 0xffffffff;
t[7] += t[6] >> 32; t[6] &= 0xffffffff;
t[8] += t[7] >> 32; t[7] &= 0xffffffff;
t[9] += t[8] >> 32; t[8] &= 0xffffffff;
t[10] += t[9] >> 32; t[9] &= 0xffffffff;
t[11] += t[10] >> 32; t[10] &= 0xffffffff;
o = t[11] >> 32; t[11] &= 0xffffffff;
t[0] += o;
t[1] -= o;
t[3] += o;
t[4] += o;
t[1] += t[0] >> 32; t[0] &= 0xffffffff;
t[2] += t[1] >> 32; t[1] &= 0xffffffff;
t[3] += t[2] >> 32; t[2] &= 0xffffffff;
t[4] += t[3] >> 32; t[3] &= 0xffffffff;
t[5] += t[4] >> 32; t[4] &= 0xffffffff;
t[6] += t[5] >> 32; t[5] &= 0xffffffff;
t[7] += t[6] >> 32; t[6] &= 0xffffffff;
t[8] += t[7] >> 32; t[7] &= 0xffffffff;
t[9] += t[8] >> 32; t[8] &= 0xffffffff;
t[10] += t[9] >> 32; t[9] &= 0xffffffff;
t[11] += t[10] >> 32; t[10] &= 0xffffffff;
r[0] = t[0];
r[1] = t[1];
r[2] = t[2];
r[3] = t[3];
r[4] = t[4];
r[5] = t[5];
r[6] = t[6];
r[7] = t[7];
r[8] = t[8];
r[9] = t[9];
r[10] = t[10];
r[11] = t[11];
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (t != NULL)
XFREE(t, NULL, DYNAMIC_TYPE_ECC);
#endif
return err;
}
/* Convert an mp_int to an array of sp_digit.
*
* r A single precision integer.
* size Maximum number of bytes to convert
* a A multi-precision integer.
*/
static void sp_384_from_mp(sp_digit* r, int size, const mp_int* a)
{
#if DIGIT_BIT == 32
int j;
XMEMCPY(r, a->dp, sizeof(sp_digit) * a->used);
for (j = a->used; j < size; j++) {
r[j] = 0;
}
#elif DIGIT_BIT > 32
int i, j = 0;
word32 s = 0;
r[0] = 0;
for (i = 0; i < a->used && j < size; i++) {
r[j] |= ((sp_digit)a->dp[i] << s);
r[j] &= 0xffffffff;
s = 32U - s;
if (j + 1 >= size) {
break;
}
/* lint allow cast of mismatch word32 and mp_digit */
r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
while ((s + 32U) <= (word32)DIGIT_BIT) {
s += 32U;
r[j] &= 0xffffffff;
if (j + 1 >= size) {
break;
}
if (s < (word32)DIGIT_BIT) {
/* lint allow cast of mismatch word32 and mp_digit */
r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
}
else {
r[++j] = 0L;
}
}
s = (word32)DIGIT_BIT - s;
}
for (j++; j < size; j++) {
r[j] = 0;
}
#else
int i, j = 0, s = 0;
r[0] = 0;
for (i = 0; i < a->used && j < size; i++) {
r[j] |= ((sp_digit)a->dp[i]) << s;
if (s + DIGIT_BIT >= 32) {
r[j] &= 0xffffffff;
if (j + 1 >= size) {
break;
}
s = 32 - s;
if (s == DIGIT_BIT) {
r[++j] = 0;
s = 0;
}
else {
r[++j] = a->dp[i] >> s;
s = DIGIT_BIT - s;
}
}
else {
s += DIGIT_BIT;
}
}
for (j++; j < size; j++) {
r[j] = 0;
}
#endif
}
/* Convert a point of type ecc_point to type sp_point_384.
*
* p Point of type sp_point_384 (result).
* pm Point of type ecc_point.
*/
static void sp_384_point_from_ecc_point_12(sp_point_384* p, const ecc_point* pm)
{
XMEMSET(p->x, 0, sizeof(p->x));
XMEMSET(p->y, 0, sizeof(p->y));
XMEMSET(p->z, 0, sizeof(p->z));
sp_384_from_mp(p->x, 12, pm->x);
sp_384_from_mp(p->y, 12, pm->y);
sp_384_from_mp(p->z, 12, pm->z);
p->infinity = 0;
}
/* Convert an array of sp_digit to an mp_int.
*
* a A single precision integer.
* r A multi-precision integer.
*/
static int sp_384_to_mp(const sp_digit* a, mp_int* r)
{
int err;
err = mp_grow(r, (384 + DIGIT_BIT - 1) / DIGIT_BIT);
if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
#if DIGIT_BIT == 32
XMEMCPY(r->dp, a, sizeof(sp_digit) * 12);
r->used = 12;
mp_clamp(r);
#elif DIGIT_BIT < 32
int i, j = 0, s = 0;
r->dp[0] = 0;
for (i = 0; i < 12; i++) {
r->dp[j] |= (mp_digit)(a[i] << s);
r->dp[j] &= (1L << DIGIT_BIT) - 1;
s = DIGIT_BIT - s;
r->dp[++j] = (mp_digit)(a[i] >> s);
while (s + DIGIT_BIT <= 32) {
s += DIGIT_BIT;
r->dp[j++] &= (1L << DIGIT_BIT) - 1;
if (s == SP_WORD_SIZE) {
r->dp[j] = 0;
}
else {
r->dp[j] = (mp_digit)(a[i] >> s);
}
}
s = 32 - s;
}
r->used = (384 + DIGIT_BIT - 1) / DIGIT_BIT;
mp_clamp(r);
#else
int i, j = 0, s = 0;
r->dp[0] = 0;
for (i = 0; i < 12; i++) {
r->dp[j] |= ((mp_digit)a[i]) << s;
if (s + 32 >= DIGIT_BIT) {
#if DIGIT_BIT != 32 && DIGIT_BIT != 64
r->dp[j] &= (1L << DIGIT_BIT) - 1;
#endif
s = DIGIT_BIT - s;
r->dp[++j] = a[i] >> s;
s = 32 - s;
}
else {
s += 32;
}
}
r->used = (384 + DIGIT_BIT - 1) / DIGIT_BIT;
mp_clamp(r);
#endif
}
return err;
}
/* Convert a point of type sp_point_384 to type ecc_point.
*
* p Point of type sp_point_384.
* pm Point of type ecc_point (result).
* returns MEMORY_E when allocation of memory in ecc_point fails otherwise
* MP_OKAY.
*/
static int sp_384_point_to_ecc_point_12(const sp_point_384* p, ecc_point* pm)
{
int err;
err = sp_384_to_mp(p->x, pm->x);
if (err == MP_OKAY) {
err = sp_384_to_mp(p->y, pm->y);
}
if (err == MP_OKAY) {
err = sp_384_to_mp(p->z, pm->z);
}
return err;
}
/* Multiply a and b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static void sp_384_mul_12(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit tmp[12 * 2];
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"mov r8, r3\n\t"
"mov r11, %[r]\n\t"
"mov r9, %[a]\n\t"
"mov r10, %[b]\n\t"
"mov r6, #48\n\t"
"add r6, r9\n\t"
"mov r12, r6\n\t"
"\n1:\n\t"
"mov %[r], #0\n\t"
"mov r5, #0\n\t"
"mov r6, #44\n\t"
"mov %[a], r8\n\t"
"sub %[a], r6\n\t"
"sbc r6, r6\n\t"
"mvn r6, r6\n\t"
"and %[a], r6\n\t"
"mov %[b], r8\n\t"
"sub %[b], %[a]\n\t"
"add %[a], r9\n\t"
"add %[b], r10\n\t"
"\n2:\n\t"
"# Multiply Start\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [%[b]]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [%[b]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [%[b]]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [%[b]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Multiply Done\n\t"
"add %[a], #4\n\t"
"sub %[b], #4\n\t"
"cmp %[a], r12\n\t"
"beq 3f\n\t"
"mov r6, r8\n\t"
"add r6, r9\n\t"
"cmp %[a], r6\n\t"
"ble 2b\n\t"
"\n3:\n\t"
"mov %[r], r11\n\t"
"mov r7, r8\n\t"
"str r3, [%[r], r7]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"add r7, #4\n\t"
"mov r8, r7\n\t"
"mov r6, #88\n\t"
"cmp r7, r6\n\t"
"ble 1b\n\t"
"str r3, [%[r], r7]\n\t"
"mov %[a], r9\n\t"
"mov %[b], r10\n\t"
:
: [r] "r" (tmp), [a] "r" (a), [b] "r" (b)
: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12"
);
XMEMCPY(r, tmp, sizeof(tmp));
}
/* Conditionally subtract b from a using the mask m.
* m is -1 to subtract and 0 when not copying.
*
* r A single precision number representing condition subtract result.
* a A single precision number to subtract from.
* b A single precision number to subtract.
* m Mask value to apply.
*/
SP_NOINLINE static sp_digit sp_384_cond_sub_12(sp_digit* r, const sp_digit* a,
const sp_digit* b, sp_digit m)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r5, #48\n\t"
"mov r8, r5\n\t"
"mov r7, #0\n\t"
"1:\n\t"
"ldr r6, [%[b], r7]\n\t"
"and r6, %[m]\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r5, [%[a], r7]\n\t"
"sbc r5, r6\n\t"
"sbc %[c], %[c]\n\t"
"str r5, [%[r], r7]\n\t"
"add r7, #4\n\t"
"cmp r7, r8\n\t"
"blt 1b\n\t"
: [c] "+r" (c)
: [r] "r" (r), [a] "r" (a), [b] "r" (b), [m] "r" (m)
: "memory", "r5", "r6", "r7", "r8"
);
return c;
}
#define sp_384_mont_reduce_order_12 sp_384_mont_reduce_12
/* Reduce the number back to 384 bits using Montgomery reduction.
*
* a A single precision number to reduce in place.
* m The single precision number representing the modulus.
* mp The digit representing the negative inverse of m mod 2^n.
*/
SP_NOINLINE static void sp_384_mont_reduce_12(sp_digit* a, const sp_digit* m,
sp_digit mp)
{
sp_digit ca = 0;
__asm__ __volatile__ (
"mov r8, %[mp]\n\t"
"mov r12, %[ca]\n\t"
"mov r14, %[m]\n\t"
"mov r9, %[a]\n\t"
"mov r4, #0\n\t"
"# i = 0\n\t"
"mov r11, r4\n\t"
"\n1:\n\t"
"mov r5, #0\n\t"
"mov %[ca], #0\n\t"
"# mu = a[i] * mp\n\t"
"mov %[mp], r8\n\t"
"ldr %[a], [%[a]]\n\t"
"mul %[mp], %[a]\n\t"
"mov %[m], r14\n\t"
"mov r10, r9\n\t"
"\n2:\n\t"
"# a[i+j] += m[j] * mu\n\t"
"mov %[a], r10\n\t"
"ldr %[a], [%[a]]\n\t"
"mov %[ca], #0\n\t"
"mov r4, r5\n\t"
"mov r5, #0\n\t"
"# Multiply m[j] and mu - Start\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r6, %[mp], #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add %[a], r7\n\t"
"adc r5, %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add %[a], r6\n\t"
"adc r5, r7\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r6, %[mp], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r5, r7\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add %[a], r6\n\t"
"adc r5, r7\n\t"
"# Multiply m[j] and mu - Done\n\t"
"add r4, %[a]\n\t"
"adc r5, %[ca]\n\t"
"mov %[a], r10\n\t"
"str r4, [%[a]]\n\t"
"mov r6, #4\n\t"
"add %[m], #4\n\t"
"add r10, r6\n\t"
"mov r4, #44\n\t"
"add r4, r9\n\t"
"cmp r10, r4\n\t"
"blt 2b\n\t"
"# a[i+11] += m[11] * mu\n\t"
"mov %[ca], #0\n\t"
"mov r4, r12\n\t"
"mov %[a], #0\n\t"
"# Multiply m[11] and mu - Start\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r6, %[mp], #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r5, r7\n\t"
"adc r4, %[ca]\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r5, r6\n\t"
"adc r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsr r6, %[mp], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"ldr r7, [%[m]]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r5, r6\n\t"
"adc r4, r7\n\t"
"adc %[a], %[ca]\n\t"
"# Multiply m[11] and mu - Done\n\t"
"mov %[ca], %[a]\n\t"
"mov %[a], r10\n\t"
"ldr r7, [%[a], #4]\n\t"
"ldr %[a], [%[a]]\n\t"
"mov r6, #0\n\t"
"add r5, %[a]\n\t"
"adc r7, r4\n\t"
"adc %[ca], r6\n\t"
"mov %[a], r10\n\t"
"str r5, [%[a]]\n\t"
"str r7, [%[a], #4]\n\t"
"# i += 1\n\t"
"mov r6, #4\n\t"
"add r9, r6\n\t"
"add r11, r6\n\t"
"mov r12, %[ca]\n\t"
"mov %[a], r9\n\t"
"mov r4, #48\n\t"
"cmp r11, r4\n\t"
"blt 1b\n\t"
"mov %[m], r14\n\t"
: [ca] "+r" (ca), [a] "+r" (a)
: [m] "r" (m), [mp] "r" (mp)
: "memory", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14"
);
sp_384_cond_sub_12(a - 12, a, m, (sp_digit)0 - ca);
}
/* Multiply two Montogmery form numbers mod the modulus (prime).
* (r = a * b mod m)
*
* r Result of multiplication.
* a First number to multiply in Montogmery form.
* b Second number to multiply in Montogmery form.
* m Modulus (prime).
* mp Montogmery mulitplier.
*/
static void sp_384_mont_mul_12(sp_digit* r, const sp_digit* a, const sp_digit* b,
const sp_digit* m, sp_digit mp)
{
sp_384_mul_12(r, a, b);
sp_384_mont_reduce_12(r, m, mp);
}
/* Square a and put result in r. (r = a * a)
*
* r A single precision integer.
* a A single precision integer.
*/
SP_NOINLINE static void sp_384_sqr_12(sp_digit* r, const sp_digit* a)
{
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"mov r5, #0\n\t"
"mov r8, r3\n\t"
"mov r11, %[r]\n\t"
"mov r6, #96\n\t"
"neg r6, r6\n\t"
"add sp, r6\n\t"
"mov r10, sp\n\t"
"mov r9, %[a]\n\t"
"\n1:\n\t"
"mov %[r], #0\n\t"
"mov r6, #44\n\t"
"mov %[a], r8\n\t"
"sub %[a], r6\n\t"
"sbc r6, r6\n\t"
"mvn r6, r6\n\t"
"and %[a], r6\n\t"
"mov r2, r8\n\t"
"sub r2, %[a]\n\t"
"add %[a], r9\n\t"
"add r2, r9\n\t"
"\n2:\n\t"
"cmp r2, %[a]\n\t"
"beq 4f\n\t"
"# Multiply * 2: Start\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [r2]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, r7, #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [r2]\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"ldr r7, [r2]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r7, [r2]\n\t"
"lsl r7, r7, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Multiply * 2: Done\n\t"
"bal 5f\n\t"
"\n4:\n\t"
"# Square: Start\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"lsr r6, r6, #16\n\t"
"mul r6, r6\n\t"
"add r3, r6\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"mul r7, r7\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"lsr r6, r6, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #15\n\t"
"lsl r6, r6, #17\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# Square: Done\n\t"
"\n5:\n\t"
"add %[a], #4\n\t"
"sub r2, #4\n\t"
"mov r6, #48\n\t"
"add r6, r9\n\t"
"cmp %[a], r6\n\t"
"beq 3f\n\t"
"cmp %[a], r2\n\t"
"bgt 3f\n\t"
"mov r7, r8\n\t"
"add r7, r9\n\t"
"cmp %[a], r7\n\t"
"ble 2b\n\t"
"\n3:\n\t"
"mov %[r], r10\n\t"
"mov r7, r8\n\t"
"str r3, [%[r], r7]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"mov r5, #0\n\t"
"add r7, #4\n\t"
"mov r8, r7\n\t"
"mov r6, #88\n\t"
"cmp r7, r6\n\t"
"ble 1b\n\t"
"mov %[a], r9\n\t"
"str r3, [%[r], r7]\n\t"
"mov %[r], r11\n\t"
"mov %[a], r10\n\t"
"mov r3, #92\n\t"
"\n4:\n\t"
"ldr r6, [%[a], r3]\n\t"
"str r6, [%[r], r3]\n\t"
"sub r3, #4\n\t"
"bge 4b\n\t"
"mov r6, #96\n\t"
"add sp, r6\n\t"
:
: [r] "r" (r), [a] "r" (a)
: "memory", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11"
);
}
/* Square the Montgomery form number. (r = a * a mod m)
*
* r Result of squaring.
* a Number to square in Montogmery form.
* m Modulus (prime).
* mp Montogmery mulitplier.
*/
static void sp_384_mont_sqr_12(sp_digit* r, const sp_digit* a, const sp_digit* m,
sp_digit mp)
{
sp_384_sqr_12(r, a);
sp_384_mont_reduce_12(r, m, mp);
}
#if !defined(WOLFSSL_SP_SMALL) || defined(HAVE_COMP_KEY)
/* Square the Montgomery form number a number of times. (r = a ^ n mod m)
*
* r Result of squaring.
* a Number to square in Montogmery form.
* n Number of times to square.
* m Modulus (prime).
* mp Montogmery mulitplier.
*/
static void sp_384_mont_sqr_n_12(sp_digit* r, const sp_digit* a, int n,
const sp_digit* m, sp_digit mp)
{
sp_384_mont_sqr_12(r, a, m, mp);
for (; n > 1; n--) {
sp_384_mont_sqr_12(r, r, m, mp);
}
}
#endif /* !WOLFSSL_SP_SMALL || HAVE_COMP_KEY */
#ifdef WOLFSSL_SP_SMALL
/* Mod-2 for the P384 curve. */
static const uint32_t p384_mod_minus_2[12] = {
0xfffffffdU,0x00000000U,0x00000000U,0xffffffffU,0xfffffffeU,0xffffffffU,
0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU
};
#endif /* !WOLFSSL_SP_SMALL */
/* Invert the number, in Montgomery form, modulo the modulus (prime) of the
* P384 curve. (r = 1 / a mod m)
*
* r Inverse result.
* a Number to invert.
* td Temporary data.
*/
static void sp_384_mont_inv_12(sp_digit* r, const sp_digit* a, sp_digit* td)
{
#ifdef WOLFSSL_SP_SMALL
sp_digit* t = td;
int i;
XMEMCPY(t, a, sizeof(sp_digit) * 12);
for (i=382; i>=0; i--) {
sp_384_mont_sqr_12(t, t, p384_mod, p384_mp_mod);
if (p384_mod_minus_2[i / 32] & ((sp_digit)1 << (i % 32)))
sp_384_mont_mul_12(t, t, a, p384_mod, p384_mp_mod);
}
XMEMCPY(r, t, sizeof(sp_digit) * 12);
#else
sp_digit* t1 = td;
sp_digit* t2 = td + 2 * 12;
sp_digit* t3 = td + 4 * 12;
sp_digit* t4 = td + 6 * 12;
sp_digit* t5 = td + 8 * 12;
/* 0x2 */
sp_384_mont_sqr_12(t1, a, p384_mod, p384_mp_mod);
/* 0x3 */
sp_384_mont_mul_12(t5, t1, a, p384_mod, p384_mp_mod);
/* 0xc */
sp_384_mont_sqr_n_12(t1, t5, 2, p384_mod, p384_mp_mod);
/* 0xf */
sp_384_mont_mul_12(t2, t5, t1, p384_mod, p384_mp_mod);
/* 0x1e */
sp_384_mont_sqr_12(t1, t2, p384_mod, p384_mp_mod);
/* 0x1f */
sp_384_mont_mul_12(t4, t1, a, p384_mod, p384_mp_mod);
/* 0x3e0 */
sp_384_mont_sqr_n_12(t1, t4, 5, p384_mod, p384_mp_mod);
/* 0x3ff */
sp_384_mont_mul_12(t2, t4, t1, p384_mod, p384_mp_mod);
/* 0x7fe0 */
sp_384_mont_sqr_n_12(t1, t2, 5, p384_mod, p384_mp_mod);
/* 0x7fff */
sp_384_mont_mul_12(t4, t4, t1, p384_mod, p384_mp_mod);
/* 0x3fff8000 */
sp_384_mont_sqr_n_12(t1, t4, 15, p384_mod, p384_mp_mod);
/* 0x3fffffff */
sp_384_mont_mul_12(t2, t4, t1, p384_mod, p384_mp_mod);
/* 0xfffffffc */
sp_384_mont_sqr_n_12(t3, t2, 2, p384_mod, p384_mp_mod);
/* 0xfffffffd */
sp_384_mont_mul_12(r, t3, a, p384_mod, p384_mp_mod);
/* 0xffffffff */
sp_384_mont_mul_12(t3, t5, t3, p384_mod, p384_mp_mod);
/* 0xfffffffc0000000 */
sp_384_mont_sqr_n_12(t1, t2, 30, p384_mod, p384_mp_mod);
/* 0xfffffffffffffff */
sp_384_mont_mul_12(t2, t2, t1, p384_mod, p384_mp_mod);
/* 0xfffffffffffffff000000000000000 */
sp_384_mont_sqr_n_12(t1, t2, 60, p384_mod, p384_mp_mod);
/* 0xffffffffffffffffffffffffffffff */
sp_384_mont_mul_12(t2, t2, t1, p384_mod, p384_mp_mod);
/* 0xffffffffffffffffffffffffffffff000000000000000000000000000000 */
sp_384_mont_sqr_n_12(t1, t2, 120, p384_mod, p384_mp_mod);
/* 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff */
sp_384_mont_mul_12(t2, t2, t1, p384_mod, p384_mp_mod);
/* 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8000 */
sp_384_mont_sqr_n_12(t1, t2, 15, p384_mod, p384_mp_mod);
/* 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff */
sp_384_mont_mul_12(t2, t4, t1, p384_mod, p384_mp_mod);
/* 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe00000000 */
sp_384_mont_sqr_n_12(t1, t2, 33, p384_mod, p384_mp_mod);
/* 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff */
sp_384_mont_mul_12(t2, t3, t1, p384_mod, p384_mp_mod);
/* 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff000000000000000000000000 */
sp_384_mont_sqr_n_12(t1, t2, 96, p384_mod, p384_mp_mod);
/* 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000fffffffd */
sp_384_mont_mul_12(r, r, t1, p384_mod, p384_mp_mod);
#endif /* WOLFSSL_SP_SMALL */
}
/* Compare a with b in constant time.
*
* a A single precision integer.
* b A single precision integer.
* return -ve, 0 or +ve if a is less than, equal to or greater than b
* respectively.
*/
SP_NOINLINE static int32_t sp_384_cmp_12(const sp_digit* a, const sp_digit* b)
{
sp_digit r = 0;
__asm__ __volatile__ (
"mov r3, #0\n\t"
"mvn r3, r3\n\t"
"mov r6, #44\n\t"
"1:\n\t"
"ldr r7, [%[a], r6]\n\t"
"ldr r5, [%[b], r6]\n\t"
"and r7, r3\n\t"
"and r5, r3\n\t"
"mov r4, r7\n\t"
"sub r7, r5\n\t"
"sbc r7, r7\n\t"
"add %[r], r7\n\t"
"mvn r7, r7\n\t"
"and r3, r7\n\t"
"sub r5, r4\n\t"
"sbc r7, r7\n\t"
"sub %[r], r7\n\t"
"mvn r7, r7\n\t"
"and r3, r7\n\t"
"sub r6, #4\n\t"
"cmp r6, #0\n\t"
"bge 1b\n\t"
: [r] "+r" (r)
: [a] "r" (a), [b] "r" (b)
: "r3", "r4", "r5", "r6", "r7"
);
return r;
}
/* Normalize the values in each word to 32.
*
* a Array of sp_digit to normalize.
*/
#define sp_384_norm_12(a)
/* Map the Montgomery form projective coordinate point to an affine point.
*
* r Resulting affine coordinate point.
* p Montgomery form projective coordinate point.
* t Temporary ordinate data.
*/
static void sp_384_map_12(sp_point_384* r, const sp_point_384* p, sp_digit* t)
{
sp_digit* t1 = t;
sp_digit* t2 = t + 2*12;
int32_t n;
sp_384_mont_inv_12(t1, p->z, t + 2*12);
sp_384_mont_sqr_12(t2, t1, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(t1, t2, t1, p384_mod, p384_mp_mod);
/* x /= z^2 */
sp_384_mont_mul_12(r->x, p->x, t2, p384_mod, p384_mp_mod);
XMEMSET(r->x + 12, 0, sizeof(r->x) / 2U);
sp_384_mont_reduce_12(r->x, p384_mod, p384_mp_mod);
/* Reduce x to less than modulus */
n = sp_384_cmp_12(r->x, p384_mod);
sp_384_cond_sub_12(r->x, r->x, p384_mod, 0 - ((n >= 0) ?
(sp_digit)1 : (sp_digit)0));
sp_384_norm_12(r->x);
/* y /= z^3 */
sp_384_mont_mul_12(r->y, p->y, t1, p384_mod, p384_mp_mod);
XMEMSET(r->y + 12, 0, sizeof(r->y) / 2U);
sp_384_mont_reduce_12(r->y, p384_mod, p384_mp_mod);
/* Reduce y to less than modulus */
n = sp_384_cmp_12(r->y, p384_mod);
sp_384_cond_sub_12(r->y, r->y, p384_mod, 0 - ((n >= 0) ?
(sp_digit)1 : (sp_digit)0));
sp_384_norm_12(r->y);
XMEMSET(r->z, 0, sizeof(r->z));
r->z[0] = 1;
}
#ifdef WOLFSSL_SP_SMALL
/* Add b to a into r. (r = a + b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_384_add_12(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r6, %[a]\n\t"
"mov r7, #0\n\t"
"add r6, #48\n\t"
"sub r7, #1\n\t"
"\n1:\n\t"
"add %[c], r7\n\t"
"ldr r4, [%[a]]\n\t"
"ldr r5, [%[b]]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r]]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
"add %[a], #4\n\t"
"add %[b], #4\n\t"
"add %[r], #4\n\t"
"cmp %[a], r6\n\t"
"bne 1b\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5", "r6", "r7"
);
return c;
}
#else
/* Add b to a into r. (r = a + b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_384_add_12(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[b], #0]\n\t"
"add r4, r5\n\t"
"str r4, [%[r], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #4]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[b], #8]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #12]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[b], #16]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #20]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[b], #24]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #28]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #28]\n\t"
"ldr r4, [%[a], #32]\n\t"
"ldr r5, [%[b], #32]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #36]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #36]\n\t"
"ldr r4, [%[a], #40]\n\t"
"ldr r5, [%[b], #40]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #44]\n\t"
"adc r4, r5\n\t"
"str r4, [%[r], #44]\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5"
);
return c;
}
#endif /* WOLFSSL_SP_SMALL */
/* Add two Montgomery form numbers (r = a + b % m).
*
* r Result of addition.
* a First number to add in Montogmery form.
* b Second number to add in Montogmery form.
* m Modulus (prime).
*/
SP_NOINLINE static void sp_384_mont_add_12(sp_digit* r, const sp_digit* a, const sp_digit* b,
const sp_digit* m)
{
sp_digit o;
o = sp_384_add_12(r, a, b);
sp_384_cond_sub_12(r, r, m, 0 - o);
}
/* Double a Montgomery form number (r = a + a % m).
*
* r Result of doubling.
* a Number to double in Montogmery form.
* m Modulus (prime).
*/
SP_NOINLINE static void sp_384_mont_dbl_12(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
sp_digit o;
o = sp_384_add_12(r, a, a);
sp_384_cond_sub_12(r, r, m, 0 - o);
}
/* Triple a Montgomery form number (r = a + a + a % m).
*
* r Result of Tripling.
* a Number to triple in Montogmery form.
* m Modulus (prime).
*/
SP_NOINLINE static void sp_384_mont_tpl_12(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
sp_digit o;
o = sp_384_add_12(r, a, a);
sp_384_cond_sub_12(r, r, m, 0 - o);
o = sp_384_add_12(r, r, a);
sp_384_cond_sub_12(r, r, m, 0 - o);
}
#ifdef WOLFSSL_SP_SMALL
/* Sub b from a into r. (r = a - b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_384_sub_12(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r6, %[a]\n\t"
"add r6, #48\n\t"
"\n1:\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r4, [%[a]]\n\t"
"ldr r5, [%[b]]\n\t"
"sbc r4, r5\n\t"
"str r4, [%[r]]\n\t"
"sbc %[c], %[c]\n\t"
"add %[a], #4\n\t"
"add %[b], #4\n\t"
"add %[r], #4\n\t"
"cmp %[a], r6\n\t"
"bne 1b\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5", "r6"
);
return c;
}
#else
/* Sub b from a into r. (r = a - b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_384_sub_12(sp_digit* r, const sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"ldr r4, [%[a], #0]\n\t"
"ldr r5, [%[a], #4]\n\t"
"ldr r6, [%[b], #0]\n\t"
"ldr r7, [%[b], #4]\n\t"
"sub r4, r6\n\t"
"sbc r5, r7\n\t"
"str r4, [%[r], #0]\n\t"
"str r5, [%[r], #4]\n\t"
"ldr r4, [%[a], #8]\n\t"
"ldr r5, [%[a], #12]\n\t"
"ldr r6, [%[b], #8]\n\t"
"ldr r7, [%[b], #12]\n\t"
"sbc r4, r6\n\t"
"sbc r5, r7\n\t"
"str r4, [%[r], #8]\n\t"
"str r5, [%[r], #12]\n\t"
"ldr r4, [%[a], #16]\n\t"
"ldr r5, [%[a], #20]\n\t"
"ldr r6, [%[b], #16]\n\t"
"ldr r7, [%[b], #20]\n\t"
"sbc r4, r6\n\t"
"sbc r5, r7\n\t"
"str r4, [%[r], #16]\n\t"
"str r5, [%[r], #20]\n\t"
"ldr r4, [%[a], #24]\n\t"
"ldr r5, [%[a], #28]\n\t"
"ldr r6, [%[b], #24]\n\t"
"ldr r7, [%[b], #28]\n\t"
"sbc r4, r6\n\t"
"sbc r5, r7\n\t"
"str r4, [%[r], #24]\n\t"
"str r5, [%[r], #28]\n\t"
"ldr r4, [%[a], #32]\n\t"
"ldr r5, [%[a], #36]\n\t"
"ldr r6, [%[b], #32]\n\t"
"ldr r7, [%[b], #36]\n\t"
"sbc r4, r6\n\t"
"sbc r5, r7\n\t"
"str r4, [%[r], #32]\n\t"
"str r5, [%[r], #36]\n\t"
"ldr r4, [%[a], #40]\n\t"
"ldr r5, [%[a], #44]\n\t"
"ldr r6, [%[b], #40]\n\t"
"ldr r7, [%[b], #44]\n\t"
"sbc r4, r6\n\t"
"sbc r5, r7\n\t"
"str r4, [%[r], #40]\n\t"
"str r5, [%[r], #44]\n\t"
"sbc %[c], %[c]\n\t"
: [c] "+r" (c), [r] "+r" (r), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r4", "r5", "r6", "r7"
);
return c;
}
#endif /* WOLFSSL_SP_SMALL */
/* Conditionally add a and b using the mask m.
* m is -1 to add and 0 when not.
*
* r A single precision number representing conditional add result.
* a A single precision number to add with.
* b A single precision number to add.
* m Mask value to apply.
*/
SP_NOINLINE static sp_digit sp_384_cond_add_12(sp_digit* r, const sp_digit* a, const sp_digit* b,
sp_digit m)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r5, #48\n\t"
"mov r8, r5\n\t"
"mov r7, #0\n\t"
"1:\n\t"
"ldr r6, [%[b], r7]\n\t"
"and r6, %[m]\n\t"
"mov r5, #0\n\t"
"sub r5, #1\n\t"
"add r5, %[c]\n\t"
"ldr r5, [%[a], r7]\n\t"
"adc r5, r6\n\t"
"mov %[c], #0\n\t"
"adc %[c], %[c]\n\t"
"str r5, [%[r], r7]\n\t"
"add r7, #4\n\t"
"cmp r7, r8\n\t"
"blt 1b\n\t"
: [c] "+r" (c)
: [r] "r" (r), [a] "r" (a), [b] "r" (b), [m] "r" (m)
: "memory", "r5", "r6", "r7", "r8"
);
return c;
}
/* Subtract two Montgomery form numbers (r = a - b % m).
*
* r Result of subtration.
* a Number to subtract from in Montogmery form.
* b Number to subtract with in Montogmery form.
* m Modulus (prime).
*/
SP_NOINLINE static void sp_384_mont_sub_12(sp_digit* r, const sp_digit* a, const sp_digit* b,
const sp_digit* m)
{
sp_digit o;
o = sp_384_sub_12(r, a, b);
sp_384_cond_add_12(r, r, m, o);
}
static void sp_384_rshift1_12(sp_digit* r, sp_digit* a)
{
__asm__ __volatile__ (
"ldr r2, [%[a]]\n\t"
"ldr r3, [%[a], #4]\n\t"
"lsr r2, r2, #1\n\t"
"lsl r5, r3, #31\n\t"
"lsr r3, r3, #1\n\t"
"orr r2, r2, r5\n\t"
"ldr r4, [%[a], #8]\n\t"
"str r2, [%[r], #0]\n\t"
"lsl r5, r4, #31\n\t"
"lsr r4, r4, #1\n\t"
"orr r3, r3, r5\n\t"
"ldr r2, [%[a], #12]\n\t"
"str r3, [%[r], #4]\n\t"
"lsl r5, r2, #31\n\t"
"lsr r2, r2, #1\n\t"
"orr r4, r4, r5\n\t"
"ldr r3, [%[a], #16]\n\t"
"str r4, [%[r], #8]\n\t"
"lsl r5, r3, #31\n\t"
"lsr r3, r3, #1\n\t"
"orr r2, r2, r5\n\t"
"ldr r4, [%[a], #20]\n\t"
"str r2, [%[r], #12]\n\t"
"lsl r5, r4, #31\n\t"
"lsr r4, r4, #1\n\t"
"orr r3, r3, r5\n\t"
"ldr r2, [%[a], #24]\n\t"
"str r3, [%[r], #16]\n\t"
"lsl r5, r2, #31\n\t"
"lsr r2, r2, #1\n\t"
"orr r4, r4, r5\n\t"
"ldr r3, [%[a], #28]\n\t"
"str r4, [%[r], #20]\n\t"
"lsl r5, r3, #31\n\t"
"lsr r3, r3, #1\n\t"
"orr r2, r2, r5\n\t"
"ldr r4, [%[a], #32]\n\t"
"str r2, [%[r], #24]\n\t"
"lsl r5, r4, #31\n\t"
"lsr r4, r4, #1\n\t"
"orr r3, r3, r5\n\t"
"ldr r2, [%[a], #36]\n\t"
"str r3, [%[r], #28]\n\t"
"lsl r5, r2, #31\n\t"
"lsr r2, r2, #1\n\t"
"orr r4, r4, r5\n\t"
"ldr r3, [%[a], #40]\n\t"
"str r4, [%[r], #32]\n\t"
"lsl r5, r3, #31\n\t"
"lsr r3, r3, #1\n\t"
"orr r2, r2, r5\n\t"
"ldr r4, [%[a], #44]\n\t"
"str r2, [%[r], #36]\n\t"
"lsl r5, r4, #31\n\t"
"lsr r4, r4, #1\n\t"
"orr r3, r3, r5\n\t"
"str r3, [%[r], #40]\n\t"
"str r4, [%[r], #44]\n\t"
:
: [r] "r" (r), [a] "r" (a)
: "memory", "r2", "r3", "r4", "r5"
);
}
/* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m)
*
* r Result of division by 2.
* a Number to divide.
* m Modulus (prime).
*/
SP_NOINLINE static void sp_384_div2_12(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
sp_digit o;
o = sp_384_cond_add_12(r, a, m, 0 - (a[0] & 1));
sp_384_rshift1_12(r, r);
r[11] |= o << 31;
}
/* Double the Montgomery form projective point p.
*
* r Result of doubling point.
* p Point to double.
* t Temporary ordinate data.
*/
static void sp_384_proj_point_dbl_12(sp_point_384* r, const sp_point_384* p, sp_digit* t)
{
sp_digit* t1 = t;
sp_digit* t2 = t + 2*12;
sp_digit* x;
sp_digit* y;
sp_digit* z;
x = r->x;
y = r->y;
z = r->z;
/* Put infinity into result. */
if (r != p) {
r->infinity = p->infinity;
}
/* T1 = Z * Z */
sp_384_mont_sqr_12(t1, p->z, p384_mod, p384_mp_mod);
/* Z = Y * Z */
sp_384_mont_mul_12(z, p->y, p->z, p384_mod, p384_mp_mod);
/* Z = 2Z */
sp_384_mont_dbl_12(z, z, p384_mod);
/* T2 = X - T1 */
sp_384_mont_sub_12(t2, p->x, t1, p384_mod);
/* T1 = X + T1 */
sp_384_mont_add_12(t1, p->x, t1, p384_mod);
/* T2 = T1 * T2 */
sp_384_mont_mul_12(t2, t1, t2, p384_mod, p384_mp_mod);
/* T1 = 3T2 */
sp_384_mont_tpl_12(t1, t2, p384_mod);
/* Y = 2Y */
sp_384_mont_dbl_12(y, p->y, p384_mod);
/* Y = Y * Y */
sp_384_mont_sqr_12(y, y, p384_mod, p384_mp_mod);
/* T2 = Y * Y */
sp_384_mont_sqr_12(t2, y, p384_mod, p384_mp_mod);
/* T2 = T2/2 */
sp_384_div2_12(t2, t2, p384_mod);
/* Y = Y * X */
sp_384_mont_mul_12(y, y, p->x, p384_mod, p384_mp_mod);
/* X = T1 * T1 */
sp_384_mont_sqr_12(x, t1, p384_mod, p384_mp_mod);
/* X = X - Y */
sp_384_mont_sub_12(x, x, y, p384_mod);
/* X = X - Y */
sp_384_mont_sub_12(x, x, y, p384_mod);
/* Y = Y - X */
sp_384_mont_sub_12(y, y, x, p384_mod);
/* Y = Y * T1 */
sp_384_mont_mul_12(y, y, t1, p384_mod, p384_mp_mod);
/* Y = Y - T2 */
sp_384_mont_sub_12(y, y, t2, p384_mod);
}
/* Compare two numbers to determine if they are equal.
* Constant time implementation.
*
* a First number to compare.
* b Second number to compare.
* returns 1 when equal and 0 otherwise.
*/
static int sp_384_cmp_equal_12(const sp_digit* a, const sp_digit* b)
{
return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2]) | (a[3] ^ b[3]) |
(a[4] ^ b[4]) | (a[5] ^ b[5]) | (a[6] ^ b[6]) | (a[7] ^ b[7]) |
(a[8] ^ b[8]) | (a[9] ^ b[9]) | (a[10] ^ b[10]) | (a[11] ^ b[11])) == 0;
}
/* Add two Montgomery form projective points.
*
* r Result of addition.
* p First point to add.
* q Second point to add.
* t Temporary ordinate data.
*/
static void sp_384_proj_point_add_12(sp_point_384* r, const sp_point_384* p, const sp_point_384* q,
sp_digit* t)
{
const sp_point_384* ap[2];
sp_point_384* rp[2];
sp_digit* t1 = t;
sp_digit* t2 = t + 2*12;
sp_digit* t3 = t + 4*12;
sp_digit* t4 = t + 6*12;
sp_digit* t5 = t + 8*12;
sp_digit* x;
sp_digit* y;
sp_digit* z;
int i;
/* Ensure only the first point is the same as the result. */
if (q == r) {
const sp_point_384* a = p;
p = q;
q = a;
}
/* Check double */
(void)sp_384_sub_12(t1, p384_mod, q->y);
sp_384_norm_12(t1);
if ((sp_384_cmp_equal_12(p->x, q->x) & sp_384_cmp_equal_12(p->z, q->z) &
(sp_384_cmp_equal_12(p->y, q->y) | sp_384_cmp_equal_12(p->y, t1))) != 0) {
sp_384_proj_point_dbl_12(r, p, t);
}
else {
rp[0] = r;
/*lint allow cast to different type of pointer*/
rp[1] = (sp_point_384*)t; /*lint !e9087 !e740*/
XMEMSET(rp[1], 0, sizeof(sp_point_384));
x = rp[p->infinity | q->infinity]->x;
y = rp[p->infinity | q->infinity]->y;
z = rp[p->infinity | q->infinity]->z;
ap[0] = p;
ap[1] = q;
for (i=0; i<12; i++) {
r->x[i] = ap[p->infinity]->x[i];
}
for (i=0; i<12; i++) {
r->y[i] = ap[p->infinity]->y[i];
}
for (i=0; i<12; i++) {
r->z[i] = ap[p->infinity]->z[i];
}
r->infinity = ap[p->infinity]->infinity;
/* U1 = X1*Z2^2 */
sp_384_mont_sqr_12(t1, q->z, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(t3, t1, q->z, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(t1, t1, x, p384_mod, p384_mp_mod);
/* U2 = X2*Z1^2 */
sp_384_mont_sqr_12(t2, z, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(t4, t2, z, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(t2, t2, q->x, p384_mod, p384_mp_mod);
/* S1 = Y1*Z2^3 */
sp_384_mont_mul_12(t3, t3, y, p384_mod, p384_mp_mod);
/* S2 = Y2*Z1^3 */
sp_384_mont_mul_12(t4, t4, q->y, p384_mod, p384_mp_mod);
/* H = U2 - U1 */
sp_384_mont_sub_12(t2, t2, t1, p384_mod);
/* R = S2 - S1 */
sp_384_mont_sub_12(t4, t4, t3, p384_mod);
/* Z3 = H*Z1*Z2 */
sp_384_mont_mul_12(z, z, q->z, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(z, z, t2, p384_mod, p384_mp_mod);
/* X3 = R^2 - H^3 - 2*U1*H^2 */
sp_384_mont_sqr_12(x, t4, p384_mod, p384_mp_mod);
sp_384_mont_sqr_12(t5, t2, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(y, t1, t5, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(t5, t5, t2, p384_mod, p384_mp_mod);
sp_384_mont_sub_12(x, x, t5, p384_mod);
sp_384_mont_dbl_12(t1, y, p384_mod);
sp_384_mont_sub_12(x, x, t1, p384_mod);
/* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
sp_384_mont_sub_12(y, y, x, p384_mod);
sp_384_mont_mul_12(y, y, t4, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(t5, t5, t3, p384_mod, p384_mp_mod);
sp_384_mont_sub_12(y, y, t5, p384_mod);
}
}
/* Multiply the point by the scalar and return the result.
* If map is true then convert result to affine coordinates.
*
* r Resulting point.
* g Point to multiply.
* k Scalar to multiply by.
* map Indicates whether to convert result to affine.
* heap Heap to use for allocation.
* returns MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
static int sp_384_ecc_mulmod_fast_12(sp_point_384* r, const sp_point_384* g, const sp_digit* k,
int map, void* heap)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_point_384 td[16];
sp_point_384 rtd;
sp_digit tmpd[2 * 12 * 6];
#endif
sp_point_384* t;
sp_point_384* rt;
sp_digit* tmp;
sp_digit n;
int i;
int c, y;
int err;
(void)heap;
err = sp_384_point_new_12(heap, rtd, rt);
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
t = (sp_point_384*)XMALLOC(sizeof(sp_point_384) * 16, heap, DYNAMIC_TYPE_ECC);
if (t == NULL)
err = MEMORY_E;
tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 12 * 6, heap,
DYNAMIC_TYPE_ECC);
if (tmp == NULL)
err = MEMORY_E;
#else
t = td;
tmp = tmpd;
#endif
if (err == MP_OKAY) {
/* t[0] = {0, 0, 1} * norm */
XMEMSET(&t[0], 0, sizeof(t[0]));
t[0].infinity = 1;
/* t[1] = {g->x, g->y, g->z} * norm */
(void)sp_384_mod_mul_norm_12(t[1].x, g->x, p384_mod);
(void)sp_384_mod_mul_norm_12(t[1].y, g->y, p384_mod);
(void)sp_384_mod_mul_norm_12(t[1].z, g->z, p384_mod);
t[1].infinity = 0;
sp_384_proj_point_dbl_12(&t[ 2], &t[ 1], tmp);
t[ 2].infinity = 0;
sp_384_proj_point_add_12(&t[ 3], &t[ 2], &t[ 1], tmp);
t[ 3].infinity = 0;
sp_384_proj_point_dbl_12(&t[ 4], &t[ 2], tmp);
t[ 4].infinity = 0;
sp_384_proj_point_add_12(&t[ 5], &t[ 3], &t[ 2], tmp);
t[ 5].infinity = 0;
sp_384_proj_point_dbl_12(&t[ 6], &t[ 3], tmp);
t[ 6].infinity = 0;
sp_384_proj_point_add_12(&t[ 7], &t[ 4], &t[ 3], tmp);
t[ 7].infinity = 0;
sp_384_proj_point_dbl_12(&t[ 8], &t[ 4], tmp);
t[ 8].infinity = 0;
sp_384_proj_point_add_12(&t[ 9], &t[ 5], &t[ 4], tmp);
t[ 9].infinity = 0;
sp_384_proj_point_dbl_12(&t[10], &t[ 5], tmp);
t[10].infinity = 0;
sp_384_proj_point_add_12(&t[11], &t[ 6], &t[ 5], tmp);
t[11].infinity = 0;
sp_384_proj_point_dbl_12(&t[12], &t[ 6], tmp);
t[12].infinity = 0;
sp_384_proj_point_add_12(&t[13], &t[ 7], &t[ 6], tmp);
t[13].infinity = 0;
sp_384_proj_point_dbl_12(&t[14], &t[ 7], tmp);
t[14].infinity = 0;
sp_384_proj_point_add_12(&t[15], &t[ 8], &t[ 7], tmp);
t[15].infinity = 0;
i = 10;
n = k[i+1] << 0;
c = 28;
y = n >> 28;
XMEMCPY(rt, &t[y], sizeof(sp_point_384));
n <<= 4;
for (; i>=0 || c>=4; ) {
if (c < 4) {
n |= k[i--];
c += 32;
}
y = (n >> 28) & 0xf;
n <<= 4;
c -= 4;
sp_384_proj_point_dbl_12(rt, rt, tmp);
sp_384_proj_point_dbl_12(rt, rt, tmp);
sp_384_proj_point_dbl_12(rt, rt, tmp);
sp_384_proj_point_dbl_12(rt, rt, tmp);
sp_384_proj_point_add_12(rt, rt, &t[y], tmp);
}
if (map != 0) {
sp_384_map_12(r, rt, tmp);
}
else {
XMEMCPY(r, rt, sizeof(sp_point_384));
}
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (tmp != NULL) {
XMEMSET(tmp, 0, sizeof(sp_digit) * 2 * 12 * 6);
XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
}
if (t != NULL) {
XMEMSET(t, 0, sizeof(sp_point_384) * 16);
XFREE(t, heap, DYNAMIC_TYPE_ECC);
}
#else
ForceZero(tmpd, sizeof(tmpd));
ForceZero(td, sizeof(td));
#endif
sp_384_point_free_12(rt, 1, heap);
return err;
}
/* A table entry for pre-computed points. */
typedef struct sp_table_entry_384 {
sp_digit x[12];
sp_digit y[12];
} sp_table_entry_384;
#ifdef FP_ECC
/* Double the Montgomery form projective point p a number of times.
*
* r Result of repeated doubling of point.
* p Point to double.
* n Number of times to double
* t Temporary ordinate data.
*/
static void sp_384_proj_point_dbl_n_12(sp_point_384* p, int n, sp_digit* t)
{
sp_digit* w = t;
sp_digit* a = t + 2*12;
sp_digit* b = t + 4*12;
sp_digit* t1 = t + 6*12;
sp_digit* t2 = t + 8*12;
sp_digit* x;
sp_digit* y;
sp_digit* z;
x = p->x;
y = p->y;
z = p->z;
/* Y = 2*Y */
sp_384_mont_dbl_12(y, y, p384_mod);
/* W = Z^4 */
sp_384_mont_sqr_12(w, z, p384_mod, p384_mp_mod);
sp_384_mont_sqr_12(w, w, p384_mod, p384_mp_mod);
#ifndef WOLFSSL_SP_SMALL
while (--n > 0)
#else
while (--n >= 0)
#endif
{
/* A = 3*(X^2 - W) */
sp_384_mont_sqr_12(t1, x, p384_mod, p384_mp_mod);
sp_384_mont_sub_12(t1, t1, w, p384_mod);
sp_384_mont_tpl_12(a, t1, p384_mod);
/* B = X*Y^2 */
sp_384_mont_sqr_12(t1, y, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(b, t1, x, p384_mod, p384_mp_mod);
/* X = A^2 - 2B */
sp_384_mont_sqr_12(x, a, p384_mod, p384_mp_mod);
sp_384_mont_dbl_12(t2, b, p384_mod);
sp_384_mont_sub_12(x, x, t2, p384_mod);
/* Z = Z*Y */
sp_384_mont_mul_12(z, z, y, p384_mod, p384_mp_mod);
/* t2 = Y^4 */
sp_384_mont_sqr_12(t1, t1, p384_mod, p384_mp_mod);
#ifdef WOLFSSL_SP_SMALL
if (n != 0)
#endif
{
/* W = W*Y^4 */
sp_384_mont_mul_12(w, w, t1, p384_mod, p384_mp_mod);
}
/* y = 2*A*(B - X) - Y^4 */
sp_384_mont_sub_12(y, b, x, p384_mod);
sp_384_mont_mul_12(y, y, a, p384_mod, p384_mp_mod);
sp_384_mont_dbl_12(y, y, p384_mod);
sp_384_mont_sub_12(y, y, t1, p384_mod);
}
#ifndef WOLFSSL_SP_SMALL
/* A = 3*(X^2 - W) */
sp_384_mont_sqr_12(t1, x, p384_mod, p384_mp_mod);
sp_384_mont_sub_12(t1, t1, w, p384_mod);
sp_384_mont_tpl_12(a, t1, p384_mod);
/* B = X*Y^2 */
sp_384_mont_sqr_12(t1, y, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(b, t1, x, p384_mod, p384_mp_mod);
/* X = A^2 - 2B */
sp_384_mont_sqr_12(x, a, p384_mod, p384_mp_mod);
sp_384_mont_dbl_12(t2, b, p384_mod);
sp_384_mont_sub_12(x, x, t2, p384_mod);
/* Z = Z*Y */
sp_384_mont_mul_12(z, z, y, p384_mod, p384_mp_mod);
/* t2 = Y^4 */
sp_384_mont_sqr_12(t1, t1, p384_mod, p384_mp_mod);
/* y = 2*A*(B - X) - Y^4 */
sp_384_mont_sub_12(y, b, x, p384_mod);
sp_384_mont_mul_12(y, y, a, p384_mod, p384_mp_mod);
sp_384_mont_dbl_12(y, y, p384_mod);
sp_384_mont_sub_12(y, y, t1, p384_mod);
#endif
/* Y = Y/2 */
sp_384_div2_12(y, y, p384_mod);
}
#endif /* FP_ECC */
/* Add two Montgomery form projective points. The second point has a q value of
* one.
* Only the first point can be the same pointer as the result point.
*
* r Result of addition.
* p First point to add.
* q Second point to add.
* t Temporary ordinate data.
*/
static void sp_384_proj_point_add_qz1_12(sp_point_384* r, const sp_point_384* p,
const sp_point_384* q, sp_digit* t)
{
const sp_point_384* ap[2];
sp_point_384* rp[2];
sp_digit* t1 = t;
sp_digit* t2 = t + 2*12;
sp_digit* t3 = t + 4*12;
sp_digit* t4 = t + 6*12;
sp_digit* t5 = t + 8*12;
sp_digit* x;
sp_digit* y;
sp_digit* z;
int i;
/* Check double */
(void)sp_384_sub_12(t1, p384_mod, q->y);
sp_384_norm_12(t1);
if ((sp_384_cmp_equal_12(p->x, q->x) & sp_384_cmp_equal_12(p->z, q->z) &
(sp_384_cmp_equal_12(p->y, q->y) | sp_384_cmp_equal_12(p->y, t1))) != 0) {
sp_384_proj_point_dbl_12(r, p, t);
}
else {
rp[0] = r;
/*lint allow cast to different type of pointer*/
rp[1] = (sp_point_384*)t; /*lint !e9087 !e740*/
XMEMSET(rp[1], 0, sizeof(sp_point_384));
x = rp[p->infinity | q->infinity]->x;
y = rp[p->infinity | q->infinity]->y;
z = rp[p->infinity | q->infinity]->z;
ap[0] = p;
ap[1] = q;
for (i=0; i<12; i++) {
r->x[i] = ap[p->infinity]->x[i];
}
for (i=0; i<12; i++) {
r->y[i] = ap[p->infinity]->y[i];
}
for (i=0; i<12; i++) {
r->z[i] = ap[p->infinity]->z[i];
}
r->infinity = ap[p->infinity]->infinity;
/* U2 = X2*Z1^2 */
sp_384_mont_sqr_12(t2, z, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(t4, t2, z, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(t2, t2, q->x, p384_mod, p384_mp_mod);
/* S2 = Y2*Z1^3 */
sp_384_mont_mul_12(t4, t4, q->y, p384_mod, p384_mp_mod);
/* H = U2 - X1 */
sp_384_mont_sub_12(t2, t2, x, p384_mod);
/* R = S2 - Y1 */
sp_384_mont_sub_12(t4, t4, y, p384_mod);
/* Z3 = H*Z1 */
sp_384_mont_mul_12(z, z, t2, p384_mod, p384_mp_mod);
/* X3 = R^2 - H^3 - 2*X1*H^2 */
sp_384_mont_sqr_12(t1, t4, p384_mod, p384_mp_mod);
sp_384_mont_sqr_12(t5, t2, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(t3, x, t5, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(t5, t5, t2, p384_mod, p384_mp_mod);
sp_384_mont_sub_12(x, t1, t5, p384_mod);
sp_384_mont_dbl_12(t1, t3, p384_mod);
sp_384_mont_sub_12(x, x, t1, p384_mod);
/* Y3 = R*(X1*H^2 - X3) - Y1*H^3 */
sp_384_mont_sub_12(t3, t3, x, p384_mod);
sp_384_mont_mul_12(t3, t3, t4, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(t5, t5, y, p384_mod, p384_mp_mod);
sp_384_mont_sub_12(y, t3, t5, p384_mod);
}
}
#ifdef WOLFSSL_SP_SMALL
#ifdef FP_ECC
/* Convert the projective point to affine.
* Ordinates are in Montgomery form.
*
* a Point to convert.
* t Temporary data.
*/
static void sp_384_proj_to_affine_12(sp_point_384* a, sp_digit* t)
{
sp_digit* t1 = t;
sp_digit* t2 = t + 2 * 12;
sp_digit* tmp = t + 4 * 12;
sp_384_mont_inv_12(t1, a->z, tmp);
sp_384_mont_sqr_12(t2, t1, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(t1, t2, t1, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(a->x, a->x, t2, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(a->y, a->y, t1, p384_mod, p384_mp_mod);
XMEMCPY(a->z, p384_norm_mod, sizeof(p384_norm_mod));
}
/* Generate the pre-computed table of points for the base point.
*
* a The base point.
* table Place to store generated point data.
* tmp Temporary data.
* heap Heap to use for allocation.
*/
static int sp_384_gen_stripe_table_12(const sp_point_384* a,
sp_table_entry_384* table, sp_digit* tmp, void* heap)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_point_384 td, s1d, s2d;
#endif
sp_point_384* t;
sp_point_384* s1 = NULL;
sp_point_384* s2 = NULL;
int i, j;
int err;
(void)heap;
err = sp_384_point_new_12(heap, td, t);
if (err == MP_OKAY) {
err = sp_384_point_new_12(heap, s1d, s1);
}
if (err == MP_OKAY) {
err = sp_384_point_new_12(heap, s2d, s2);
}
if (err == MP_OKAY) {
err = sp_384_mod_mul_norm_12(t->x, a->x, p384_mod);
}
if (err == MP_OKAY) {
err = sp_384_mod_mul_norm_12(t->y, a->y, p384_mod);
}
if (err == MP_OKAY) {
err = sp_384_mod_mul_norm_12(t->z, a->z, p384_mod);
}
if (err == MP_OKAY) {
t->infinity = 0;
sp_384_proj_to_affine_12(t, tmp);
XMEMCPY(s1->z, p384_norm_mod, sizeof(p384_norm_mod));
s1->infinity = 0;
XMEMCPY(s2->z, p384_norm_mod, sizeof(p384_norm_mod));
s2->infinity = 0;
/* table[0] = {0, 0, infinity} */
XMEMSET(&table[0], 0, sizeof(sp_table_entry_384));
/* table[1] = Affine version of 'a' in Montgomery form */
XMEMCPY(table[1].x, t->x, sizeof(table->x));
XMEMCPY(table[1].y, t->y, sizeof(table->y));
for (i=1; i<4; i++) {
sp_384_proj_point_dbl_n_12(t, 96, tmp);
sp_384_proj_to_affine_12(t, tmp);
XMEMCPY(table[1<<i].x, t->x, sizeof(table->x));
XMEMCPY(table[1<<i].y, t->y, sizeof(table->y));
}
for (i=1; i<4; i++) {
XMEMCPY(s1->x, table[1<<i].x, sizeof(table->x));
XMEMCPY(s1->y, table[1<<i].y, sizeof(table->y));
for (j=(1<<i)+1; j<(1<<(i+1)); j++) {
XMEMCPY(s2->x, table[j-(1<<i)].x, sizeof(table->x));
XMEMCPY(s2->y, table[j-(1<<i)].y, sizeof(table->y));
sp_384_proj_point_add_qz1_12(t, s1, s2, tmp);
sp_384_proj_to_affine_12(t, tmp);
XMEMCPY(table[j].x, t->x, sizeof(table->x));
XMEMCPY(table[j].y, t->y, sizeof(table->y));
}
}
}
sp_384_point_free_12(s2, 0, heap);
sp_384_point_free_12(s1, 0, heap);
sp_384_point_free_12( t, 0, heap);
return err;
}
#endif /* FP_ECC */
/* Multiply the point by the scalar and return the result.
* If map is true then convert result to affine coordinates.
*
* r Resulting point.
* k Scalar to multiply by.
* map Indicates whether to convert result to affine.
* heap Heap to use for allocation.
* returns MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
static int sp_384_ecc_mulmod_stripe_12(sp_point_384* r, const sp_point_384* g,
const sp_table_entry_384* table, const sp_digit* k, int map, void* heap)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_point_384 rtd;
sp_point_384 pd;
sp_digit td[2 * 12 * 6];
#endif
sp_point_384* rt;
sp_point_384* p = NULL;
sp_digit* t;
int i, j;
int y, x;
int err;
(void)g;
(void)heap;
err = sp_384_point_new_12(heap, rtd, rt);
if (err == MP_OKAY) {
err = sp_384_point_new_12(heap, pd, p);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 12 * 6, heap,
DYNAMIC_TYPE_ECC);
if (t == NULL) {
err = MEMORY_E;
}
#else
t = td;
#endif
if (err == MP_OKAY) {
XMEMCPY(p->z, p384_norm_mod, sizeof(p384_norm_mod));
XMEMCPY(rt->z, p384_norm_mod, sizeof(p384_norm_mod));
y = 0;
for (j=0,x=95; j<4; j++,x+=96) {
y |= ((k[x / 32] >> (x % 32)) & 1) << j;
}
XMEMCPY(rt->x, table[y].x, sizeof(table[y].x));
XMEMCPY(rt->y, table[y].y, sizeof(table[y].y));
rt->infinity = !y;
for (i=94; i>=0; i--) {
y = 0;
for (j=0,x=i; j<4; j++,x+=96) {
y |= ((k[x / 32] >> (x % 32)) & 1) << j;
}
sp_384_proj_point_dbl_12(rt, rt, t);
XMEMCPY(p->x, table[y].x, sizeof(table[y].x));
XMEMCPY(p->y, table[y].y, sizeof(table[y].y));
p->infinity = !y;
sp_384_proj_point_add_qz1_12(rt, rt, p, t);
}
if (map != 0) {
sp_384_map_12(r, rt, t);
}
else {
XMEMCPY(r, rt, sizeof(sp_point_384));
}
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (t != NULL) {
XFREE(t, heap, DYNAMIC_TYPE_ECC);
}
#endif
sp_384_point_free_12(p, 0, heap);
sp_384_point_free_12(rt, 0, heap);
return err;
}
#ifdef FP_ECC
#ifndef FP_ENTRIES
#define FP_ENTRIES 16
#endif
typedef struct sp_cache_384_t {
sp_digit x[12];
sp_digit y[12];
sp_table_entry_384 table[16];
uint32_t cnt;
int set;
} sp_cache_384_t;
static THREAD_LS_T sp_cache_384_t sp_cache_384[FP_ENTRIES];
static THREAD_LS_T int sp_cache_384_last = -1;
static THREAD_LS_T int sp_cache_384_inited = 0;
#ifndef HAVE_THREAD_LS
static volatile int initCacheMutex_384 = 0;
static wolfSSL_Mutex sp_cache_384_lock;
#endif
static void sp_ecc_get_cache_384(const sp_point_384* g, sp_cache_384_t** cache)
{
int i, j;
uint32_t least;
if (sp_cache_384_inited == 0) {
for (i=0; i<FP_ENTRIES; i++) {
sp_cache_384[i].set = 0;
}
sp_cache_384_inited = 1;
}
/* Compare point with those in cache. */
for (i=0; i<FP_ENTRIES; i++) {
if (!sp_cache_384[i].set)
continue;
if (sp_384_cmp_equal_12(g->x, sp_cache_384[i].x) &
sp_384_cmp_equal_12(g->y, sp_cache_384[i].y)) {
sp_cache_384[i].cnt++;
break;
}
}
/* No match. */
if (i == FP_ENTRIES) {
/* Find empty entry. */
i = (sp_cache_384_last + 1) % FP_ENTRIES;
for (; i != sp_cache_384_last; i=(i+1)%FP_ENTRIES) {
if (!sp_cache_384[i].set) {
break;
}
}
/* Evict least used. */
if (i == sp_cache_384_last) {
least = sp_cache_384[0].cnt;
for (j=1; j<FP_ENTRIES; j++) {
if (sp_cache_384[j].cnt < least) {
i = j;
least = sp_cache_384[i].cnt;
}
}
}
XMEMCPY(sp_cache_384[i].x, g->x, sizeof(sp_cache_384[i].x));
XMEMCPY(sp_cache_384[i].y, g->y, sizeof(sp_cache_384[i].y));
sp_cache_384[i].set = 1;
sp_cache_384[i].cnt = 1;
}
*cache = &sp_cache_384[i];
sp_cache_384_last = i;
}
#endif /* FP_ECC */
/* Multiply the base point of P384 by the scalar and return the result.
* If map is true then convert result to affine coordinates.
*
* r Resulting point.
* g Point to multiply.
* k Scalar to multiply by.
* map Indicates whether to convert result to affine.
* heap Heap to use for allocation.
* returns MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
static int sp_384_ecc_mulmod_12(sp_point_384* r, const sp_point_384* g, const sp_digit* k,
int map, void* heap)
{
#ifndef FP_ECC
return sp_384_ecc_mulmod_fast_12(r, g, k, map, heap);
#else
sp_digit tmp[2 * 12 * 7];
sp_cache_384_t* cache;
int err = MP_OKAY;
#ifndef HAVE_THREAD_LS
if (initCacheMutex_384 == 0) {
wc_InitMutex(&sp_cache_384_lock);
initCacheMutex_384 = 1;
}
if (wc_LockMutex(&sp_cache_384_lock) != 0)
err = BAD_MUTEX_E;
#endif /* HAVE_THREAD_LS */
if (err == MP_OKAY) {
sp_ecc_get_cache_384(g, &cache);
if (cache->cnt == 2)
sp_384_gen_stripe_table_12(g, cache->table, tmp, heap);
#ifndef HAVE_THREAD_LS
wc_UnLockMutex(&sp_cache_384_lock);
#endif /* HAVE_THREAD_LS */
if (cache->cnt < 2) {
err = sp_384_ecc_mulmod_fast_12(r, g, k, map, heap);
}
else {
err = sp_384_ecc_mulmod_stripe_12(r, g, cache->table, k,
map, heap);
}
}
return err;
#endif
}
#else
#ifdef FP_ECC
/* Generate the pre-computed table of points for the base point.
*
* a The base point.
* table Place to store generated point data.
* tmp Temporary data.
* heap Heap to use for allocation.
*/
static int sp_384_gen_stripe_table_12(const sp_point_384* a,
sp_table_entry_384* table, sp_digit* tmp, void* heap)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_point_384 td, s1d, s2d;
#endif
sp_point_384* t;
sp_point_384* s1 = NULL;
sp_point_384* s2 = NULL;
int i, j;
int err;
(void)heap;
err = sp_384_point_new_12(heap, td, t);
if (err == MP_OKAY) {
err = sp_384_point_new_12(heap, s1d, s1);
}
if (err == MP_OKAY) {
err = sp_384_point_new_12(heap, s2d, s2);
}
if (err == MP_OKAY) {
err = sp_384_mod_mul_norm_12(t->x, a->x, p384_mod);
}
if (err == MP_OKAY) {
err = sp_384_mod_mul_norm_12(t->y, a->y, p384_mod);
}
if (err == MP_OKAY) {
err = sp_384_mod_mul_norm_12(t->z, a->z, p384_mod);
}
if (err == MP_OKAY) {
t->infinity = 0;
sp_384_proj_to_affine_12(t, tmp);
XMEMCPY(s1->z, p384_norm_mod, sizeof(p384_norm_mod));
s1->infinity = 0;
XMEMCPY(s2->z, p384_norm_mod, sizeof(p384_norm_mod));
s2->infinity = 0;
/* table[0] = {0, 0, infinity} */
XMEMSET(&table[0], 0, sizeof(sp_table_entry_384));
/* table[1] = Affine version of 'a' in Montgomery form */
XMEMCPY(table[1].x, t->x, sizeof(table->x));
XMEMCPY(table[1].y, t->y, sizeof(table->y));
for (i=1; i<8; i++) {
sp_384_proj_point_dbl_n_12(t, 48, tmp);
sp_384_proj_to_affine_12(t, tmp);
XMEMCPY(table[1<<i].x, t->x, sizeof(table->x));
XMEMCPY(table[1<<i].y, t->y, sizeof(table->y));
}
for (i=1; i<8; i++) {
XMEMCPY(s1->x, table[1<<i].x, sizeof(table->x));
XMEMCPY(s1->y, table[1<<i].y, sizeof(table->y));
for (j=(1<<i)+1; j<(1<<(i+1)); j++) {
XMEMCPY(s2->x, table[j-(1<<i)].x, sizeof(table->x));
XMEMCPY(s2->y, table[j-(1<<i)].y, sizeof(table->y));
sp_384_proj_point_add_qz1_12(t, s1, s2, tmp);
sp_384_proj_to_affine_12(t, tmp);
XMEMCPY(table[j].x, t->x, sizeof(table->x));
XMEMCPY(table[j].y, t->y, sizeof(table->y));
}
}
}
sp_384_point_free_12(s2, 0, heap);
sp_384_point_free_12(s1, 0, heap);
sp_384_point_free_12( t, 0, heap);
return err;
}
#endif /* FP_ECC */
/* Multiply the point by the scalar and return the result.
* If map is true then convert result to affine coordinates.
*
* r Resulting point.
* k Scalar to multiply by.
* map Indicates whether to convert result to affine.
* heap Heap to use for allocation.
* returns MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
static int sp_384_ecc_mulmod_stripe_12(sp_point_384* r, const sp_point_384* g,
const sp_table_entry_384* table, const sp_digit* k, int map, void* heap)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_point_384 rtd;
sp_point_384 pd;
sp_digit td[2 * 12 * 6];
#endif
sp_point_384* rt;
sp_point_384* p = NULL;
sp_digit* t;
int i, j;
int y, x;
int err;
(void)g;
(void)heap;
err = sp_384_point_new_12(heap, rtd, rt);
if (err == MP_OKAY) {
err = sp_384_point_new_12(heap, pd, p);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 12 * 6, heap,
DYNAMIC_TYPE_ECC);
if (t == NULL) {
err = MEMORY_E;
}
#else
t = td;
#endif
if (err == MP_OKAY) {
XMEMCPY(p->z, p384_norm_mod, sizeof(p384_norm_mod));
XMEMCPY(rt->z, p384_norm_mod, sizeof(p384_norm_mod));
y = 0;
for (j=0,x=47; j<8; j++,x+=48) {
y |= ((k[x / 32] >> (x % 32)) & 1) << j;
}
XMEMCPY(rt->x, table[y].x, sizeof(table[y].x));
XMEMCPY(rt->y, table[y].y, sizeof(table[y].y));
rt->infinity = !y;
for (i=46; i>=0; i--) {
y = 0;
for (j=0,x=i; j<8; j++,x+=48) {
y |= ((k[x / 32] >> (x % 32)) & 1) << j;
}
sp_384_proj_point_dbl_12(rt, rt, t);
XMEMCPY(p->x, table[y].x, sizeof(table[y].x));
XMEMCPY(p->y, table[y].y, sizeof(table[y].y));
p->infinity = !y;
sp_384_proj_point_add_qz1_12(rt, rt, p, t);
}
if (map != 0) {
sp_384_map_12(r, rt, t);
}
else {
XMEMCPY(r, rt, sizeof(sp_point_384));
}
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (t != NULL) {
XFREE(t, heap, DYNAMIC_TYPE_ECC);
}
#endif
sp_384_point_free_12(p, 0, heap);
sp_384_point_free_12(rt, 0, heap);
return err;
}
#ifdef FP_ECC
#ifndef FP_ENTRIES
#define FP_ENTRIES 16
#endif
typedef struct sp_cache_384_t {
sp_digit x[12];
sp_digit y[12];
sp_table_entry_384 table[256];
uint32_t cnt;
int set;
} sp_cache_384_t;
static THREAD_LS_T sp_cache_384_t sp_cache_384[FP_ENTRIES];
static THREAD_LS_T int sp_cache_384_last = -1;
static THREAD_LS_T int sp_cache_384_inited = 0;
#ifndef HAVE_THREAD_LS
static volatile int initCacheMutex_384 = 0;
static wolfSSL_Mutex sp_cache_384_lock;
#endif
static void sp_ecc_get_cache_384(const sp_point_384* g, sp_cache_384_t** cache)
{
int i, j;
uint32_t least;
if (sp_cache_384_inited == 0) {
for (i=0; i<FP_ENTRIES; i++) {
sp_cache_384[i].set = 0;
}
sp_cache_384_inited = 1;
}
/* Compare point with those in cache. */
for (i=0; i<FP_ENTRIES; i++) {
if (!sp_cache_384[i].set)
continue;
if (sp_384_cmp_equal_12(g->x, sp_cache_384[i].x) &
sp_384_cmp_equal_12(g->y, sp_cache_384[i].y)) {
sp_cache_384[i].cnt++;
break;
}
}
/* No match. */
if (i == FP_ENTRIES) {
/* Find empty entry. */
i = (sp_cache_384_last + 1) % FP_ENTRIES;
for (; i != sp_cache_384_last; i=(i+1)%FP_ENTRIES) {
if (!sp_cache_384[i].set) {
break;
}
}
/* Evict least used. */
if (i == sp_cache_384_last) {
least = sp_cache_384[0].cnt;
for (j=1; j<FP_ENTRIES; j++) {
if (sp_cache_384[j].cnt < least) {
i = j;
least = sp_cache_384[i].cnt;
}
}
}
XMEMCPY(sp_cache_384[i].x, g->x, sizeof(sp_cache_384[i].x));
XMEMCPY(sp_cache_384[i].y, g->y, sizeof(sp_cache_384[i].y));
sp_cache_384[i].set = 1;
sp_cache_384[i].cnt = 1;
}
*cache = &sp_cache_384[i];
sp_cache_384_last = i;
}
#endif /* FP_ECC */
/* Multiply the base point of P384 by the scalar and return the result.
* If map is true then convert result to affine coordinates.
*
* r Resulting point.
* g Point to multiply.
* k Scalar to multiply by.
* map Indicates whether to convert result to affine.
* heap Heap to use for allocation.
* returns MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
static int sp_384_ecc_mulmod_12(sp_point_384* r, const sp_point_384* g, const sp_digit* k,
int map, void* heap)
{
#ifndef FP_ECC
return sp_384_ecc_mulmod_fast_12(r, g, k, map, heap);
#else
sp_digit tmp[2 * 12 * 7];
sp_cache_384_t* cache;
int err = MP_OKAY;
#ifndef HAVE_THREAD_LS
if (initCacheMutex_384 == 0) {
wc_InitMutex(&sp_cache_384_lock);
initCacheMutex_384 = 1;
}
if (wc_LockMutex(&sp_cache_384_lock) != 0)
err = BAD_MUTEX_E;
#endif /* HAVE_THREAD_LS */
if (err == MP_OKAY) {
sp_ecc_get_cache_384(g, &cache);
if (cache->cnt == 2)
sp_384_gen_stripe_table_12(g, cache->table, tmp, heap);
#ifndef HAVE_THREAD_LS
wc_UnLockMutex(&sp_cache_384_lock);
#endif /* HAVE_THREAD_LS */
if (cache->cnt < 2) {
err = sp_384_ecc_mulmod_fast_12(r, g, k, map, heap);
}
else {
err = sp_384_ecc_mulmod_stripe_12(r, g, cache->table, k,
map, heap);
}
}
return err;
#endif
}
#endif /* WOLFSSL_SP_SMALL */
/* Multiply the point by the scalar and return the result.
* If map is true then convert result to affine coordinates.
*
* km Scalar to multiply by.
* p Point to multiply.
* r Resulting point.
* map Indicates whether to convert result to affine.
* heap Heap to use for allocation.
* returns MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
int sp_ecc_mulmod_384(mp_int* km, ecc_point* gm, ecc_point* r, int map,
void* heap)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_point_384 p;
sp_digit kd[12];
#endif
sp_point_384* point;
sp_digit* k = NULL;
int err = MP_OKAY;
err = sp_384_point_new_12(heap, p, point);
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 12, heap,
DYNAMIC_TYPE_ECC);
if (k == NULL)
err = MEMORY_E;
}
#else
k = kd;
#endif
if (err == MP_OKAY) {
sp_384_from_mp(k, 12, km);
sp_384_point_from_ecc_point_12(point, gm);
err = sp_384_ecc_mulmod_12(point, point, k, map, heap);
}
if (err == MP_OKAY) {
err = sp_384_point_to_ecc_point_12(point, r);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (k != NULL) {
XFREE(k, heap, DYNAMIC_TYPE_ECC);
}
#endif
sp_384_point_free_12(point, 0, heap);
return err;
}
#ifdef WOLFSSL_SP_SMALL
static const sp_table_entry_384 p384_table[16] = {
/* 0 */
{ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } },
/* 1 */
{ { 0x49c0b528,0x3dd07566,0xa0d6ce38,0x20e378e2,0x541b4d6e,0x879c3afc,
0x59a30eff,0x64548684,0x614ede2b,0x812ff723,0x299e1513,0x4d3aadc2 },
{ 0x4b03a4fe,0x23043dad,0x7bb4a9ac,0xa1bfa8bf,0x2e83b050,0x8bade756,
0x68f4ffd9,0xc6c35219,0x3969a840,0xdd800226,0x5a15c5e9,0x2b78abc2 } },
/* 2 */
{ { 0xf26feef9,0x24480c57,0x3a0e1240,0xc31a2694,0x273e2bc7,0x735002c3,
0x3ef1ed4c,0x8c42e9c5,0x7f4948e8,0x028babf6,0x8a978632,0x6a502f43 },
{ 0xb74536fe,0xf5f13a46,0xd8a9f0eb,0x1d218bab,0x37232768,0x30f36bcc,
0x576e8c18,0xc5317b31,0x9bbcb766,0xef1d57a6,0xb3e3d4dc,0x917c4930 } },
/* 3 */
{ { 0xe349ddd0,0x11426e2e,0x9b2fc250,0x9f117ef9,0xec0174a6,0xff36b480,
0x18458466,0x4f4bde76,0x05806049,0x2f2edb6d,0x19dfca92,0x8adc75d1 },
{ 0xb7d5a7ce,0xa619d097,0xa34411e9,0x874275e5,0x0da4b4ef,0x5403e047,
0x77901d8f,0x2ebaafd9,0xa747170f,0x5e63ebce,0x7f9d8036,0x12a36944 } },
/* 4 */
{ { 0x2f9fbe67,0x378205de,0x7f728e44,0xc4afcb83,0x682e00f1,0xdbcec06c,
0x114d5423,0xf2a145c3,0x7a52463e,0xa01d9874,0x7d717b0a,0xfc0935b1 },
{ 0xd4d01f95,0x9653bc4f,0x9560ad34,0x9aa83ea8,0xaf8e3f3f,0xf77943dc,
0xe86fe16e,0x70774a10,0xbf9ffdcf,0x6b62e6f1,0x588745c9,0x8a72f39e } },
/* 5 */
{ { 0x2341c342,0x73ade4da,0xea704422,0xdd326e54,0x3741cef3,0x336c7d98,
0x59e61549,0x1eafa00d,0xbd9a3efd,0xcd3ed892,0xc5c6c7e4,0x03faf26c },
{ 0x3045f8ac,0x087e2fcf,0x174f1e73,0x14a65532,0xfe0af9a7,0x2cf84f28,
0x2cdc935b,0xddfd7a84,0x6929c895,0x4c0f117b,0x4c8bcfcc,0x356572d6 } },
/* 6 */
{ { 0x3f3b236f,0xfab08607,0x81e221da,0x19e9d41d,0x3927b428,0xf3f6571e,
0x7550f1f6,0x4348a933,0xa85e62f0,0x7167b996,0x7f5452bf,0x62d43759 },
{ 0xf2955926,0xd85feb9e,0x6df78353,0x440a561f,0x9ca36b59,0x389668ec,
0xa22da016,0x052bf1a1,0xf6093254,0xbdfbff72,0xe22209f3,0x94e50f28 } },
/* 7 */
{ { 0x3062e8af,0x90b2e5b3,0xe8a3d369,0xa8572375,0x201db7b1,0x3fe1b00b,
0xee651aa2,0xe926def0,0xb9b10ad7,0x6542c9be,0xa2fcbe74,0x098e309b },
{ 0xfff1d63f,0x779deeb3,0x20bfd374,0x23d0e80a,0x8768f797,0x8452bb3b,
0x1f952856,0xcf75bb4d,0x29ea3faa,0x8fe6b400,0x81373a53,0x12bd3e40 } },
/* 8 */
{ { 0x16973cf4,0x070d34e1,0x7e4f34f7,0x20aee08b,0x5eb8ad29,0x269af9b9,
0xa6a45dda,0xdde0a036,0x63df41e0,0xa18b528e,0xa260df2a,0x03cc71b2 },
{ 0xa06b1dd7,0x24a6770a,0x9d2675d3,0x5bfa9c11,0x96844432,0x73c1e2a1,
0x131a6cf0,0x3660558d,0x2ee79454,0xb0289c83,0xc6d8ddcd,0xa6aefb01 } },
/* 9 */
{ { 0x01ab5245,0xba1464b4,0xc48d93ff,0x9b8d0b6d,0x93ad272c,0x939867dc,
0xae9fdc77,0xbebe085e,0x894ea8bd,0x73ae5103,0x39ac22e1,0x740fc89a },
{ 0x28e23b23,0x5e28b0a3,0xe13104d0,0x2352722e,0xb0a2640d,0xf4667a18,
0x49bb37c3,0xac74a72e,0xe81e183a,0x79f734f0,0x3fd9c0eb,0xbffe5b6c } },
/* 10 */
{ { 0x00623f3b,0x03cf2922,0x5f29ebff,0x095c7111,0x80aa6823,0x42d72247,
0x7458c0b0,0x044c7ba1,0x0959ec20,0xca62f7ef,0xf8ca929f,0x40ae2ab7 },
{ 0xa927b102,0xb8c5377a,0xdc031771,0x398a86a0,0xc216a406,0x04908f9d,
0x918d3300,0xb423a73a,0xe0b94739,0x634b0ff1,0x2d69f697,0xe29de725 } },
/* 11 */
{ { 0x8435af04,0x744d1400,0xfec192da,0x5f255b1d,0x336dc542,0x1f17dc12,
0x636a68a8,0x5c90c2a7,0x7704ca1e,0x960c9eb7,0x6fb3d65a,0x9de8cf1e },
{ 0x511d3d06,0xc60fee0d,0xf9eb52c7,0x466e2313,0x206b0914,0x743c0f5f,
0x2191aa4d,0x42f55bac,0xffebdbc2,0xcefc7c8f,0xe6e8ed1c,0xd4fa6081 } },
/* 12 */
{ { 0x98683186,0x867db639,0xddcc4ea9,0xfb5cf424,0xd4f0e7bd,0xcc9a7ffe,
0x7a779f7e,0x7c57f71c,0xd6b25ef2,0x90774079,0xb4081680,0x90eae903 },
{ 0x0ee1fceb,0xdf2aae5e,0xe86c1a1f,0x3ff1da24,0xca193edf,0x80f587d6,
0xdc9b9d6a,0xa5695523,0x85920303,0x7b840900,0xba6dbdef,0x1efa4dfc } },
/* 13 */
{ { 0xe0540015,0xfbd838f9,0xc39077dc,0x2c323946,0xad619124,0x8b1fb9e6,
0x0ca62ea8,0x9612440c,0x2dbe00ff,0x9ad9b52c,0xae197643,0xf52abaa1 },
{ 0x2cac32ad,0xd0e89894,0x62a98f91,0xdfb79e42,0x276f55cb,0x65452ecf,
0x7ad23e12,0xdb1ac0d2,0xde4986f0,0xf68c5f6a,0x82ce327d,0x389ac37b } },
/* 14 */
{ { 0xb8a9e8c9,0xcd96866d,0x5bb8091e,0xa11963b8,0x045b3cd2,0xc7f90d53,
0x80f36504,0x755a72b5,0x21d3751c,0x46f8b399,0x53c193de,0x4bffdc91 },
{ 0xb89554e7,0xcd15c049,0xf7a26be6,0x353c6754,0xbd41d970,0x79602370,
0x12b176c0,0xde16470b,0x40c8809d,0x56ba1175,0xe435fb1e,0xe2db35c3 } },
/* 15 */
{ { 0x6328e33f,0xd71e4aab,0xaf8136d1,0x5486782b,0x86d57231,0x07a4995f,
0x1651a968,0xf1f0a5bd,0x76803b6d,0xa5dc5b24,0x42dda935,0x5c587cbc },
{ 0xbae8b4c0,0x2b6cdb32,0xb1331138,0x66d1598b,0x5d7e9614,0x4a23b2d2,
0x74a8c05d,0x93e402a6,0xda7ce82e,0x45ac94e6,0xe463d465,0xeb9f8281 } },
};
/* Multiply the base point of P384 by the scalar and return the result.
* If map is true then convert result to affine coordinates.
*
* r Resulting point.
* k Scalar to multiply by.
* map Indicates whether to convert result to affine.
* heap Heap to use for allocation.
* returns MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
static int sp_384_ecc_mulmod_base_12(sp_point_384* r, const sp_digit* k,
int map, void* heap)
{
return sp_384_ecc_mulmod_stripe_12(r, &p384_base, p384_table,
k, map, heap);
}
#else
static const sp_table_entry_384 p384_table[256] = {
/* 0 */
{ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } },
/* 1 */
{ { 0x49c0b528,0x3dd07566,0xa0d6ce38,0x20e378e2,0x541b4d6e,0x879c3afc,
0x59a30eff,0x64548684,0x614ede2b,0x812ff723,0x299e1513,0x4d3aadc2 },
{ 0x4b03a4fe,0x23043dad,0x7bb4a9ac,0xa1bfa8bf,0x2e83b050,0x8bade756,
0x68f4ffd9,0xc6c35219,0x3969a840,0xdd800226,0x5a15c5e9,0x2b78abc2 } },
/* 2 */
{ { 0x2b0c535b,0x29864753,0x70506296,0x90dd6953,0x216ab9ac,0x038cd6b4,
0xbe12d76a,0x3df9b7b7,0x5f347bdb,0x13f4d978,0x13e94489,0x222c5c9c },
{ 0x2680dc64,0x5f8e796f,0x58352417,0x120e7cb7,0xd10740b8,0x254b5d8a,
0x5337dee6,0xc38b8efb,0x94f02247,0xf688c2e1,0x6c25bc4c,0x7b5c75f3 } },
/* 3 */
{ { 0x9edffea5,0xe26a3cc3,0x37d7e9fc,0x35bbfd1c,0x9bde3ef6,0xf0e7700d,
0x1a538f5a,0x0380eb47,0x05bf9eb3,0x2e9da8bb,0x1a460c3e,0xdbb93c73 },
{ 0xf526b605,0x37dba260,0xfd785537,0x95d4978e,0xed72a04a,0x24ed793a,
0x76005b1a,0x26948377,0x9e681f82,0x99f557b9,0xd64954ef,0xae5f9557 } },
/* 4 */
{ { 0xf26feef9,0x24480c57,0x3a0e1240,0xc31a2694,0x273e2bc7,0x735002c3,
0x3ef1ed4c,0x8c42e9c5,0x7f4948e8,0x028babf6,0x8a978632,0x6a502f43 },
{ 0xb74536fe,0xf5f13a46,0xd8a9f0eb,0x1d218bab,0x37232768,0x30f36bcc,
0x576e8c18,0xc5317b31,0x9bbcb766,0xef1d57a6,0xb3e3d4dc,0x917c4930 } },
/* 5 */
{ { 0xe349ddd0,0x11426e2e,0x9b2fc250,0x9f117ef9,0xec0174a6,0xff36b480,
0x18458466,0x4f4bde76,0x05806049,0x2f2edb6d,0x19dfca92,0x8adc75d1 },
{ 0xb7d5a7ce,0xa619d097,0xa34411e9,0x874275e5,0x0da4b4ef,0x5403e047,
0x77901d8f,0x2ebaafd9,0xa747170f,0x5e63ebce,0x7f9d8036,0x12a36944 } },
/* 6 */
{ { 0x4fc52870,0x28f9c07a,0x1a53a961,0xce0b3748,0x0e1828d9,0xd550fa18,
0x6adb225a,0xa24abaf7,0x6e58a348,0xd11ed0a5,0x948acb62,0xf3d811e6 },
{ 0x4c61ed22,0x8618dd77,0x80b47c9d,0x0bb747f9,0xde6b8559,0x22bf796f,
0x680a21e9,0xfdfd1c6d,0x2af2c9dd,0xc0db1577,0xc1e90f3d,0xa09379e6 } },
/* 7 */
{ { 0xe085c629,0x386c66ef,0x095bc89a,0x5fc2a461,0x203f4b41,0x1353d631,
0x7e4bd8f5,0x7ca1972b,0xa7df8ce9,0xb077380a,0xee7e4ea3,0xd8a90389 },
{ 0xe7b14461,0x1bc74dc7,0x0c9c4f78,0xdc2cb014,0x84ef0a10,0x52b4b3a6,
0x20327fe2,0xbde6ea5d,0x660f9615,0xb71ec435,0xb8ad8173,0xeede5a04 } },
/* 8 */
{ { 0x893b9a2d,0x5584cbb3,0x00850c5d,0x820c660b,0x7df2d43d,0x4126d826,
0x0109e801,0xdd5bbbf0,0x38172f1c,0x85b92ee3,0xf31430d9,0x609d4f93 },
{ 0xeadaf9d6,0x1e059a07,0x0f125fb0,0x70e6536c,0x560f20e7,0xd6220751,
0x7aaf3a9a,0xa59489ae,0x64bae14e,0x7b70e2f6,0x76d08249,0x0dd03701 } },
/* 9 */
{ { 0x8510521f,0x4cc13be8,0xf724cc17,0x87315ba9,0x353dc263,0xb49d83bb,
0x0c279257,0x8b677efe,0xc93c9537,0x510a1c1c,0xa4702c99,0x33e30cd8 },
{ 0x2208353f,0xf0ffc89d,0xced42b2b,0x0170fa8d,0x26e2a5f5,0x090851ed,
0xecb52c96,0x81276455,0x7fe1adf4,0x0646c4e1,0xb0868eab,0x513f047e } },
/* 10 */
{ { 0xdf5bdf53,0xc07611f4,0x58b11a6d,0x45d331a7,0x1c4ee394,0x58965daf,
0x5a5878d1,0xba8bebe7,0x82dd3025,0xaecc0a18,0xa923eb8b,0xcf2a3899 },
{ 0xd24fd048,0xf98c9281,0x8bbb025d,0x841bfb59,0xc9ab9d53,0xb8ddf8ce,
0x7fef044e,0x538a4cb6,0x23236662,0x092ac21f,0x0b66f065,0xa919d385 } },
/* 11 */
{ { 0x85d480d8,0x3db03b40,0x1b287a7d,0x8cd9f479,0x4a8f3bae,0x8f24dc75,
0x3db41892,0x482eb800,0x9c56e0f5,0x38bf9eb3,0x9a91dc6f,0x8b977320 },
{ 0x7209cfc2,0xa31b05b2,0x05b2db70,0x4c49bf85,0xd619527b,0x56462498,
0x1fac51ba,0x3fe51039,0xab4b8342,0xfb04f55e,0x04c6eabf,0xc07c10dc } },
/* 12 */
{ { 0xdb32f048,0xad22fe4c,0x475ed6df,0x5f23bf91,0xaa66b6cb,0xa50ce0c0,
0xf03405c0,0xdf627a89,0xf95e2d6a,0x3674837d,0xba42e64e,0x081c95b6 },
{ 0xe71d6ceb,0xeba3e036,0x6c6b0271,0xb45bcccf,0x0684701d,0x67b47e63,
0xe712523f,0x60f8f942,0x5cd47adc,0x82423472,0x87649cbb,0x83027d79 } },
/* 13 */
{ { 0x3615b0b8,0xb3929ea6,0xa54dac41,0xb41441fd,0xb5b6a368,0x8995d556,
0x167ef05e,0xa80d4529,0x6d25a27f,0xf6bcb4a1,0x7bd55b68,0x210d6a4c },
{ 0x25351130,0xf3804abb,0x903e37eb,0x1d2df699,0x084c25c8,0x5f201efc,
0xa1c68e91,0x31a28c87,0x563f62a5,0x81dad253,0xd6c415d4,0x5dd6de70 } },
/* 14 */
{ { 0x846612ce,0x29f470fd,0xda18d997,0x986f3eec,0x2f34af86,0x6b84c161,
0x46ddaf8b,0x5ef0a408,0xe49e795f,0x14405a00,0xaa2f7a37,0x5f491b16 },
{ 0xdb41b38d,0xc7f07ae4,0x18fbfcaa,0xef7d119e,0x14443b19,0x3a18e076,
0x79a19926,0x4356841a,0xe2226fbe,0x91f4a91c,0x3cc88721,0xdc77248c } },
/* 15 */
{ { 0xe4b1ec9d,0xd570ff1a,0xe7eef706,0x21d23e0e,0xca19e086,0x3cde40f4,
0xcd4bb270,0x7d6523c4,0xbf13aa6c,0x16c1f06c,0xd14c4b60,0x5aa7245a },
{ 0x44b74de8,0x37f81467,0x620a934e,0x839e7a17,0xde8b1aa1,0xf74d14e8,
0xf30d75e2,0x8789fa51,0xc81c261e,0x09b24052,0x33c565ee,0x654e2678 } },
/* 16 */
{ { 0x2f9fbe67,0x378205de,0x7f728e44,0xc4afcb83,0x682e00f1,0xdbcec06c,
0x114d5423,0xf2a145c3,0x7a52463e,0xa01d9874,0x7d717b0a,0xfc0935b1 },
{ 0xd4d01f95,0x9653bc4f,0x9560ad34,0x9aa83ea8,0xaf8e3f3f,0xf77943dc,
0xe86fe16e,0x70774a10,0xbf9ffdcf,0x6b62e6f1,0x588745c9,0x8a72f39e } },
/* 17 */
{ { 0x2341c342,0x73ade4da,0xea704422,0xdd326e54,0x3741cef3,0x336c7d98,
0x59e61549,0x1eafa00d,0xbd9a3efd,0xcd3ed892,0xc5c6c7e4,0x03faf26c },
{ 0x3045f8ac,0x087e2fcf,0x174f1e73,0x14a65532,0xfe0af9a7,0x2cf84f28,
0x2cdc935b,0xddfd7a84,0x6929c895,0x4c0f117b,0x4c8bcfcc,0x356572d6 } },
/* 18 */
{ { 0x7d8c1bba,0x7ecbac01,0x90b0f3d5,0x6058f9c3,0xf6197d0f,0xaee116e3,
0x4033b128,0xc4dd7068,0xc209b983,0xf084dba6,0x831dbc4a,0x97c7c2cf },
{ 0xf96010e8,0x2f4e61dd,0x529faa17,0xd97e4e20,0x69d37f20,0x4ee66660,
0x3d366d72,0xccc139ed,0x13488e0f,0x690b6ee2,0xf3a6d533,0x7cad1dc5 } },
/* 19 */
{ { 0xda57a41f,0x660a9a81,0xec0039b6,0xe74a0412,0x5e1dad15,0x42343c6b,
0x46681d4c,0x284f3ff5,0x63749e89,0xb51087f1,0x6f9f2f13,0x070f23cc },
{ 0x5d186e14,0x542211da,0xfddb0dff,0x84748f37,0xdb1f4180,0x41a3aab4,
0xa6402d0e,0x25ed667b,0x02f58355,0x2f2924a9,0xfa44a689,0x5844ee7c } },
/* 20 */
{ { 0x3f3b236f,0xfab08607,0x81e221da,0x19e9d41d,0x3927b428,0xf3f6571e,
0x7550f1f6,0x4348a933,0xa85e62f0,0x7167b996,0x7f5452bf,0x62d43759 },
{ 0xf2955926,0xd85feb9e,0x6df78353,0x440a561f,0x9ca36b59,0x389668ec,
0xa22da016,0x052bf1a1,0xf6093254,0xbdfbff72,0xe22209f3,0x94e50f28 } },
/* 21 */
{ { 0x3062e8af,0x90b2e5b3,0xe8a3d369,0xa8572375,0x201db7b1,0x3fe1b00b,
0xee651aa2,0xe926def0,0xb9b10ad7,0x6542c9be,0xa2fcbe74,0x098e309b },
{ 0xfff1d63f,0x779deeb3,0x20bfd374,0x23d0e80a,0x8768f797,0x8452bb3b,
0x1f952856,0xcf75bb4d,0x29ea3faa,0x8fe6b400,0x81373a53,0x12bd3e40 } },
/* 22 */
{ { 0x104cbba5,0xc023780d,0xfa35dd4c,0x6207e747,0x1ca9b6a3,0x35c23928,
0x97987b10,0x4ff19be8,0x8022eee8,0xb8476bbf,0xd3bbe74d,0xaa0a4a14 },
{ 0x187d4543,0x20f94331,0x79f6e066,0x32153870,0xac7e82e1,0x83b0f74e,
0x828f06ab,0xa7748ba2,0xc26ef35f,0xc5f0298a,0x8e9a7dbd,0x0f0c5070 } },
/* 23 */
{ { 0xdef029dd,0x0c5c244c,0x850661b8,0x3dabc687,0xfe11d981,0x9992b865,
0x6274dbad,0xe9801b8f,0x098da242,0xe54e6319,0x91a53d08,0x9929a91a },
{ 0x35285887,0x37bffd72,0xf1418102,0xbc759425,0xfd2e6e20,0x9280cc35,
0xfbc42ee5,0x735c600c,0x8837619a,0xb7ad2864,0xa778c57b,0xa3627231 } },
/* 24 */
{ { 0x91361ed8,0xae799b5c,0x6c63366c,0x47d71b75,0x1b265a6a,0x54cdd521,
0x98d77b74,0xe0215a59,0xbab29db0,0x4424d9b7,0x7fd9e536,0x8b0ffacc },
{ 0x37b5d9ef,0x46d85d12,0xbfa91747,0x5b106d62,0x5f99ba2d,0xed0479f8,
0x1d104de4,0x0e6f3923,0x25e8983f,0x83a84c84,0xf8105a70,0xa9507e0a } },
/* 25 */
{ { 0x14cf381c,0xf6c68a6e,0xc22e31cc,0xaf9d27bd,0xaa8a5ccb,0x23568d4d,
0xe338e4d2,0xe431eec0,0x8f52ad1f,0xf1a828fe,0xe86acd80,0xdb6a0579 },
{ 0x4507832a,0x2885672e,0x887e5289,0x73fc275f,0x05610d08,0x65f80278,
0x075ff5b0,0x8d9b4554,0x09f712b5,0x3a8e8fb1,0x2ebe9cf2,0x39f0ac86 } },
/* 26 */
{ { 0x4c52edf5,0xd8fabf78,0xa589ae53,0xdcd737e5,0xd791ab17,0x94918bf0,
0xbcff06c9,0xb5fbd956,0xdca46d45,0xf6d3032e,0x41a3e486,0x2cdff7e1 },
{ 0x61f47ec8,0x6674b3ba,0xeef84608,0x8a882163,0x4c687f90,0xa257c705,
0xf6cdf227,0xe30cb2ed,0x7f6ea846,0x2c4c64ca,0xcc6bcd3c,0x186fa17c } },
/* 27 */
{ { 0x1dfcb91e,0x48a3f536,0x646d358a,0x83595e13,0x91128798,0xbd15827b,
0x2187757a,0x3ce612b8,0x61bd7372,0x873150a1,0xb662f568,0xf4684530 },
{ 0x401896f6,0x8833950b,0x77f3e090,0xe11cb89a,0x48e7f4a5,0xb2f12cac,
0xf606677e,0x313dd769,0x16579f93,0xfdcf08b3,0x46b8f22b,0x6429cec9 } },
/* 28 */
{ { 0xbb75f9a4,0x4984dd54,0x29d3b570,0x4aef06b9,0x3d6e4c1e,0xb5f84ca2,
0xb083ef35,0x24c61c11,0x392ca9ff,0xce4a7392,0x6730a800,0x865d6517 },
{ 0x722b4a2b,0xca3dfe76,0x7b083e0e,0x12c04bf9,0x1b86b8a5,0x803ce5b5,
0x6a7e3e0c,0x3fc7632d,0xc81adbe4,0xc89970c2,0x120e16b1,0x3cbcd3ad } },
/* 29 */
{ { 0xec30ce93,0xfbfb4cc7,0xb72720a2,0x10ed6c7d,0x47b55500,0xec675bf7,
0x333ff7c3,0x90725903,0x5075bfc0,0xc7c3973e,0x07acf31b,0xb049ecb0 },
{ 0x4f58839c,0xb4076eaf,0xa2b05e4f,0x101896da,0xab40c66e,0x3f6033b0,
0xc8d864ba,0x19ee9eeb,0x47bf6d2a,0xeb6cf155,0xf826477d,0x8e5a9663 } },
/* 30 */
{ { 0xf7fbd5e1,0x69e62fdd,0x76912b1d,0x38ecfe54,0xd1da3bfb,0x845a3d56,
0x1c86f0d4,0x0494950e,0x3bc36ce8,0x83cadbf9,0x4fccc8d1,0x41fce572 },
{ 0x8332c144,0x05f939c2,0x0871e46e,0xb17f248b,0x66e8aff6,0x3d8534e2,
0x3b85c629,0x1d06f1dc,0xa3131b73,0xdb06a32e,0x8b3f64e5,0xf295184d } },
/* 31 */
{ { 0x36ddc103,0xd9653ff7,0x95ef606f,0x25f43e37,0xfe06dce8,0x09e301fc,
0x30b6eebf,0x85af2341,0x0ff56b20,0x79b12b53,0xfe9a3c6b,0x9b4fb499 },
{ 0x51d27ac2,0x0154f892,0x56ca5389,0xd33167e3,0xafc065a6,0x7828ec1f,
0x7f746c9b,0x0959a258,0x0c44f837,0xb18f1be3,0xc4132fdb,0xa7946117 } },
/* 32 */
{ { 0x5e3c647b,0xc0426b77,0x8cf05348,0xbfcbd939,0x172c0d3d,0x31d312e3,
0xee754737,0x5f49fde6,0x6da7ee61,0x895530f0,0xe8b3a5fb,0xcf281b0a },
{ 0x41b8a543,0xfd149735,0x3080dd30,0x41a625a7,0x653908cf,0xe2baae07,
0xba02a278,0xc3d01436,0x7b21b8f8,0xa0d0222e,0xd7ec1297,0xfdc270e9 } },
/* 33 */
{ { 0xbc7f41d6,0x00873c0c,0x1b7ad641,0xd976113e,0x238443fb,0x2a536ff4,
0x41e62e45,0x030d00e2,0x5f545fc6,0x532e9867,0x8e91208c,0xcd033108 },
{ 0x9797612c,0xd1a04c99,0xeea674e2,0xd4393e02,0xe19742a1,0xd56fa69e,
0x85f0590e,0xdd2ab480,0x48a2243d,0xa5cefc52,0x54383f41,0x48cc67b6 } },
/* 34 */
{ { 0xfc14ab48,0x4e50430e,0x26706a74,0x195b7f4f,0xcc881ff6,0x2fe8a228,
0xd945013d,0xb1b968e2,0x4b92162b,0x936aa579,0x364e754a,0x4fb766b7 },
{ 0x31e1ff7f,0x13f93bca,0xce4f2691,0x696eb5ca,0xa2b09e02,0xff754bf8,
0xe58e3ff8,0x58f13c9c,0x1678c0b0,0xb757346f,0xa86692b3,0xd54200db } },
/* 35 */
{ { 0x6dda1265,0x9a030bbd,0xe89718dd,0xf7b4f3fc,0x936065b8,0xa6a4931f,
0x5f72241c,0xbce72d87,0x65775857,0x6cbb51cb,0x4e993675,0xc7161815 },
{ 0x2ee32189,0xe81a0f79,0x277dc0b2,0xef2fab26,0xb71f469f,0x9e64f6fe,
0xdfdaf859,0xb448ce33,0xbe6b5df1,0x3f5c1c4c,0x1de45f7b,0xfb8dfb00 } },
/* 36 */
{ { 0x4d5bb921,0xc7345fa7,0x4d2b667e,0x5c7e04be,0x282d7a3e,0x47ed3a80,
0x7e47b2a4,0x5c2777f8,0x08488e2e,0x89b3b100,0xb2eb5b45,0x9aad77c2 },
{ 0xdaac34ae,0xd681bca7,0x26afb326,0x2452e4e5,0x41a1ee14,0x0c887924,
0xc2407ade,0x743b04d4,0xfc17a2ac,0xcb5e999b,0x4a701a06,0x4dca2f82 } },
/* 37 */
{ { 0x1127bc1a,0x68e31ca6,0x17ead3be,0xa3edd59b,0xe25f5a15,0x67b6b645,
0xa420e15e,0x76221794,0x4b1e872e,0x794fd83b,0xb2dece1b,0x7cab3f03 },
{ 0xca9b3586,0x7119bf15,0x4d250bd7,0xa5545924,0xcc6bcf24,0x173633ea,
0xb1b6f884,0x9bd308c2,0x447d38c3,0x3bae06f5,0xf341fe1c,0x54dcc135 } },
/* 38 */
{ { 0x943caf0d,0x56d3598d,0x225ff133,0xce044ea9,0x563fadea,0x9edf6a7c,
0x73e8dc27,0x632eb944,0x3190dcab,0x814b467e,0x6dbb1e31,0x2d4f4f31 },
{ 0xa143b7ca,0x8d69811c,0xde7cf950,0x4ec1ac32,0x37b5fe82,0x223ab5fd,
0x9390f1d9,0xe82616e4,0x75804610,0xabff4b20,0x875b08f0,0x11b9be15 } },
/* 39 */
{ { 0x3bbe682c,0x4ae31a3d,0x74eef2dd,0xbc7c5d26,0x3c47dd40,0x92afd10a,
0xc14ab9e1,0xec7e0a3b,0xb2e495e4,0x6a6c3dd1,0x309bcd85,0x085ee5e9 },
{ 0x8c2e67fd,0xf381a908,0xe261eaf2,0x32083a80,0x96deee15,0x0fcd6a49,
0x5e524c79,0xe3b8fb03,0x1d5b08b9,0x8dc360d9,0x7f26719f,0x3a06e2c8 } },
/* 40 */
{ { 0x7237cac0,0x5cd9f5a8,0x43586794,0x93f0b59d,0xe94f6c4e,0x4384a764,
0xb62782d3,0x8304ed2b,0xcde06015,0x0b8db8b3,0x5dbe190f,0x4336dd53 },
{ 0x92ab473a,0x57443553,0xbe5ed046,0x031c7275,0x21909aa4,0x3e78678c,
0x99202ddb,0x4ab7e04f,0x6977e635,0x2648d206,0x093198be,0xd427d184 } },
/* 41 */
{ { 0x0f9b5a31,0x822848f5,0xbaadb62a,0xbb003468,0x3357559c,0x233a0472,
0x79aee843,0x49ef6880,0xaeb9e1e3,0xa89867a0,0x1f6f9a55,0xc151931b },
{ 0xad74251e,0xd264eb0b,0x4abf295e,0x37b9b263,0x04960d10,0xb600921b,
0x4da77dc0,0x0de53dbc,0xd2b18697,0x01d9bab3,0xf7156ddf,0xad54ec7a } },
/* 42 */
{ { 0x79efdc58,0x8e74dc35,0x4ff68ddb,0x456bd369,0xd32096a5,0x724e74cc,
0x386783d0,0xe41cff42,0x7c70d8a4,0xa04c7f21,0xe61a19a2,0x41199d2f },
{ 0x29c05dd2,0xd389a3e0,0xe7e3fda9,0x535f2a6b,0x7c2b4df8,0x26ecf72d,
0xfe745294,0x678275f4,0x9d23f519,0x6319c9cc,0x88048fc4,0x1e05a02d } },
/* 43 */
{ { 0xd4d5ffe8,0x75cc8e2e,0xdbea17f2,0xf8bb4896,0xcee3cb4a,0x35059790,
0xa47c6165,0x4c06ee85,0x92935d2f,0xf98fff25,0x32ffd7c7,0x34c4a572 },
{ 0xea0376a2,0xc4b14806,0x4f115e02,0x2ea5e750,0x1e55d7c0,0x532d76e2,
0xf31044da,0x68dc9411,0x71b77993,0x9272e465,0x93a8cfd5,0xadaa38bb } },
/* 44 */
{ { 0x7d4ed72a,0x4bf0c712,0xba1f79a3,0xda0e9264,0xf4c39ea4,0x48c0258b,
0x2a715138,0xa5394ed8,0xbf06c660,0x4af511ce,0xec5c37cd,0xfcebceef },
{ 0x779ae8c1,0xf23b75aa,0xad1e606e,0xdeff59cc,0x22755c82,0xf3f526fd,
0xbb32cefd,0x64c5ab44,0x915bdefd,0xa96e11a2,0x1143813e,0xab19746a } },
/* 45 */
{ { 0xec837d7d,0x43c78585,0xb8ee0ba4,0xca5b6fbc,0xd5dbb5ee,0x34e924d9,
0xbb4f1ca5,0x3f4fa104,0x398640f7,0x15458b72,0xd7f407ea,0x4231faa9 },
{ 0xf96e6896,0x53e0661e,0xd03b0f9d,0x554e4c69,0x9c7858d1,0xd4fcb07b,
0x52cb04fa,0x7e952793,0x8974e7f7,0x5f5f1574,0x6b6d57c8,0x2e3fa558 } },
/* 46 */
{ { 0x6a9951a8,0x42cd4803,0x42792ad0,0xa8b15b88,0xabb29a73,0x18e8bcf9,
0x409933e8,0xbfd9a092,0xefb88dc4,0x760a3594,0x40724458,0x14418863 },
{ 0x99caedc7,0x162a56ee,0x91d101c9,0x8fb12ecd,0x393202da,0xea671967,
0xa4ccd796,0x1aac8c4a,0x1cf185a8,0x7db05036,0x8cfd095a,0x0c9f86cd } },
/* 47 */
{ { 0x10b2a556,0x9a728147,0x327b70b2,0x767ca964,0x5e3799b7,0x04ed9e12,
0x22a3eb2a,0x6781d2dc,0x0d9450ac,0x5bd116eb,0xa7ebe08a,0xeccac1fc },
{ 0xdc2d6e94,0xde68444f,0x35ecf21b,0x3621f429,0x29e03a2c,0x14e2d543,
0x7d3e7f0a,0x53e42cd5,0x73ed00b9,0xbba26c09,0xc57d2272,0x00297c39 } },
/* 48 */
{ { 0xb8243a7d,0x3aaaab10,0x8fa58c5b,0x6eeef93e,0x9ae7f764,0xf866fca3,
0x61ab04d3,0x64105a26,0x03945d66,0xa3578d8a,0x791b848c,0xb08cd3e4 },
{ 0x756d2411,0x45edc5f8,0xa755128c,0xd4a790d9,0x49e5f6a0,0xc2cf0963,
0xf649beaa,0xc66d267d,0x8467039e,0x3ce6d968,0x42f7816f,0x50046c6b } },
/* 49 */
{ { 0x66425043,0x92ae1602,0xf08db890,0x1ff66afd,0x8f162ce5,0x386f5a7f,
0xfcf5598f,0x18d2dea0,0x1a8ca18e,0x78372b3a,0x8cd0e6f7,0xdf0d20eb },
{ 0x75bb4045,0x7edd5e1d,0xb96d94b7,0x252a47ce,0x2c626776,0xbdb29358,
0x40dd1031,0x853c3943,0x7d5f47fd,0x9dc9becf,0xbae4044a,0x27c2302f } },
/* 50 */
{ { 0x8f2d49ce,0x2d1d208a,0x162df0a2,0x0d91aa02,0x09a07f65,0x9c5cce87,
0x84339012,0xdf07238b,0x419442cd,0x5028e2c8,0x72062aba,0x2dcbd358 },
{ 0xe4680967,0xb5fbc3cb,0x9f92d72c,0x2a7bc645,0x116c369d,0x806c76e1,
0x3177e8d8,0x5c50677a,0x4569df57,0x753739eb,0x36c3f40b,0x2d481ef6 } },
/* 51 */
{ { 0xfea1103e,0x1a2d39fd,0x95f81b17,0xeaae5592,0xf59b264a,0xdbd0aa18,
0xcb592ee0,0x90c39c1a,0x9750cca3,0xdf62f80d,0xdf97cc6c,0xda4d8283 },
{ 0x1e201067,0x0a6dd346,0x69fb1f6b,0x1531f859,0x1d60121f,0x4895e552,
0x4c041c91,0x0b21aab0,0xbcc1ccf8,0x9d896c46,0x3141bde7,0xd24da3b3 } },
/* 52 */
{ { 0x53b0a354,0x575a0537,0x0c6ddcd8,0x392ff2f4,0x56157b94,0x0b8e8cff,
0x3b1b80d1,0x073e57bd,0x3fedee15,0x2a75e0f0,0xaa8e6f19,0x752380e4 },
{ 0x6558ffe9,0x1f4e227c,0x19ec5415,0x3a348618,0xf7997085,0xab382d5e,
0xddc46ac2,0x5e6deaff,0xfc8d094c,0xe5144078,0xf60e37c6,0xf674fe51 } },
/* 53 */
{ { 0xaf63408f,0x6fb87ae5,0xcd75a737,0xa39c36a9,0xcf4c618d,0x7833313f,
0xf034c88d,0xfbcd4482,0x39b35288,0x4469a761,0x66b5d9c9,0x77a711c5 },
{ 0x944f8d65,0x4a695dc7,0x161aaba8,0xe6da5f65,0x24601669,0x8654e9c3,
0x28ae7491,0xbc8b93f5,0x8f5580d8,0x5f1d1e83,0xcea32cc8,0x8ccf9a1a } },
/* 54 */
{ { 0x7196fee2,0x28ab110c,0x874c8945,0x75799d63,0x29aedadd,0xa2629348,
0x2be88ff4,0x9714cc7b,0xd58d60d6,0xf71293cf,0x32a564e9,0xda6b6cb3 },
{ 0x3dd821c2,0xf43fddb1,0x90dd323d,0xf2f2785f,0x048489f8,0x91246419,
0xd24c6749,0x61660f26,0xc803c15c,0x961d9e8c,0xfaadc4c9,0x631c6158 } },
/* 55 */
{ { 0xfd752366,0xacf2ebe0,0x139be88b,0xb93c340e,0x0f20179e,0x98f66485,
0xff1da785,0x14820254,0x4f85c16e,0x5278e276,0x7aab1913,0xa246ee45 },
{ 0x53763b33,0x43861eb4,0x45c0bc0d,0xc49f03fc,0xad6b1ea1,0xafff16bc,
0x6fd49c99,0xce33908b,0xf7fde8c3,0x5c51e9bf,0xff142c5e,0x076a7a39 } },
/* 56 */
{ { 0x9e338d10,0x04639dfe,0xf42b411b,0x8ee6996f,0xa875cef2,0x960461d1,
0x95b4d0ba,0x1057b6d6,0xa906e0bc,0x27639252,0xe1c20f8a,0x2c19f09a },
{ 0xeef4c43d,0x5b8fc3f0,0x07a84aa9,0xe2e1b1a8,0x835d2bdb,0x5f455528,
0x207132dd,0x0f4aee4d,0x3907f675,0xe9f8338c,0x0e0531f0,0x7a874dc9 } },
/* 57 */
{ { 0x97c27050,0x84b22d45,0x59e70bf8,0xbd0b8df7,0x79738b9b,0xb4d67405,
0xcd917c4f,0x47f4d5f5,0x13ce6e33,0x9099c4ce,0x521d0f8b,0x942bfd39 },
{ 0xa43b566d,0x5028f0f6,0x21bff7de,0xaf6e8669,0xc44232cd,0x83f6f856,
0xf915069a,0x65680579,0xecfecb85,0xd12095a2,0xdb01ba16,0xcf7f06ae } },
/* 58 */
{ { 0x8ef96c80,0x0f56e3c4,0x3ddb609c,0xd521f2b3,0x7dc1450d,0x2be94102,
0x02a91fe2,0x2d21a071,0x1efa37de,0x2e6f74fa,0x156c28a1,0x9a9a90b8 },
{ 0x9dc7dfcb,0xc54ea9ea,0x2c2c1d62,0xc74e66fc,0x49d3e067,0x9f23f967,
0x54dd38ad,0x1c7c3a46,0x5946cee3,0xc7005884,0x45cc045d,0x89856368 } },
/* 59 */
{ { 0xfce73946,0x29da7cd4,0x23168563,0x8f697db5,0xcba92ec6,0x8e235e9c,
0x9f91d3ea,0x55d4655f,0xaa50a6cd,0xf3689f23,0x21e6a1a0,0xdcf21c26 },
{ 0x61b818bf,0xcffbc82e,0xda47a243,0xc74a2f96,0x8bc1a0cf,0x234e980a,
0x7929cb6d,0xf35fd6b5,0xefe17d6c,0x81468e12,0x58b2dafb,0xddea6ae5 } },
/* 60 */
{ { 0x7e787b2e,0x294de887,0x39a9310d,0x258acc1f,0xac14265d,0x92d9714a,
0x708b48a0,0x18b5591c,0xe1abbf71,0x27cc6bb0,0x568307b9,0xc0581fa3 },
{ 0xf24d4d58,0x9e0f58a3,0xe0ce2327,0xfebe9bb8,0x9d1be702,0x91fd6a41,
0xfacac993,0x9a7d8a45,0x9e50d66d,0xabc0a08c,0x06498201,0x02c342f7 } },
/* 61 */
{ { 0x157bdbc2,0xccd71407,0xad0e1605,0x72fa89c6,0xb92a015f,0xb1d3da2b,
0xa0a3fe56,0x8ad9e7cd,0x24f06737,0x160edcbd,0x61275be6,0x79d4db33 },
{ 0x5f3497c4,0xd3d31fd9,0x04192fb0,0x8cafeaee,0x13a50af3,0xe13ca745,
0x8c85aae5,0x18826167,0x9eb556ff,0xce06cea8,0xbdb549f3,0x2eef1995 } },
/* 62 */
{ { 0x50596edc,0x8ed7d3eb,0x905243a2,0xaa359362,0xa4b6d02b,0xa212c2c2,
0xc4fbec68,0x611fd727,0xb84f733d,0x8a0b8ff7,0x5f0daf0e,0xd85a6b90 },
{ 0xd4091cf7,0x60e899f5,0x2eff2768,0x4fef2b67,0x10c33964,0xc1f195cb,
0x93626a8f,0x8275d369,0x0d6c840a,0xc77904f4,0x7a868acd,0x88d8b7fd } },
/* 63 */
{ { 0x7bd98425,0x85f23723,0xc70b154e,0xd4463992,0x96687a2e,0xcbb00ee2,
0xc83214fd,0x905fdbf7,0x13593684,0x2019d293,0xef51218e,0x0428c393 },
{ 0x981e909a,0x40c7623f,0x7be192da,0x92513385,0x4010907e,0x48fe480f,
0x3120b459,0xdd7a187c,0xa1fd8f3c,0xc9d7702d,0xe358efc5,0x66e4753b } },
/* 64 */
{ { 0x16973cf4,0x070d34e1,0x7e4f34f7,0x20aee08b,0x5eb8ad29,0x269af9b9,
0xa6a45dda,0xdde0a036,0x63df41e0,0xa18b528e,0xa260df2a,0x03cc71b2 },
{ 0xa06b1dd7,0x24a6770a,0x9d2675d3,0x5bfa9c11,0x96844432,0x73c1e2a1,
0x131a6cf0,0x3660558d,0x2ee79454,0xb0289c83,0xc6d8ddcd,0xa6aefb01 } },
/* 65 */
{ { 0x01ab5245,0xba1464b4,0xc48d93ff,0x9b8d0b6d,0x93ad272c,0x939867dc,
0xae9fdc77,0xbebe085e,0x894ea8bd,0x73ae5103,0x39ac22e1,0x740fc89a },
{ 0x28e23b23,0x5e28b0a3,0xe13104d0,0x2352722e,0xb0a2640d,0xf4667a18,
0x49bb37c3,0xac74a72e,0xe81e183a,0x79f734f0,0x3fd9c0eb,0xbffe5b6c } },
/* 66 */
{ { 0xc6a2123f,0xb1a358f5,0xfe28df6d,0x927b2d95,0xf199d2f9,0x89702753,
0x1a3f82dc,0x0a73754c,0x777affe1,0x063d029d,0xdae6d34d,0x5439817e },
{ 0x6b8b83c4,0xf7979eef,0x9d945682,0x615cb214,0xc5e57eae,0x8f0e4fac,
0x113047dd,0x042b89b8,0x93f36508,0x888356dc,0x5fd1f32f,0xbf008d18 } },
/* 67 */
{ { 0x4e8068db,0x8012aa24,0xa5729a47,0xc72cc641,0x43f0691d,0x3c33df2c,
0x1d92145f,0xfa057347,0xb97f7946,0xaefc0f2f,0x2f8121bf,0x813d75cb },
{ 0x4383bba6,0x05613c72,0xa4224b3f,0xa924ce70,0x5f2179a6,0xe59cecbe,
0x79f62b61,0x78e2e8aa,0x53ad8079,0x3ac2cc3b,0xd8f4fa96,0x55518d71 } },
/* 68 */
{ { 0x00623f3b,0x03cf2922,0x5f29ebff,0x095c7111,0x80aa6823,0x42d72247,
0x7458c0b0,0x044c7ba1,0x0959ec20,0xca62f7ef,0xf8ca929f,0x40ae2ab7 },
{ 0xa927b102,0xb8c5377a,0xdc031771,0x398a86a0,0xc216a406,0x04908f9d,
0x918d3300,0xb423a73a,0xe0b94739,0x634b0ff1,0x2d69f697,0xe29de725 } },
/* 69 */
{ { 0x8435af04,0x744d1400,0xfec192da,0x5f255b1d,0x336dc542,0x1f17dc12,
0x636a68a8,0x5c90c2a7,0x7704ca1e,0x960c9eb7,0x6fb3d65a,0x9de8cf1e },
{ 0x511d3d06,0xc60fee0d,0xf9eb52c7,0x466e2313,0x206b0914,0x743c0f5f,
0x2191aa4d,0x42f55bac,0xffebdbc2,0xcefc7c8f,0xe6e8ed1c,0xd4fa6081 } },
/* 70 */
{ { 0xb0ab9645,0xb5e405d3,0xd5f1f711,0xaeec7f98,0x585c2a6e,0x8ad42311,
0x512c6944,0x045acb9e,0xa90db1c6,0xae106c4e,0x898e6563,0xb89f33d5 },
{ 0x7fed2ce4,0x43b07cd9,0xdd815b20,0xf9934e17,0x0a81a349,0x6778d4d5,
0x52918061,0x9e616ade,0xd7e67112,0xfa06db06,0x88488091,0x1da23cf1 } },
/* 71 */
{ { 0x42f2c4b5,0x821c46b3,0x66059e47,0x931513ef,0x66f50cd1,0x7030ae43,
0x43e7b127,0x43b536c9,0x5fca5360,0x006258cf,0x6b557abf,0xe4e3ee79 },
{ 0x24c8b22f,0xbb6b3900,0xfcbf1054,0x2eb5e2c1,0x567492af,0x937b18c9,
0xacf53957,0xf09432e4,0x1dbf3a56,0x585f5a9d,0xbe0887cf,0xf86751fd } },
/* 72 */
{ { 0x9d10e0b2,0x157399cb,0x60dc51b7,0x1c0d5956,0x1f583090,0x1d496b8a,
0x88590484,0x6658bc26,0x03213f28,0x88c08ab7,0x7ae58de4,0x8d2e0f73 },
{ 0x486cfee6,0x9b79bc95,0xe9e5bc57,0x036a26c7,0xcd8ae97a,0x1ad03601,
0xff3a0494,0x06907f87,0x2c7eb584,0x078f4bbf,0x7e8d0a5a,0xe3731bf5 } },
/* 73 */
{ { 0xe1cd0abe,0x72f2282b,0x87efefa2,0xd4f9015e,0x6c3834bd,0x9d189806,
0xb8a29ced,0x9c8cdcc1,0xfee82ebc,0x0601b9f4,0x7206a756,0x371052bc },
{ 0x46f32562,0x76fa1092,0x17351bb4,0xdaad534c,0xb3636bb5,0xc3d64c37,
0x45d54e00,0x038a8c51,0x32c09e7c,0x301e6180,0x95735151,0x9764eae7 } },
/* 74 */
{ { 0xcbd5256a,0x8791b19f,0x6ca13a3b,0x4007e0f2,0x4cf06904,0x03b79460,
0xb6c17589,0xb18a9c22,0x81d45908,0xa1cb7d7d,0x21bb68f1,0x6e13fa9d },
{ 0xa71e6e16,0x47183c62,0xe18749ed,0x5cf0ef8e,0x2e5ed409,0x2c9c7f9b,
0xe6e117e1,0x042eeacc,0x13fb5a7f,0xb86d4816,0xc9e5feb1,0xea1cf0ed } },
/* 75 */
{ { 0xcea4cc9b,0x6e6573c9,0xafcec8f3,0x5417961d,0xa438b6f6,0x804bf02a,
0xdcd4ea88,0xb894b03c,0x3799571f,0xd0f807e9,0x862156e8,0x3466a7f5 },
{ 0x56515664,0x51e59acd,0xa3c5eb0b,0x55b0f93c,0x6a4279db,0x84a06b02,
0xc5fae08e,0x5c850579,0xa663a1a2,0xcf07b8db,0xf46ffc8d,0x49a36bbc } },
/* 76 */
{ { 0x46d93106,0xe47f5acc,0xaa897c9c,0x65b7ade0,0x12d7e4be,0x37cf4c94,
0xd4b2caa9,0xa2ae9b80,0xe60357a3,0x5e7ce09c,0xc8ecd5f9,0x29f77667 },
{ 0xa8a0b1c5,0xdf6868f5,0x62978ad8,0x240858cf,0xdc0002a1,0x0f7ac101,
0xffe9aa05,0x1d28a9d7,0x5b962c97,0x744984d6,0x3d28c8b2,0xa8a7c00b } },
/* 77 */
{ { 0xae11a338,0x7c58a852,0xd1af96e7,0xa78613f1,0x5355cc73,0x7e9767d2,
0x792a2de6,0x6ba37009,0x124386b2,0x7d60f618,0x11157674,0xab09b531 },
{ 0x98eb9dd0,0x95a04841,0x15070328,0xe6c17acc,0x489c6e49,0xafc6da45,
0xbb211530,0xab45a60a,0x7d7ea933,0xc58d6592,0x095642c6,0xa3ef3c65 } },
/* 78 */
{ { 0xdf010879,0x89d420e9,0x39576179,0x9d25255d,0xe39513b6,0x9cdefd50,
0xd5d1c313,0xe4efe45b,0x3f7af771,0xc0149de7,0x340ab06b,0x55a6b4f4 },
{ 0xebeaf771,0xf1325251,0x878d4288,0x2ab44128,0x18e05afe,0xfcd5832e,
0xcc1fb62b,0xef52a348,0xc1c4792a,0x2bd08274,0x877c6dc7,0x345c5846 } },
/* 79 */
{ { 0xbea65e90,0xde15ceb0,0x2416d99c,0x0987f72b,0xfd863dec,0x44db578d,
0xac6a3578,0xf617b74b,0xdb48e999,0x9e62bd7a,0xeab1a1be,0x877cae61 },
{ 0x3a358610,0x23adddaa,0x325e2b07,0x2fc4d6d1,0x1585754e,0x897198f5,
0xb392b584,0xf741852c,0xb55f7de1,0x9927804c,0x1aa8efae,0xe9e6c4ed } },
/* 80 */
{ { 0x98683186,0x867db639,0xddcc4ea9,0xfb5cf424,0xd4f0e7bd,0xcc9a7ffe,
0x7a779f7e,0x7c57f71c,0xd6b25ef2,0x90774079,0xb4081680,0x90eae903 },
{ 0x0ee1fceb,0xdf2aae5e,0xe86c1a1f,0x3ff1da24,0xca193edf,0x80f587d6,
0xdc9b9d6a,0xa5695523,0x85920303,0x7b840900,0xba6dbdef,0x1efa4dfc } },
/* 81 */
{ { 0xe0540015,0xfbd838f9,0xc39077dc,0x2c323946,0xad619124,0x8b1fb9e6,
0x0ca62ea8,0x9612440c,0x2dbe00ff,0x9ad9b52c,0xae197643,0xf52abaa1 },
{ 0x2cac32ad,0xd0e89894,0x62a98f91,0xdfb79e42,0x276f55cb,0x65452ecf,
0x7ad23e12,0xdb1ac0d2,0xde4986f0,0xf68c5f6a,0x82ce327d,0x389ac37b } },
/* 82 */
{ { 0xf8e60f5b,0x511188b4,0x48aa2ada,0x7fe67015,0x381abca2,0xdb333cb8,
0xdaf3fc97,0xb15e6d9d,0x36aabc03,0x4b24f6eb,0x72a748b4,0xc59789df },
{ 0x29cf5279,0x26fcb8a5,0x01ad9a6c,0x7a3c6bfc,0x4b8bac9b,0x866cf88d,
0x9c80d041,0xf4c89989,0x70add148,0xf0a04241,0x45d81a41,0x5a02f479 } },
/* 83 */
{ { 0xc1c90202,0xfa5c877c,0xf8ac7570,0xd099d440,0xd17881f7,0x428a5b1b,
0x5b2501d7,0x61e267db,0xf2e4465b,0xf889bf04,0x76aa4cb8,0x4da3ae08 },
{ 0xe3e66861,0x3ef0fe26,0x3318b86d,0x5e772953,0x747396df,0xc3c35fbc,
0x439ffd37,0x5115a29c,0xb2d70374,0xbfc4bd97,0x56246b9d,0x088630ea } },
/* 84 */
{ { 0xb8a9e8c9,0xcd96866d,0x5bb8091e,0xa11963b8,0x045b3cd2,0xc7f90d53,
0x80f36504,0x755a72b5,0x21d3751c,0x46f8b399,0x53c193de,0x4bffdc91 },
{ 0xb89554e7,0xcd15c049,0xf7a26be6,0x353c6754,0xbd41d970,0x79602370,
0x12b176c0,0xde16470b,0x40c8809d,0x56ba1175,0xe435fb1e,0xe2db35c3 } },
/* 85 */
{ { 0x6328e33f,0xd71e4aab,0xaf8136d1,0x5486782b,0x86d57231,0x07a4995f,
0x1651a968,0xf1f0a5bd,0x76803b6d,0xa5dc5b24,0x42dda935,0x5c587cbc },
{ 0xbae8b4c0,0x2b6cdb32,0xb1331138,0x66d1598b,0x5d7e9614,0x4a23b2d2,
0x74a8c05d,0x93e402a6,0xda7ce82e,0x45ac94e6,0xe463d465,0xeb9f8281 } },
/* 86 */
{ { 0xfecf5b9b,0x34e0f9d1,0xf206966a,0xa115b12b,0x1eaa0534,0x5591cf3b,
0xfb1558f9,0x5f0293cb,0x1bc703a5,0x1c8507a4,0x862c1f81,0x92e6b81c },
{ 0xcdaf24e3,0xcc9ebc66,0x72fcfc70,0x68917ecd,0x8157ba48,0x6dc9a930,
0xb06ab2b2,0x5d425c08,0x36e929c4,0x362f8ce7,0x62e89324,0x09f6f57c } },
/* 87 */
{ { 0xd29375fb,0x1c7d6b78,0xe35d1157,0xfabd851e,0x4243ea47,0xf6f62dcd,
0x8fe30b0f,0x1dd92460,0xffc6e709,0x08166dfa,0x0881e6a7,0xc6c4c693 },
{ 0xd6a53fb0,0x20368f87,0x9eb4d1f9,0x38718e9f,0xafd7e790,0x03f08acd,
0x72fe2a1c,0x0835eb44,0x88076e5d,0x7e050903,0xa638e731,0x538f765e } },
/* 88 */
{ { 0xc2663b4b,0x0e0249d9,0x47cd38dd,0xe700ab5b,0x2c46559f,0xb192559d,
0x4bcde66d,0x8f9f74a8,0x3e2aced5,0xad161523,0x3dd03a5b,0xc155c047 },
{ 0x3be454eb,0x346a8799,0x83b7dccd,0x66ee94db,0xab9d2abe,0x1f6d8378,
0x7733f355,0x4a396dd2,0xf53553c2,0x419bd40a,0x731dd943,0xd0ead98d } },
/* 89 */
{ { 0xec142408,0x908e0b0e,0x4114b310,0x98943cb9,0x1742b1d7,0x03dbf7d8,
0x693412f4,0xd270df6b,0x8f69e20c,0xc5065494,0x697e43a1,0xa76a90c3 },
{ 0x4624825a,0xe0fa3384,0x8acc34c2,0x82e48c0b,0xe9a14f2b,0x7b24bd14,
0x4db30803,0x4f5dd5e2,0x932da0a3,0x0c77a9e7,0x74c653dc,0x20db90f2 } },
/* 90 */
{ { 0x0e6c5fd9,0x261179b7,0x6c982eea,0xf8bec123,0xd4957b7e,0x47683338,
0x0a72f66a,0xcc47e664,0x1bad9350,0xbd54bf6a,0xf454e95a,0xdfbf4c6a },
{ 0x6907f4fa,0x3f7a7afa,0x865ca735,0x7311fae0,0x2a496ada,0x24737ab8,
0x15feb79b,0x13e425f1,0xa1b93c21,0xe9e97c50,0x4ddd3eb5,0xb26b6eac } },
/* 91 */
{ { 0x2a2e5f2b,0x81cab9f5,0xbf385ac4,0xf93caf29,0xc909963a,0xf4bf35c3,
0x74c9143c,0x081e7300,0xc281b4c5,0x3ea57fa8,0x9b340741,0xe497905c },
{ 0x55ab3cfb,0xf556dd8a,0x518db6ad,0xd444b96b,0x5ef4b955,0x34f5425a,
0xecd26aa3,0xdda7a3ac,0xda655e97,0xb57da11b,0xc2024c70,0x02da3eff } },
/* 92 */
{ { 0x6481d0d9,0xe24b0036,0x818fdfe2,0x3740dbe5,0x190fda00,0xc1fc1f45,
0x3cf27fde,0x329c9280,0x6934f43e,0x7435cb53,0x7884e8fe,0x2b505a5d },
{ 0x711adcc9,0x6cfcc6a6,0x531e21e1,0xf034325c,0x9b2a8a99,0xa2f4a967,
0x3c21bdff,0x9d5f3842,0x31b57d66,0xb25c7811,0x0b8093b9,0xdb5344d8 } },
/* 93 */
{ { 0xae50a2f5,0x0d72e667,0xe4a861d1,0x9b7f8d8a,0x330df1cb,0xa129f70f,
0xe04fefc3,0xe90aa5d7,0xe72c3ae1,0xff561ecb,0xcdb955fa,0x0d8fb428 },
{ 0xd7663784,0xd2235f73,0x7e2c456a,0xc05baec6,0x2adbfccc,0xe5c292e4,
0xefb110d5,0x4fd17988,0xd19d49f3,0x27e57734,0x84f679fe,0x188ac4ce } },
/* 94 */
{ { 0xa796c53e,0x7ee344cf,0x0868009b,0xbbf6074d,0x474a1295,0x1f1594f7,
0xac11632d,0x66776edc,0x04e2fa5a,0x1862278b,0xc854a89a,0x52665cf2 },
{ 0x8104ab58,0x7e376464,0x7204fd6d,0x16775913,0x44ea1199,0x86ca06a5,
0x1c9240dd,0xaa3f765b,0x24746149,0x5f8501a9,0xdcd251d7,0x7b982e30 } },
/* 95 */
{ { 0xc15f3060,0xe44e9efc,0xa87ebbe6,0x5ad62f2e,0xc79500d4,0x36499d41,
0x336fa9d1,0xa66d6dc0,0x5afd3b1f,0xf8afc495,0xe5c9822b,0x1d8ccb24 },
{ 0x79d7584b,0x4031422b,0xea3f20dd,0xc54a0580,0x958468c5,0x3f837c8f,
0xfbea7735,0x3d82f110,0x7dffe2fc,0x679a8778,0x20704803,0x48eba63b } },
/* 96 */
{ { 0xdf46e2f6,0x89b10d41,0x19514367,0x13ab57f8,0x1d469c87,0x067372b9,
0x4f6c5798,0x0c195afa,0x272c9acf,0xea43a12a,0x678abdac,0x9dadd8cb },
{ 0xe182579a,0xcce56c6b,0x2d26c2d8,0x86febadb,0x2a44745c,0x1c668ee1,
0x98dc047a,0x580acd86,0x51b9ec2d,0x5a2b79cc,0x4054f6a0,0x007da608 } },
/* 97 */
{ { 0x17b00dd0,0x9e3ca352,0x0e81a7a6,0x046779cb,0xd482d871,0xb999fef3,
0xd9233fbc,0xe6f38134,0xf48cd0e0,0x112c3001,0x3c6c66ae,0x934e7576 },
{ 0xd73234dc,0xb44d4fc3,0x864eafc1,0xfcae2062,0x26bef21a,0x843afe25,
0xf3b75fdf,0x61355107,0x794c2e6b,0x8367a5aa,0x8548a372,0x3d2629b1 } },
/* 98 */
{ { 0x437cfaf8,0x6230618f,0x2032c299,0x5b8742cb,0x2293643a,0x949f7247,
0x09464f79,0xb8040f1a,0x4f254143,0x049462d2,0x366c7e76,0xabd6b522 },
{ 0xd5338f55,0x119b392b,0x01495a0c,0x1a80a9ce,0xf8d7537e,0xf3118ca7,
0x6bf4b762,0xb715adc2,0xa8482b6c,0x24506165,0x96a7c84d,0xd958d7c6 } },
/* 99 */
{ { 0xbdc21f31,0x9ad8aa87,0x8063e58c,0xadb3cab4,0xb07dd7b8,0xefd86283,
0x1be7c6b4,0xc7b9b762,0x015582de,0x2ef58741,0x299addf3,0xc970c52e },
{ 0x22f24d66,0x78f02e2a,0x74cc100a,0xefec1d10,0x09316e1a,0xaf2a6a39,
0x5849dd49,0xce7c2205,0x96bffc4c,0x9c1fe75c,0x7ba06ec0,0xcad98fd2 } },
/* 100 */
{ { 0xb648b73e,0xed76e2d0,0x1cfd285e,0xa9f92ce5,0x2ed13de1,0xa8c86c06,
0xa5191a93,0x1d3a574e,0x1ad1b8bf,0x385cdf8b,0x47d2cfe3,0xbbecc28a },
{ 0x69cec548,0x98d326c0,0xf240a0b2,0x4f5bc1dd,0x29057236,0x241a7062,
0xc68294a4,0x0fc6e9c5,0xa319f17a,0x4d04838b,0x9ffc1c6f,0x8b612cf1 } },
/* 101 */
{ { 0x4c3830eb,0x9bb0b501,0x8ee0d0c5,0x3d08f83c,0x79ba9389,0xa4a62642,
0x9cbc2914,0x5d5d4044,0x074c46f0,0xae9eb83e,0x74ead7d6,0x63bb758f },
{ 0xc6bb29e0,0x1c40d2ea,0x4b02f41e,0x95aa2d87,0x53cb199a,0x92989175,
0x51584f6d,0xdd91bafe,0x31a1aaec,0x3715efb9,0x46780f9e,0xc1b6ae5b } },
/* 102 */
{ { 0x42772f41,0xcded3e4b,0x3bcb79d1,0x3a700d5d,0x80feee60,0x4430d50e,
0xf5e5d4bb,0x444ef1fc,0xe6e358ff,0xc660194f,0x6a91b43c,0xe68a2f32 },
{ 0x977fe4d2,0x5842775c,0x7e2a41eb,0x78fdef5c,0xff8df00e,0x5f3bec02,
0x5852525d,0xf4b840cd,0x4e6988bd,0x0870483a,0xcc64b837,0x39499e39 } },
/* 103 */
{ { 0xb08df5fe,0xfc05de80,0x63ba0362,0x0c12957c,0xd5cf1428,0xea379414,
0x54ef6216,0xc559132a,0xb9e65cf8,0x33d5f12f,0x1695d663,0x09c60278 },
{ 0x61f7a2fb,0x3ac1ced4,0xd4f5eeb8,0xdd838444,0x8318fcad,0x82a38c6c,
0xe9f1a864,0x315be2e5,0x442daf47,0x317b5771,0x95aa5f9e,0x81b5904a } },
/* 104 */
{ { 0x8b21d232,0x6b6b1c50,0x8c2cba75,0x87f3dbc0,0xae9f0faf,0xa7e74b46,
0xbb7b8079,0x036a0985,0x8d974a25,0x4f185b90,0xd9af5ec9,0x5aa7cef0 },
{ 0x57dcfffc,0xe0566a70,0xb8453225,0x6ea311da,0x23368aa9,0x72ea1a8d,
0x48cd552d,0xed9b2083,0xc80ea435,0xb987967c,0x6c104173,0xad735c75 } },
/* 105 */
{ { 0xcee76ef4,0xaea85ab3,0xaf1d2b93,0x44997444,0xeacb923f,0x0851929b,
0x51e3bc0c,0xb080b590,0x59be68a2,0xc4ee1d86,0x64b26cda,0xf00de219 },
{ 0xf2e90d4d,0x8d7fb5c0,0x77d9ec64,0x00e219a7,0x5d1c491c,0xc4e6febd,
0x1a8f4585,0x080e3754,0x48d2af9c,0x4a9b86c8,0xb6679851,0x2ed70db6 } },
/* 106 */
{ { 0x586f25cb,0xaee44116,0xa0fcf70f,0xf7b6861f,0x18a350e8,0x55d2cd20,
0x92dc286f,0x861bf3e5,0x6226aba7,0x9ab18ffa,0xa9857b03,0xd15827be },
{ 0x92e6acef,0x26c1f547,0xac1fbac3,0x422c63c8,0xfcbfd71d,0xa2d8760d,
0xb2511224,0x35f6a539,0x048d1a21,0xbaa88fa1,0xebf999db,0x49f1abe9 } },
/* 107 */
{ { 0xf7492b73,0x16f9f4f4,0xcb392b1a,0xcf28ec1e,0x69ca6ffc,0x45b130d4,
0xb72efa58,0x28ba8d40,0x5ca066f5,0xace987c7,0x4ad022eb,0x3e399246 },
{ 0x752555bb,0x63a2d84e,0x9c2ae394,0xaaa93b4a,0xc89539ca,0xcd80424e,
0xaa119a99,0x6d6b5a6d,0x379f2629,0xbd50334c,0xef3cc7d3,0x899e925e } },
/* 108 */
{ { 0xbf825dc4,0xb7ff3651,0x40b9c462,0x0f741cc4,0x5cc4fb5b,0x771ff5a9,
0x47fd56fe,0xcb9e9c9b,0x5626c0d3,0xbdf053db,0xf7e14098,0xa97ce675 },
{ 0x6c934f5e,0x68afe5a3,0xccefc46f,0x6cd5e148,0xd7a88586,0xc7758570,
0xdd558d40,0x49978f5e,0x64ae00c1,0xa1d5088a,0xf1d65bb2,0x58f2a720 } },
/* 109 */
{ { 0x3e4daedb,0x66fdda4a,0x65d1b052,0x38318c12,0x4c4bbf5c,0x28d910a2,
0x78a9cd14,0x762fe5c4,0xd2cc0aee,0x08e5ebaa,0xca0c654c,0xd2cdf257 },
{ 0x08b717d2,0x48f7c58b,0x386cd07a,0x3807184a,0xae7d0112,0x3240f626,
0xc43917b0,0x03e9361b,0x20aea018,0xf261a876,0x7e1e6372,0x53f556a4 } },
/* 110 */
{ { 0x2f512a90,0xc84cee56,0x1b0ea9f1,0x24b3c004,0xe26cc1ea,0x0ee15d2d,
0xf0c9ef7d,0xd848762c,0xd5341435,0x1026e9c5,0xfdb16b31,0x8f5b73dc },
{ 0xd2c75d95,0x1f69bef2,0xbe064dda,0x8d33d581,0x57ed35e6,0x8c024c12,
0xc309c281,0xf8d435f9,0xd6960193,0xfd295061,0xe9e49541,0x66618d78 } },
/* 111 */
{ { 0x8ce382de,0x571cfd45,0xde900dde,0x175806ee,0x34aba3b5,0x61849965,
0xde7aec95,0xe899778a,0xff4aa97f,0xe8f00f6e,0x010b0c6d,0xae971cb5 },
{ 0x3af788f1,0x1827eebc,0xe413fe2d,0xd46229ff,0x4741c9b4,0x8a15455b,
0xf8e424eb,0x5f02e690,0xdae87712,0x40a1202e,0x64944f6d,0x49b3bda2 } },
/* 112 */
{ { 0x035b2d69,0xd63c6067,0x6bed91b0,0xb507150d,0x7afb39b2,0x1f35f82f,
0x16012b66,0xb9bd9c01,0xed0a5f50,0x00d97960,0x2716f7c9,0xed705451 },
{ 0x127abdb4,0x1576eff4,0xf01e701c,0x6850d698,0x3fc87e2f,0x9fa7d749,
0xb0ce3e48,0x0b6bcc6f,0xf7d8c1c0,0xf4fbe1f5,0x02719cc6,0xcf75230e } },
/* 113 */
{ { 0x722d94ed,0x6761d6c2,0x3718820e,0xd1ec3f21,0x25d0e7c6,0x65a40b70,
0xbaf3cf31,0xd67f830e,0xb93ea430,0x633b3807,0x0bc96c69,0x17faa0ea },
{ 0xdf866b98,0xe6bf3482,0xa9db52d4,0x205c1ee9,0xff9ab869,0x51ef9bbd,
0x75eeb985,0x3863dad1,0xd3cf442a,0xef216c3b,0xf9c8e321,0x3fb228e3 } },
/* 114 */
{ { 0x0760ac07,0x94f9b70c,0x9d79bf4d,0xf3c9ccae,0xc5ffc83d,0x73cea084,
0xdc49c38e,0xef50f943,0xbc9e7330,0xf467a2ae,0x44ea7fba,0x5ee534b6 },
{ 0x03609e7f,0x20cb6272,0x62fdc9f0,0x09844355,0x0f1457f7,0xaf5c8e58,
0xb4b25941,0xd1f50a6c,0x2ec82395,0x77cb247c,0xda3dca33,0xa5f3e1e5 } },
/* 115 */
{ { 0x7d85fa94,0x023489d6,0x2db9ce47,0x0ba40537,0xaed7aad1,0x0fdf7a1f,
0x9a4ccb40,0xa57b0d73,0x5b18967c,0x48fcec99,0xb7274d24,0xf30b5b6e },
{ 0xc81c5338,0x7ccb4773,0xa3ed6bd0,0xb85639e6,0x1d56eada,0x7d9df95f,
0x0a1607ad,0xe256d57f,0x957574d6,0x6da7ffdc,0x01c7a8c4,0x65f84046 } },
/* 116 */
{ { 0xcba1e7f1,0x8d45d0cb,0x02b55f64,0xef0a08c0,0x17e19892,0x771ca31b,
0x4885907e,0xe1843ecb,0x364ce16a,0x67797ebc,0x8df4b338,0x816d2b2d },
{ 0x39aa8671,0xe870b0e5,0xc102b5f5,0x9f0db3e4,0x1720c697,0x34296659,
0x613c0d2a,0x0ad4c89e,0x418ddd61,0x1af900b2,0xd336e20e,0xe087ca72 } },
/* 117 */
{ { 0xaba10079,0x222831ff,0x6d64fff2,0x0dc5f87b,0x3e8cb330,0x44547907,
0x702a33fb,0xe815aaa2,0x5fba3215,0x338d6b2e,0x79f549c8,0x0f7535cb },
{ 0x2ee95923,0x471ecd97,0xc6d1c09f,0x1e868b37,0xc666ef4e,0x2bc7b8ec,
0x808a4bfc,0xf5416589,0x3fbc4d2e,0xf23e9ee2,0x2d75125b,0x4357236c } },
/* 118 */
{ { 0xba9cdb1b,0xfe176d95,0x2f82791e,0x45a1ca01,0x4de4cca2,0x97654af2,
0x5cc4bcb9,0xbdbf9d0e,0xad97ac0a,0xf6a7df50,0x61359fd6,0xc52112b0 },
{ 0x4f05eae3,0x696d9ce3,0xe943ac2b,0x903adc02,0x0848be17,0xa9075347,
0x2a3973e5,0x1e20f170,0x6feb67e9,0xe1aacc1c,0xe16bc6b9,0x2ca0ac32 } },
/* 119 */
{ { 0xef871eb5,0xffea12e4,0xa8bf0a7a,0x94c2f25d,0x78134eaa,0x4d1e4c2a,
0x0360fb10,0x11ed16fb,0x85fc11be,0x4029b6db,0xf4d390fa,0x5e9f7ab7 },
{ 0x30646612,0x5076d72f,0xdda1d0d8,0xa0afed1d,0x85a1d103,0x29022257,
0x4e276bcd,0xcb499e17,0x51246c3d,0x16d1da71,0x589a0443,0xc72d56d3 } },
/* 120 */
{ { 0xdae5bb45,0xdf5ffc74,0x261bd6dc,0x99068c4a,0xaa98ec7b,0xdc0afa7a,
0xf121e96d,0xedd2ee00,0x1414045c,0x163cc7be,0x335af50e,0xb0b1bbce },
{ 0x01a06293,0xd440d785,0x6552e644,0xcdebab7c,0x8c757e46,0x48cb8dbc,
0x3cabe3cb,0x81f9cf78,0xb123f59a,0xddd02611,0xeeb3784d,0x3dc7b88e } },
/* 121 */
{ { 0xc4741456,0xe1b8d398,0x6032a121,0xa9dfa902,0x1263245b,0x1cbfc86d,
0x5244718c,0xf411c762,0x05b0fc54,0x96521d54,0xdbaa4985,0x1afab46e },
{ 0x8674b4ad,0xa75902ba,0x5ad87d12,0x486b43ad,0x36e0d099,0x72b1c736,
0xbb6cd6d6,0x39890e07,0x59bace4e,0x8128999c,0x7b535e33,0xd8da430b } },
/* 122 */
{ { 0xc6b75791,0x39f65642,0x21806bfb,0x050947a6,0x1362ef84,0x0ca3e370,
0x8c3d2391,0x9bc60aed,0x732e1ddc,0x9b488671,0xa98ee077,0x12d10d9e },
{ 0x3651b7dc,0xb6f2822d,0x80abd138,0x6345a5ba,0x472d3c84,0x62033262,
0xacc57527,0xd54a1d40,0x424447cb,0x6ea46b3a,0x2fb1a496,0x5bc41057 } },
/* 123 */
{ { 0xa751cd0e,0xe70c57a3,0xeba3c7d6,0x190d8419,0x9d47d55a,0xb1c3bee7,
0xf912c6d8,0xda941266,0x407a6ad6,0x12e9aacc,0x6e838911,0xd6ce5f11 },
{ 0x70e1f2ce,0x063ca97b,0x8213d434,0xa3e47c72,0x84df810a,0xa016e241,
0xdfd881a4,0x688ad7b0,0xa89bf0ad,0xa37d99fc,0xa23c2d23,0xd8e3f339 } },
/* 124 */
{ { 0x750bed6f,0xbdf53163,0x83e68b0a,0x808abc32,0x5bb08a33,0x85a36627,
0x6b0e4abe,0xf72a3a0f,0xfaf0c6ad,0xf7716d19,0x5379b25f,0x22dcc020 },
{ 0xf9a56e11,0x7400bf8d,0x56a47f21,0x6cb8bad7,0x7a6eb644,0x7c97176f,
0xd1f5b646,0xe8fd84f7,0x44ddb054,0x98320a94,0x1dde86f5,0x07071ba3 } },
/* 125 */
{ { 0x98f8fcb9,0x6fdfa0e5,0x94d0d70c,0x89cec8e0,0x106d20a8,0xa0899397,
0xba8acc9c,0x915bfb9a,0x5507e01c,0x1370c94b,0x8a821ffb,0x83246a60 },
{ 0xbe3c378f,0xa8273a9f,0x35a25be9,0x7e544789,0x4dd929d7,0x6cfa4972,
0x365bd878,0x987fed9d,0x5c29a7ae,0x4982ac94,0x5ddd7ec5,0x4589a5d7 } },
/* 126 */
{ { 0xa95540a9,0x9fabb174,0x0162c5b0,0x7cfb886f,0xea3dee18,0x17be766b,
0xe88e624c,0xff7da41f,0x8b919c38,0xad0b71eb,0xf31ff9a9,0x86a522e0 },
{ 0x868bc259,0xbc8e6f72,0x3ccef9e4,0x6130c638,0x9a466555,0x09f1f454,
0x19b2bfb4,0x8e6c0f09,0x0ca7bb22,0x945c46c9,0x4dafb67b,0xacd87168 } },
/* 127 */
{ { 0x10c53841,0x090c72ca,0x55a4fced,0xc20ae01b,0xe10234ad,0x03f7ebd5,
0x85892064,0xb3f42a6a,0xb4a14722,0xbdbc30c0,0x8ca124cc,0x971bc437 },
{ 0x517ff2ff,0x6f79f46d,0xecba947b,0x6a9c96e2,0x62925122,0x5e79f2f4,
0x6a4e91f1,0x30a96bb1,0x2d4c72da,0x1147c923,0x5811e4df,0x65bc311f } },
/* 128 */
{ { 0x139b3239,0x87c7dd7d,0x4d833bae,0x8b57824e,0x9fff0015,0xbcbc4878,
0x909eaf1a,0x8ffcef8b,0xf1443a78,0x9905f4ee,0xe15cbfed,0x020dd4a2 },
{ 0xa306d695,0xca2969ec,0xb93caf60,0xdf940cad,0x87ea6e39,0x67f7fab7,
0xf98c4fe5,0x0d0ee10f,0xc19cb91e,0xc646879a,0x7d1d7ab4,0x4b4ea50c } },
/* 129 */
{ { 0x7a0db57e,0x19e40945,0x9a8c9702,0xe6017cad,0x1be5cff9,0xdbf739e5,
0xa7a938a2,0x3646b3cd,0x68350dfc,0x04511085,0x56e098b5,0xad3bd6f3 },
{ 0xee2e3e3e,0x935ebabf,0x473926cb,0xfbd01702,0x9e9fb5aa,0x7c735b02,
0x2e3feff0,0xc52a1b85,0x046b405a,0x9199abd3,0x39039971,0xe306fcec } },
/* 130 */
{ { 0x23e4712c,0xd6d9aec8,0xc3c198ee,0x7ca8376c,0x31bebd8a,0xe6d83187,
0xd88bfef3,0xed57aff3,0xcf44edc7,0x72a645ee,0x5cbb1517,0xd4e63d0b },
{ 0xceee0ecf,0x98ce7a1c,0x5383ee8e,0x8f012633,0xa6b455e8,0x3b879078,
0xc7658c06,0xcbcd3d96,0x0783336a,0x721d6fe7,0x5a677136,0xf21a7263 } },
/* 131 */
{ { 0x9586ba11,0x19d8b3cd,0x8a5c0480,0xd9e0aeb2,0x2230ef5c,0xe4261dbf,
0x02e6bf09,0x095a9dee,0x80dc7784,0x8963723c,0x145157b1,0x5c97dbaf },
{ 0x4bc4503e,0x97e74434,0x85a6b370,0x0fb1cb31,0xcd205d4b,0x3e8df2be,
0xf8f765da,0x497dd1bc,0x6c988a1a,0x92ef95c7,0x64dc4cfa,0x3f924baa } },
/* 132 */
{ { 0x7268b448,0x6bf1b8dd,0xefd79b94,0xd4c28ba1,0xe4e3551f,0x2fa1f8c8,
0x5c9187a9,0x769e3ad4,0x40326c0d,0x28843b4d,0x50d5d669,0xfefc8094 },
{ 0x90339366,0x30c85bfd,0x5ccf6c3a,0x4eeb56f1,0x28ccd1dc,0x0e72b149,
0xf2ce978e,0x73ee85b5,0x3165bb23,0xcdeb2bf3,0x4e410abf,0x8106c923 } },
/* 133 */
{ { 0x7d02f4ee,0xc8df0161,0x18e21225,0x8a781547,0x6acf9e40,0x4ea895eb,
0x6e5a633d,0x8b000cb5,0x7e981ffb,0xf31d86d5,0x4475bc32,0xf5c8029c },
{ 0x1b568973,0x764561ce,0xa62996ec,0x2f809b81,0xda085408,0x9e513d64,
0xe61ce309,0xc27d815d,0x272999e0,0x0da6ff99,0xfead73f7,0xbd284779 } },
/* 134 */
{ { 0x9b1cdf2b,0x6033c2f9,0xbc5fa151,0x2a99cf06,0x12177b3b,0x7d27d259,
0xc4485483,0xb1f15273,0x102e2297,0x5fd57d81,0xc7f6acb7,0x3d43e017 },
{ 0x3a70eb28,0x41a8bb0b,0x3e80b06b,0x67de2d8e,0x70c28de5,0x09245a41,
0xa7b26023,0xad7dbcb1,0x2cbc6c1e,0x70b08a35,0x9b33041f,0xb504fb66 } },
/* 135 */
{ { 0xf97a27c2,0xa8e85ab5,0xc10a011b,0x6ac5ec8b,0xffbcf161,0x55745533,
0x65790a60,0x01780e85,0x99ee75b0,0xe451bf85,0x39c29881,0x8907a63b },
{ 0x260189ed,0x76d46738,0x47bd35cb,0x284a4436,0x20cab61e,0xd74e8c40,
0x416cf20a,0x6264bf8c,0x5fd820ce,0xfa5a6c95,0xf24bb5fc,0xfa7154d0 } },
/* 136 */
{ { 0x9b3f5034,0x18482cec,0xcd9e68fd,0x962d445a,0x95746f23,0x266fb1d6,
0x58c94a4b,0xc66ade5a,0xed68a5b6,0xdbbda826,0x7ab0d6ae,0x05664a4d },
{ 0x025e32fc,0xbcd4fe51,0xa96df252,0x61a5aebf,0x31592a31,0xd88a07e2,
0x98905517,0x5d9d94de,0x5fd440e7,0x96bb4010,0xe807db4c,0x1b0c47a2 } },
/* 137 */
{ { 0x08223878,0x5c2a6ac8,0xe65a5558,0xba08c269,0x9bbc27fd,0xd22b1b9b,
0x72b9607d,0x919171bf,0xe588dc58,0x9ab455f9,0x23662d93,0x6d54916e },
{ 0x3b1de0c1,0x8da8e938,0x804f278f,0xa84d186a,0xd3461695,0xbf4988cc,
0xe10eb0cb,0xf5eae3be,0xbf2a66ed,0x1ff8b68f,0xc305b570,0xa68daf67 } },
/* 138 */
{ { 0x44b2e045,0xc1004cff,0x4b1c05d4,0x91b5e136,0x88a48a07,0x53ae4090,
0xea11bb1a,0x73fb2995,0x3d93a4ea,0x32048570,0x3bfc8a5f,0xcce45de8 },
{ 0xc2b3106e,0xaff4a97e,0xb6848b4f,0x9069c630,0xed76241c,0xeda837a6,
0x6cc3f6cf,0x8a0daf13,0x3da018a8,0x199d049d,0xd9093ba3,0xf867c6b1 } },
/* 139 */
{ { 0x56527296,0xe4d42a56,0xce71178d,0xae26c73d,0x6c251664,0x70a0adac,
0x5dc0ae1d,0x813483ae,0xdaab2daf,0x7574eacd,0xc2d55f4f,0xc56b52dc },
{ 0x95f32923,0x872bc167,0x5bdd2a89,0x4be17581,0xa7699f00,0x9b57f1e7,
0x3ac2de02,0x5fcd9c72,0x92377739,0x83af3ba1,0xfc50b97f,0xa64d4e2b } },
/* 140 */
{ { 0x0e552b40,0x2172dae2,0xd34d52e8,0x62f49725,0x07958f98,0x7930ee40,
0x751fdd74,0x56da2a90,0xf53e48c3,0xf1192834,0x8e53c343,0x34d2ac26 },
{ 0x13111286,0x1073c218,0xda9d9827,0x201dac14,0xee95d378,0xec2c29db,
0x1f3ee0b1,0x9316f119,0x544ce71c,0x7890c9f0,0x27612127,0xd77138af } },
/* 141 */
{ { 0x3b4ad1cd,0x78045e6d,0x4aa49bc1,0xcd86b94e,0xfd677a16,0x57e51f1d,
0xfa613697,0xd9290935,0x34f4d893,0x7a3f9593,0x5d5fcf9b,0x8c9c248b },
{ 0x6f70d4e9,0x9f23a482,0x63190ae9,0x17273454,0x5b081a48,0x4bdd7c13,
0x28d65271,0x1e2de389,0xe5841d1f,0x0bbaaa25,0x746772e5,0xc4c18a79 } },
/* 142 */
{ { 0x593375ac,0x10ee2681,0x7dd5e113,0x4f3288be,0x240f3538,0x9a97b2fb,
0x1de6b1e2,0xfa11089f,0x1351bc58,0x516da562,0x2dfa85b5,0x573b6119 },
{ 0x6cba7df5,0x89e96683,0x8c28ab40,0xf299be15,0xad43fcbf,0xe91c9348,
0x9a1cefb3,0xe9bbc7cc,0x738b2775,0xc8add876,0x775eaa01,0x6e3b1f2e } },
/* 143 */
{ { 0xb677788b,0x0365a888,0x3fd6173c,0x634ae8c4,0x9e498dbe,0x30498761,
0xc8f779ab,0x08c43e6d,0x4c09aca9,0x068ae384,0x2018d170,0x2380c70b },
{ 0xa297c5ec,0xcf77fbc3,0xca457948,0xdacbc853,0x336bec7e,0x3690de04,
0x14eec461,0x26bbac64,0x1f713abf,0xd1c23c7e,0xe6fd569e,0xf08bbfcd } },
/* 144 */
{ { 0x84770ee3,0x5f8163f4,0x744a1706,0x0e0c7f94,0xe1b2d46d,0x9c8f05f7,
0xd01fd99a,0x417eafe7,0x11440e5b,0x2ba15df5,0x91a6fbcf,0xdc5c552a },
{ 0xa270f721,0x86271d74,0xa004485b,0x32c0a075,0x8defa075,0x9d1a87e3,
0xbf0d20fe,0xb590a7ac,0x8feda1f5,0x430c41c2,0x58f6ec24,0x454d2879 } },
/* 145 */
{ { 0x7c525435,0x52b7a635,0x37c4bdbc,0x3d9ef57f,0xdffcc475,0x2bb93e9e,
0x7710f3be,0xf7b8ba98,0x21b727de,0x42ee86da,0x2e490d01,0x55ac3f19 },
{ 0xc0c1c390,0x487e3a6e,0x446cde7b,0x036fb345,0x496ae951,0x089eb276,
0x71ed1234,0xedfed4d9,0x900f0b46,0x661b0dd5,0x8582f0d3,0x11bd6f1b } },
/* 146 */
{ { 0x076bc9d1,0x5cf9350f,0xcf3cd2c3,0x15d903be,0x25af031c,0x21cfc8c2,
0x8b1cc657,0xe0ad3248,0x70014e87,0xdd9fb963,0x297f1658,0xf0f3a5a1 },
{ 0xf1f703aa,0xbb908fba,0x2f6760ba,0x2f9cc420,0x66a38b51,0x00ceec66,
0x05d645da,0x4deda330,0xf7de3394,0xb9cf5c72,0x1ad4c906,0xaeef6502 } },
/* 147 */
{ { 0x7a19045d,0x0583c8b1,0xd052824c,0xae7c3102,0xff6cfa58,0x2a234979,
0x62c733c0,0xfe9dffc9,0x9c0c4b09,0x3a7fa250,0x4fe21805,0x516437bb },
{ 0xc2a23ddb,0x9454e3d5,0x289c104e,0x0726d887,0x4fd15243,0x8977d918,
0x6d7790ba,0xc559e73f,0x465af85f,0x8fd3e87d,0x5feee46b,0xa2615c74 } },
/* 148 */
{ { 0x4335167d,0xc8d607a8,0xe0f5c887,0x8b42d804,0x398d11f9,0x5f9f13df,
0x20740c67,0x5aaa5087,0xa3d9234b,0x83da9a6a,0x2a54bad1,0xbd3a5c4e },
{ 0x2db0f658,0xdd13914c,0x5a3f373a,0x29dcb66e,0x5245a72b,0xbfd62df5,
0x91e40847,0x19d18023,0xb136b1ae,0xd9df74db,0x3f93bc5b,0x72a06b6b } },
/* 149 */
{ { 0xad19d96f,0x6da19ec3,0xfb2a4099,0xb342daa4,0x662271ea,0x0e61633a,
0xce8c054b,0x3bcece81,0x8bd62dc6,0x7cc8e061,0xee578d8b,0xae189e19 },
{ 0xdced1eed,0x73e7a25d,0x7875d3ab,0xc1257f0a,0x1cfef026,0x2cb2d5a2,
0xb1fdf61c,0xd98ef39b,0x24e83e6c,0xcd8e6f69,0xc7b7088b,0xd71e7076 } },
/* 150 */
{ { 0x9d4245bf,0x33936830,0x2ac2953b,0x22d96217,0x56c3c3cd,0xb3bf5a82,
0x0d0699e8,0x50c9be91,0x8f366459,0xec094463,0x513b7c35,0x6c056dba },
{ 0x045ab0e3,0x687a6a83,0x445c9295,0x8d40b57f,0xa16f5954,0x0f345048,
0x3d8f0a87,0x64b5c639,0x9f71c5e2,0x106353a2,0x874f0dd4,0xdd58b475 } },
/* 151 */
{ { 0x62230c72,0x67ec084f,0x481385e3,0xf14f6cca,0x4cda7774,0xf58bb407,
0xaa2dbb6b,0xe15011b1,0x0c035ab1,0xd488369d,0x8245f2fd,0xef83c24a },
{ 0x9fdc2538,0xfb57328f,0x191fe46a,0x79808293,0x32ede548,0xe28f5c44,
0xea1a022c,0x1b3cda99,0x3df2ec7f,0x39e639b7,0x760e9a18,0x77b6272b } },
/* 152 */
{ { 0xa65d56d5,0x2b1d51bd,0x7ea696e0,0x3a9b71f9,0x9904f4c4,0x95250ecc,
0xe75774b7,0x8bc4d6eb,0xeaeeb9aa,0x0e343f8a,0x930e04cb,0xc473c1d1 },
{ 0x064cd8ae,0x282321b1,0x5562221c,0xf4b4371e,0xd1bf1221,0xc1cc81ec,
0xe2c8082f,0xa52a07a9,0xba64a958,0x350d8e59,0x6fb32c9a,0x29e4f3de } },
/* 153 */
{ { 0xba89aaa5,0x0aa9d56c,0xc4c6059e,0xf0208ac0,0xbd6ddca4,0x7400d9c6,
0xf2c2f74a,0xb384e475,0xb1562dd3,0x4c1061fc,0x2e153b8d,0x3924e248 },
{ 0x849808ab,0xf38b8d98,0xa491aa36,0x29bf3260,0x88220ede,0x85159ada,
0xbe5bc422,0x8b47915b,0xd7300967,0xa934d72e,0x2e515d0d,0xc4f30398 } },
/* 154 */
{ { 0x1b1de38b,0xe3e9ee42,0x42636760,0xa124e25a,0x90165b1a,0x90bf73c0,
0x146434c5,0x21802a34,0x2e1fa109,0x54aa83f2,0xed9c51e9,0x1d4bd03c },
{ 0x798751e6,0xc2d96a38,0x8c3507f5,0xed27235f,0xc8c24f88,0xb5fb80e2,
0xd37f4f78,0xf873eefa,0xf224ba96,0x7229fd74,0x9edd7149,0x9dcd9199 } },
/* 155 */
{ { 0x4e94f22a,0xee9f81a6,0xf71ec341,0xe5609892,0xa998284e,0x6c818ddd,
0x3b54b098,0x9fd47295,0x0e8a7cc9,0x47a6ac03,0xb207a382,0xde684e5e },
{ 0x2b6b956b,0x4bdd1ecd,0xf01b3583,0x09084414,0x55233b14,0xe2f80b32,
0xef5ebc5e,0x5a0fec54,0xbf8b29a2,0x74cf25e6,0x7f29e014,0x1c757fa0 } },
/* 156 */
{ { 0xeb0fdfe4,0x1bcb5c4a,0xf0899367,0xd7c649b3,0x05bc083b,0xaef68e3f,
0xa78aa607,0x57a06e46,0x21223a44,0xa2136ecc,0x52f5a50b,0x89bd6484 },
{ 0x4455f15a,0x724411b9,0x08a9c0fd,0x23dfa970,0x6db63bef,0x7b0da4d1,
0xfb162443,0x6f8a7ec1,0xe98284fb,0xc1ac9cee,0x33566022,0x085a582b } },
/* 157 */
{ { 0xec1f138a,0x15cb61f9,0x668f0c28,0x11c9a230,0xdf93f38f,0xac829729,
0x4048848d,0xcef25698,0x2bba8fbf,0x3f686da0,0x111c619a,0xed5fea78 },
{ 0xd6d1c833,0x9b4f73bc,0x86e7bf80,0x50951606,0x042b1d51,0xa2a73508,
0x5fb89ec2,0x9ef6ea49,0x5ef8b892,0xf1008ce9,0x9ae8568b,0x78a7e684 } },
/* 158 */
{ { 0x10470cd8,0x3fe83a7c,0xf86df000,0x92734682,0xda9409b5,0xb5dac06b,
0x94939c5f,0x1e7a9660,0x5cc116dc,0xdec6c150,0x66bac8cc,0x1a52b408 },
{ 0x6e864045,0x5303a365,0x9139efc1,0x45eae72a,0x6f31d54f,0x83bec646,
0x6e958a6d,0x2fb4a86f,0x4ff44030,0x6760718e,0xe91ae0df,0x008117e3 } },
/* 159 */
{ { 0x384310a2,0x5d5833ba,0x1fd6c9fc,0xbdfb4edc,0x849c4fb8,0xb9a4f102,
0x581c1e1f,0xe5fb239a,0xd0a9746d,0xba44b2e7,0x3bd942b9,0x78f7b768 },
{ 0xc87607ae,0x076c8ca1,0xd5caaa7e,0x82b23c2e,0x2763e461,0x6a581f39,
0x3886df11,0xca8a5e4a,0x264e7f22,0xc87e90cf,0x215cfcfc,0x04f74870 } },
/* 160 */
{ { 0x141d161c,0x5285d116,0x93c4ed17,0x67cd2e0e,0x7c36187e,0x12c62a64,
0xed2584ca,0xf5329539,0x42fbbd69,0xc4c777c4,0x1bdfc50a,0x107de776 },
{ 0xe96beebd,0x9976dcc5,0xa865a151,0xbe2aff95,0x9d8872af,0x0e0a9da1,
0xa63c17cc,0x5e357a3d,0xe15cc67c,0xd31fdfd8,0x7970c6d8,0xc44bbefd } },
/* 161 */
{ { 0x4c0c62f1,0x703f83e2,0x4e195572,0x9b1e28ee,0xfe26cced,0x6a82858b,
0xc43638fa,0xd381c84b,0xa5ba43d8,0x94f72867,0x10b82743,0x3b4a783d },
{ 0x7576451e,0xee1ad7b5,0x14b6b5c8,0xc3d0b597,0xfcacc1b8,0x3dc30954,
0x472c9d7b,0x55df110e,0x02f8a328,0x97c86ed7,0x88dc098f,0xd0433413 } },
/* 162 */
{ { 0x2ca8f2fe,0x1a60d152,0x491bd41f,0x61640948,0x58dfe035,0x6dae29a5,
0x278e4863,0x9a615bea,0x9ad7c8e5,0xbbdb4477,0x2ceac2fc,0x1c706630 },
{ 0x99699b4b,0x5e2b54c6,0x239e17e8,0xb509ca6d,0xea063a82,0x728165fe,
0xb6a22e02,0x6b5e609d,0xb26ee1df,0x12813905,0x439491fa,0x07b9f722 } },
/* 163 */
{ { 0x48ff4e49,0x1592ec14,0x6d644129,0x3e4e9f17,0x1156acc0,0x7acf8288,
0xbb092b0b,0x5aa34ba8,0x7d38393d,0xcd0f9022,0xea4f8187,0x416724dd },
{ 0xc0139e73,0x3c4e641c,0x91e4d87d,0xe0fe46cf,0xcab61f8a,0xedb3c792,
0xd3868753,0x4cb46de4,0x20f1098a,0xe449c21d,0xf5b8ea6e,0x5e5fd059 } },
/* 164 */
{ { 0x75856031,0x7fcadd46,0xeaf2fbd0,0x89c7a4cd,0x7a87c480,0x1af523ce,
0x61d9ae90,0xe5fc1095,0xbcdb95f5,0x3fb5864f,0xbb5b2c7d,0xbeb5188e },
{ 0x3ae65825,0x3d1563c3,0x0e57d641,0x116854c4,0x1942ebd3,0x11f73d34,
0xc06955b3,0x24dc5904,0x995a0a62,0x8a0d4c83,0x5d577b7d,0xfb26b86d } },
/* 165 */
{ { 0xc686ae17,0xc53108e7,0xd1c1da56,0x9090d739,0x9aec50ae,0x4583b013,
0xa49a6ab2,0xdd9a088b,0xf382f850,0x28192eea,0xf5fe910e,0xcc8df756 },
{ 0x9cab7630,0x877823a3,0xfb8e7fc1,0x64984a9a,0x364bfc16,0x5448ef9c,
0xc44e2a9a,0xbbb4f871,0x435c95e9,0x901a41ab,0xaaa50a06,0xc6c23e5f } },
/* 166 */
{ { 0x9034d8dd,0xb78016c1,0x0b13e79b,0x856bb44b,0xb3241a05,0x85c6409a,
0x2d78ed21,0x8d2fe19a,0x726eddf2,0xdcc7c26d,0x25104f04,0x3ccaff5f },
{ 0x6b21f843,0x397d7edc,0xe975de4c,0xda88e4dd,0x4f5ab69e,0x5273d396,
0x9aae6cc0,0x537680e3,0x3e6f9461,0xf749cce5,0x957bffd3,0x021ddbd9 } },
/* 167 */
{ { 0x777233cf,0x7b64585f,0x0942a6f0,0xfe6771f6,0xdfe6eef0,0x636aba7a,
0x86038029,0x63bbeb56,0xde8fcf36,0xacee5842,0xd4a20524,0x48d9aa99 },
{ 0x0da5e57a,0xcff7a74c,0xe549d6c9,0xc232593c,0xf0f2287b,0x68504bcc,
0xbc8360b5,0x6d7d098d,0x5b402f41,0xeac5f149,0xb87d1bf1,0x61936f11 } },
/* 168 */
{ { 0xb8153a9d,0xaa9da167,0x9e83ecf0,0xa49fe3ac,0x1b661384,0x14c18f8e,
0x38434de1,0x61c24dab,0x283dae96,0x3d973c3a,0x82754fc9,0xc99baa01 },
{ 0x4c26b1e3,0x477d198f,0xa7516202,0x12e8e186,0x362addfa,0x386e52f6,
0xc3962853,0x31e8f695,0x6aaedb60,0xdec2af13,0x29cf74ac,0xfcfdb4c6 } },
/* 169 */
{ { 0xcca40298,0x6b3ee958,0xf2f5d195,0xc3878153,0xed2eae5b,0x0c565630,
0x3a697cf2,0xd089b37e,0xad5029ea,0xc2ed2ac7,0x0f0dda6a,0x7e5cdfad },
{ 0xd9b86202,0xf98426df,0x4335e054,0xed1960b1,0x3f14639e,0x1fdb0246,
0x0db6c670,0x17f709c3,0x773421e1,0xbfc687ae,0x26c1a8ac,0x13fefc4a } },
/* 170 */
{ { 0x7ffa0a5f,0xe361a198,0xc63fe109,0xf4b26102,0x6c74e111,0x264acbc5,
0x77abebaf,0x4af445fa,0x24cddb75,0x448c4fdd,0x44506eea,0x0b13157d },
{ 0x72e9993d,0x22a6b159,0x85e5ecbe,0x2c3c57e4,0xfd83e1a1,0xa673560b,
0xc3b8c83b,0x6be23f82,0x40bbe38e,0x40b13a96,0xad17399b,0x66eea033 } },
/* 171 */
{ { 0xb4c6c693,0x49fc6e95,0x36af7d38,0xefc735de,0x35fe42fc,0xe053343d,
0x6a9ab7c3,0xf0aa427c,0x4a0fcb24,0xc79f0436,0x93ebbc50,0x16287243 },
{ 0x16927e1e,0x5c3d6bd0,0x673b984c,0x40158ed2,0x4cd48b9a,0xa7f86fc8,
0x60ea282d,0x1643eda6,0xe2a1beed,0x45b393ea,0x19571a94,0x664c839e } },
/* 172 */
{ { 0x27eeaf94,0x57745750,0xea99e1e7,0x2875c925,0x5086adea,0xc127e7ba,
0x86fe424f,0x765252a0,0x2b6c0281,0x1143cc6c,0xd671312d,0xc9bb2989 },
{ 0x51acb0a5,0x880c337c,0xd3c60f78,0xa3710915,0x9262b6ed,0x496113c0,
0x9ce48182,0x5d25d9f8,0xb3813586,0x53b6ad72,0x4c0e159c,0x0ea3bebc } },
/* 173 */
{ { 0xc5e49bea,0xcaba450a,0x7c05da59,0x684e5415,0xde7ac36c,0xa2e9cab9,
0x2e6f957b,0x4ca79b5f,0x09b817b1,0xef7b0247,0x7d89df0f,0xeb304990 },
{ 0x46fe5096,0x508f7307,0x2e04eaaf,0x695810e8,0x3512f76c,0x88ef1bd9,
0x3ebca06b,0x77661351,0xccf158b7,0xf7d4863a,0x94ee57da,0xb2a81e44 } },
/* 174 */
{ { 0x6d53e6ba,0xff288e5b,0x14484ea2,0xa90de1a9,0xed33c8ec,0x2fadb60c,
0x28b66a40,0x579d6ef3,0xec24372d,0x4f2dd6dd,0x1d66ec7d,0xe9e33fc9 },
{ 0x039eab6e,0x110899d2,0x3e97bb5e,0xa31a667a,0xcfdce68e,0x6200166d,
0x5137d54b,0xbe83ebae,0x4800acdf,0x085f7d87,0x0c6f8c86,0xcf4ab133 } },
/* 175 */
{ { 0x931e08fb,0x03f65845,0x1506e2c0,0x6438551e,0x9c36961f,0x5791f0dc,
0xe3dcc916,0x68107b29,0xf495d2ca,0x83242374,0x6ee5895b,0xd8cfb663 },
{ 0xa0349b1b,0x525e0f16,0x4a0fab86,0x33cd2c6c,0x2af8dda9,0x46c12ee8,
0x71e97ad3,0x7cc424ba,0x37621eb0,0x69766ddf,0xa5f0d390,0x95565f56 } },
/* 176 */
{ { 0x1a0f5e94,0xe0e7bbf2,0x1d82d327,0xf771e115,0xceb111fa,0x10033e3d,
0xd3426638,0xd269744d,0x00d01ef6,0xbdf2d9da,0xa049ceaf,0x1cb80c71 },
{ 0x9e21c677,0x17f18328,0x19c8f98b,0x6452af05,0x80b67997,0x35b9c5f7,
0x40f8f3d4,0x5c2e1cbe,0x66d667ca,0x43f91656,0xcf9d6e79,0x9faaa059 } },
/* 177 */
{ { 0x0a078fe6,0x8ad24618,0x464fd1dd,0xf6cc73e6,0xc3e37448,0x4d2ce34d,
0xe3271b5f,0x624950c5,0xefc5af72,0x62910f5e,0xaa132bc6,0x8b585bf8 },
{ 0xa839327f,0x11723985,0x4aac252f,0x34e2d27d,0x6296cc4e,0x402f59ef,
0x47053de9,0x00ae055c,0x28b4f09b,0xfc22a972,0xfa0c180e,0xa9e86264 } },
/* 178 */
{ { 0xbc310ecc,0x0b7b6224,0x67fa14ed,0x8a1a74f1,0x7214395c,0x87dd0960,
0xf5c91128,0xdf1b3d09,0x86b264a8,0x39ff23c6,0x3e58d4c5,0xdc2d49d0 },
{ 0xa9d6f501,0x2152b7d3,0xc04094f7,0xf4c32e24,0xd938990f,0xc6366596,
0x94fb207f,0x084d078f,0x328594cb,0xfd99f1d7,0xcb2d96b3,0x36defa64 } },
/* 179 */
{ { 0x13ed7cbe,0x4619b781,0x9784bd0e,0x95e50015,0x2c7705fe,0x2a32251c,
0x5f0dd083,0xa376af99,0x0361a45b,0x55425c6c,0x1f291e7b,0x812d2cef },
{ 0x5fd94972,0xccf581a0,0xe56dc383,0x26e20e39,0x63dbfbf0,0x0093685d,
0x36b8c575,0x1fc164cc,0x390ef5e7,0xb9c5ab81,0x26908c66,0x40086beb } },
/* 180 */
{ { 0x37e3c115,0xe5e54f79,0xc1445a8a,0x69b8ee8c,0xb7659709,0x79aedff2,
0x1b46fbe6,0xe288e163,0xd18d7bb7,0xdb4844f0,0x48aa6424,0xe0ea23d0 },
{ 0xf3d80a73,0x714c0e4e,0x3bd64f98,0x87a0aa9e,0x2ec63080,0x8844b8a8,
0x255d81a3,0xe0ac9c30,0x455397fc,0x86151237,0x2f820155,0x0b979464 } },
/* 181 */
{ { 0x4ae03080,0x127a255a,0x580a89fb,0x232306b4,0x6416f539,0x04e8cd6a,
0x13b02a0e,0xaeb70dee,0x4c09684a,0xa3038cf8,0x28e433ee,0xa710ec3c },
{ 0x681b1f7d,0x77a72567,0x2fc28170,0x86fbce95,0xf5735ac8,0xd3408683,
0x6bd68e93,0x3a324e2a,0xc027d155,0x7ec74353,0xd4427177,0xab60354c } },
/* 182 */
{ { 0xef4c209d,0x32a5342a,0x08d62704,0x2ba75274,0xc825d5fe,0x4bb4af6f,
0xd28e7ff1,0x1c3919ce,0xde0340f6,0x1dfc2fdc,0x29f33ba9,0xc6580baf },
{ 0x41d442cb,0xae121e75,0x3a4724e4,0x4c7727fd,0x524f3474,0xe556d6a4,
0x785642a2,0x87e13cc7,0xa17845fd,0x182efbb1,0x4e144857,0xdcec0cf1 } },
/* 183 */
{ { 0xe9539819,0x1cb89541,0x9d94dbf1,0xc8cb3b4f,0x417da578,0x1d353f63,
0x8053a09e,0xb7a697fb,0xc35d8b78,0x8d841731,0xb656a7a9,0x85748d6f },
{ 0xc1859c5d,0x1fd03947,0x535d22a2,0x6ce965c1,0x0ca3aadc,0x1966a13e,
0x4fb14eff,0x9802e41d,0x76dd3fcd,0xa9048cbb,0xe9455bba,0x89b182b5 } },
/* 184 */
{ { 0x43360710,0xd777ad6a,0x55e9936b,0x841287ef,0x04a21b24,0xbaf5c670,
0x35ad86f1,0xf2c0725f,0xc707e72e,0x338fa650,0xd8883e52,0x2bf8ed2e },
{ 0xb56e0d6a,0xb0212cf4,0x6843290c,0x50537e12,0x98b3dc6f,0xd8b184a1,
0x0210b722,0xd2be9a35,0x559781ee,0x407406db,0x0bc18534,0x5a78d591 } },
/* 185 */
{ { 0xd748b02c,0x4d57aa2a,0xa12b3b95,0xbe5b3451,0x64711258,0xadca7a45,
0x322153db,0x597e091a,0x32eb1eab,0xf3271006,0x2873f301,0xbd9adcba },
{ 0x38543f7f,0xd1dc79d1,0x921b1fef,0x00022092,0x1e5df8ed,0x86db3ef5,
0x9e6b944a,0x888cae04,0x791a32b4,0x71bd29ec,0xa6d1c13e,0xd3516206 } },
/* 186 */
{ { 0x55924f43,0x2ef6b952,0x4f9de8d5,0xd2f401ae,0xadc68042,0xfc73e8d7,
0x0d9d1bb4,0x627ea70c,0xbbf35679,0xc3bb3e3e,0xd882dee4,0x7e8a254a },
{ 0xb5924407,0x08906f50,0xa1ad444a,0xf14a0e61,0x65f3738e,0xaa0efa21,
0xae71f161,0xd60c7dd6,0xf175894d,0x9e8390fa,0x149f4c00,0xd115cd20 } },
/* 187 */
{ { 0xa52abf77,0x2f2e2c1d,0x54232568,0xc2a0dca5,0x54966dcc,0xed423ea2,
0xcd0dd039,0xe48c93c7,0x176405c7,0x1e54a225,0x70d58f2e,0x1efb5b16 },
{ 0x94fb1471,0xa751f9d9,0x67d2941d,0xfdb31e1f,0x53733698,0xa6c74eb2,
0x89a0f64a,0xd3155d11,0xa4b8d2b6,0x4414cfe4,0xf7a8e9e3,0x8d5a4be8 } },
/* 188 */
{ { 0x52669e98,0x5c96b4d4,0x8fd42a03,0x4547f922,0xd285174e,0xcf5c1319,
0x064bffa0,0x805cd1ae,0x246d27e7,0x50e8bc4f,0xd5781e11,0xf89ef98f },
{ 0xdee0b63f,0xb4ff95f6,0x222663a4,0xad850047,0x4d23ce9c,0x02691860,
0x50019f59,0x3e5309ce,0x69a508ae,0x27e6f722,0x267ba52c,0xe9376652 } },
/* 189 */
{ { 0xc0368708,0xa04d289c,0x5e306e1d,0xc458872f,0x33112fea,0x76fa23de,
0x6efde42e,0x718e3974,0x1d206091,0xf0c98cdc,0x14a71987,0x5fa3ca62 },
{ 0xdcaa9f2a,0xeee8188b,0x589a860d,0x312cc732,0xc63aeb1f,0xf9808dd6,
0x4ea62b53,0x70fd43db,0x890b6e97,0x2c2bfe34,0xfa426aa6,0x105f863c } },
/* 190 */
{ { 0xb38059ad,0x0b29795d,0x90647ea0,0x5686b77e,0xdb473a3e,0xeff0470e,
0xf9b6d1e2,0x278d2340,0xbd594ec7,0xebbff95b,0xd3a7f23d,0xf4b72334 },
{ 0xa5a83f0b,0x2a285980,0x9716a8b3,0x0786c41a,0x22511812,0x138901bd,
0xe2fede6e,0xd1b55221,0xdf4eb590,0x0806e264,0x762e462e,0x6c4c897e } },
/* 191 */
{ { 0xb4b41d9d,0xd10b905f,0x4523a65b,0x826ca466,0xb699fa37,0x535bbd13,
0x73bc8f90,0x5b9933d7,0xcd2118ad,0x9332d61f,0xd4a65fd0,0x158c693e },
{ 0xe6806e63,0x4ddfb2a8,0xb5de651b,0xe31ed3ec,0x819bc69a,0xf9460e51,
0x2c76b1f8,0x6229c0d6,0x901970a3,0xbb78f231,0x9cee72b8,0x31f3820f } },
/* 192 */
{ { 0xc09e1c72,0xe931caf2,0x12990cf4,0x0715f298,0x943262d8,0x33aad81d,
0x73048d3f,0x5d292b7a,0xdc7415f6,0xb152aaa4,0x0fd19587,0xc3d10fd9 },
{ 0x75ddadd0,0xf76b35c5,0x1e7b694c,0x9f5f4a51,0xc0663025,0x2f1ab7eb,
0x920260b0,0x01c9cc87,0x05d39da6,0xc4b1f61a,0xeb4a9c4e,0x6dcd76c4 } },
/* 193 */
{ { 0xfdc83f01,0x0ba0916f,0x9553e4f9,0x354c8b44,0xffc5e622,0xa6cc511a,
0xe95be787,0xb954726a,0x75b41a62,0xcb048115,0xebfde989,0xfa2ae6cd },
{ 0x0f24659a,0x6376bbc7,0x4c289c43,0x13a999fd,0xec9abd8b,0xc7134184,
0xa789ab04,0x28c02bf6,0xd3e526ec,0xff841ebc,0x640893a8,0x442b191e } },
/* 194 */
{ { 0xfa2b6e20,0x4cac6c62,0xf6d69861,0x97f29e9b,0xbc96d12d,0x228ab1db,
0x5e8e108d,0x6eb91327,0x40771245,0xd4b3d4d1,0xca8a803a,0x61b20623 },
{ 0xa6a560b1,0x2c2f3b41,0x3859fcf4,0x879e1d40,0x024dbfc3,0x7cdb5145,
0x3bfa5315,0x55d08f15,0xaa93823a,0x2f57d773,0xc6a2c9a2,0xa97f259c } },
/* 195 */
{ { 0xe58edbbb,0xc306317b,0x79dfdf13,0x25ade51c,0x16d83dd6,0x6b5beaf1,
0x1dd8f925,0xe8038a44,0xb2a87b6b,0x7f00143c,0xf5b438de,0xa885d00d },
{ 0xcf9e48bd,0xe9f76790,0xa5162768,0xf0bdf9f0,0xad7b57cb,0x0436709f,
0xf7c15db7,0x7e151c12,0x5d90ee3b,0x3514f022,0x2c361a8d,0x2e84e803 } },
/* 196 */
{ { 0x563ec8d8,0x2277607d,0xe3934cb7,0xa661811f,0xf58fd5de,0x3ca72e7a,
0x62294c6a,0x7989da04,0xf6bbefe9,0x88b3708b,0x53ed7c82,0x0d524cf7 },
{ 0x2f30c073,0x69f699ca,0x9dc1dcf3,0xf0fa264b,0x05f0aaf6,0x44ca4568,
0xd19b9baf,0x0f5b23c7,0xeabd1107,0x39193f41,0x2a7c9b83,0x9e3e10ad } },
/* 197 */
{ { 0xd4ae972f,0xa90824f0,0xc6e846e7,0x43eef02b,0x29d2160a,0x7e460612,
0xfe604e91,0x29a178ac,0x4eb184b2,0x23056f04,0xeb54cdf4,0x4fcad55f },
{ 0xae728d15,0xa0ff96f3,0xc6a00331,0x8a2680c6,0x7ee52556,0x5f84cae0,
0xc5a65dad,0x5e462c3a,0xe2d23f4f,0x5d2b81df,0xc5b1eb07,0x6e47301b } },
/* 198 */
{ { 0xaf8219b9,0x77411d68,0x51b1907a,0xcb883ce6,0x101383b5,0x25c87e57,
0x982f970d,0x9c7d9859,0x118305d2,0xaa6abca5,0x9013a5db,0x725fed2f },
{ 0xababd109,0x487cdbaf,0x87586528,0xc0f8cf56,0x8ad58254,0xa02591e6,
0xdebbd526,0xc071b1d1,0x961e7e31,0x927dfe8b,0x9263dfe1,0x55f895f9 } },
/* 199 */
{ { 0xb175645b,0xf899b00d,0xb65b4b92,0x51f3a627,0xb67399ef,0xa2f3ac8d,
0xe400bc20,0xe717867f,0x1967b952,0x42cc9020,0x3ecd1de1,0x3d596751 },
{ 0xdb979775,0xd41ebcde,0x6a2e7e88,0x99ba61bc,0x321504f2,0x039149a5,
0x27ba2fad,0xe7dc2314,0xb57d8368,0x9f556308,0x57da80a7,0x2b6d16c9 } },
/* 200 */
{ { 0x279ad982,0x84af5e76,0x9c8b81a6,0x9bb4c92d,0x0e698e67,0xd79ad44e,
0x265fc167,0xe8be9048,0x0c3a4ccc,0xf135f7e6,0xb8863a33,0xa0a10d38 },
{ 0xd386efd9,0xe197247c,0xb52346c2,0x0eefd3f9,0x78607bc8,0xc22415f9,
0x508674ce,0xa2a8f862,0xc8c9d607,0xa72ad09e,0x50fa764f,0xcd9f0ede } },
/* 201 */
{ { 0xd1a46d4d,0x063391c7,0x9eb01693,0x2df51c11,0x849e83de,0xc5849800,
0x8ad08382,0x48fd09aa,0xaa742736,0xa405d873,0xe1f9600c,0xee49e61e },
{ 0x48c76f73,0xd76676be,0x01274b2a,0xd9c100f6,0x83f8718d,0x110bb67c,
0x02fc0d73,0xec85a420,0x744656ad,0xc0449e1e,0x37d9939b,0x28ce7376 } },
/* 202 */
{ { 0x44544ac7,0x97e9af72,0xba010426,0xf2c658d5,0xfb3adfbd,0x732dec39,
0xa2df0b07,0xd12faf91,0x2171e208,0x8ac26725,0x5b24fa54,0xf820cdc8 },
{ 0x94f4cf77,0x307a6eea,0x944a33c6,0x18c783d2,0x0b741ac5,0x4b939d4c,
0x3ffbb6e4,0x1d7acd15,0x7a255e44,0x06a24858,0xce336d50,0x14fbc494 } },
/* 203 */
{ { 0x51584e3c,0x9b920c0c,0xf7e54027,0xc7733c59,0x88422bbe,0xe24ce139,
0x523bd6ab,0x11ada812,0xb88e6def,0xde068800,0xfe8c582d,0x7b872671 },
{ 0x7de53510,0x4e746f28,0xf7971968,0x492f8b99,0x7d928ac2,0x1ec80bc7,
0x432eb1b5,0xb3913e48,0x32028f6e,0xad084866,0x8fc2f38b,0x122bb835 } },
/* 204 */
{ { 0x3b0b29c3,0x0a9f3b1e,0x4fa44151,0x837b6432,0x17b28ea7,0xb9905c92,
0x98451750,0xf39bc937,0xce8b6da1,0xcd383c24,0x010620b2,0x299f57db },
{ 0x58afdce3,0x7b6ac396,0x3d05ef47,0xa15206b3,0xb9bb02ff,0xa0ae37e2,
0x9db3964c,0x107760ab,0x67954bea,0xe29de9a0,0x431c3f82,0x446a1ad8 } },
/* 205 */
{ { 0x5c6b8195,0xc6fecea0,0xf49e71b9,0xd744a7c5,0x177a7ae7,0xa8e96acc,
0x358773a7,0x1a05746c,0x37567369,0xa4162146,0x87d1c971,0xaa0217f7 },
{ 0x77fd3226,0x61e9d158,0xe4f600be,0x0f6f2304,0x7a6dff07,0xa9c4cebc,
0x09f12a24,0xd15afa01,0x8c863ee9,0x2bbadb22,0xe5eb8c78,0xa28290e4 } },
/* 206 */
{ { 0x3e9de330,0x55b87fa0,0x195c145b,0x12b26066,0xa920bef0,0xe08536e0,
0x4d195adc,0x7bff6f2c,0x945f4187,0x7f319e9d,0xf892ce47,0xf9848863 },
{ 0x4fe37657,0xd0efc1d3,0x5cf0e45a,0x3c58de82,0x8b0ccbbe,0x626ad21a,
0xaf952fc5,0xd2a31208,0xeb437357,0x81791995,0x98e95d4f,0x5f19d30f } },
/* 207 */
{ { 0x0e6865bb,0x72e83d9a,0xf63456a6,0x22f5af3b,0x463c8d9e,0x409e9c73,
0xdfe6970e,0x40e9e578,0x711b91ca,0x876b6efa,0x942625a3,0x895512cf },
{ 0xcb4e462b,0x84c8eda8,0x4412e7c8,0x84c0154a,0xceb7b71f,0x04325db1,
0x66f70877,0x1537dde3,0x1992b9ac,0xf3a09399,0xd498ae77,0xa7316606 } },
/* 208 */
{ { 0xcad260f5,0x13990d2f,0xeec0e8c0,0x76c3be29,0x0f7bd7d5,0x7dc5bee0,
0xefebda4b,0x9be167d2,0x9122b87e,0xcce3dde6,0x82b5415c,0x75a28b09 },
{ 0xe84607a6,0xf6810bcd,0x6f4dbf0d,0xc6d58128,0x1b4dafeb,0xfead577d,
0x066b28eb,0x9bc440b2,0x8b17e84b,0x53f1da97,0xcda9a575,0x0459504b } },
/* 209 */
{ { 0x329e5836,0x13e39a02,0xf717269d,0x2c9e7d51,0xf26c963b,0xc5ac58d6,
0x79967bf5,0x3b0c6c43,0x55908d9d,0x60bbea3f,0xf07c9ad1,0xd84811e7 },
{ 0x5bd20e4a,0xfe7609a7,0x0a70baa8,0xe4325dd2,0xb3600386,0x3711f370,
0xd0924302,0x97f9562f,0x4acc4436,0x040dc0c3,0xde79cdd4,0xfd6d725c } },
/* 210 */
{ { 0xcf13eafb,0xb3efd0e3,0x5aa0ae5f,0x21009cbb,0x79022279,0xe480c553,
0xb2fc9a6d,0x755cf334,0x07096ae7,0x8564a5bf,0xbd238139,0xddd649d0 },
{ 0x8a045041,0xd0de10b1,0xc957d572,0x6e05b413,0x4e0fb25c,0x5c5ff806,
0x641162fb,0xd933179b,0xe57439f9,0x42d48485,0x8a8d72aa,0x70c5bd0a } },
/* 211 */
{ { 0x97bdf646,0xa7671738,0xab329f7c,0xaa1485b4,0xf8f25fdf,0xce3e11d6,
0xc6221824,0x76a3fc7e,0xf3924740,0x045f281f,0x96d13a9a,0x24557d4e },
{ 0xdd4c27cd,0x875c804b,0x0f5c7fea,0x11c5f0f4,0xdc55ff7e,0xac8c880b,
0x1103f101,0x2acddec5,0xf99faa89,0x38341a21,0xce9d6b57,0xc7b67a2c } },
/* 212 */
{ { 0x8e357586,0x9a0d724f,0xdf648da0,0x1d7f4ff5,0xfdee62a5,0x9c3e6c9b,
0x0389b372,0x0499cef0,0x98eab879,0xe904050d,0x6c051617,0xe8eef1b6 },
{ 0xc37e3ca9,0xebf5bfeb,0xa4e0b91d,0x7c5e946d,0x2c4bea28,0x79097314,
0xee67b2b7,0x81f6c109,0xdafc5ede,0xaf237d9b,0x2abb04c7,0xd2e60201 } },
/* 213 */
{ { 0x8a4f57bf,0x6156060c,0xff11182a,0xf9758696,0x6296ef00,0x8336773c,
0xff666899,0x9c054bce,0x719cd11c,0xd6a11611,0xdbe1acfa,0x9824a641 },
{ 0xba89fd01,0x0b7b7a5f,0x889f79d8,0xf8d3b809,0xf578285c,0xc5e1ea08,
0xae6d8288,0x7ac74536,0x7521ef5f,0x5d37a200,0xb260a25d,0x5ecc4184 } },
/* 214 */
{ { 0xa708c8d3,0xddcebb19,0xc63f81ec,0xe63ed04f,0x11873f95,0xd045f5a0,
0x79f276d5,0x3b5ad544,0x425ae5b3,0x81272a3d,0x10ce1605,0x8bfeb501 },
{ 0x888228bf,0x4233809c,0xb2aff7df,0x4bd82acf,0x0cbd4a7f,0x9c68f180,
0x6b44323d,0xfcd77124,0x891db957,0x60c0fcf6,0x04da8f7f,0xcfbb4d89 } },
/* 215 */
{ { 0x3b26139a,0x9a6a5df9,0xb2cc7eb8,0x3e076a83,0x5a964bcd,0x47a8e82d,
0xb9278d6b,0x8a4e2a39,0xe4443549,0x93506c98,0xf1e0d566,0x06497a8f },
{ 0x2b1efa05,0x3dee8d99,0x45393e33,0x2da63ca8,0xcf0579ad,0xa4af7277,
0x3236d8ea,0xaf4b4639,0x32b617f5,0x6ccad95b,0xb88bb124,0xce76d8b8 } },
/* 216 */
{ { 0x083843dc,0x63d2537a,0x1e4153b4,0x89eb3514,0xea9afc94,0x5175ebc4,
0x8ed1aed7,0x7a652580,0xd85e8297,0x67295611,0xb584b73d,0x8dd2d68b },
{ 0x0133c3a4,0x237139e6,0x4bd278ea,0x9de838ab,0xc062fcd9,0xe829b072,
0x63ba8706,0x70730d4f,0xd3cd05ec,0x6080483f,0x0c85f84d,0x872ab5b8 } },
/* 217 */
{ { 0x999d4d49,0xfc0776d3,0xec3f45e7,0xa3eb59de,0x0dae1fc1,0xbc990e44,
0xa15371ff,0x33596b1e,0x9bc7ab25,0xd447dcb2,0x35979582,0xcd5b63e9 },
{ 0x77d1ff11,0xae3366fa,0xedee6903,0x59f28f05,0xa4433bf2,0x6f43fed1,
0xdf9ce00e,0x15409c9b,0xaca9c5dc,0x21b5cded,0x82d7bdb4,0xf9f33595 } },
/* 218 */
{ { 0x9422c792,0x95944378,0xc958b8bf,0x239ea923,0xdf076541,0x4b61a247,
0xbb9fc544,0x4d29ce85,0x0b424559,0x9a692a67,0x0e486900,0x6e0ca5a0 },
{ 0x85b3bece,0x6b79a782,0xc61f9892,0x41f35e39,0xae747f82,0xff82099a,
0xd0ca59d6,0x58c8ae3f,0x99406b5f,0x4ac930e2,0x9df24243,0x2ce04eb9 } },
/* 219 */
{ { 0x1ac37b82,0x4366b994,0x25b04d83,0xff0c728d,0x19c47b7c,0x1f551361,
0xbeff13e7,0xdbf2d5ed,0xe12a683d,0xf78efd51,0x989cf9c4,0x82cd85b9 },
{ 0xe0cb5d37,0xe23c6db6,0x72ee1a15,0x818aeebd,0x28771b14,0x8212aafd,
0x1def817d,0x7bc221d9,0x9445c51f,0xdac403a2,0x12c3746b,0x711b0517 } },
/* 220 */
{ { 0x5ea99ecc,0x0ed9ed48,0xb8cab5e1,0xf799500d,0xb570cbdc,0xa8ec87dc,
0xd35dfaec,0x52cfb2c2,0x6e4d80a4,0x8d31fae2,0xdcdeabe5,0xe6a37dc9 },
{ 0x1deca452,0x5d365a34,0x0d68b44e,0x09a5f8a5,0xa60744b1,0x59238ea5,
0xbb4249e9,0xf2fedc0d,0xa909b2e3,0xe395c74e,0x39388250,0xe156d1a5 } },
/* 221 */
{ { 0x47181ae9,0xd796b3d0,0x44197808,0xbaf44ba8,0x34cf3fac,0xe6933094,
0xc3bd5c46,0x41aa6ade,0xeed947c6,0x4fda75d8,0x9ea5a525,0xacd9d412 },
{ 0xd430301b,0x65cc55a3,0x7b52ea49,0x3c9a5bcf,0x159507f0,0x22d319cf,
0xde74a8dd,0x2ee0b9b5,0x877ac2b6,0x20c26a1e,0x92e7c314,0x387d73da } },
/* 222 */
{ { 0x8cd3fdac,0x13c4833e,0x332e5b8e,0x76fcd473,0xe2fe1fd3,0xff671b4b,
0x5d98d8ec,0x4d734e8b,0x514bbc11,0xb1ead3c6,0x7b390494,0xd14ca858 },
{ 0x5d2d37e9,0x95a443af,0x00464622,0x73c6ea73,0x15755044,0xa44aeb4b,
0xfab58fee,0xba3f8575,0xdc680a6f,0x9779dbc9,0x7b37ddfc,0xe1ee5f5a } },
/* 223 */
{ { 0x12d29f46,0xcd0b4648,0x0ed53137,0x93295b0b,0x80bef6c9,0xbfe26094,
0x54248b00,0xa6565788,0x80e7f9c4,0x69c43fca,0xbe141ea1,0x2190837b },
{ 0xa1b26cfb,0x875e159a,0x7affe852,0x90ca9f87,0x92ca598e,0x15e6550d,
0x1938ad11,0xe3e0945d,0x366ef937,0xef7636bb,0xb39869e5,0xb6034d0b } },
/* 224 */
{ { 0x26d8356e,0x4d255e30,0xd314626f,0xf83666ed,0xd0c8ed64,0x421ddf61,
0x26677b61,0x96e473c5,0x9e9b18b3,0xdad4af7e,0xa9393f75,0xfceffd4a },
{ 0x11c731d5,0x843138a1,0xb2f141d9,0x05bcb3a1,0x617b7671,0x20e1fa95,
0x88ccec7b,0xbefce812,0x90f1b568,0x582073dc,0x1f055cb7,0xf572261a } },
/* 225 */
{ { 0x36973088,0xf3148277,0x86a9f980,0xc008e708,0xe046c261,0x1b795947,
0xca76bca0,0xdf1e6a7d,0x71acddf0,0xabafd886,0x1364d8f4,0xff7054d9 },
{ 0xe2260594,0x2cf63547,0xd73b277e,0x468a5372,0xef9bd35e,0xc7419e24,
0x24043cc3,0x2b4a1c20,0x890b39cd,0xa28f047a,0x46f9a2e3,0xdca2cea1 } },
/* 226 */
{ { 0x53277538,0xab788736,0xcf697738,0xa734e225,0x6b22e2c1,0x66ee1d1e,
0xebe1d212,0x2c615389,0x02bb0766,0xf36cad40,0x3e64f207,0x120885c3 },
{ 0x90fbfec2,0x59e77d56,0xd7a574ae,0xf9e781aa,0x5d045e53,0x801410b0,
0xa91b5f0e,0xd3b5f0aa,0x7fbb3521,0xb3d1df00,0xc72bee9a,0x11c4b33e } },
/* 227 */
{ { 0x83c3a7f3,0xd32b9832,0x88d8a354,0x8083abcf,0x50f4ec5a,0xdeb16404,
0x641e2907,0x18d747f0,0xf1bbf03e,0x4e8978ae,0x88a0cd89,0x932447dc },
{ 0xcf3d5897,0x561e0feb,0x13600e6d,0xfc3a682f,0xd16a6b73,0xc78b9d73,
0xd29bf580,0xe713fede,0x08d69e5c,0x0a225223,0x1ff7fda4,0x3a924a57 } },
/* 228 */
{ { 0xb4093bee,0xfb64554c,0xa58c6ec0,0xa6d65a25,0x43d0ed37,0x4126994d,
0x55152d44,0xa5689a51,0x284caa8d,0xb8e5ea8c,0xd1f25538,0x33f05d4f },
{ 0x1b615d6e,0xe0fdfe09,0x705507da,0x2ded7e8f,0x17bbcc80,0xdd5631e5,
0x267fd11f,0x4f87453e,0xff89d62d,0xc6da723f,0xe3cda21d,0x55cbcae2 } },
/* 229 */
{ { 0x6b4e84f3,0x336bc94e,0x4ef72c35,0x72863031,0xeeb57f99,0x6d85fdee,
0xa42ece1b,0x7f4e3272,0x36f0320a,0x7f86cbb5,0x923331e6,0xf09b6a2b },
{ 0x56778435,0x21d3ecf1,0x8323b2d2,0x2977ba99,0x1704bc0f,0x6a1b57fb,
0x389f048a,0xd777cf8b,0xac6b42cd,0x9ce2174f,0x09e6c55a,0x404e2bff } },
/* 230 */
{ { 0x204c5ddb,0x9b9b135e,0x3eff550e,0x9dbfe044,0xec3be0f6,0x35eab4bf,
0x0a43e56f,0x8b4c3f0d,0x0e73f9b3,0x4c1c6673,0x2c78c905,0x92ed38bd },
{ 0xa386e27c,0xc7003f6a,0xaced8507,0xb9c4f46f,0x59df5464,0xea024ec8,
0x429572ea,0x4af96152,0xe1fc1194,0x279cd5e2,0x281e358c,0xaa376a03 } },
/* 231 */
{ { 0x3cdbc95c,0x07859223,0xef2e337a,0xaae1aa6a,0x472a8544,0xc040108d,
0x8d037b7d,0x80c853e6,0x8c7eee24,0xd221315c,0x8ee47752,0x195d3856 },
{ 0xdacd7fbe,0xd4b1ba03,0xd3e0c52b,0x4b5ac61e,0x6aab7b52,0x68d3c052,
0x660e3fea,0xf0d7248c,0x3145efb4,0xafdb3f89,0x8f40936d,0xa73fd9a3 } },
/* 232 */
{ { 0xbb1b17ce,0x891b9ef3,0xc6127f31,0x14023667,0x305521fd,0x12b2e58d,
0xe3508088,0x3a47e449,0xff751507,0xe49fc84b,0x5310d16e,0x4023f722 },
{ 0xb73399fa,0xa608e5ed,0xd532aa3e,0xf12632d8,0x845e8415,0x13a2758e,
0x1fc2d861,0xae4b6f85,0x339d02f2,0x3879f5b1,0x80d99ebd,0x446d22a6 } },
/* 233 */
{ { 0x4be164f1,0x0f502302,0x88b81920,0x8d09d2d6,0x984aceff,0x514056f1,
0x75e9e80d,0xa5c4ddf0,0xdf496a93,0x38cb47e6,0x38df6bf7,0x899e1d6b },
{ 0xb59eb2a6,0x69e87e88,0x9b47f38b,0x280d9d63,0x3654e955,0x599411ea,
0x969aa581,0xcf8dd4fd,0x530742a7,0xff5c2baf,0x1a373085,0xa4391536 } },
/* 234 */
{ { 0xa8a4bdd2,0x6ace72a3,0xb68ef702,0xc656cdd1,0x90c4dad8,0xd4a33e7e,
0x9d951c50,0x4aece08a,0x085d68e6,0xea8005ae,0x6f7502b8,0xfdd7a7d7 },
{ 0x98d6fa45,0xce6fb0a6,0x1104eb8c,0x228f8672,0xda09d7dc,0xd23d8787,
0x2ae93065,0x5521428b,0xea56c366,0x95faba3d,0x0a88aca5,0xedbe5039 } },
/* 235 */
{ { 0xbfb26c82,0xd64da0ad,0x952c2f9c,0xe5d70b3c,0xf7e77f68,0xf5e8f365,
0x08f2d695,0x7234e002,0xd12e7be6,0xfaf900ee,0x4acf734e,0x27dc6934 },
{ 0xc260a46a,0x80e4ff5e,0x2dc31c28,0x7da5ebce,0xca69f552,0x485c5d73,
0x69cc84c2,0xcdfb6b29,0xed6d4eca,0x031c5afe,0x22247637,0xc7bbf4c8 } },
/* 236 */
{ { 0x49fe01b2,0x9d5b72c7,0x793a91b8,0x34785186,0xcf460438,0xa3ba3c54,
0x3ab21b6f,0x73e8e43d,0xbe57b8ab,0x50cde8e0,0xdd204264,0x6488b3a7 },
{ 0xdddc4582,0xa9e398b3,0x5bec46fe,0x1698c1a9,0x156d3843,0x7f1446ef,
0x770329a2,0x3fd25dd8,0x2c710668,0x05b1221a,0xa72ee6cf,0x65b2dc2a } },
/* 237 */
{ { 0xcd021d63,0x21a885f7,0xfea61f08,0x3f344b15,0xc5cf73e6,0xad5ba6dd,
0x227a8b23,0x154d0d8f,0xdc559311,0x9b74373c,0x98620fa1,0x4feab715 },
{ 0x7d9ec924,0x5098938e,0x6d47e550,0x84d54a5e,0x1b617506,0x1a2d1bdc,
0x615868a4,0x99fe1782,0x3005a924,0x171da780,0x7d8f79b6,0xa70bf5ed } },
/* 238 */
{ { 0xfe2216c5,0x0bc1250d,0x7601b351,0x2c37e250,0xd6f06b7e,0xb6300175,
0x8bfeb9b7,0x4dde8ca1,0xb82f843d,0x4f210432,0xb1ac0afd,0x8d70e2f9 },
{ 0xaae91abb,0x25c73b78,0x863028f2,0x0230dca3,0xe5cf30b7,0x8b923ecf,
0x5506f265,0xed754ec2,0x729a5e39,0x8e41b88c,0xbabf889b,0xee67cec2 } },
/* 239 */
{ { 0x1be46c65,0xe183acf5,0xe7565d7a,0x9789538f,0xd9627b4e,0x87873391,
0x9f1d9187,0xbf4ac4c1,0x4691f5c8,0x5db99f63,0x74a1fb98,0xa68df803 },
{ 0xbf92b5fa,0x3c448ed1,0x3e0bdc32,0xa098c841,0x79bf016c,0x8e74cd55,
0x115e244d,0x5df0d09c,0x3410b66e,0x9418ad01,0x17a02130,0x8b6124cb } },
/* 240 */
{ { 0xc26e3392,0x425ec3af,0xa1722e00,0xc07f8470,0xe2356b43,0xdcc28190,
0xb1ef59a6,0x4ed97dff,0xc63028c1,0xc22b3ad1,0x68c18988,0x070723c2 },
{ 0x4cf49e7d,0x70da302f,0x3f12a522,0xc5e87c93,0x18594148,0x74acdd1d,
0xca74124c,0xad5f73ab,0xd69fd478,0xe72e4a3e,0x7b117cc3,0x61593868 } },
/* 241 */
{ { 0xa9aa0486,0x7b7b9577,0xa063d557,0x6e41fb35,0xda9047d7,0xb017d5c7,
0x68a87ba9,0x8c748280,0xdf08ad93,0xab45fa5c,0x4c288a28,0xcd9fb217 },
{ 0x5747843d,0x59544642,0xa56111e3,0x34d64c6c,0x4bfce8d5,0x12e47ea1,
0x6169267f,0x17740e05,0xeed03fb5,0x5c49438e,0x4fc3f513,0x9da30add } },
/* 242 */
{ { 0xccfa5200,0xc4e85282,0x6a19b13d,0x2707608f,0xf5726e2f,0xdcb9a53d,
0xe9427de5,0x612407c9,0xd54d582a,0x3e5a17e1,0x655ae118,0xb99877de },
{ 0x015254de,0x6f0e972b,0xf0a6f7c5,0x92a56db1,0xa656f8b2,0xd297e4e1,
0xad981983,0x99fe0052,0x07cfed84,0xd3652d2f,0x843c1738,0xc784352e } },
/* 243 */
{ { 0x7e9b2d8a,0x6ee90af0,0x57cf1964,0xac8d7018,0x71f28efc,0xf6ed9031,
0x6812b20e,0x7f70d5a9,0xf1c61eee,0x27b557f4,0xc6263758,0xf1c9bd57 },
{ 0x2a1a6194,0x5cf7d014,0x1890ab84,0xdd614e0b,0x0e93c2a6,0x3ef9de10,
0xe0cd91c5,0xf98cf575,0x14befc32,0x504ec0c6,0x6279d68c,0xd0513a66 } },
/* 244 */
{ { 0xa859fb6a,0xa8eadbad,0xdb283666,0xcf8346e7,0x3e22e355,0x7b35e61a,
0x99639c6b,0x293ece2c,0x56f241c8,0xfa0162e2,0xbf7a1dda,0xd2e6c7b9 },
{ 0x40075e63,0xd0de6253,0xf9ec8286,0x2405aa61,0x8fe45494,0x2237830a,
0x364e9c8c,0x4fd01ac7,0x904ba750,0x4d9c3d21,0xaf1b520b,0xd589be14 } },
/* 245 */
{ { 0x4662e53b,0x13576a4f,0xf9077676,0x35ec2f51,0x97c0af97,0x66297d13,
0x9e598b58,0xed3201fe,0x5e70f604,0x49bc752a,0xbb12d951,0xb54af535 },
{ 0x212c1c76,0x36ea4c2b,0xeb250dfd,0x18f5bbc7,0x9a0a1a46,0xa0d466cc,
0xdac2d917,0x52564da4,0x8e95fab5,0x206559f4,0x9ca67a33,0x7487c190 } },
/* 246 */
{ { 0xdde98e9c,0x75abfe37,0x2a411199,0x99b90b26,0xdcdb1f7c,0x1b410996,
0x8b3b5675,0xab346f11,0xf1f8ae1e,0x04852193,0x6b8b98c1,0x1ec4d227 },
{ 0x45452baa,0xba3bc926,0xacc4a572,0x387d1858,0xe51f171e,0x9478eff6,
0x931e1c00,0xf357077d,0xe54c8ca8,0xffee77cd,0x551dc9a4,0xfb4892ff } },
/* 247 */
{ { 0x2db8dff8,0x5b1bdad0,0x5a2285a2,0xd462f4fd,0xda00b461,0x1d6aad8e,
0x41306d1b,0x43fbefcf,0x6a13fe19,0x428e86f3,0x17f89404,0xc8b2f118 },
{ 0xf0d51afb,0x762528aa,0x549b1d06,0xa3e2fea4,0xea3ddf66,0x86fad8f2,
0x4fbdd206,0x0d9ccc4b,0xc189ff5a,0xcde97d4c,0x199f19a6,0xc36793d6 } },
/* 248 */
{ { 0x51b85197,0xea38909b,0xb4c92895,0xffb17dd0,0x1ddb3f3f,0x0eb0878b,
0xc57cf0f2,0xb05d28ff,0x1abd57e2,0xd8bde2e7,0xc40c1b20,0x7f2be28d },
{ 0x299a2d48,0x6554dca2,0x8377982d,0x5130ba2e,0x1071971a,0x8863205f,
0x7cf2825d,0x15ee6282,0x03748f2b,0xd4b6c57f,0x430385a0,0xa9e3f4da } },
/* 249 */
{ { 0x83fbc9c6,0x33eb7cec,0x4541777e,0x24a311c7,0x4f0767fc,0xc81377f7,
0x4ab702da,0x12adae36,0x2a779696,0xb7fcb6db,0x01cea6ad,0x4a6fb284 },
{ 0xcdfc73de,0x5e8b1d2a,0x1b02fd32,0xd0efae8d,0xd81d8519,0x3f99c190,
0xfc808971,0x3c18f7fa,0x51b7ae7b,0x41f713e7,0xf07fc3f8,0x0a4b3435 } },
/* 250 */
{ { 0x019b7d2e,0x7dda3c4c,0xd4dc4b89,0x631c8d1a,0x1cdb313c,0x5489cd6e,
0x4c07bb06,0xd44aed10,0x75f000d1,0x8f97e13a,0xdda5df4d,0x0e9ee64f },
{ 0x3e346910,0xeaa99f3b,0xfa294ad7,0x622f6921,0x0d0b2fe9,0x22aaa20d,
0x1e5881ba,0x4fed2f99,0xc1571802,0x9af3b2d6,0xdc7ee17c,0x919e67a8 } },
/* 251 */
{ { 0x76250533,0xc724fe4c,0x7d817ef8,0x8a2080e5,0x172c9751,0xa2afb0f4,
0x17c0702e,0x9b10cdeb,0xc9b7e3e9,0xbf3975e3,0x1cd0cdc5,0x206117df },
{ 0xbe05ebd5,0xfb049e61,0x16c782c0,0xeb0bb55c,0xab7fed09,0x13a331b8,
0x632863f0,0xf6c58b1d,0x4d3b6195,0x6264ef6e,0x9a53f116,0x92c51b63 } },
/* 252 */
{ { 0x288b364d,0xa57c7bc8,0x7b41e5c4,0x4a562e08,0x698a9a11,0x699d21c6,
0xf3f849b9,0xa4ed9581,0x9eb726ba,0xa223eef3,0xcc2884f9,0x13159c23 },
{ 0x3a3f4963,0x73931e58,0x0ada6a81,0x96500389,0x5ab2950b,0x3ee8a1c6,
0x775fab52,0xeedf4949,0x4f2671b6,0x63d652e1,0x3c4e2f55,0xfed4491c } },
/* 253 */
{ { 0xf4eb453e,0x335eadc3,0xcadd1a5b,0x5ff74b63,0x5d84a91a,0x6933d0d7,
0xb49ba337,0x9ca3eeb9,0xc04c15b8,0x1f6facce,0xdc09a7e4,0x4ef19326 },
{ 0x3dca3233,0x53d2d324,0xa2259d4b,0x0ee40590,0x5546f002,0x18c22edb,
0x09ea6b71,0x92429801,0xb0e91e61,0xaada0add,0x99963c50,0x5fe53ef4 } },
/* 254 */
{ { 0x90c28c65,0x372dd06b,0x119ce47d,0x1765242c,0x6b22fc82,0xc041fb80,
0xb0a7ccc1,0x667edf07,0x1261bece,0xc79599e7,0x19cff22a,0xbc69d9ba },
{ 0x13c06819,0x009d77cd,0xe282b79d,0x635a66ae,0x225b1be8,0x4edac4a6,
0x524008f9,0x57d4f4e4,0xb056af84,0xee299ac5,0x3a0bc386,0xcc38444c } },
/* 255 */
{ { 0xcd4c2356,0x490643b1,0x750547be,0x740a4851,0xd4944c04,0x643eaf29,
0x299a98a0,0xba572479,0xee05fdf9,0x48b29f16,0x089b2d7b,0x33fb4f61 },
{ 0xa950f955,0x86704902,0xfedc3ddf,0x97e1034d,0x05fbb6a2,0x211320b6,
0x432299bb,0x23d7b93f,0x8590e4a3,0x1fe1a057,0xf58c0ce6,0x8e1d0586 } },
};
/* Multiply the base point of P384 by the scalar and return the result.
* If map is true then convert result to affine coordinates.
*
* r Resulting point.
* k Scalar to multiply by.
* map Indicates whether to convert result to affine.
* heap Heap to use for allocation.
* returns MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
static int sp_384_ecc_mulmod_base_12(sp_point_384* r, const sp_digit* k,
int map, void* heap)
{
return sp_384_ecc_mulmod_stripe_12(r, &p384_base, p384_table,
k, map, heap);
}
#endif
/* Multiply the base point of P384 by the scalar and return the result.
* If map is true then convert result to affine coordinates.
*
* km Scalar to multiply by.
* r Resulting point.
* map Indicates whether to convert result to affine.
* heap Heap to use for allocation.
* returns MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
int sp_ecc_mulmod_base_384(mp_int* km, ecc_point* r, int map, void* heap)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_point_384 p;
sp_digit kd[12];
#endif
sp_point_384* point;
sp_digit* k = NULL;
int err = MP_OKAY;
err = sp_384_point_new_12(heap, p, point);
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 12, heap,
DYNAMIC_TYPE_ECC);
if (k == NULL) {
err = MEMORY_E;
}
}
#else
k = kd;
#endif
if (err == MP_OKAY) {
sp_384_from_mp(k, 12, km);
err = sp_384_ecc_mulmod_base_12(point, k, map, heap);
}
if (err == MP_OKAY) {
err = sp_384_point_to_ecc_point_12(point, r);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (k != NULL) {
XFREE(k, heap, DYNAMIC_TYPE_ECC);
}
#endif
sp_384_point_free_12(point, 0, heap);
return err;
}
#if defined(WOLFSSL_VALIDATE_ECC_KEYGEN) || defined(HAVE_ECC_SIGN) || \
defined(HAVE_ECC_VERIFY)
/* Returns 1 if the number of zero.
* Implementation is constant time.
*
* a Number to check.
* returns 1 if the number is zero and 0 otherwise.
*/
static int sp_384_iszero_12(const sp_digit* a)
{
return (a[0] | a[1] | a[2] | a[3] | a[4] | a[5] | a[6] | a[7] |
a[8] | a[9] | a[10] | a[11]) == 0;
}
#endif /* WOLFSSL_VALIDATE_ECC_KEYGEN || HAVE_ECC_SIGN || HAVE_ECC_VERIFY */
/* Add 1 to a. (a = a + 1)
*
* a A single precision integer.
*/
SP_NOINLINE static void sp_384_add_one_12(sp_digit* a)
{
__asm__ __volatile__ (
"mov r2, #1\n\t"
"ldr r1, [%[a], #0]\n\t"
"add r1, r2\n\t"
"mov r2, #0\n\t"
"str r1, [%[a], #0]\n\t"
"ldr r1, [%[a], #4]\n\t"
"adc r1, r2\n\t"
"str r1, [%[a], #4]\n\t"
"ldr r1, [%[a], #8]\n\t"
"adc r1, r2\n\t"
"str r1, [%[a], #8]\n\t"
"ldr r1, [%[a], #12]\n\t"
"adc r1, r2\n\t"
"str r1, [%[a], #12]\n\t"
"ldr r1, [%[a], #16]\n\t"
"adc r1, r2\n\t"
"str r1, [%[a], #16]\n\t"
"ldr r1, [%[a], #20]\n\t"
"adc r1, r2\n\t"
"str r1, [%[a], #20]\n\t"
"ldr r1, [%[a], #24]\n\t"
"adc r1, r2\n\t"
"str r1, [%[a], #24]\n\t"
"ldr r1, [%[a], #28]\n\t"
"adc r1, r2\n\t"
"str r1, [%[a], #28]\n\t"
"ldr r1, [%[a], #32]\n\t"
"adc r1, r2\n\t"
"str r1, [%[a], #32]\n\t"
"ldr r1, [%[a], #36]\n\t"
"adc r1, r2\n\t"
"str r1, [%[a], #36]\n\t"
"ldr r1, [%[a], #40]\n\t"
"adc r1, r2\n\t"
"str r1, [%[a], #40]\n\t"
"ldr r1, [%[a], #44]\n\t"
"adc r1, r2\n\t"
"str r1, [%[a], #44]\n\t"
:
: [a] "r" (a)
: "memory", "r1", "r2"
);
}
/* Read big endian unsigned byte array into r.
*
* r A single precision integer.
* size Maximum number of bytes to convert
* a Byte array.
* n Number of bytes in array to read.
*/
static void sp_384_from_bin(sp_digit* r, int size, const byte* a, int n)
{
int i, j = 0;
word32 s = 0;
r[0] = 0;
for (i = n-1; i >= 0; i--) {
r[j] |= (((sp_digit)a[i]) << s);
if (s >= 24U) {
r[j] &= 0xffffffff;
s = 32U - s;
if (j + 1 >= size) {
break;
}
r[++j] = (sp_digit)a[i] >> s;
s = 8U - s;
}
else {
s += 8U;
}
}
for (j++; j < size; j++) {
r[j] = 0;
}
}
/* Generates a scalar that is in the range 1..order-1.
*
* rng Random number generator.
* k Scalar value.
* returns RNG failures, MEMORY_E when memory allocation fails and
* MP_OKAY on success.
*/
static int sp_384_ecc_gen_k_12(WC_RNG* rng, sp_digit* k)
{
int err;
byte buf[48];
do {
err = wc_RNG_GenerateBlock(rng, buf, sizeof(buf));
if (err == 0) {
sp_384_from_bin(k, 12, buf, (int)sizeof(buf));
if (sp_384_cmp_12(k, p384_order2) < 0) {
sp_384_add_one_12(k);
break;
}
}
}
while (err == 0);
return err;
}
/* Makes a random EC key pair.
*
* rng Random number generator.
* priv Generated private value.
* pub Generated public point.
* heap Heap to use for allocation.
* returns ECC_INF_E when the point does not have the correct order, RNG
* failures, MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
int sp_ecc_make_key_384(WC_RNG* rng, mp_int* priv, ecc_point* pub, void* heap)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_point_384 p;
sp_digit kd[12];
#ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
sp_point_384 inf;
#endif
#endif
sp_point_384* point;
sp_digit* k = NULL;
#ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
sp_point_384* infinity;
#endif
int err;
(void)heap;
err = sp_384_point_new_12(heap, p, point);
#ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
if (err == MP_OKAY) {
err = sp_384_point_new_12(heap, inf, infinity);
}
#endif
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 12, heap,
DYNAMIC_TYPE_ECC);
if (k == NULL) {
err = MEMORY_E;
}
}
#else
k = kd;
#endif
if (err == MP_OKAY) {
err = sp_384_ecc_gen_k_12(rng, k);
}
if (err == MP_OKAY) {
err = sp_384_ecc_mulmod_base_12(point, k, 1, NULL);
}
#ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
if (err == MP_OKAY) {
err = sp_384_ecc_mulmod_12(infinity, point, p384_order, 1, NULL);
}
if (err == MP_OKAY) {
if ((sp_384_iszero_12(point->x) == 0) || (sp_384_iszero_12(point->y) == 0)) {
err = ECC_INF_E;
}
}
#endif
if (err == MP_OKAY) {
err = sp_384_to_mp(k, priv);
}
if (err == MP_OKAY) {
err = sp_384_point_to_ecc_point_12(point, pub);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (k != NULL) {
XFREE(k, heap, DYNAMIC_TYPE_ECC);
}
#endif
#ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
sp_384_point_free_12(infinity, 1, heap);
#endif
sp_384_point_free_12(point, 1, heap);
return err;
}
#ifdef HAVE_ECC_DHE
/* Write r as big endian to byte array.
* Fixed length number of bytes written: 48
*
* r A single precision integer.
* a Byte array.
*/
static void sp_384_to_bin(sp_digit* r, byte* a)
{
int i, j, s = 0, b;
j = 384 / 8 - 1;
a[j] = 0;
for (i=0; i<12 && j>=0; i++) {
b = 0;
/* lint allow cast of mismatch sp_digit and int */
a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
b += 8 - s;
if (j < 0) {
break;
}
while (b < 32) {
a[j--] = (byte)(r[i] >> b);
b += 8;
if (j < 0) {
break;
}
}
s = 8 - (b - 32);
if (j >= 0) {
a[j] = 0;
}
if (s != 0) {
j++;
}
}
}
/* Multiply the point by the scalar and serialize the X ordinate.
* The number is 0 padded to maximum size on output.
*
* priv Scalar to multiply the point by.
* pub Point to multiply.
* out Buffer to hold X ordinate.
* outLen On entry, size of the buffer in bytes.
* On exit, length of data in buffer in bytes.
* heap Heap to use for allocation.
* returns BUFFER_E if the buffer is to small for output size,
* MEMORY_E when memory allocation fails and MP_OKAY on success.
*/
int sp_ecc_secret_gen_384(mp_int* priv, ecc_point* pub, byte* out,
word32* outLen, void* heap)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_point_384 p;
sp_digit kd[12];
#endif
sp_point_384* point = NULL;
sp_digit* k = NULL;
int err = MP_OKAY;
if (*outLen < 48U) {
err = BUFFER_E;
}
if (err == MP_OKAY) {
err = sp_384_point_new_12(heap, p, point);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 12, heap,
DYNAMIC_TYPE_ECC);
if (k == NULL)
err = MEMORY_E;
}
#else
k = kd;
#endif
if (err == MP_OKAY) {
sp_384_from_mp(k, 12, priv);
sp_384_point_from_ecc_point_12(point, pub);
err = sp_384_ecc_mulmod_12(point, point, k, 1, heap);
}
if (err == MP_OKAY) {
sp_384_to_bin(point->x, out);
*outLen = 48;
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (k != NULL) {
XFREE(k, heap, DYNAMIC_TYPE_ECC);
}
#endif
sp_384_point_free_12(point, 0, heap);
return err;
}
#endif /* HAVE_ECC_DHE */
#if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
#endif
#if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
#ifdef WOLFSSL_SP_SMALL
/* Sub b from a into a. (a -= b)
*
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_384_sub_in_place_12(sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"mov r7, %[a]\n\t"
"add r7, #48\n\t"
"\n1:\n\t"
"mov r5, #0\n\t"
"sub r5, %[c]\n\t"
"ldr r3, [%[a]]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b]]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a]]\n\t"
"str r4, [%[a], #4]\n\t"
"sbc %[c], %[c]\n\t"
"add %[a], #8\n\t"
"add %[b], #8\n\t"
"cmp %[a], r7\n\t"
"bne 1b\n\t"
: [c] "+r" (c), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r3", "r4", "r5", "r6", "r7"
);
return c;
}
#else
/* Sub b from a into r. (r = a - b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision integer.
*/
SP_NOINLINE static sp_digit sp_384_sub_in_place_12(sp_digit* a,
const sp_digit* b)
{
sp_digit c = 0;
__asm__ __volatile__ (
"ldr r3, [%[a], #0]\n\t"
"ldr r4, [%[a], #4]\n\t"
"ldr r5, [%[b], #0]\n\t"
"ldr r6, [%[b], #4]\n\t"
"sub r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #0]\n\t"
"str r4, [%[a], #4]\n\t"
"ldr r3, [%[a], #8]\n\t"
"ldr r4, [%[a], #12]\n\t"
"ldr r5, [%[b], #8]\n\t"
"ldr r6, [%[b], #12]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #8]\n\t"
"str r4, [%[a], #12]\n\t"
"ldr r3, [%[a], #16]\n\t"
"ldr r4, [%[a], #20]\n\t"
"ldr r5, [%[b], #16]\n\t"
"ldr r6, [%[b], #20]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #16]\n\t"
"str r4, [%[a], #20]\n\t"
"ldr r3, [%[a], #24]\n\t"
"ldr r4, [%[a], #28]\n\t"
"ldr r5, [%[b], #24]\n\t"
"ldr r6, [%[b], #28]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #24]\n\t"
"str r4, [%[a], #28]\n\t"
"ldr r3, [%[a], #32]\n\t"
"ldr r4, [%[a], #36]\n\t"
"ldr r5, [%[b], #32]\n\t"
"ldr r6, [%[b], #36]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #32]\n\t"
"str r4, [%[a], #36]\n\t"
"ldr r3, [%[a], #40]\n\t"
"ldr r4, [%[a], #44]\n\t"
"ldr r5, [%[b], #40]\n\t"
"ldr r6, [%[b], #44]\n\t"
"sbc r3, r5\n\t"
"sbc r4, r6\n\t"
"str r3, [%[a], #40]\n\t"
"str r4, [%[a], #44]\n\t"
"sbc %[c], %[c]\n\t"
: [c] "+r" (c), [a] "+r" (a), [b] "+r" (b)
:
: "memory", "r3", "r4", "r5", "r6"
);
return c;
}
#endif /* WOLFSSL_SP_SMALL */
/* Mul a by digit b into r. (r = a * b)
*
* r A single precision integer.
* a A single precision integer.
* b A single precision digit.
*/
SP_NOINLINE static void sp_384_mul_d_12(sp_digit* r, const sp_digit* a,
sp_digit b)
{
__asm__ __volatile__ (
"mov r6, #48\n\t"
"add r6, %[a]\n\t"
"mov r8, %[r]\n\t"
"mov r9, r6\n\t"
"mov r3, #0\n\t"
"mov r4, #0\n\t"
"1:\n\t"
"mov %[r], #0\n\t"
"mov r5, #0\n\t"
"# A[] * B\n\t"
"ldr r6, [%[a]]\n\t"
"lsl r6, r6, #16\n\t"
"lsl r7, %[b], #16\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r7, r6\n\t"
"add r3, r7\n\t"
"adc r4, %[r]\n\t"
"adc r5, %[r]\n\t"
"lsr r7, %[b], #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"ldr r6, [%[a]]\n\t"
"lsr r6, r6, #16\n\t"
"lsr r7, %[b], #16\n\t"
"mul r7, r6\n\t"
"add r4, r7\n\t"
"adc r5, %[r]\n\t"
"lsl r7, %[b], #16\n\t"
"lsr r7, r7, #16\n\t"
"mul r6, r7\n\t"
"lsr r7, r6, #16\n\t"
"lsl r6, r6, #16\n\t"
"add r3, r6\n\t"
"adc r4, r7\n\t"
"adc r5, %[r]\n\t"
"# A[] * B - Done\n\t"
"mov %[r], r8\n\t"
"str r3, [%[r]]\n\t"
"mov r3, r4\n\t"
"mov r4, r5\n\t"
"add %[r], #4\n\t"
"add %[a], #4\n\t"
"mov r8, %[r]\n\t"
"cmp %[a], r9\n\t"
"blt 1b\n\t"
"str r3, [%[r]]\n\t"
: [r] "+r" (r), [a] "+r" (a)
: [b] "r" (b)
: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9"
);
}
/* Divide the double width number (d1|d0) by the dividend. (d1|d0 / div)
*
* d1 The high order half of the number to divide.
* d0 The low order half of the number to divide.
* div The dividend.
* returns the result of the division.
*
* Note that this is an approximate div. It may give an answer 1 larger.
*/
SP_NOINLINE static sp_digit div_384_word_12(sp_digit d1, sp_digit d0,
sp_digit div)
{
sp_digit r = 0;
__asm__ __volatile__ (
"lsr r5, %[div], #1\n\t"
"add r5, #1\n\t"
"mov r8, %[d0]\n\t"
"mov r9, %[d1]\n\t"
"# Do top 32\n\t"
"mov r6, r5\n\t"
"sub r6, %[d1]\n\t"
"sbc r6, r6\n\t"
"add %[r], %[r]\n\t"
"sub %[r], r6\n\t"
"and r6, r5\n\t"
"sub %[d1], r6\n\t"
"# Next 30 bits\n\t"
"mov r4, #29\n\t"
"1:\n\t"
"lsl %[d0], %[d0], #1\n\t"
"adc %[d1], %[d1]\n\t"
"mov r6, r5\n\t"
"sub r6, %[d1]\n\t"
"sbc r6, r6\n\t"
"add %[r], %[r]\n\t"
"sub %[r], r6\n\t"
"and r6, r5\n\t"
"sub %[d1], r6\n\t"
"sub r4, #1\n\t"
"bpl 1b\n\t"
"mov r7, #0\n\t"
"add %[r], %[r]\n\t"
"add %[r], #1\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"sub %[d1], r4\n\t"
"mov r4, %[d1]\n\t"
"mov %[d1], r9\n\t"
"sbc %[d1], r5\n\t"
"mov r5, %[d1]\n\t"
"add %[r], r5\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"mov r6, r9\n\t"
"sub r4, %[d1], r4\n\t"
"sbc r6, r5\n\t"
"mov r5, r6\n\t"
"add %[r], r5\n\t"
"# r * div - Start\n\t"
"lsl %[d1], %[r], #16\n\t"
"lsl r4, %[div], #16\n\t"
"lsr %[d1], %[d1], #16\n\t"
"lsr r4, r4, #16\n\t"
"mul r4, %[d1]\n\t"
"lsr r6, %[div], #16\n\t"
"mul %[d1], r6\n\t"
"lsr r5, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r7\n\t"
"lsr %[d1], %[r], #16\n\t"
"mul r6, %[d1]\n\t"
"add r5, r6\n\t"
"lsl r6, %[div], #16\n\t"
"lsr r6, r6, #16\n\t"
"mul %[d1], r6\n\t"
"lsr r6, %[d1], #16\n\t"
"lsl %[d1], %[d1], #16\n\t"
"add r4, %[d1]\n\t"
"adc r5, r6\n\t"
"# r * div - Done\n\t"
"mov %[d1], r8\n\t"
"mov r6, r9\n\t"
"sub r4, %[d1], r4\n\t"
"sbc r6, r5\n\t"
"mov r5, r6\n\t"
"add %[r], r5\n\t"
"mov r6, %[div]\n\t"
"sub r6, r4\n\t"
"sbc r6, r6\n\t"
"sub %[r], r6\n\t"
: [r] "+r" (r)
: [d1] "r" (d1), [d0] "r" (d0), [div] "r" (div)
: "r4", "r5", "r7", "r6", "r8", "r9"
);
return r;
}
/* AND m into each word of a and store in r.
*
* r A single precision integer.
* a A single precision integer.
* m Mask to AND against each digit.
*/
static void sp_384_mask_12(sp_digit* r, const sp_digit* a, sp_digit m)
{
#ifdef WOLFSSL_SP_SMALL
int i;
for (i=0; i<12; i++) {
r[i] = a[i] & m;
}
#else
r[0] = a[0] & m;
r[1] = a[1] & m;
r[2] = a[2] & m;
r[3] = a[3] & m;
r[4] = a[4] & m;
r[5] = a[5] & m;
r[6] = a[6] & m;
r[7] = a[7] & m;
r[8] = a[8] & m;
r[9] = a[9] & m;
r[10] = a[10] & m;
r[11] = a[11] & m;
#endif
}
/* Divide d in a and put remainder into r (m*d + r = a)
* m is not calculated as it is not needed at this time.
*
* a Nmber to be divided.
* d Number to divide with.
* m Multiplier result.
* r Remainder from the division.
* returns MP_OKAY indicating success.
*/
static WC_INLINE int sp_384_div_12(const sp_digit* a, const sp_digit* d, sp_digit* m,
sp_digit* r)
{
sp_digit t1[24], t2[13];
sp_digit div, r1;
int i;
(void)m;
div = d[11];
XMEMCPY(t1, a, sizeof(*t1) * 2 * 12);
for (i=11; i>=0; i--) {
r1 = div_384_word_12(t1[12 + i], t1[12 + i - 1], div);
sp_384_mul_d_12(t2, d, r1);
t1[12 + i] += sp_384_sub_in_place_12(&t1[i], t2);
t1[12 + i] -= t2[12];
sp_384_mask_12(t2, d, t1[12 + i]);
t1[12 + i] += sp_384_add_12(&t1[i], &t1[i], t2);
sp_384_mask_12(t2, d, t1[12 + i]);
t1[12 + i] += sp_384_add_12(&t1[i], &t1[i], t2);
}
r1 = sp_384_cmp_12(t1, d) >= 0;
sp_384_cond_sub_12(r, t1, d, (sp_digit)0 - r1);
return MP_OKAY;
}
/* Reduce a modulo m into r. (r = a mod m)
*
* r A single precision number that is the reduced result.
* a A single precision number that is to be reduced.
* m A single precision number that is the modulus to reduce with.
* returns MP_OKAY indicating success.
*/
static WC_INLINE int sp_384_mod_12(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
return sp_384_div_12(a, m, NULL, r);
}
#endif
#if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
#ifdef WOLFSSL_SP_SMALL
/* Order-2 for the P384 curve. */
static const uint32_t p384_order_minus_2[12] = {
0xccc52971U,0xecec196aU,0x48b0a77aU,0x581a0db2U,0xf4372ddfU,0xc7634d81U,
0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU
};
#else
/* The low half of the order-2 of the P384 curve. */
static const uint32_t p384_order_low[6] = {
0xccc52971U,0xecec196aU,0x48b0a77aU,0x581a0db2U,0xf4372ddfU,0xc7634d81U
};
#endif /* WOLFSSL_SP_SMALL */
/* Multiply two number mod the order of P384 curve. (r = a * b mod order)
*
* r Result of the multiplication.
* a First operand of the multiplication.
* b Second operand of the multiplication.
*/
static void sp_384_mont_mul_order_12(sp_digit* r, const sp_digit* a, const sp_digit* b)
{
sp_384_mul_12(r, a, b);
sp_384_mont_reduce_order_12(r, p384_order, p384_mp_order);
}
/* Square number mod the order of P384 curve. (r = a * a mod order)
*
* r Result of the squaring.
* a Number to square.
*/
static void sp_384_mont_sqr_order_12(sp_digit* r, const sp_digit* a)
{
sp_384_sqr_12(r, a);
sp_384_mont_reduce_order_12(r, p384_order, p384_mp_order);
}
#ifndef WOLFSSL_SP_SMALL
/* Square number mod the order of P384 curve a number of times.
* (r = a ^ n mod order)
*
* r Result of the squaring.
* a Number to square.
*/
static void sp_384_mont_sqr_n_order_12(sp_digit* r, const sp_digit* a, int n)
{
int i;
sp_384_mont_sqr_order_12(r, a);
for (i=1; i<n; i++) {
sp_384_mont_sqr_order_12(r, r);
}
}
#endif /* !WOLFSSL_SP_SMALL */
/* Invert the number, in Montgomery form, modulo the order of the P384 curve.
* (r = 1 / a mod order)
*
* r Inverse result.
* a Number to invert.
* td Temporary data.
*/
static void sp_384_mont_inv_order_12(sp_digit* r, const sp_digit* a,
sp_digit* td)
{
#ifdef WOLFSSL_SP_SMALL
sp_digit* t = td;
int i;
XMEMCPY(t, a, sizeof(sp_digit) * 12);
for (i=382; i>=0; i--) {
sp_384_mont_sqr_order_12(t, t);
if ((p384_order_minus_2[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
sp_384_mont_mul_order_12(t, t, a);
}
}
XMEMCPY(r, t, sizeof(sp_digit) * 12U);
#else
sp_digit* t = td;
sp_digit* t2 = td + 2 * 12;
sp_digit* t3 = td + 4 * 12;
int i;
/* t = a^2 */
sp_384_mont_sqr_order_12(t, a);
/* t = a^3 = t * a */
sp_384_mont_mul_order_12(t, t, a);
/* t2= a^c = t ^ 2 ^ 2 */
sp_384_mont_sqr_n_order_12(t2, t, 2);
/* t = a^f = t2 * t */
sp_384_mont_mul_order_12(t, t2, t);
/* t2= a^f0 = t ^ 2 ^ 4 */
sp_384_mont_sqr_n_order_12(t2, t, 4);
/* t = a^ff = t2 * t */
sp_384_mont_mul_order_12(t, t2, t);
/* t2= a^ff00 = t ^ 2 ^ 8 */
sp_384_mont_sqr_n_order_12(t2, t, 8);
/* t3= a^ffff = t2 * t */
sp_384_mont_mul_order_12(t3, t2, t);
/* t2= a^ffff0000 = t3 ^ 2 ^ 16 */
sp_384_mont_sqr_n_order_12(t2, t3, 16);
/* t = a^ffffffff = t2 * t3 */
sp_384_mont_mul_order_12(t, t2, t3);
/* t2= a^ffffffff0000 = t ^ 2 ^ 16 */
sp_384_mont_sqr_n_order_12(t2, t, 16);
/* t = a^ffffffffffff = t2 * t3 */
sp_384_mont_mul_order_12(t, t2, t3);
/* t2= a^ffffffffffff000000000000 = t ^ 2 ^ 48 */
sp_384_mont_sqr_n_order_12(t2, t, 48);
/* t= a^fffffffffffffffffffffffff = t2 * t */
sp_384_mont_mul_order_12(t, t2, t);
/* t2= a^ffffffffffffffffffffffff000000000000000000000000 */
sp_384_mont_sqr_n_order_12(t2, t, 96);
/* t2= a^ffffffffffffffffffffffffffffffffffffffffffffffff = t2 * t */
sp_384_mont_mul_order_12(t2, t2, t);
for (i=191; i>=1; i--) {
sp_384_mont_sqr_order_12(t2, t2);
if (((sp_digit)p384_order_low[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
sp_384_mont_mul_order_12(t2, t2, a);
}
}
sp_384_mont_sqr_order_12(t2, t2);
sp_384_mont_mul_order_12(r, t2, a);
#endif /* WOLFSSL_SP_SMALL */
}
#endif /* HAVE_ECC_SIGN || HAVE_ECC_VERIFY */
#ifdef HAVE_ECC_SIGN
#ifndef SP_ECC_MAX_SIG_GEN
#define SP_ECC_MAX_SIG_GEN 64
#endif
/* Sign the hash using the private key.
* e = [hash, 384 bits] from binary
* r = (k.G)->x mod order
* s = (r * x + e) / k mod order
* The hash is truncated to the first 384 bits.
*
* hash Hash to sign.
* hashLen Length of the hash data.
* rng Random number generator.
* priv Private part of key - scalar.
* rm First part of result as an mp_int.
* sm Sirst part of result as an mp_int.
* heap Heap to use for allocation.
* returns RNG failures, MEMORY_E when memory allocation fails and
* MP_OKAY on success.
*/
int sp_ecc_sign_384(const byte* hash, word32 hashLen, WC_RNG* rng, mp_int* priv,
mp_int* rm, mp_int* sm, mp_int* km, void* heap)
{
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
sp_digit* d = NULL;
#else
sp_digit ed[2*12];
sp_digit xd[2*12];
sp_digit kd[2*12];
sp_digit rd[2*12];
sp_digit td[3 * 2*12];
sp_point_384 p;
#endif
sp_digit* e = NULL;
sp_digit* x = NULL;
sp_digit* k = NULL;
sp_digit* r = NULL;
sp_digit* tmp = NULL;
sp_point_384* point = NULL;
sp_digit carry;
sp_digit* s = NULL;
sp_digit* kInv = NULL;
int err = MP_OKAY;
int32_t c;
int i;
(void)heap;
err = sp_384_point_new_12(heap, p, point);
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 7 * 2 * 12, heap,
DYNAMIC_TYPE_ECC);
if (d == NULL) {
err = MEMORY_E;
}
}
#endif
if (err == MP_OKAY) {
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
e = d + 0 * 12;
x = d + 2 * 12;
k = d + 4 * 12;
r = d + 6 * 12;
tmp = d + 8 * 12;
#else
e = ed;
x = xd;
k = kd;
r = rd;
tmp = td;
#endif
s = e;
kInv = k;
if (hashLen > 48U) {
hashLen = 48U;
}
sp_384_from_bin(e, 12, hash, (int)hashLen);
}
for (i = SP_ECC_MAX_SIG_GEN; err == MP_OKAY && i > 0; i--) {
sp_384_from_mp(x, 12, priv);
/* New random point. */
if (km == NULL || mp_iszero(km)) {
err = sp_384_ecc_gen_k_12(rng, k);
}
else {
sp_384_from_mp(k, 12, km);
mp_zero(km);
}
if (err == MP_OKAY) {
err = sp_384_ecc_mulmod_base_12(point, k, 1, NULL);
}
if (err == MP_OKAY) {
/* r = point->x mod order */
XMEMCPY(r, point->x, sizeof(sp_digit) * 12U);
sp_384_norm_12(r);
c = sp_384_cmp_12(r, p384_order);
sp_384_cond_sub_12(r, r, p384_order, 0L - (sp_digit)(c >= 0));
sp_384_norm_12(r);
/* Conv k to Montgomery form (mod order) */
sp_384_mul_12(k, k, p384_norm_order);
err = sp_384_mod_12(k, k, p384_order);
}
if (err == MP_OKAY) {
sp_384_norm_12(k);
/* kInv = 1/k mod order */
sp_384_mont_inv_order_12(kInv, k, tmp);
sp_384_norm_12(kInv);
/* s = r * x + e */
sp_384_mul_12(x, x, r);
err = sp_384_mod_12(x, x, p384_order);
}
if (err == MP_OKAY) {
sp_384_norm_12(x);
carry = sp_384_add_12(s, e, x);
sp_384_cond_sub_12(s, s, p384_order, 0 - carry);
sp_384_norm_12(s);
c = sp_384_cmp_12(s, p384_order);
sp_384_cond_sub_12(s, s, p384_order, 0L - (sp_digit)(c >= 0));
sp_384_norm_12(s);
/* s = s * k^-1 mod order */
sp_384_mont_mul_order_12(s, s, kInv);
sp_384_norm_12(s);
/* Check that signature is usable. */
if (sp_384_iszero_12(s) == 0) {
break;
}
}
}
if (i == 0) {
err = RNG_FAILURE_E;
}
if (err == MP_OKAY) {
err = sp_384_to_mp(r, rm);
}
if (err == MP_OKAY) {
err = sp_384_to_mp(s, sm);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (d != NULL) {
XMEMSET(d, 0, sizeof(sp_digit) * 8 * 12);
XFREE(d, heap, DYNAMIC_TYPE_ECC);
}
#else
XMEMSET(e, 0, sizeof(sp_digit) * 2U * 12U);
XMEMSET(x, 0, sizeof(sp_digit) * 2U * 12U);
XMEMSET(k, 0, sizeof(sp_digit) * 2U * 12U);
XMEMSET(r, 0, sizeof(sp_digit) * 2U * 12U);
XMEMSET(r, 0, sizeof(sp_digit) * 2U * 12U);
XMEMSET(tmp, 0, sizeof(sp_digit) * 3U * 2U * 12U);
#endif
sp_384_point_free_12(point, 1, heap);
return err;
}
#endif /* HAVE_ECC_SIGN */
#ifdef HAVE_ECC_VERIFY
/* Verify the signature values with the hash and public key.
* e = Truncate(hash, 384)
* u1 = e/s mod order
* u2 = r/s mod order
* r == (u1.G + u2.Q)->x mod order
* Optimization: Leave point in projective form.
* (x, y, 1) == (x' / z'*z', y' / z'*z'*z', z' / z')
* (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x'
* The hash is truncated to the first 384 bits.
*
* hash Hash to sign.
* hashLen Length of the hash data.
* rng Random number generator.
* priv Private part of key - scalar.
* rm First part of result as an mp_int.
* sm Sirst part of result as an mp_int.
* heap Heap to use for allocation.
* returns RNG failures, MEMORY_E when memory allocation fails and
* MP_OKAY on success.
*/
int sp_ecc_verify_384(const byte* hash, word32 hashLen, mp_int* pX,
mp_int* pY, mp_int* pZ, mp_int* r, mp_int* sm, int* res, void* heap)
{
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
sp_digit* d = NULL;
#else
sp_digit u1d[2*12];
sp_digit u2d[2*12];
sp_digit sd[2*12];
sp_digit tmpd[2*12 * 5];
sp_point_384 p1d;
sp_point_384 p2d;
#endif
sp_digit* u1 = NULL;
sp_digit* u2 = NULL;
sp_digit* s = NULL;
sp_digit* tmp = NULL;
sp_point_384* p1;
sp_point_384* p2 = NULL;
sp_digit carry;
int32_t c;
int err;
err = sp_384_point_new_12(heap, p1d, p1);
if (err == MP_OKAY) {
err = sp_384_point_new_12(heap, p2d, p2);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 16 * 12, heap,
DYNAMIC_TYPE_ECC);
if (d == NULL) {
err = MEMORY_E;
}
}
#endif
if (err == MP_OKAY) {
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
u1 = d + 0 * 12;
u2 = d + 2 * 12;
s = d + 4 * 12;
tmp = d + 6 * 12;
#else
u1 = u1d;
u2 = u2d;
s = sd;
tmp = tmpd;
#endif
if (hashLen > 48U) {
hashLen = 48U;
}
sp_384_from_bin(u1, 12, hash, (int)hashLen);
sp_384_from_mp(u2, 12, r);
sp_384_from_mp(s, 12, sm);
sp_384_from_mp(p2->x, 12, pX);
sp_384_from_mp(p2->y, 12, pY);
sp_384_from_mp(p2->z, 12, pZ);
{
sp_384_mul_12(s, s, p384_norm_order);
}
err = sp_384_mod_12(s, s, p384_order);
}
if (err == MP_OKAY) {
sp_384_norm_12(s);
{
sp_384_mont_inv_order_12(s, s, tmp);
sp_384_mont_mul_order_12(u1, u1, s);
sp_384_mont_mul_order_12(u2, u2, s);
}
err = sp_384_ecc_mulmod_base_12(p1, u1, 0, heap);
}
if (err == MP_OKAY) {
err = sp_384_ecc_mulmod_12(p2, p2, u2, 0, heap);
}
if (err == MP_OKAY) {
{
sp_384_proj_point_add_12(p1, p1, p2, tmp);
if (sp_384_iszero_12(p1->z)) {
if (sp_384_iszero_12(p1->x) && sp_384_iszero_12(p1->y)) {
sp_384_proj_point_dbl_12(p1, p2, tmp);
}
else {
/* Y ordinate is not used from here - don't set. */
p1->x[0] = 0;
p1->x[1] = 0;
p1->x[2] = 0;
p1->x[3] = 0;
p1->x[4] = 0;
p1->x[5] = 0;
p1->x[6] = 0;
p1->x[7] = 0;
p1->x[8] = 0;
p1->x[9] = 0;
p1->x[10] = 0;
p1->x[11] = 0;
XMEMCPY(p1->z, p384_norm_mod, sizeof(p384_norm_mod));
}
}
}
/* (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x' */
/* Reload r and convert to Montgomery form. */
sp_384_from_mp(u2, 12, r);
err = sp_384_mod_mul_norm_12(u2, u2, p384_mod);
}
if (err == MP_OKAY) {
/* u1 = r.z'.z' mod prime */
sp_384_mont_sqr_12(p1->z, p1->z, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(u1, u2, p1->z, p384_mod, p384_mp_mod);
*res = (int)(sp_384_cmp_12(p1->x, u1) == 0);
if (*res == 0) {
/* Reload r and add order. */
sp_384_from_mp(u2, 12, r);
carry = sp_384_add_12(u2, u2, p384_order);
/* Carry means result is greater than mod and is not valid. */
if (carry == 0) {
sp_384_norm_12(u2);
/* Compare with mod and if greater or equal then not valid. */
c = sp_384_cmp_12(u2, p384_mod);
if (c < 0) {
/* Convert to Montogomery form */
err = sp_384_mod_mul_norm_12(u2, u2, p384_mod);
if (err == MP_OKAY) {
/* u1 = (r + 1*order).z'.z' mod prime */
sp_384_mont_mul_12(u1, u2, p1->z, p384_mod,
p384_mp_mod);
*res = (int)(sp_384_cmp_12(p1->x, u1) == 0);
}
}
}
}
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (d != NULL)
XFREE(d, heap, DYNAMIC_TYPE_ECC);
#endif
sp_384_point_free_12(p1, 0, heap);
sp_384_point_free_12(p2, 0, heap);
return err;
}
#endif /* HAVE_ECC_VERIFY */
#ifdef HAVE_ECC_CHECK_KEY
/* Check that the x and y oridinates are a valid point on the curve.
*
* point EC point.
* heap Heap to use if dynamically allocating.
* returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
* not on the curve and MP_OKAY otherwise.
*/
static int sp_384_ecc_is_point_12(sp_point_384* point, void* heap)
{
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
sp_digit* d = NULL;
#else
sp_digit t1d[2*12];
sp_digit t2d[2*12];
#endif
sp_digit* t1;
sp_digit* t2;
int err = MP_OKAY;
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 12 * 4, heap, DYNAMIC_TYPE_ECC);
if (d == NULL) {
err = MEMORY_E;
}
#endif
if (err == MP_OKAY) {
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
t1 = d + 0 * 12;
t2 = d + 2 * 12;
#else
(void)heap;
t1 = t1d;
t2 = t2d;
#endif
sp_384_sqr_12(t1, point->y);
(void)sp_384_mod_12(t1, t1, p384_mod);
sp_384_sqr_12(t2, point->x);
(void)sp_384_mod_12(t2, t2, p384_mod);
sp_384_mul_12(t2, t2, point->x);
(void)sp_384_mod_12(t2, t2, p384_mod);
(void)sp_384_sub_12(t2, p384_mod, t2);
sp_384_mont_add_12(t1, t1, t2, p384_mod);
sp_384_mont_add_12(t1, t1, point->x, p384_mod);
sp_384_mont_add_12(t1, t1, point->x, p384_mod);
sp_384_mont_add_12(t1, t1, point->x, p384_mod);
if (sp_384_cmp_12(t1, p384_b) != 0) {
err = MP_VAL;
}
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (d != NULL) {
XFREE(d, heap, DYNAMIC_TYPE_ECC);
}
#endif
return err;
}
/* Check that the x and y oridinates are a valid point on the curve.
*
* pX X ordinate of EC point.
* pY Y ordinate of EC point.
* returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
* not on the curve and MP_OKAY otherwise.
*/
int sp_ecc_is_point_384(mp_int* pX, mp_int* pY)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_point_384 pubd;
#endif
sp_point_384* pub;
byte one[1] = { 1 };
int err;
err = sp_384_point_new_12(NULL, pubd, pub);
if (err == MP_OKAY) {
sp_384_from_mp(pub->x, 12, pX);
sp_384_from_mp(pub->y, 12, pY);
sp_384_from_bin(pub->z, 12, one, (int)sizeof(one));
err = sp_384_ecc_is_point_12(pub, NULL);
}
sp_384_point_free_12(pub, 0, NULL);
return err;
}
/* Check that the private scalar generates the EC point (px, py), the point is
* on the curve and the point has the correct order.
*
* pX X ordinate of EC point.
* pY Y ordinate of EC point.
* privm Private scalar that generates EC point.
* returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
* not on the curve, ECC_INF_E if the point does not have the correct order,
* ECC_PRIV_KEY_E when the private scalar doesn't generate the EC point and
* MP_OKAY otherwise.
*/
int sp_ecc_check_key_384(mp_int* pX, mp_int* pY, mp_int* privm, void* heap)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_digit privd[12];
sp_point_384 pubd;
sp_point_384 pd;
#endif
sp_digit* priv = NULL;
sp_point_384* pub;
sp_point_384* p = NULL;
byte one[1] = { 1 };
int err;
err = sp_384_point_new_12(heap, pubd, pub);
if (err == MP_OKAY) {
err = sp_384_point_new_12(heap, pd, p);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
priv = (sp_digit*)XMALLOC(sizeof(sp_digit) * 12, heap,
DYNAMIC_TYPE_ECC);
if (priv == NULL) {
err = MEMORY_E;
}
}
#endif
if (err == MP_OKAY) {
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
priv = privd;
#endif
sp_384_from_mp(pub->x, 12, pX);
sp_384_from_mp(pub->y, 12, pY);
sp_384_from_bin(pub->z, 12, one, (int)sizeof(one));
sp_384_from_mp(priv, 12, privm);
/* Check point at infinitiy. */
if ((sp_384_iszero_12(pub->x) != 0) &&
(sp_384_iszero_12(pub->y) != 0)) {
err = ECC_INF_E;
}
}
if (err == MP_OKAY) {
/* Check range of X and Y */
if (sp_384_cmp_12(pub->x, p384_mod) >= 0 ||
sp_384_cmp_12(pub->y, p384_mod) >= 0) {
err = ECC_OUT_OF_RANGE_E;
}
}
if (err == MP_OKAY) {
/* Check point is on curve */
err = sp_384_ecc_is_point_12(pub, heap);
}
if (err == MP_OKAY) {
/* Point * order = infinity */
err = sp_384_ecc_mulmod_12(p, pub, p384_order, 1, heap);
}
if (err == MP_OKAY) {
/* Check result is infinity */
if ((sp_384_iszero_12(p->x) == 0) ||
(sp_384_iszero_12(p->y) == 0)) {
err = ECC_INF_E;
}
}
if (err == MP_OKAY) {
/* Base * private = point */
err = sp_384_ecc_mulmod_base_12(p, priv, 1, heap);
}
if (err == MP_OKAY) {
/* Check result is public key */
if (sp_384_cmp_12(p->x, pub->x) != 0 ||
sp_384_cmp_12(p->y, pub->y) != 0) {
err = ECC_PRIV_KEY_E;
}
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (priv != NULL) {
XFREE(priv, heap, DYNAMIC_TYPE_ECC);
}
#endif
sp_384_point_free_12(p, 0, heap);
sp_384_point_free_12(pub, 0, heap);
return err;
}
#endif
#ifdef WOLFSSL_PUBLIC_ECC_ADD_DBL
/* Add two projective EC points together.
* (pX, pY, pZ) + (qX, qY, qZ) = (rX, rY, rZ)
*
* pX First EC point's X ordinate.
* pY First EC point's Y ordinate.
* pZ First EC point's Z ordinate.
* qX Second EC point's X ordinate.
* qY Second EC point's Y ordinate.
* qZ Second EC point's Z ordinate.
* rX Resultant EC point's X ordinate.
* rY Resultant EC point's Y ordinate.
* rZ Resultant EC point's Z ordinate.
* returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
*/
int sp_ecc_proj_add_point_384(mp_int* pX, mp_int* pY, mp_int* pZ,
mp_int* qX, mp_int* qY, mp_int* qZ,
mp_int* rX, mp_int* rY, mp_int* rZ)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_digit tmpd[2 * 12 * 5];
sp_point_384 pd;
sp_point_384 qd;
#endif
sp_digit* tmp;
sp_point_384* p;
sp_point_384* q = NULL;
int err;
err = sp_384_point_new_12(NULL, pd, p);
if (err == MP_OKAY) {
err = sp_384_point_new_12(NULL, qd, q);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 12 * 5, NULL,
DYNAMIC_TYPE_ECC);
if (tmp == NULL) {
err = MEMORY_E;
}
}
#else
tmp = tmpd;
#endif
if (err == MP_OKAY) {
sp_384_from_mp(p->x, 12, pX);
sp_384_from_mp(p->y, 12, pY);
sp_384_from_mp(p->z, 12, pZ);
sp_384_from_mp(q->x, 12, qX);
sp_384_from_mp(q->y, 12, qY);
sp_384_from_mp(q->z, 12, qZ);
sp_384_proj_point_add_12(p, p, q, tmp);
}
if (err == MP_OKAY) {
err = sp_384_to_mp(p->x, rX);
}
if (err == MP_OKAY) {
err = sp_384_to_mp(p->y, rY);
}
if (err == MP_OKAY) {
err = sp_384_to_mp(p->z, rZ);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (tmp != NULL) {
XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
}
#endif
sp_384_point_free_12(q, 0, NULL);
sp_384_point_free_12(p, 0, NULL);
return err;
}
/* Double a projective EC point.
* (pX, pY, pZ) + (pX, pY, pZ) = (rX, rY, rZ)
*
* pX EC point's X ordinate.
* pY EC point's Y ordinate.
* pZ EC point's Z ordinate.
* rX Resultant EC point's X ordinate.
* rY Resultant EC point's Y ordinate.
* rZ Resultant EC point's Z ordinate.
* returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
*/
int sp_ecc_proj_dbl_point_384(mp_int* pX, mp_int* pY, mp_int* pZ,
mp_int* rX, mp_int* rY, mp_int* rZ)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_digit tmpd[2 * 12 * 2];
sp_point_384 pd;
#endif
sp_digit* tmp;
sp_point_384* p;
int err;
err = sp_384_point_new_12(NULL, pd, p);
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 12 * 2, NULL,
DYNAMIC_TYPE_ECC);
if (tmp == NULL) {
err = MEMORY_E;
}
}
#else
tmp = tmpd;
#endif
if (err == MP_OKAY) {
sp_384_from_mp(p->x, 12, pX);
sp_384_from_mp(p->y, 12, pY);
sp_384_from_mp(p->z, 12, pZ);
sp_384_proj_point_dbl_12(p, p, tmp);
}
if (err == MP_OKAY) {
err = sp_384_to_mp(p->x, rX);
}
if (err == MP_OKAY) {
err = sp_384_to_mp(p->y, rY);
}
if (err == MP_OKAY) {
err = sp_384_to_mp(p->z, rZ);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (tmp != NULL) {
XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
}
#endif
sp_384_point_free_12(p, 0, NULL);
return err;
}
/* Map a projective EC point to affine in place.
* pZ will be one.
*
* pX EC point's X ordinate.
* pY EC point's Y ordinate.
* pZ EC point's Z ordinate.
* returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
*/
int sp_ecc_map_384(mp_int* pX, mp_int* pY, mp_int* pZ)
{
#if (!defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK)) || defined(WOLFSSL_SP_NO_MALLOC)
sp_digit tmpd[2 * 12 * 6];
sp_point_384 pd;
#endif
sp_digit* tmp;
sp_point_384* p;
int err;
err = sp_384_point_new_12(NULL, pd, p);
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (err == MP_OKAY) {
tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 12 * 6, NULL,
DYNAMIC_TYPE_ECC);
if (tmp == NULL) {
err = MEMORY_E;
}
}
#else
tmp = tmpd;
#endif
if (err == MP_OKAY) {
sp_384_from_mp(p->x, 12, pX);
sp_384_from_mp(p->y, 12, pY);
sp_384_from_mp(p->z, 12, pZ);
sp_384_map_12(p, p, tmp);
}
if (err == MP_OKAY) {
err = sp_384_to_mp(p->x, pX);
}
if (err == MP_OKAY) {
err = sp_384_to_mp(p->y, pY);
}
if (err == MP_OKAY) {
err = sp_384_to_mp(p->z, pZ);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (tmp != NULL) {
XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
}
#endif
sp_384_point_free_12(p, 0, NULL);
return err;
}
#endif /* WOLFSSL_PUBLIC_ECC_ADD_DBL */
#ifdef HAVE_COMP_KEY
/* Find the square root of a number mod the prime of the curve.
*
* y The number to operate on and the result.
* returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
*/
static int sp_384_mont_sqrt_12(sp_digit* y)
{
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
sp_digit* d;
#else
sp_digit t1d[2 * 12];
sp_digit t2d[2 * 12];
sp_digit t3d[2 * 12];
sp_digit t4d[2 * 12];
sp_digit t5d[2 * 12];
#endif
sp_digit* t1;
sp_digit* t2;
sp_digit* t3;
sp_digit* t4;
sp_digit* t5;
int err = MP_OKAY;
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 5 * 2 * 12, NULL, DYNAMIC_TYPE_ECC);
if (d == NULL) {
err = MEMORY_E;
}
#endif
if (err == MP_OKAY) {
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
t1 = d + 0 * 12;
t2 = d + 2 * 12;
t3 = d + 4 * 12;
t4 = d + 6 * 12;
t5 = d + 8 * 12;
#else
t1 = t1d;
t2 = t2d;
t3 = t3d;
t4 = t4d;
t5 = t5d;
#endif
{
/* t2 = y ^ 0x2 */
sp_384_mont_sqr_12(t2, y, p384_mod, p384_mp_mod);
/* t1 = y ^ 0x3 */
sp_384_mont_mul_12(t1, t2, y, p384_mod, p384_mp_mod);
/* t5 = y ^ 0xc */
sp_384_mont_sqr_n_12(t5, t1, 2, p384_mod, p384_mp_mod);
/* t1 = y ^ 0xf */
sp_384_mont_mul_12(t1, t1, t5, p384_mod, p384_mp_mod);
/* t2 = y ^ 0x1e */
sp_384_mont_sqr_12(t2, t1, p384_mod, p384_mp_mod);
/* t3 = y ^ 0x1f */
sp_384_mont_mul_12(t3, t2, y, p384_mod, p384_mp_mod);
/* t2 = y ^ 0x3e0 */
sp_384_mont_sqr_n_12(t2, t3, 5, p384_mod, p384_mp_mod);
/* t1 = y ^ 0x3ff */
sp_384_mont_mul_12(t1, t3, t2, p384_mod, p384_mp_mod);
/* t2 = y ^ 0x7fe0 */
sp_384_mont_sqr_n_12(t2, t1, 5, p384_mod, p384_mp_mod);
/* t3 = y ^ 0x7fff */
sp_384_mont_mul_12(t3, t3, t2, p384_mod, p384_mp_mod);
/* t2 = y ^ 0x3fff800 */
sp_384_mont_sqr_n_12(t2, t3, 15, p384_mod, p384_mp_mod);
/* t4 = y ^ 0x3ffffff */
sp_384_mont_mul_12(t4, t3, t2, p384_mod, p384_mp_mod);
/* t2 = y ^ 0xffffffc000000 */
sp_384_mont_sqr_n_12(t2, t4, 30, p384_mod, p384_mp_mod);
/* t1 = y ^ 0xfffffffffffff */
sp_384_mont_mul_12(t1, t4, t2, p384_mod, p384_mp_mod);
/* t2 = y ^ 0xfffffffffffffff000000000000000 */
sp_384_mont_sqr_n_12(t2, t1, 60, p384_mod, p384_mp_mod);
/* t1 = y ^ 0xffffffffffffffffffffffffffffff */
sp_384_mont_mul_12(t1, t1, t2, p384_mod, p384_mp_mod);
/* t2 = y ^ 0xffffffffffffffffffffffffffffff000000000000000000000000000000 */
sp_384_mont_sqr_n_12(t2, t1, 120, p384_mod, p384_mp_mod);
/* t1 = y ^ 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff */
sp_384_mont_mul_12(t1, t1, t2, p384_mod, p384_mp_mod);
/* t2 = y ^ 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8000 */
sp_384_mont_sqr_n_12(t2, t1, 15, p384_mod, p384_mp_mod);
/* t1 = y ^ 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff */
sp_384_mont_mul_12(t1, t3, t2, p384_mod, p384_mp_mod);
/* t2 = y ^ 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff80000000 */
sp_384_mont_sqr_n_12(t2, t1, 31, p384_mod, p384_mp_mod);
/* t1 = y ^ 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffffff */
sp_384_mont_mul_12(t1, t4, t2, p384_mod, p384_mp_mod);
/* t2 = y ^ 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffffff0 */
sp_384_mont_sqr_n_12(t2, t1, 4, p384_mod, p384_mp_mod);
/* t1 = y ^ 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffffffc */
sp_384_mont_mul_12(t1, t5, t2, p384_mod, p384_mp_mod);
/* t2 = y ^ 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000 */
sp_384_mont_sqr_n_12(t2, t1, 62, p384_mod, p384_mp_mod);
/* t1 = y ^ 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000001 */
sp_384_mont_mul_12(t1, y, t2, p384_mod, p384_mp_mod);
/* t2 = y ^ 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffffffc00000000000000040000000 */
sp_384_mont_sqr_n_12(y, t1, 30, p384_mod, p384_mp_mod);
}
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (d != NULL) {
XFREE(d, NULL, DYNAMIC_TYPE_ECC);
}
#endif
return err;
}
/* Uncompress the point given the X ordinate.
*
* xm X ordinate.
* odd Whether the Y ordinate is odd.
* ym Calculated Y ordinate.
* returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
*/
int sp_ecc_uncompress_384(mp_int* xm, int odd, mp_int* ym)
{
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
sp_digit* d;
#else
sp_digit xd[2 * 12];
sp_digit yd[2 * 12];
#endif
sp_digit* x = NULL;
sp_digit* y = NULL;
int err = MP_OKAY;
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 4 * 12, NULL, DYNAMIC_TYPE_ECC);
if (d == NULL) {
err = MEMORY_E;
}
#endif
if (err == MP_OKAY) {
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
x = d + 0 * 12;
y = d + 2 * 12;
#else
x = xd;
y = yd;
#endif
sp_384_from_mp(x, 12, xm);
err = sp_384_mod_mul_norm_12(x, x, p384_mod);
}
if (err == MP_OKAY) {
/* y = x^3 */
{
sp_384_mont_sqr_12(y, x, p384_mod, p384_mp_mod);
sp_384_mont_mul_12(y, y, x, p384_mod, p384_mp_mod);
}
/* y = x^3 - 3x */
sp_384_mont_sub_12(y, y, x, p384_mod);
sp_384_mont_sub_12(y, y, x, p384_mod);
sp_384_mont_sub_12(y, y, x, p384_mod);
/* y = x^3 - 3x + b */
err = sp_384_mod_mul_norm_12(x, p384_b, p384_mod);
}
if (err == MP_OKAY) {
sp_384_mont_add_12(y, y, x, p384_mod);
/* y = sqrt(x^3 - 3x + b) */
err = sp_384_mont_sqrt_12(y);
}
if (err == MP_OKAY) {
XMEMSET(y + 12, 0, 12U * sizeof(sp_digit));
sp_384_mont_reduce_12(y, p384_mod, p384_mp_mod);
if ((((word32)y[0] ^ (word32)odd) & 1U) != 0U) {
sp_384_mont_sub_12(y, p384_mod, y, p384_mod);
}
err = sp_384_to_mp(y, ym);
}
#if (defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK)) && !defined(WOLFSSL_SP_NO_MALLOC)
if (d != NULL) {
XFREE(d, NULL, DYNAMIC_TYPE_ECC);
}
#endif
return err;
}
#endif
#endif /* WOLFSSL_SP_384 */
#endif /* WOLFSSL_HAVE_SP_ECC */
#endif /* WOLFSSL_SP_ARM_THUMB_ASM */
#endif /* WOLFSSL_HAVE_SP_RSA || WOLFSSL_HAVE_SP_DH || WOLFSSL_HAVE_SP_ECC */