Files
wolfssl/wolfcrypt/src/asn.c
toddouska e17a16a45a Merge pull request #1600 from dgarske/lighttpd
Changes to support Lighttpd 1.4.49
2018-07-02 16:18:41 -07:00

13641 lines
388 KiB
C

/* asn.c
*
* Copyright (C) 2006-2017 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
/*
ASN Options:
* NO_ASN_TIME: Disables time parts of the ASN code for systems without an RTC
or wishing to save space.
* IGNORE_NAME_CONSTRAINTS: Skip ASN name checks.
* ASN_DUMP_OID: Allows dump of OID information for debugging.
* RSA_DECODE_EXTRA: Decodes extra information in RSA public key.
* WOLFSSL_CERT_GEN: Cert generation. Saves extra certificate info in GetName.
* WOLFSSL_NO_ASN_STRICT: Disable strict RFC compliance checks to
restore 3.13.0 behavior.
* WOLFSSL_NO_OCSP_OPTIONAL_CERTS: Skip optional OCSP certs (responder issuer
must still be trusted)
* WOLFSSL_NO_TRUSTED_CERTS_VERIFY: Workaround for situation where entire cert
chain is not loaded. This only matches on subject and public key and
does not perform a PKI validation, so it is not a secure solution.
Only enabled for OCSP.
* WOLFSSL_NO_OCSP_ISSUER_CHECK: Can be defined for backwards compatibility to
disable checking of OCSP subject hash with issuer hash.
* WOLFSSL_ALT_CERT_CHAINS: Allows matching multiple CA's to validate
chain based on issuer and public key (includes signature confirmation)
*/
#ifndef NO_ASN
#include <wolfssl/wolfcrypt/asn.h>
#include <wolfssl/wolfcrypt/coding.h>
#include <wolfssl/wolfcrypt/md2.h>
#include <wolfssl/wolfcrypt/hmac.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
#include <wolfssl/wolfcrypt/pwdbased.h>
#include <wolfssl/wolfcrypt/des3.h>
#include <wolfssl/wolfcrypt/aes.h>
#include <wolfssl/wolfcrypt/wc_encrypt.h>
#include <wolfssl/wolfcrypt/logging.h>
#include <wolfssl/wolfcrypt/random.h>
#include <wolfssl/wolfcrypt/hash.h>
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
#ifndef NO_PWDBASED
#include <wolfssl/wolfcrypt/aes.h>
#endif
#ifndef NO_RC4
#include <wolfssl/wolfcrypt/arc4.h>
#endif
#ifdef HAVE_NTRU
#include "libntruencrypt/ntru_crypto.h"
#endif
#if defined(WOLFSSL_SHA512) || defined(WOLFSSL_SHA384)
#include <wolfssl/wolfcrypt/sha512.h>
#endif
#ifndef NO_SHA256
#include <wolfssl/wolfcrypt/sha256.h>
#endif
#ifdef HAVE_ECC
#include <wolfssl/wolfcrypt/ecc.h>
#endif
#ifdef HAVE_ED25519
#include <wolfssl/wolfcrypt/ed25519.h>
#endif
#ifndef NO_RSA
#include <wolfssl/wolfcrypt/rsa.h>
#endif
#ifdef WOLFSSL_DEBUG_ENCODING
#if defined(FREESCALE_MQX) || defined(FREESCALE_KSDK_MQX)
#if MQX_USE_IO_OLD
#include <fio.h>
#else
#include <nio.h>
#endif
#else
#include <stdio.h>
#endif
#endif
#ifdef _MSC_VER
/* 4996 warning to use MS extensions e.g., strcpy_s instead of XSTRNCPY */
#pragma warning(disable: 4996)
#endif
#define ERROR_OUT(err, eLabel) { ret = (err); goto eLabel; }
WOLFSSL_LOCAL int GetLength(const byte* input, word32* inOutIdx, int* len,
word32 maxIdx)
{
int length = 0;
word32 idx = *inOutIdx;
byte b;
*len = 0; /* default length */
if ((idx + 1) > maxIdx) { /* for first read */
WOLFSSL_MSG("GetLength bad index on input");
return BUFFER_E;
}
b = input[idx++];
if (b >= ASN_LONG_LENGTH) {
word32 bytes = b & 0x7F;
if ((idx + bytes) > maxIdx) { /* for reading bytes */
WOLFSSL_MSG("GetLength bad long length");
return BUFFER_E;
}
while (bytes--) {
b = input[idx++];
length = (length << 8) | b;
}
}
else
length = b;
if ((idx + length) > maxIdx) { /* for user of length */
WOLFSSL_MSG("GetLength value exceeds buffer length");
return BUFFER_E;
}
*inOutIdx = idx;
if (length > 0)
*len = length;
return length;
}
/* Get the DER/BER encoding of an ASN.1 header.
*
* input Buffer holding DER/BER encoded data.
* tag ASN.1 tag value expected in header.
* inOutIdx Current index into buffer to parse.
* len The number of bytes in the ASN.1 data.
* maxIdx Length of data in buffer.
* returns BUFFER_E when there is not enough data to parse.
* ASN_PARSE_E when the expected tag is not found or length is invalid.
* Otherwise, the number of bytes in the ASN.1 data.
*/
static int GetASNHeader(const byte* input, byte tag, word32* inOutIdx, int* len,
word32 maxIdx)
{
word32 idx = *inOutIdx;
byte b;
int length;
if ((idx + 1) > maxIdx)
return BUFFER_E;
b = input[idx++];
if (b != tag)
return ASN_PARSE_E;
if (GetLength(input, &idx, &length, maxIdx) < 0)
return ASN_PARSE_E;
*len = length;
*inOutIdx = idx;
return length;
}
WOLFSSL_LOCAL int GetSequence(const byte* input, word32* inOutIdx, int* len,
word32 maxIdx)
{
return GetASNHeader(input, ASN_SEQUENCE | ASN_CONSTRUCTED, inOutIdx, len,
maxIdx);
}
WOLFSSL_LOCAL int GetSet(const byte* input, word32* inOutIdx, int* len,
word32 maxIdx)
{
return GetASNHeader(input, ASN_SET | ASN_CONSTRUCTED, inOutIdx, len,
maxIdx);
}
/* Get the DER/BER encoded ASN.1 NULL element.
* Ensure that the all fields are as expected and move index past the element.
*
* input Buffer holding DER/BER encoded data.
* inOutIdx Current index into buffer to parse.
* maxIdx Length of data in buffer.
* returns BUFFER_E when there is not enough data to parse.
* ASN_TAG_NULL_E when the NULL tag is not found.
* ASN_EXPECT_0_E when the length is not zero.
* Otherwise, 0 to indicate success.
*/
static int GetASNNull(const byte* input, word32* inOutIdx, word32 maxIdx)
{
word32 idx = *inOutIdx;
byte b;
if ((idx + 2) > maxIdx)
return BUFFER_E;
b = input[idx++];
if (b != ASN_TAG_NULL)
return ASN_TAG_NULL_E;
if (input[idx++] != 0)
return ASN_EXPECT_0_E;
*inOutIdx = idx;
return 0;
}
/* Set the DER/BER encoding of the ASN.1 NULL element.
*
* output Buffer to write into.
* returns the number of bytes added to the buffer.
*/
static int SetASNNull(byte* output)
{
output[0] = ASN_TAG_NULL;
output[1] = 0;
return 2;
}
/* Get the DER/BER encoding of an ASN.1 BOOLEAN.
*
* input Buffer holding DER/BER encoded data.
* inOutIdx Current index into buffer to parse.
* maxIdx Length of data in buffer.
* returns BUFFER_E when there is not enough data to parse.
* ASN_PARSE_E when the BOOLEAN tag is not found or length is not 1.
* Otherwise, 0 to indicate the value was false and 1 to indicate true.
*/
static int GetBoolean(const byte* input, word32* inOutIdx, word32 maxIdx)
{
word32 idx = *inOutIdx;
byte b;
if ((idx + 3) > maxIdx)
return BUFFER_E;
b = input[idx++];
if (b != ASN_BOOLEAN)
return ASN_PARSE_E;
if (input[idx++] != 1)
return ASN_PARSE_E;
b = input[idx++] != 0;
*inOutIdx = idx;
return b;
}
#ifdef ASN1_SET_BOOLEAN
/* Set the DER/BER encoding of the ASN.1 NULL element.
* Note: Function not required as yet.
*
* val Boolean value to encode.
* output Buffer to write into.
* returns the number of bytes added to the buffer.
*/
static int SetBoolean(int val, byte* output)
{
output[0] = ASN_BOOLEAN;
output[1] = 1;
output[2] = val ? -1 : 0;
return 3;
}
#endif
/* Get the DER/BER encoding of an ASN.1 OCTET_STRING header.
*
* input Buffer holding DER/BER encoded data.
* inOutIdx Current index into buffer to parse.
* len The number of bytes in the ASN.1 data.
* maxIdx Length of data in buffer.
* returns BUFFER_E when there is not enough data to parse.
* ASN_PARSE_E when the OCTET_STRING tag is not found or length is
* invalid.
* Otherwise, the number of bytes in the ASN.1 data.
*/
static int GetOctetString(const byte* input, word32* inOutIdx, int* len,
word32 maxIdx)
{
return GetASNHeader(input, ASN_OCTET_STRING, inOutIdx, len, maxIdx);
}
/* Get the DER/BER encoding of an ASN.1 INTEGER header.
* Removes the leading zero byte when found.
*
* input Buffer holding DER/BER encoded data.
* inOutIdx Current index into buffer to parse.
* len The number of bytes in the ASN.1 data (excluding any leading zero).
* maxIdx Length of data in buffer.
* returns BUFFER_E when there is not enough data to parse.
* ASN_PARSE_E when the INTEGER tag is not found, length is invalid,
* or invalid use of or missing leading zero.
* Otherwise, 0 to indicate success.
*/
static int GetASNInt(const byte* input, word32* inOutIdx, int* len,
word32 maxIdx)
{
int ret;
ret = GetASNHeader(input, ASN_INTEGER, inOutIdx, len, maxIdx);
if (ret < 0)
return ret;
if (*len > 0) {
/* remove leading zero, unless there is only one 0x00 byte */
if ((input[*inOutIdx] == 0x00) && (*len > 1)) {
(*inOutIdx)++;
(*len)--;
if (*len > 0 && (input[*inOutIdx] & 0x80) == 0)
return ASN_PARSE_E;
}
}
return 0;
}
/* Get the DER/BER encoding of an ASN.1 INTEGER that has a value of no more than
* 7 bits.
*
* input Buffer holding DER/BER encoded data.
* inOutIdx Current index into buffer to parse.
* maxIdx Length of data in buffer.
* returns BUFFER_E when there is not enough data to parse.
* ASN_PARSE_E when the INTEGER tag is not found or length is invalid.
* Otherwise, the 7-bit value.
*/
static int GetInteger7Bit(const byte* input, word32* inOutIdx, word32 maxIdx)
{
word32 idx = *inOutIdx;
byte b;
if ((idx + 3) > maxIdx)
return BUFFER_E;
if (input[idx++] != ASN_INTEGER)
return ASN_PARSE_E;
if (input[idx++] != 1)
return ASN_PARSE_E;
b = input[idx++];
*inOutIdx = idx;
return b;
}
#if !defined(NO_DSA) && !defined(NO_SHA)
static char sigSha1wDsaName[] = "SHAwDSA";
#endif /* NO_DSA */
#ifndef NO_RSA
#ifdef WOLFSSL_MD2
static char sigMd2wRsaName[] = "MD2wRSA";
#endif
#ifndef NO_MD5
static char sigMd5wRsaName[] = "MD5wRSA";
#endif
#ifndef NO_SHA
static char sigSha1wRsaName[] = "SHAwRSA";
#endif
#ifdef WOLFSSL_SHA224
static char sigSha224wRsaName[] = "SHA224wRSA";
#endif
#ifndef NO_SHA256
static char sigSha256wRsaName[] = "SHA256wRSA";
#endif
#ifdef WOLFSSL_SHA384
static char sigSha384wRsaName[] = "SHA384wRSA";
#endif
#ifdef WOLFSSL_SHA512
static char sigSha512wRsaName[] = "SHA512wRSA";
#endif
#endif /* NO_RSA */
#ifdef HAVE_ECC
#ifndef NO_SHA
static char sigSha1wEcdsaName[] = "SHAwECDSA";
#endif
#ifdef WOLFSSL_SHA224
static char sigSha224wEcdsaName[] = "SHA224wECDSA";
#endif
#ifndef NO_SHA256
static char sigSha256wEcdsaName[] = "SHA256wECDSA";
#endif
#ifdef WOLFSSL_SHA384
static char sigSha384wEcdsaName[] = "SHA384wECDSA";
#endif
#ifdef WOLFSSL_SHA512
static char sigSha512wEcdsaName[] = "SHA512wECDSA";
#endif
#endif /* HAVE_ECC */
static char sigUnknownName[] = "Unknown";
/* Get the human readable string for a signature type
*
* oid Oid value for signature
*/
char* GetSigName(int oid) {
switch (oid) {
#if !defined(NO_DSA) && !defined(NO_SHA)
case CTC_SHAwDSA:
return sigSha1wDsaName;
#endif /* NO_DSA && NO_SHA */
#ifndef NO_RSA
#ifdef WOLFSSL_MD2
case CTC_MD2wRSA:
return sigMd2wRsaName;
#endif
#ifndef NO_MD5
case CTC_MD5wRSA:
return sigMd5wRsaName;
#endif
#ifndef NO_SHA
case CTC_SHAwRSA:
return sigSha1wRsaName;
#endif
#ifdef WOLFSSL_SHA224
case CTC_SHA224wRSA:
return sigSha224wRsaName;
#endif
#ifndef NO_SHA256
case CTC_SHA256wRSA:
return sigSha256wRsaName;
#endif
#ifdef WOLFSSL_SHA384
case CTC_SHA384wRSA:
return sigSha384wRsaName;
#endif
#ifdef WOLFSSL_SHA512
case CTC_SHA512wRSA:
return sigSha512wRsaName;
#endif
#endif /* NO_RSA */
#ifdef HAVE_ECC
#ifndef NO_SHA
case CTC_SHAwECDSA:
return sigSha1wEcdsaName;
#endif
#ifdef WOLFSSL_SHA224
case CTC_SHA224wECDSA:
return sigSha224wEcdsaName;
#endif
#ifndef NO_SHA256
case CTC_SHA256wECDSA:
return sigSha256wEcdsaName;
#endif
#ifdef WOLFSSL_SHA384
case CTC_SHA384wECDSA:
return sigSha384wEcdsaName;
#endif
#ifdef WOLFSSL_SHA512
case CTC_SHA512wECDSA:
return sigSha512wEcdsaName;
#endif
#endif /* HAVE_ECC */
default:
return sigUnknownName;
}
}
#if !defined(NO_DSA) || defined(HAVE_ECC) || \
(!defined(NO_RSA) && \
(defined(WOLFSSL_CERT_GEN) || \
((defined(WOLFSSL_KEY_GEN) || defined(OPENSSL_EXTRA)) && !defined(HAVE_USER_RSA))))
/* Set the DER/BER encoding of the ASN.1 INTEGER header.
*
* len Length of data to encode.
* firstByte First byte of data, most significant byte of integer, to encode.
* output Buffer to write into.
* returns the number of bytes added to the buffer.
*/
static int SetASNInt(int len, byte firstByte, byte* output)
{
word32 idx = 0;
output[idx++] = ASN_INTEGER;
if (firstByte & 0x80)
len++;
idx += SetLength(len, output + idx);
if (firstByte & 0x80)
output[idx++] = 0x00;
return idx;
}
#endif
#if !defined(NO_DSA) || defined(HAVE_ECC) || defined(WOLFSSL_CERT_GEN) || \
((defined(WOLFSSL_KEY_GEN) || defined(OPENSSL_EXTRA)) && !defined(NO_RSA) && !defined(HAVE_USER_RSA))
/* Set the DER/BER encoding of the ASN.1 INTEGER element with an mp_int.
* The number is assumed to be positive.
*
* n Multi-precision integer to encode.
* maxSz Maximum size of the encoded integer.
* A negative value indicates no check of length requested.
* output Buffer to write into.
* returns BUFFER_E when the data is too long for the buffer.
* MP_TO_E when encoding the integer fails.
* Otherwise, the number of bytes added to the buffer.
*/
static int SetASNIntMP(mp_int* n, int maxSz, byte* output)
{
int idx = 0;
int leadingBit;
int length;
int err;
leadingBit = mp_leading_bit(n);
length = mp_unsigned_bin_size(n);
idx = SetASNInt(length, leadingBit ? 0x80 : 0x00, output);
if (maxSz >= 0 && (idx + length) > maxSz)
return BUFFER_E;
err = mp_to_unsigned_bin(n, output + idx);
if (err != MP_OKAY)
return MP_TO_E;
idx += length;
return idx;
}
#endif
#if !defined(NO_RSA) && defined(HAVE_USER_RSA) && defined(WOLFSSL_CERT_GEN)
/* Set the DER/BER encoding of the ASN.1 INTEGER element with an mp_int from
* an RSA key.
* The number is assumed to be positive.
*
* n Multi-precision integer to encode.
* output Buffer to write into.
* returns BUFFER_E when the data is too long for the buffer.
* MP_TO_E when encoding the integer fails.
* Otherwise, the number of bytes added to the buffer.
*/
static int SetASNIntRSA(mp_int* n, byte* output)
{
int idx = 0;
int leadingBit;
int length;
int err;
leadingBit = wc_Rsa_leading_bit(n);
length = wc_Rsa_unsigned_bin_size(n);
idx = SetASNInt(length, leadingBit ? 0x80 : 0x00, output);
if ((idx + length) > MAX_RSA_INT_SZ)
return BUFFER_E;
err = wc_Rsa_to_unsigned_bin(n, output + idx, length);
if (err != MP_OKAY)
return MP_TO_E;
idx += length;
return idx;
}
#endif /* !NO_RSA && HAVE_USER_RSA && WOLFSSL_CERT_GEN */
/* Windows header clash for WinCE using GetVersion */
WOLFSSL_LOCAL int GetMyVersion(const byte* input, word32* inOutIdx,
int* version, word32 maxIdx)
{
word32 idx = *inOutIdx;
if ((idx + MIN_VERSION_SZ) > maxIdx)
return ASN_PARSE_E;
if (input[idx++] != ASN_INTEGER)
return ASN_PARSE_E;
if (input[idx++] != 0x01)
return ASN_VERSION_E;
*version = input[idx++];
*inOutIdx = idx;
return *version;
}
#ifndef NO_PWDBASED
/* Get small count integer, 32 bits or less */
int GetShortInt(const byte* input, word32* inOutIdx, int* number, word32 maxIdx)
{
word32 idx = *inOutIdx;
word32 len;
*number = 0;
/* check for type and length bytes */
if ((idx + 2) > maxIdx)
return BUFFER_E;
if (input[idx++] != ASN_INTEGER)
return ASN_PARSE_E;
len = input[idx++];
if (len > 4)
return ASN_PARSE_E;
if (len + idx > maxIdx)
return ASN_PARSE_E;
while (len--) {
*number = *number << 8 | input[idx++];
}
*inOutIdx = idx;
return *number;
}
/* Set small integer, 32 bits or less. DER encoding with no leading 0s
* returns total amount written including ASN tag and length byte on success */
static int SetShortInt(byte* input, word32* inOutIdx, word32 number,
word32 maxIdx)
{
word32 idx = *inOutIdx;
word32 len = 0;
int i;
byte ar[MAX_LENGTH_SZ];
/* check for room for type and length bytes */
if ((idx + 2) > maxIdx)
return BUFFER_E;
input[idx++] = ASN_INTEGER;
idx++; /* place holder for length byte */
if (MAX_LENGTH_SZ + idx > maxIdx)
return ASN_PARSE_E;
/* find first non zero byte */
XMEMSET(ar, 0, MAX_LENGTH_SZ);
c32toa(number, ar);
for (i = 0; i < MAX_LENGTH_SZ; i++) {
if (ar[i] != 0) {
break;
}
}
/* handle case of 0 */
if (i == MAX_LENGTH_SZ) {
input[idx++] = 0; len++;
}
for (; i < MAX_LENGTH_SZ && idx < maxIdx; i++) {
input[idx++] = ar[i]; len++;
}
/* jump back to beginning of input buffer using unaltered inOutIdx value
* and set number of bytes for integer, then update the index value */
input[*inOutIdx + 1] = (byte)len;
*inOutIdx = idx;
return len + 2; /* size of integer bytes plus ASN TAG and length byte */
}
#endif /* !NO_PWDBASED */
/* May not have one, not an error */
static int GetExplicitVersion(const byte* input, word32* inOutIdx, int* version,
word32 maxIdx)
{
word32 idx = *inOutIdx;
WOLFSSL_ENTER("GetExplicitVersion");
if ((idx + 1) > maxIdx)
return BUFFER_E;
if (input[idx++] == (ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED)) {
*inOutIdx = ++idx; /* skip header */
return GetMyVersion(input, inOutIdx, version, maxIdx);
}
/* go back as is */
*version = 0;
return 0;
}
int GetInt(mp_int* mpi, const byte* input, word32* inOutIdx, word32 maxIdx)
{
word32 idx = *inOutIdx;
int ret;
int length;
ret = GetASNInt(input, &idx, &length, maxIdx);
if (ret != 0)
return ret;
if (mp_init(mpi) != MP_OKAY)
return MP_INIT_E;
if (mp_read_unsigned_bin(mpi, (byte*)input + idx, length) != 0) {
mp_clear(mpi);
return ASN_GETINT_E;
}
#ifdef HAVE_WOLF_BIGINT
if (wc_bigint_from_unsigned_bin(&mpi->raw, input + idx, length) != 0) {
mp_clear(mpi);
return ASN_GETINT_E;
}
#endif /* HAVE_WOLF_BIGINT */
*inOutIdx = idx + length;
return 0;
}
static int CheckBitString(const byte* input, word32* inOutIdx, int* len,
word32 maxIdx, int zeroBits, byte* unusedBits)
{
word32 idx = *inOutIdx;
int length;
byte b;
if ((idx + 1) > maxIdx)
return BUFFER_E;
if (input[idx++] != ASN_BIT_STRING)
return ASN_BITSTR_E;
if (GetLength(input, &idx, &length, maxIdx) < 0)
return ASN_PARSE_E;
/* extra sanity check that length is greater than 0 */
if (length <= 0) {
WOLFSSL_MSG("Error length was 0 in CheckBitString");
return BUFFER_E;
}
if (idx + 1 > maxIdx) {
WOLFSSL_MSG("Attempted buffer read larger than input buffer");
return BUFFER_E;
}
b = input[idx];
if (zeroBits && b != 0x00)
return ASN_EXPECT_0_E;
if (b >= 0x08)
return ASN_PARSE_E;
if (b != 0) {
if ((byte)(input[idx + length - 1] << (8 - b)) != 0)
return ASN_PARSE_E;
}
idx++;
length--; /* length has been checked for greater than 0 */
*inOutIdx = idx;
if (len != NULL)
*len = length;
if (unusedBits != NULL)
*unusedBits = b;
return 0;
}
/* RSA (with CertGen or KeyGen) OR ECC OR ED25519 (with CertGen or KeyGen) */
#if (!defined(NO_RSA) && !defined(HAVE_USER_RSA) && \
(defined(WOLFSSL_CERT_GEN) || defined(WOLFSSL_KEY_GEN) || defined(OPENSSL_EXTRA))) || \
defined(HAVE_ECC) || \
(defined(HAVE_ED25519) && \
(defined(WOLFSSL_CERT_GEN) || defined(WOLFSSL_KEY_GEN) || defined(OPENSSL_EXTRA)))
/* Set the DER/BER encoding of the ASN.1 BIT_STRING header.
*
* len Length of data to encode.
* unusedBits The number of unused bits in the last byte of data.
* That is, the number of least significant zero bits before a one.
* The last byte is the most-significant non-zero byte of a number.
* output Buffer to write into.
* returns the number of bytes added to the buffer.
*/
static word32 SetBitString(word32 len, byte unusedBits, byte* output)
{
word32 idx = 0;
output[idx++] = ASN_BIT_STRING;
idx += SetLength(len + 1, output + idx);
output[idx++] = unusedBits;
return idx;
}
#endif /* !NO_RSA || HAVE_ECC || HAVE_ED25519 */
#ifdef ASN_BER_TO_DER
/* Convert a BER encoding with indefinite length items to DER.
*
* ber BER encoded data.
* berSz Length of BER encoded data.
* der Buffer to hold DER encoded version of data.
* NULL indicates only the length is required.
* derSz The size of the buffer to hold the DER encoded data.
* Will be set if der is NULL, otherwise the value is checked as der is
* filled.
* returns ASN_PARSE_E if the BER data is invalid and BAD_FUNC_ARG if ber or
* derSz are NULL.
*/
int wc_BerToDer(const byte* ber, word32 berSz, byte* der, word32* derSz)
{
int ret;
word32 i, j, k;
int len, l;
int indef;
int depth = 0;
byte type;
word32 cnt, sz;
word32 outSz;
byte lenBytes[4];
if (ber == NULL || derSz == NULL)
return BAD_FUNC_ARG;
outSz = *derSz;
for (i = 0, j = 0; i < berSz; ) {
/* Check that there is data for an ASN item to parse. */
if (i + 2 > berSz)
return ASN_PARSE_E;
/* End Of Content (EOC) mark end of indefinite length items.
* EOCs are not encoded in DER.
* Keep track of no. indefinite length items that have not been
* terminated in depth.
*/
if (ber[i] == 0 && ber[i+1] == 0) {
if (depth == 0)
break;
if (--depth == 0)
break;
i += 2;
continue;
}
/* Indefinite length is encoded as: 0x80 */
type = ber[i];
indef = ber[i+1] == ASN_INDEF_LENGTH;
if (indef && (type & 0xC0) == 0 &&
ber[i] != (ASN_SEQUENCE | ASN_CONSTRUCTED) &&
ber[i] != (ASN_SET | ASN_CONSTRUCTED)) {
/* Indefinite length OCTET STRING or other simple type.
* Put all the data into one entry.
*/
/* Type no longer constructed. */
type &= ~ASN_CONSTRUCTED;
if (der != NULL) {
/* Ensure space for type. */
if (j + 1 >= outSz)
return BUFFER_E;
der[j] = type;
}
i++; j++;
/* Skip indefinite length. */
i++;
/* There must be further ASN1 items to combine. */
if (i + 2 > berSz)
return ASN_PARSE_E;
/* Calculate length of combined data. */
len = 0;
k = i;
while (ber[k] != 0x00) {
/* Each ASN item must be the same type as the constructed. */
if (ber[k] != type)
return ASN_PARSE_E;
k++;
ret = GetLength(ber, &k, &l, berSz);
if (ret < 0)
return ASN_PARSE_E;
k += l;
len += l;
/* Must at least have terminating EOC. */
if (k + 2 > berSz)
return ASN_PARSE_E;
}
/* Ensure a valid EOC ASN item. */
if (ber[k+1] != 0x00)
return ASN_PARSE_E;
if (der == NULL) {
/* Add length of ASN item length encoding and data. */
j += SetLength(len, lenBytes);
j += len;
}
else {
/* Check space for encoded length. */
if (SetLength(len, lenBytes) > outSz - j)
return BUFFER_E;
/* Encode new length. */
j += SetLength(len, der + j);
/* Encode data in single item. */
k = i;
while (ber[k] != 0x00) {
/* Skip ASN type. */
k++;
/* Find length of data in ASN item. */
ret = GetLength(ber, &k, &l, berSz);
if (ret < 0)
return ASN_PARSE_E;
/* Ensure space for data and copy in. */
if (j + l > outSz)
return BUFFER_E;
XMEMCPY(der + j, ber + k, l);
k += l; j += l;
}
}
/* Continue conversion after EOC. */
i = k + 2;
continue;
}
if (der != NULL) {
/* Ensure space for type and at least one byte of length. */
if (j + 1 >= outSz)
return BUFFER_E;
/* Put in type. */
der[j] = ber[i];
}
i++; j++;
if (indef) {
/* Skip indefinite length. */
i++;
/* Calculate the size of the data inside constructed. */
ret = wc_BerToDer(ber + i, berSz - i, NULL, &sz);
if (ret != LENGTH_ONLY_E)
return ret;
if (der != NULL) {
/* Ensure space for encoded length. */
if (SetLength(sz, lenBytes) > outSz - j)
return BUFFER_E;
/* Encode real length. */
j += SetLength(sz, der + j);
}
else {
/* Add size of encoded length. */
j += SetLength(sz, lenBytes);
}
/* Another EOC to find. */
depth++;
}
else {
/* Get the size of the encode length and length value. */
cnt = i;
ret = GetLength(ber, &cnt, &len, berSz);
if (ret < 0)
return ASN_PARSE_E;
cnt -= i;
/* Check there is enough data to copy out. */
if (i + cnt + len > berSz)
return ASN_PARSE_E;
if (der != NULL) {
/* Ensure space in DER buffer. */
if (j + cnt + len > outSz)
return BUFFER_E;
/* Copy length and data into DER buffer. */
XMEMCPY(der + j, ber + i, cnt + len);
}
/* Continue conversion after this ASN item. */
i += cnt + len;
j += cnt + len;
}
}
if (depth >= 1)
return ASN_PARSE_E;
/* Return length if no buffer to write to. */
if (der == NULL) {
*derSz = j;
return LENGTH_ONLY_E;
}
return 0;
}
#endif
#if defined(WOLFSSL_CERT_GEN) || defined(WOLFSSL_KEY_GEN)
#if (!defined(NO_RSA) && !defined(HAVE_USER_RSA)) || \
defined(HAVE_ECC) || defined(HAVE_ED25519)
#ifdef WOLFSSL_CERT_EXT
/* Set the DER/BER encoding of the ASN.1 BIT_STRING with a 16-bit value.
*
* val 16-bit value to encode.
* output Buffer to write into.
* returns the number of bytes added to the buffer.
*/
static word32 SetBitString16Bit(word16 val, byte* output)
{
word32 idx;
int len;
byte lastByte;
byte unusedBits = 0;
if ((val >> 8) != 0) {
len = 2;
lastByte = (byte)(val >> 8);
}
else {
len = 1;
lastByte = (byte)val;
}
while (((lastByte >> unusedBits) & 0x01) == 0x00)
unusedBits++;
idx = SetBitString(len, unusedBits, output);
output[idx++] = (byte)val;
if (len > 1)
output[idx++] = (byte)(val >> 8);
return idx;
}
#endif /* WOLFSSL_CERT_EXT */
#endif /* !NO_RSA || HAVE_ECC || HAVE_ED25519 */
#endif /* WOLFSSL_CERT_GEN || WOLFSSL_KEY_GEN */
/* hashType */
#ifdef WOLFSSL_MD2
static const byte hashMd2hOid[] = {42, 134, 72, 134, 247, 13, 2, 2};
#endif
#ifndef NO_MD5
static const byte hashMd5hOid[] = {42, 134, 72, 134, 247, 13, 2, 5};
#endif
#ifndef NO_SHA
static const byte hashSha1hOid[] = {43, 14, 3, 2, 26};
#endif
#ifdef WOLFSSL_SHA224
static const byte hashSha224hOid[] = {96, 134, 72, 1, 101, 3, 4, 2, 4};
#endif
#ifndef NO_SHA256
static const byte hashSha256hOid[] = {96, 134, 72, 1, 101, 3, 4, 2, 1};
#endif
#ifdef WOLFSSL_SHA384
static const byte hashSha384hOid[] = {96, 134, 72, 1, 101, 3, 4, 2, 2};
#endif
#ifdef WOLFSSL_SHA512
static const byte hashSha512hOid[] = {96, 134, 72, 1, 101, 3, 4, 2, 3};
#endif
/* hmacType */
#ifndef NO_HMAC
#ifdef WOLFSSL_SHA224
static const byte hmacSha224Oid[] = {42, 134, 72, 134, 247, 13, 2, 8};
#endif
#ifndef NO_SHA256
static const byte hmacSha256Oid[] = {42, 134, 72, 134, 247, 13, 2, 9};
#endif
#ifdef WOLFSSL_SHA384
static const byte hmacSha384Oid[] = {42, 134, 72, 134, 247, 13, 2, 10};
#endif
#ifdef WOLFSSL_SHA512
static const byte hmacSha512Oid[] = {42, 134, 72, 134, 247, 13, 2, 11};
#endif
#endif
/* sigType */
#if !defined(NO_DSA) && !defined(NO_SHA)
static const byte sigSha1wDsaOid[] = {42, 134, 72, 206, 56, 4, 3};
#endif /* NO_DSA */
#ifndef NO_RSA
#ifdef WOLFSSL_MD2
static const byte sigMd2wRsaOid[] = {42, 134, 72, 134, 247, 13, 1, 1, 2};
#endif
#ifndef NO_MD5
static const byte sigMd5wRsaOid[] = {42, 134, 72, 134, 247, 13, 1, 1, 4};
#endif
#ifndef NO_SHA
static const byte sigSha1wRsaOid[] = {42, 134, 72, 134, 247, 13, 1, 1, 5};
#endif
#ifdef WOLFSSL_SHA224
static const byte sigSha224wRsaOid[] = {42, 134, 72, 134, 247, 13, 1, 1,14};
#endif
#ifndef NO_SHA256
static const byte sigSha256wRsaOid[] = {42, 134, 72, 134, 247, 13, 1, 1,11};
#endif
#ifdef WOLFSSL_SHA384
static const byte sigSha384wRsaOid[] = {42, 134, 72, 134, 247, 13, 1, 1,12};
#endif
#ifdef WOLFSSL_SHA512
static const byte sigSha512wRsaOid[] = {42, 134, 72, 134, 247, 13, 1, 1,13};
#endif
#endif /* NO_RSA */
#ifdef HAVE_ECC
#ifndef NO_SHA
static const byte sigSha1wEcdsaOid[] = {42, 134, 72, 206, 61, 4, 1};
#endif
#ifdef WOLFSSL_SHA224
static const byte sigSha224wEcdsaOid[] = {42, 134, 72, 206, 61, 4, 3, 1};
#endif
#ifndef NO_SHA256
static const byte sigSha256wEcdsaOid[] = {42, 134, 72, 206, 61, 4, 3, 2};
#endif
#ifdef WOLFSSL_SHA384
static const byte sigSha384wEcdsaOid[] = {42, 134, 72, 206, 61, 4, 3, 3};
#endif
#ifdef WOLFSSL_SHA512
static const byte sigSha512wEcdsaOid[] = {42, 134, 72, 206, 61, 4, 3, 4};
#endif
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
static const byte sigEd25519Oid[] = {43, 101, 112};
#endif /* HAVE_ED25519 */
/* keyType */
#ifndef NO_DSA
static const byte keyDsaOid[] = {42, 134, 72, 206, 56, 4, 1};
#endif /* NO_DSA */
#ifndef NO_RSA
static const byte keyRsaOid[] = {42, 134, 72, 134, 247, 13, 1, 1, 1};
#endif /* NO_RSA */
#ifdef HAVE_NTRU
static const byte keyNtruOid[] = {43, 6, 1, 4, 1, 193, 22, 1, 1, 1, 1};
#endif /* HAVE_NTRU */
#ifdef HAVE_ECC
static const byte keyEcdsaOid[] = {42, 134, 72, 206, 61, 2, 1};
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
static const byte keyEd25519Oid[] = {43, 101, 112};
#endif /* HAVE_ED25519 */
/* curveType */
#ifdef HAVE_ECC
/* See "ecc_sets" table in ecc.c */
#endif /* HAVE_ECC */
#ifdef HAVE_AES_CBC
/* blkType */
#ifdef WOLFSSL_AES_128
static const byte blkAes128CbcOid[] = {96, 134, 72, 1, 101, 3, 4, 1, 2};
#endif
#ifdef WOLFSSL_AES_192
static const byte blkAes192CbcOid[] = {96, 134, 72, 1, 101, 3, 4, 1, 22};
#endif
#ifdef WOLFSSL_AES_256
static const byte blkAes256CbcOid[] = {96, 134, 72, 1, 101, 3, 4, 1, 42};
#endif
#endif /* HAVE_AES_CBC */
#ifndef NO_DES3
static const byte blkDesCbcOid[] = {43, 14, 3, 2, 7};
static const byte blkDes3CbcOid[] = {42, 134, 72, 134, 247, 13, 3, 7};
#endif
/* keyWrapType */
#ifdef WOLFSSL_AES_128
static const byte wrapAes128Oid[] = {96, 134, 72, 1, 101, 3, 4, 1, 5};
#endif
#ifdef WOLFSSL_AES_192
static const byte wrapAes192Oid[] = {96, 134, 72, 1, 101, 3, 4, 1, 25};
#endif
#ifdef WOLFSSL_AES_256
static const byte wrapAes256Oid[] = {96, 134, 72, 1, 101, 3, 4, 1, 45};
#endif
/* cmsKeyAgreeType */
#ifndef NO_SHA
static const byte dhSinglePass_stdDH_sha1kdf_Oid[] =
{43, 129, 5, 16, 134, 72, 63, 0, 2};
#endif
#ifdef WOLFSSL_SHA224
static const byte dhSinglePass_stdDH_sha224kdf_Oid[] = {43, 129, 4, 1, 11, 0};
#endif
#ifndef NO_SHA256
static const byte dhSinglePass_stdDH_sha256kdf_Oid[] = {43, 129, 4, 1, 11, 1};
#endif
#ifdef WOLFSSL_SHA384
static const byte dhSinglePass_stdDH_sha384kdf_Oid[] = {43, 129, 4, 1, 11, 2};
#endif
#ifdef WOLFSSL_SHA512
static const byte dhSinglePass_stdDH_sha512kdf_Oid[] = {43, 129, 4, 1, 11, 3};
#endif
/* ocspType */
#ifdef HAVE_OCSP
static const byte ocspBasicOid[] = {43, 6, 1, 5, 5, 7, 48, 1, 1};
static const byte ocspNonceOid[] = {43, 6, 1, 5, 5, 7, 48, 1, 2};
#endif /* HAVE_OCSP */
/* certExtType */
static const byte extBasicCaOid[] = {85, 29, 19};
static const byte extAltNamesOid[] = {85, 29, 17};
static const byte extCrlDistOid[] = {85, 29, 31};
static const byte extAuthInfoOid[] = {43, 6, 1, 5, 5, 7, 1, 1};
static const byte extAuthKeyOid[] = {85, 29, 35};
static const byte extSubjKeyOid[] = {85, 29, 14};
static const byte extCertPolicyOid[] = {85, 29, 32};
static const byte extKeyUsageOid[] = {85, 29, 15};
static const byte extInhibitAnyOid[] = {85, 29, 54};
static const byte extExtKeyUsageOid[] = {85, 29, 37};
#ifndef IGNORE_NAME_CONSTRAINTS
static const byte extNameConsOid[] = {85, 29, 30};
#endif
/* certAuthInfoType */
#ifdef HAVE_OCSP
static const byte extAuthInfoOcspOid[] = {43, 6, 1, 5, 5, 7, 48, 1};
#endif
static const byte extAuthInfoCaIssuerOid[] = {43, 6, 1, 5, 5, 7, 48, 2};
/* certPolicyType */
static const byte extCertPolicyAnyOid[] = {85, 29, 32, 0};
/* certKeyUseType */
static const byte extAltNamesHwNameOid[] = {43, 6, 1, 5, 5, 7, 8, 4};
/* certKeyUseType */
static const byte extExtKeyUsageAnyOid[] = {85, 29, 37, 0};
static const byte extExtKeyUsageServerAuthOid[] = {43, 6, 1, 5, 5, 7, 3, 1};
static const byte extExtKeyUsageClientAuthOid[] = {43, 6, 1, 5, 5, 7, 3, 2};
static const byte extExtKeyUsageCodeSigningOid[] = {43, 6, 1, 5, 5, 7, 3, 3};
static const byte extExtKeyUsageEmailProtectOid[] = {43, 6, 1, 5, 5, 7, 3, 4};
static const byte extExtKeyUsageTimestampOid[] = {43, 6, 1, 5, 5, 7, 3, 8};
static const byte extExtKeyUsageOcspSignOid[] = {43, 6, 1, 5, 5, 7, 3, 9};
/* kdfType */
static const byte pbkdf2Oid[] = {42, 134, 72, 134, 247, 13, 1, 5, 12};
/* PKCS5 */
#if !defined(NO_DES3) && !defined(NO_SHA)
static const byte pbeSha1Des[] = {42, 134, 72, 134, 247, 13, 1, 5, 10};
#endif
/* PKCS12 */
#if !defined(NO_RC4) && !defined(NO_SHA)
static const byte pbeSha1RC4128[] = {42, 134, 72, 134, 247, 13, 1, 12, 1, 1};
#endif
#if !defined(NO_DES3) && !defined(NO_SHA)
static const byte pbeSha1Des3[] = {42, 134, 72, 134, 247, 13, 1, 12, 1, 3};
#endif
/* returns a pointer to the OID string on success and NULL on fail */
const byte* OidFromId(word32 id, word32 type, word32* oidSz)
{
const byte* oid = NULL;
*oidSz = 0;
switch (type) {
case oidHashType:
switch (id) {
#ifdef WOLFSSL_MD2
case MD2h:
oid = hashMd2hOid;
*oidSz = sizeof(hashMd2hOid);
break;
#endif
#ifndef NO_MD5
case MD5h:
oid = hashMd5hOid;
*oidSz = sizeof(hashMd5hOid);
break;
#endif
#ifndef NO_SHA
case SHAh:
oid = hashSha1hOid;
*oidSz = sizeof(hashSha1hOid);
break;
#endif
#ifdef WOLFSSL_SHA224
case SHA224h:
oid = hashSha224hOid;
*oidSz = sizeof(hashSha224hOid);
break;
#endif
#ifndef NO_SHA256
case SHA256h:
oid = hashSha256hOid;
*oidSz = sizeof(hashSha256hOid);
break;
#endif
#ifdef WOLFSSL_SHA384
case SHA384h:
oid = hashSha384hOid;
*oidSz = sizeof(hashSha384hOid);
break;
#endif
#ifdef WOLFSSL_SHA512
case SHA512h:
oid = hashSha512hOid;
*oidSz = sizeof(hashSha512hOid);
break;
#endif
}
break;
case oidSigType:
switch (id) {
#if !defined(NO_DSA) && !defined(NO_SHA)
case CTC_SHAwDSA:
oid = sigSha1wDsaOid;
*oidSz = sizeof(sigSha1wDsaOid);
break;
#endif /* NO_DSA */
#ifndef NO_RSA
#ifdef WOLFSSL_MD2
case CTC_MD2wRSA:
oid = sigMd2wRsaOid;
*oidSz = sizeof(sigMd2wRsaOid);
break;
#endif
#ifndef NO_MD5
case CTC_MD5wRSA:
oid = sigMd5wRsaOid;
*oidSz = sizeof(sigMd5wRsaOid);
break;
#endif
#ifndef NO_SHA
case CTC_SHAwRSA:
oid = sigSha1wRsaOid;
*oidSz = sizeof(sigSha1wRsaOid);
break;
#endif
#ifdef WOLFSSL_SHA224
case CTC_SHA224wRSA:
oid = sigSha224wRsaOid;
*oidSz = sizeof(sigSha224wRsaOid);
break;
#endif
#ifndef NO_SHA256
case CTC_SHA256wRSA:
oid = sigSha256wRsaOid;
*oidSz = sizeof(sigSha256wRsaOid);
break;
#endif
#ifdef WOLFSSL_SHA384
case CTC_SHA384wRSA:
oid = sigSha384wRsaOid;
*oidSz = sizeof(sigSha384wRsaOid);
break;
#endif
#ifdef WOLFSSL_SHA512
case CTC_SHA512wRSA:
oid = sigSha512wRsaOid;
*oidSz = sizeof(sigSha512wRsaOid);
break;
#endif /* WOLFSSL_SHA512 */
#endif /* NO_RSA */
#ifdef HAVE_ECC
#ifndef NO_SHA
case CTC_SHAwECDSA:
oid = sigSha1wEcdsaOid;
*oidSz = sizeof(sigSha1wEcdsaOid);
break;
#endif
#ifdef WOLFSSL_SHA224
case CTC_SHA224wECDSA:
oid = sigSha224wEcdsaOid;
*oidSz = sizeof(sigSha224wEcdsaOid);
break;
#endif
#ifndef NO_SHA256
case CTC_SHA256wECDSA:
oid = sigSha256wEcdsaOid;
*oidSz = sizeof(sigSha256wEcdsaOid);
break;
#endif
#ifdef WOLFSSL_SHA384
case CTC_SHA384wECDSA:
oid = sigSha384wEcdsaOid;
*oidSz = sizeof(sigSha384wEcdsaOid);
break;
#endif
#ifdef WOLFSSL_SHA512
case CTC_SHA512wECDSA:
oid = sigSha512wEcdsaOid;
*oidSz = sizeof(sigSha512wEcdsaOid);
break;
#endif
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
case CTC_ED25519:
oid = sigEd25519Oid;
*oidSz = sizeof(sigEd25519Oid);
break;
#endif
default:
break;
}
break;
case oidKeyType:
switch (id) {
#ifndef NO_DSA
case DSAk:
oid = keyDsaOid;
*oidSz = sizeof(keyDsaOid);
break;
#endif /* NO_DSA */
#ifndef NO_RSA
case RSAk:
oid = keyRsaOid;
*oidSz = sizeof(keyRsaOid);
break;
#endif /* NO_RSA */
#ifdef HAVE_NTRU
case NTRUk:
oid = keyNtruOid;
*oidSz = sizeof(keyNtruOid);
break;
#endif /* HAVE_NTRU */
#ifdef HAVE_ECC
case ECDSAk:
oid = keyEcdsaOid;
*oidSz = sizeof(keyEcdsaOid);
break;
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
case ED25519k:
oid = keyEd25519Oid;
*oidSz = sizeof(keyEd25519Oid);
break;
#endif /* HAVE_ED25519 */
default:
break;
}
break;
#ifdef HAVE_ECC
case oidCurveType:
if (wc_ecc_get_oid(id, &oid, oidSz) < 0) {
WOLFSSL_MSG("ECC OID not found");
}
break;
#endif /* HAVE_ECC */
case oidBlkType:
switch (id) {
#ifdef HAVE_AES_CBC
#ifdef WOLFSSL_AES_128
case AES128CBCb:
oid = blkAes128CbcOid;
*oidSz = sizeof(blkAes128CbcOid);
break;
#endif
#ifdef WOLFSSL_AES_192
case AES192CBCb:
oid = blkAes192CbcOid;
*oidSz = sizeof(blkAes192CbcOid);
break;
#endif
#ifdef WOLFSSL_AES_256
case AES256CBCb:
oid = blkAes256CbcOid;
*oidSz = sizeof(blkAes256CbcOid);
break;
#endif
#endif /* HAVE_AES_CBC */
#ifndef NO_DES3
case DESb:
oid = blkDesCbcOid;
*oidSz = sizeof(blkDesCbcOid);
break;
case DES3b:
oid = blkDes3CbcOid;
*oidSz = sizeof(blkDes3CbcOid);
break;
#endif /* !NO_DES3 */
}
break;
#ifdef HAVE_OCSP
case oidOcspType:
switch (id) {
case OCSP_BASIC_OID:
oid = ocspBasicOid;
*oidSz = sizeof(ocspBasicOid);
break;
case OCSP_NONCE_OID:
oid = ocspNonceOid;
*oidSz = sizeof(ocspNonceOid);
break;
}
break;
#endif /* HAVE_OCSP */
case oidCertExtType:
switch (id) {
case BASIC_CA_OID:
oid = extBasicCaOid;
*oidSz = sizeof(extBasicCaOid);
break;
case ALT_NAMES_OID:
oid = extAltNamesOid;
*oidSz = sizeof(extAltNamesOid);
break;
case CRL_DIST_OID:
oid = extCrlDistOid;
*oidSz = sizeof(extCrlDistOid);
break;
case AUTH_INFO_OID:
oid = extAuthInfoOid;
*oidSz = sizeof(extAuthInfoOid);
break;
case AUTH_KEY_OID:
oid = extAuthKeyOid;
*oidSz = sizeof(extAuthKeyOid);
break;
case SUBJ_KEY_OID:
oid = extSubjKeyOid;
*oidSz = sizeof(extSubjKeyOid);
break;
case CERT_POLICY_OID:
oid = extCertPolicyOid;
*oidSz = sizeof(extCertPolicyOid);
break;
case KEY_USAGE_OID:
oid = extKeyUsageOid;
*oidSz = sizeof(extKeyUsageOid);
break;
case INHIBIT_ANY_OID:
oid = extInhibitAnyOid;
*oidSz = sizeof(extInhibitAnyOid);
break;
case EXT_KEY_USAGE_OID:
oid = extExtKeyUsageOid;
*oidSz = sizeof(extExtKeyUsageOid);
break;
#ifndef IGNORE_NAME_CONSTRAINTS
case NAME_CONS_OID:
oid = extNameConsOid;
*oidSz = sizeof(extNameConsOid);
break;
#endif
}
break;
case oidCertAuthInfoType:
switch (id) {
#ifdef HAVE_OCSP
case AIA_OCSP_OID:
oid = extAuthInfoOcspOid;
*oidSz = sizeof(extAuthInfoOcspOid);
break;
#endif
case AIA_CA_ISSUER_OID:
oid = extAuthInfoCaIssuerOid;
*oidSz = sizeof(extAuthInfoCaIssuerOid);
break;
}
break;
case oidCertPolicyType:
switch (id) {
case CP_ANY_OID:
oid = extCertPolicyAnyOid;
*oidSz = sizeof(extCertPolicyAnyOid);
break;
}
break;
case oidCertAltNameType:
switch (id) {
case HW_NAME_OID:
oid = extAltNamesHwNameOid;
*oidSz = sizeof(extAltNamesHwNameOid);
break;
}
break;
case oidCertKeyUseType:
switch (id) {
case EKU_ANY_OID:
oid = extExtKeyUsageAnyOid;
*oidSz = sizeof(extExtKeyUsageAnyOid);
break;
case EKU_SERVER_AUTH_OID:
oid = extExtKeyUsageServerAuthOid;
*oidSz = sizeof(extExtKeyUsageServerAuthOid);
break;
case EKU_CLIENT_AUTH_OID:
oid = extExtKeyUsageClientAuthOid;
*oidSz = sizeof(extExtKeyUsageClientAuthOid);
break;
case EKU_CODESIGNING_OID:
oid = extExtKeyUsageCodeSigningOid;
*oidSz = sizeof(extExtKeyUsageCodeSigningOid);
break;
case EKU_EMAILPROTECT_OID:
oid = extExtKeyUsageEmailProtectOid;
*oidSz = sizeof(extExtKeyUsageEmailProtectOid);
break;
case EKU_TIMESTAMP_OID:
oid = extExtKeyUsageTimestampOid;
*oidSz = sizeof(extExtKeyUsageTimestampOid);
break;
case EKU_OCSP_SIGN_OID:
oid = extExtKeyUsageOcspSignOid;
*oidSz = sizeof(extExtKeyUsageOcspSignOid);
break;
}
break;
case oidKdfType:
switch (id) {
case PBKDF2_OID:
oid = pbkdf2Oid;
*oidSz = sizeof(pbkdf2Oid);
break;
}
break;
case oidPBEType:
switch (id) {
#if !defined(NO_SHA) && !defined(NO_RC4)
case PBE_SHA1_RC4_128:
oid = pbeSha1RC4128;
*oidSz = sizeof(pbeSha1RC4128);
break;
#endif
#if !defined(NO_SHA) && !defined(NO_DES3)
case PBE_SHA1_DES:
oid = pbeSha1Des;
*oidSz = sizeof(pbeSha1Des);
break;
#endif
#if !defined(NO_SHA) && !defined(NO_DES3)
case PBE_SHA1_DES3:
oid = pbeSha1Des3;
*oidSz = sizeof(pbeSha1Des3);
break;
#endif
}
break;
case oidKeyWrapType:
switch (id) {
#ifdef WOLFSSL_AES_128
case AES128_WRAP:
oid = wrapAes128Oid;
*oidSz = sizeof(wrapAes128Oid);
break;
#endif
#ifdef WOLFSSL_AES_192
case AES192_WRAP:
oid = wrapAes192Oid;
*oidSz = sizeof(wrapAes192Oid);
break;
#endif
#ifdef WOLFSSL_AES_256
case AES256_WRAP:
oid = wrapAes256Oid;
*oidSz = sizeof(wrapAes256Oid);
break;
#endif
}
break;
case oidCmsKeyAgreeType:
switch (id) {
#ifndef NO_SHA
case dhSinglePass_stdDH_sha1kdf_scheme:
oid = dhSinglePass_stdDH_sha1kdf_Oid;
*oidSz = sizeof(dhSinglePass_stdDH_sha1kdf_Oid);
break;
#endif
#ifdef WOLFSSL_SHA224
case dhSinglePass_stdDH_sha224kdf_scheme:
oid = dhSinglePass_stdDH_sha224kdf_Oid;
*oidSz = sizeof(dhSinglePass_stdDH_sha224kdf_Oid);
break;
#endif
#ifndef NO_SHA256
case dhSinglePass_stdDH_sha256kdf_scheme:
oid = dhSinglePass_stdDH_sha256kdf_Oid;
*oidSz = sizeof(dhSinglePass_stdDH_sha256kdf_Oid);
break;
#endif
#ifdef WOLFSSL_SHA384
case dhSinglePass_stdDH_sha384kdf_scheme:
oid = dhSinglePass_stdDH_sha384kdf_Oid;
*oidSz = sizeof(dhSinglePass_stdDH_sha384kdf_Oid);
break;
#endif
#ifdef WOLFSSL_SHA512
case dhSinglePass_stdDH_sha512kdf_scheme:
oid = dhSinglePass_stdDH_sha512kdf_Oid;
*oidSz = sizeof(dhSinglePass_stdDH_sha512kdf_Oid);
break;
#endif
}
break;
#ifndef NO_HMAC
case oidHmacType:
switch (id) {
#ifdef WOLFSSL_SHA224
case HMAC_SHA224_OID:
oid = hmacSha224Oid;
*oidSz = sizeof(hmacSha224Oid);
break;
#endif
#ifndef NO_SHA256
case HMAC_SHA256_OID:
oid = hmacSha256Oid;
*oidSz = sizeof(hmacSha256Oid);
break;
#endif
#ifdef WOLFSSL_SHA384
case HMAC_SHA384_OID:
oid = hmacSha384Oid;
*oidSz = sizeof(hmacSha384Oid);
break;
#endif
#ifdef WOLFSSL_SHA512
case HMAC_SHA512_OID:
oid = hmacSha512Oid;
*oidSz = sizeof(hmacSha512Oid);
break;
#endif
}
break;
#endif /* !NO_HMAC */
case oidIgnoreType:
default:
break;
}
return oid;
}
#ifdef HAVE_OID_ENCODING
int EncodeObjectId(const word16* in, word32 inSz, byte* out, word32* outSz)
{
int i, x, len;
word32 d, t;
/* check args */
if (in == NULL || outSz == NULL) {
return BAD_FUNC_ARG;
}
/* compute length of encoded OID */
d = (in[0] * 40) + in[1];
len = 0;
for (i = 1; i < (int)inSz; i++) {
x = 0;
t = d;
while (t) {
x++;
t >>= 1;
}
len += (x / 7) + ((x % 7) ? 1 : 0) + (d == 0 ? 1 : 0);
if (i < (int)inSz - 1) {
d = in[i + 1];
}
}
if (out) {
/* verify length */
if ((int)*outSz < len) {
return BUFFER_E; /* buffer provided is not large enough */
}
/* calc first byte */
d = (in[0] * 40) + in[1];
/* encode bytes */
x = 0;
for (i = 1; i < (int)inSz; i++) {
if (d) {
int y = x, z;
byte mask = 0;
while (d) {
out[x++] = (byte)((d & 0x7F) | mask);
d >>= 7;
mask |= 0x80; /* upper bit is set on all but the last byte */
}
/* now swap bytes y...x-1 */
z = x - 1;
while (y < z) {
mask = out[y];
out[y] = out[z];
out[z] = mask;
++y;
--z;
}
}
else {
out[x++] = 0x00; /* zero value */
}
/* next word */
if (i < (int)inSz - 1) {
d = in[i + 1];
}
}
}
/* return length */
*outSz = len;
return 0;
}
#endif /* HAVE_OID_ENCODING */
#ifdef HAVE_OID_DECODING
int DecodeObjectId(const byte* in, word32 inSz, word16* out, word32* outSz)
{
int x = 0, y = 0;
word32 t = 0;
/* check args */
if (in == NULL || outSz == NULL) {
return BAD_FUNC_ARG;
}
/* decode bytes */
while (inSz--) {
t = (t << 7) | (in[x] & 0x7F);
if (!(in[x] & 0x80)) {
if (y >= (int)*outSz) {
return BUFFER_E;
}
if (y == 0) {
out[0] = (t / 40);
out[1] = (t % 40);
y = 2;
}
else {
out[y++] = t;
}
t = 0; /* reset tmp */
}
x++;
}
/* return length */
*outSz = y;
return 0;
}
#endif /* HAVE_OID_DECODING */
/* Get the DER/BER encoding of an ASN.1 OBJECT_ID header.
*
* input Buffer holding DER/BER encoded data.
* inOutIdx Current index into buffer to parse.
* len The number of bytes in the ASN.1 data.
* maxIdx Length of data in buffer.
* returns BUFFER_E when there is not enough data to parse.
* ASN_OBJECt_ID_E when the OBJECT_ID tag is not found.
* ASN_PARSE_E when length is invalid.
* Otherwise, 0 to indicate success.
*/
static int GetASNObjectId(const byte* input, word32* inOutIdx, int* len,
word32 maxIdx)
{
word32 idx = *inOutIdx;
byte b;
int length;
if ((idx + 1) > maxIdx)
return BUFFER_E;
b = input[idx++];
if (b != ASN_OBJECT_ID)
return ASN_OBJECT_ID_E;
if (GetLength(input, &idx, &length, maxIdx) < 0)
return ASN_PARSE_E;
*len = length;
*inOutIdx = idx;
return 0;
}
/* Set the DER/BER encoding of the ASN.1 OBJECT_ID header.
*
* len Length of the OBJECT_ID data.
* output Buffer to write into.
* returns the number of bytes added to the buffer.
*/
static int SetObjectId(int len, byte* output)
{
int idx = 0;
output[idx++] = ASN_OBJECT_ID;
idx += SetLength(len, output + idx);
return idx;
}
int GetObjectId(const byte* input, word32* inOutIdx, word32* oid,
word32 oidType, word32 maxIdx)
{
int ret = 0, length;
word32 idx = *inOutIdx;
#ifndef NO_VERIFY_OID
word32 actualOidSz = 0;
const byte* actualOid;
#endif /* NO_VERIFY_OID */
(void)oidType;
WOLFSSL_ENTER("GetObjectId()");
*oid = 0;
ret = GetASNObjectId(input, &idx, &length, maxIdx);
if (ret != 0)
return ret;
#ifndef NO_VERIFY_OID
actualOid = &input[idx];
if (length > 0)
actualOidSz = (word32)length;
#endif /* NO_VERIFY_OID */
while (length--) {
/* odd HC08 compiler behavior here when input[idx++] */
*oid += (word32)input[idx];
idx++;
}
/* just sum it up for now */
*inOutIdx = idx;
#ifndef NO_VERIFY_OID
{
const byte* checkOid = NULL;
word32 checkOidSz;
#ifdef ASN_DUMP_OID
word32 i;
#endif
if (oidType != oidIgnoreType) {
checkOid = OidFromId(*oid, oidType, &checkOidSz);
#ifdef ASN_DUMP_OID
/* support for dumping OID information */
printf("OID (Type %d, Sz %d, Sum %d): ", oidType, actualOidSz, *oid);
for (i=0; i<actualOidSz; i++) {
printf("%d, ", actualOid[i]);
}
printf("\n");
#ifdef HAVE_OID_DECODING
{
word16 decOid[16];
word32 decOidSz = sizeof(decOid);
ret = DecodeObjectId(actualOid, actualOidSz, decOid, &decOidSz);
if (ret == 0) {
printf(" Decoded (Sz %d): ", decOidSz);
for (i=0; i<decOidSz; i++) {
printf("%d.", decOid[i]);
}
printf("\n");
}
else {
printf("DecodeObjectId failed: %d\n", ret);
}
}
#endif /* HAVE_OID_DECODING */
#endif /* ASN_DUMP_OID */
if (checkOid != NULL &&
(checkOidSz != actualOidSz ||
XMEMCMP(actualOid, checkOid, checkOidSz) != 0)) {
WOLFSSL_MSG("OID Check Failed");
return ASN_UNKNOWN_OID_E;
}
}
}
#endif /* NO_VERIFY_OID */
return ret;
}
static int SkipObjectId(const byte* input, word32* inOutIdx, word32 maxIdx)
{
word32 idx = *inOutIdx;
int length;
int ret;
ret = GetASNObjectId(input, &idx, &length, maxIdx);
if (ret != 0)
return ret;
idx += length;
*inOutIdx = idx;
return 0;
}
WOLFSSL_LOCAL int GetAlgoId(const byte* input, word32* inOutIdx, word32* oid,
word32 oidType, word32 maxIdx)
{
int length;
word32 idx = *inOutIdx;
int ret;
*oid = 0;
WOLFSSL_ENTER("GetAlgoId");
if (GetSequence(input, &idx, &length, maxIdx) < 0)
return ASN_PARSE_E;
if (GetObjectId(input, &idx, oid, oidType, maxIdx) < 0)
return ASN_OBJECT_ID_E;
/* could have NULL tag and 0 terminator, but may not */
if (idx < maxIdx && input[idx] == ASN_TAG_NULL) {
ret = GetASNNull(input, &idx, maxIdx);
if (ret != 0)
return ret;
}
*inOutIdx = idx;
return 0;
}
#ifndef NO_RSA
#ifndef HAVE_USER_RSA
int wc_RsaPrivateKeyDecode(const byte* input, word32* inOutIdx, RsaKey* key,
word32 inSz)
{
int version, length;
if (inOutIdx == NULL) {
return BAD_FUNC_ARG;
}
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
if (GetMyVersion(input, inOutIdx, &version, inSz) < 0)
return ASN_PARSE_E;
key->type = RSA_PRIVATE;
if (GetInt(&key->n, input, inOutIdx, inSz) < 0 ||
GetInt(&key->e, input, inOutIdx, inSz) < 0 ||
GetInt(&key->d, input, inOutIdx, inSz) < 0 ||
GetInt(&key->p, input, inOutIdx, inSz) < 0 ||
GetInt(&key->q, input, inOutIdx, inSz) < 0 ||
GetInt(&key->dP, input, inOutIdx, inSz) < 0 ||
GetInt(&key->dQ, input, inOutIdx, inSz) < 0 ||
GetInt(&key->u, input, inOutIdx, inSz) < 0 ) return ASN_RSA_KEY_E;
#ifdef WOLFSSL_XILINX_CRYPT
if (wc_InitRsaHw(key) != 0) {
return BAD_STATE_E;
}
#endif
return 0;
}
#endif /* HAVE_USER_RSA */
#endif /* NO_RSA */
/* Remove PKCS8 header, place inOutIdx at beginning of traditional,
* return traditional length on success, negative on error */
int ToTraditionalInline(const byte* input, word32* inOutIdx, word32 sz)
{
word32 idx, oid;
int version, length;
int ret;
if (input == NULL || inOutIdx == NULL)
return BAD_FUNC_ARG;
idx = *inOutIdx;
if (GetSequence(input, &idx, &length, sz) < 0)
return ASN_PARSE_E;
if (GetMyVersion(input, &idx, &version, sz) < 0)
return ASN_PARSE_E;
if (GetAlgoId(input, &idx, &oid, oidKeyType, sz) < 0)
return ASN_PARSE_E;
if (input[idx] == ASN_OBJECT_ID) {
if (SkipObjectId(input, &idx, sz) < 0)
return ASN_PARSE_E;
}
ret = GetOctetString(input, &idx, &length, sz);
if (ret < 0)
return ret;
*inOutIdx = idx;
return length;
}
/* Remove PKCS8 header, move beginning of traditional to beginning of input */
int ToTraditional(byte* input, word32 sz)
{
word32 inOutIdx = 0;
int length;
if (input == NULL)
return BAD_FUNC_ARG;
length = ToTraditionalInline(input, &inOutIdx, sz);
if (length < 0)
return length;
XMEMMOVE(input, input + inOutIdx, length);
return length;
}
/* find beginning of traditional key inside PKCS#8 unencrypted buffer
* return traditional length on success, with inOutIdx at beginning of
* traditional
* return negative on failure/error */
int wc_GetPkcs8TraditionalOffset(byte* input, word32* inOutIdx, word32 sz)
{
int length;
if (input == NULL || inOutIdx == NULL || (*inOutIdx > sz))
return BAD_FUNC_ARG;
length = ToTraditionalInline(input, inOutIdx, sz);
return length;
}
/* PKCS#8 from RFC 5208
* This function takes in a DER key and converts it to PKCS#8 format. Used
* in creating PKCS#12 shrouded key bags.
* Reverse of ToTraditional
*
* PrivateKeyInfo ::= SEQUENCE {
* version Version,
* privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
* privateKey PrivateKey,
* attributes optional
* }
* Version ::= INTEGER
* PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier
* PrivateKey ::= OCTET STRING
*
* out buffer to place result in
* outSz size of out buffer
* key buffer with DER key
* keySz size of key buffer
* algoID algorithm ID i.e. RSAk
* curveOID ECC curve oid if used. Should be NULL for RSA keys.
* oidSz size of curve oid. Is set to 0 if curveOID is NULL.
*
* Returns the size of PKCS#8 placed into out. In error cases returns negative
* values.
*/
int wc_CreatePKCS8Key(byte* out, word32* outSz, byte* key, word32 keySz,
int algoID, const byte* curveOID, word32 oidSz)
{
word32 keyIdx = 0;
word32 tmpSz = 0;
word32 sz;
/* If out is NULL then return the max size needed
* + 2 for ASN_OBJECT_ID and ASN_OCTET_STRING tags */
if (out == NULL && outSz != NULL) {
*outSz = keySz + MAX_SEQ_SZ + MAX_VERSION_SZ + MAX_ALGO_SZ
+ MAX_LENGTH_SZ + MAX_LENGTH_SZ + 2;
if (curveOID != NULL)
*outSz += oidSz + MAX_LENGTH_SZ + 1;
WOLFSSL_MSG("Checking size of PKCS8");
return LENGTH_ONLY_E;
}
WOLFSSL_ENTER("wc_CreatePKCS8Key()");
if (key == NULL || out == NULL || outSz == NULL) {
return BAD_FUNC_ARG;
}
/* check the buffer has enough room for largest possible size */
if (curveOID != NULL) {
if (*outSz < (keySz + MAX_SEQ_SZ + MAX_VERSION_SZ + MAX_ALGO_SZ
+ MAX_LENGTH_SZ + MAX_LENGTH_SZ + 3 + oidSz + MAX_LENGTH_SZ))
return BUFFER_E;
}
else {
oidSz = 0; /* with no curveOID oid size must be 0 */
if (*outSz < (keySz + MAX_SEQ_SZ + MAX_VERSION_SZ + MAX_ALGO_SZ
+ MAX_LENGTH_SZ + MAX_LENGTH_SZ + 2))
return BUFFER_E;
}
/* PrivateKeyInfo ::= SEQUENCE */
keyIdx += MAX_SEQ_SZ; /* save room for sequence */
/* version Version
* no header information just INTEGER */
sz = SetMyVersion(PKCS8v0, out + keyIdx, 0);
tmpSz += sz; keyIdx += sz;
/* privateKeyAlgorithm PrivateKeyAlgorithmIdentifier */
sz = 0; /* set sz to 0 and get privateKey oid buffer size needed */
if (curveOID != NULL && oidSz > 0) {
byte buf[MAX_LENGTH_SZ];
sz = SetLength(oidSz, buf);
sz += 1; /* plus one for ASN object id */
}
sz = SetAlgoID(algoID, out + keyIdx, oidKeyType, oidSz + sz);
tmpSz += sz; keyIdx += sz;
/* privateKey PrivateKey *
* pkcs8 ecc uses slightly different format. Places curve oid in
* buffer */
if (curveOID != NULL && oidSz > 0) {
sz = SetObjectId(oidSz, out + keyIdx);
keyIdx += sz; tmpSz += sz;
XMEMCPY(out + keyIdx, curveOID, oidSz);
keyIdx += oidSz; tmpSz += oidSz;
}
sz = SetOctetString(keySz, out + keyIdx);
keyIdx += sz; tmpSz += sz;
XMEMCPY(out + keyIdx, key, keySz);
tmpSz += keySz;
/* attributes optional
* No attributes currently added */
/* rewind and add sequence */
sz = SetSequence(tmpSz, out);
XMEMMOVE(out + sz, out + MAX_SEQ_SZ, tmpSz);
return tmpSz + sz;
}
/* check that the private key is a pair for the public key in certificate
* return 1 (true) on match
* return 0 or negative value on failure/error
*
* key : buffer holding DER fromat key
* keySz : size of key buffer
* der : a initialized and parsed DecodedCert holding a certificate */
int wc_CheckPrivateKey(byte* key, word32 keySz, DecodedCert* der)
{
int ret;
(void)keySz;
if (key == NULL || der == NULL) {
return BAD_FUNC_ARG;
}
#if !defined(NO_RSA)
/* test if RSA key */
if (der->keyOID == RSAk) {
RsaKey a, b;
word32 keyIdx = 0;
if ((ret = wc_InitRsaKey(&a, NULL)) < 0)
return ret;
if ((ret = wc_InitRsaKey(&b, NULL)) < 0) {
wc_FreeRsaKey(&a);
return ret;
}
if ((ret = wc_RsaPrivateKeyDecode(key, &keyIdx, &a, keySz)) == 0) {
WOLFSSL_MSG("Checking RSA key pair");
keyIdx = 0; /* reset to 0 for parsing public key */
if ((ret = wc_RsaPublicKeyDecode(der->publicKey, &keyIdx, &b,
der->pubKeySize)) == 0) {
/* limit for user RSA crypto because of RsaKey
* dereference. */
#if defined(HAVE_USER_RSA)
WOLFSSL_MSG("Cannot verify RSA pair with user RSA");
ret = 1; /* return first RSA cert as match */
#else
/* both keys extracted successfully now check n and e
* values are the same. This is dereferencing RsaKey */
if (mp_cmp(&(a.n), &(b.n)) != MP_EQ ||
mp_cmp(&(a.e), &(b.e)) != MP_EQ) {
ret = MP_CMP_E;
}
else
ret = 1;
#endif
}
}
wc_FreeRsaKey(&b);
wc_FreeRsaKey(&a);
}
else
#endif /* NO_RSA */
#ifdef HAVE_ECC
if (der->keyOID == ECDSAk) {
ecc_key key_pair;
byte privDer[MAX_ECC_BYTES];
word32 privSz = MAX_ECC_BYTES;
word32 keyIdx = 0;
if ((ret = wc_ecc_init(&key_pair)) < 0)
return ret;
if ((ret = wc_EccPrivateKeyDecode(key, &keyIdx, &key_pair,
keySz)) == 0) {
WOLFSSL_MSG("Checking ECC key pair");
if ((ret = wc_ecc_export_private_only(&key_pair, privDer, &privSz))
== 0) {
wc_ecc_free(&key_pair);
ret = wc_ecc_init(&key_pair);
if (ret == 0) {
ret = wc_ecc_import_private_key((const byte*)privDer,
privSz, (const byte*)der->publicKey,
der->pubKeySize, &key_pair);
}
/* public and private extracted successfuly now check if is
* a pair and also do sanity checks on key. wc_ecc_check_key
* checks that private * base generator equals pubkey */
if (ret == 0) {
if ((ret = wc_ecc_check_key(&key_pair)) == 0) {
ret = 1;
}
}
ForceZero(privDer, privSz);
}
}
wc_ecc_free(&key_pair);
}
else
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
if (der->keyOID == ED25519k) {
word32 keyIdx = 0;
ed25519_key key_pair;
if ((ret = wc_ed25519_init(&key_pair)) < 0)
return ret;
if ((ret = wc_Ed25519PrivateKeyDecode(key, &keyIdx, &key_pair,
keySz)) == 0) {
WOLFSSL_MSG("Checking ED25519 key pair");
keyIdx = 0;
if ((ret = wc_ed25519_import_public(der->publicKey, der->pubKeySize,
&key_pair)) == 0) {
/* public and private extracted successfuly no check if is
* a pair and also do sanity checks on key. wc_ecc_check_key
* checks that private * base generator equals pubkey */
if ((ret = wc_ed25519_check_key(&key_pair)) == 0)
ret = 1;
}
}
wc_ed25519_free(&key_pair);
}
else
#endif
{
ret = 0;
}
(void)keySz;
return ret;
}
#ifndef NO_PWDBASED
/* Check To see if PKCS version algo is supported, set id if it is return 0
< 0 on error */
static int CheckAlgo(int first, int second, int* id, int* version)
{
*id = ALGO_ID_E;
*version = PKCS5; /* default */
if (first == 1) {
switch (second) {
#if !defined(NO_SHA)
#ifndef NO_RC4
case PBE_SHA1_RC4_128:
*id = PBE_SHA1_RC4_128;
*version = PKCS12v1;
return 0;
#endif
#ifndef NO_DES3
case PBE_SHA1_DES3:
*id = PBE_SHA1_DES3;
*version = PKCS12v1;
return 0;
#endif
#endif /* !NO_SHA */
default:
return ALGO_ID_E;
}
}
if (first != PKCS5)
return ASN_INPUT_E; /* VERSION ERROR */
if (second == PBES2) {
*version = PKCS5v2;
return 0;
}
switch (second) {
#ifndef NO_DES3
#ifndef NO_MD5
case 3: /* see RFC 2898 for ids */
*id = PBE_MD5_DES;
return 0;
#endif
#ifndef NO_SHA
case 10:
*id = PBE_SHA1_DES;
return 0;
#endif
#endif /* !NO_DES3 */
default:
return ALGO_ID_E;
}
}
/* Check To see if PKCS v2 algo is supported, set id if it is return 0
< 0 on error */
static int CheckAlgoV2(int oid, int* id)
{
(void)id; /* not used if AES and DES3 disabled */
switch (oid) {
#if !defined(NO_DES3) && !defined(NO_SHA)
case DESb:
*id = PBE_SHA1_DES;
return 0;
case DES3b:
*id = PBE_SHA1_DES3;
return 0;
#endif
#ifdef WOLFSSL_AES_256
case AES256CBCb:
*id = PBE_AES256_CBC;
return 0;
#endif
default:
return ALGO_ID_E;
}
}
int wc_GetKeyOID(byte* key, word32 keySz, const byte** curveOID, word32* oidSz,
int* algoID, void* heap)
{
word32 tmpIdx = 0;
if (key == NULL || algoID == NULL)
return BAD_FUNC_ARG;
*algoID = 0;
#ifndef NO_RSA
{
RsaKey rsa;
wc_InitRsaKey(&rsa, heap);
if (wc_RsaPrivateKeyDecode(key, &tmpIdx, &rsa, keySz) == 0) {
*algoID = RSAk;
}
else {
WOLFSSL_MSG("Not RSA DER key");
}
wc_FreeRsaKey(&rsa);
}
#endif /* NO_RSA */
#ifdef HAVE_ECC
if (*algoID == 0) {
ecc_key ecc;
tmpIdx = 0;
wc_ecc_init_ex(&ecc, heap, INVALID_DEVID);
if (wc_EccPrivateKeyDecode(key, &tmpIdx, &ecc, keySz) == 0) {
*algoID = ECDSAk;
/* now find oid */
if (wc_ecc_get_oid(ecc.dp->oidSum, curveOID, oidSz) < 0) {
WOLFSSL_MSG("Error getting ECC curve OID");
wc_ecc_free(&ecc);
return BAD_FUNC_ARG;
}
}
else {
WOLFSSL_MSG("Not ECC DER key either");
}
wc_ecc_free(&ecc);
}
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
if (*algoID != RSAk && *algoID != ECDSAk) {
ed25519_key ed25519;
tmpIdx = 0;
if (wc_ed25519_init(&ed25519) == 0) {
if (wc_Ed25519PrivateKeyDecode(key, &tmpIdx, &ed25519, keySz)
== 0) {
*algoID = ED25519k;
}
else {
WOLFSSL_MSG("Not ED25519 DER key");
}
wc_ed25519_free(&ed25519);
}
else {
WOLFSSL_MSG("GetKeyOID wc_ed25519_init failed");
}
}
#endif
/* if flag is not set then is neither RSA or ECC key that could be
* found */
if (*algoID == 0) {
WOLFSSL_MSG("Bad key DER or compile options");
return BAD_FUNC_ARG;
}
(void)curveOID;
(void)oidSz;
return 1;
}
/*
* Used when creating PKCS12 shrouded key bags
* vPKCS is the version of PKCS to use
* vAlgo is the algorithm version to use
*
* if salt is NULL a random number is generated
*
* returns the size of encrypted data on success
*/
int UnTraditionalEnc(byte* key, word32 keySz, byte* out, word32* outSz,
const char* password,int passwordSz, int vPKCS, int vAlgo,
byte* salt, word32 saltSz, int itt, WC_RNG* rng, void* heap)
{
int algoID = 0;
byte* tmp;
word32 tmpSz = 0;
word32 sz;
word32 seqSz;
word32 inOutIdx = 0;
word32 totalSz = 0;
int version, id;
int ret;
const byte* curveOID = NULL;
word32 oidSz = 0;
#ifdef WOLFSSL_SMALL_STACK
byte* saltTmp = NULL;
byte* cbcIv = NULL;
#else
byte saltTmp[MAX_IV_SIZE];
byte cbcIv[MAX_IV_SIZE];
#endif
WOLFSSL_ENTER("UnTraditionalEnc()");
if (saltSz > MAX_SALT_SIZE)
return ASN_PARSE_E;
inOutIdx += MAX_SEQ_SZ; /* leave room for size of finished shroud */
if (CheckAlgo(vPKCS, vAlgo, &id, &version) < 0) {
WOLFSSL_MSG("Bad/Unsupported algorithm ID");
return ASN_INPUT_E; /* Algo ID error */
}
if (out != NULL) {
if (*outSz < inOutIdx + MAX_ALGO_SZ + MAX_SALT_SIZE + MAX_SEQ_SZ + 1 +
MAX_LENGTH_SZ + MAX_SHORT_SZ + 1)
return BUFFER_E;
if (version == PKCS5v2) {
WOLFSSL_MSG("PKCS5v2 Not supported yet\n");
return ASN_VERSION_E;
}
if (salt == NULL || saltSz <= 0) {
saltSz = 8;
#ifdef WOLFSSL_SMALL_STACK
saltTmp = (byte*)XMALLOC(saltSz, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (saltTmp == NULL)
return MEMORY_E;
#endif
salt = saltTmp;
if ((ret = wc_RNG_GenerateBlock(rng, saltTmp, saltSz)) != 0) {
WOLFSSL_MSG("Error generating random salt");
#ifdef WOLFSSL_SMALL_STACK
if (saltTmp != NULL)
XFREE(saltTmp, heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
}
/* leave room for a sequence (contains salt and iterations int) */
inOutIdx += MAX_SEQ_SZ; sz = 0;
inOutIdx += MAX_ALGO_SZ;
/* place salt in buffer */
out[inOutIdx++] = ASN_OCTET_STRING; sz++;
tmpSz = SetLength(saltSz, out + inOutIdx);
inOutIdx += tmpSz; sz += tmpSz;
XMEMCPY(out + inOutIdx, salt, saltSz);
inOutIdx += saltSz; sz += saltSz;
/* place iteration count in buffer */
ret = SetShortInt(out, &inOutIdx, itt, *outSz);
if (ret < 0) {
return ret;
}
sz += (word32)ret;
/* wind back index and set sequence then clean up buffer */
inOutIdx -= (sz + MAX_SEQ_SZ);
tmpSz = SetSequence(sz, out + inOutIdx);
XMEMMOVE(out + inOutIdx + tmpSz, out + inOutIdx + MAX_SEQ_SZ, sz);
totalSz += tmpSz + sz; sz += tmpSz;
/* add in algo ID */
inOutIdx -= MAX_ALGO_SZ;
tmpSz = SetAlgoID(id, out + inOutIdx, oidPBEType, sz);
XMEMMOVE(out + inOutIdx + tmpSz, out + inOutIdx + MAX_ALGO_SZ, sz);
totalSz += tmpSz; inOutIdx += tmpSz + sz;
/* octet string containing encrypted key */
out[inOutIdx++] = ASN_OCTET_STRING; totalSz++;
}
/* check key type and get OID if ECC */
if ((ret = wc_GetKeyOID(key, keySz, &curveOID, &oidSz, &algoID, heap))< 0) {
return ret;
}
/* PKCS#8 wrapping around key */
if (wc_CreatePKCS8Key(NULL, &tmpSz, key, keySz, algoID, curveOID, oidSz)
!= LENGTH_ONLY_E) {
#ifdef WOLFSSL_SMALL_STACK
if (saltTmp != NULL)
XFREE(saltTmp, heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return MEMORY_E;
}
/* check if should return max size */
if (out == NULL) {
/* account for salt size */
if (salt == NULL || saltSz <= 0) {
tmpSz += MAX_SALT_SIZE;
}
else {
tmpSz += saltSz;
}
/* plus 3 for tags */
*outSz = tmpSz + MAX_ALGO_SZ + MAX_LENGTH_SZ +MAX_LENGTH_SZ + MAX_SEQ_SZ
+ MAX_LENGTH_SZ + MAX_SEQ_SZ + 3;
return LENGTH_ONLY_E;
}
tmp = (byte*)XMALLOC(tmpSz, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (tmp == NULL) {
#ifdef WOLFSSL_SMALL_STACK
if (saltTmp != NULL)
XFREE(saltTmp, heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return MEMORY_E;
}
if ((ret = wc_CreatePKCS8Key(tmp, &tmpSz, key, keySz, algoID, curveOID,
oidSz)) < 0) {
XFREE(tmp, heap, DYNAMIC_TYPE_TMP_BUFFER);
WOLFSSL_MSG("Error wrapping key with PKCS#8");
#ifdef WOLFSSL_SMALL_STACK
if (saltTmp != NULL)
XFREE(saltTmp, heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
tmpSz = ret;
#ifdef WOLFSSL_SMALL_STACK
cbcIv = (byte*)XMALLOC(MAX_IV_SIZE, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (cbcIv == NULL) {
if (saltTmp != NULL)
XFREE(saltTmp, heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(salt, heap, DYNAMIC_TYPE_TMP_BUFFER);
return MEMORY_E;
}
#endif
/* encrypt PKCS#8 wrapped key */
if ((ret = wc_CryptKey(password, passwordSz, salt, saltSz, itt, id,
tmp, tmpSz, version, cbcIv, 1)) < 0) {
XFREE(tmp, heap, DYNAMIC_TYPE_TMP_BUFFER);
WOLFSSL_MSG("Error encrypting key");
#ifdef WOLFSSL_SMALL_STACK
if (saltTmp != NULL)
XFREE(saltTmp, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (cbcIv != NULL)
XFREE(cbcIv, heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret; /* encryption failure */
}
totalSz += tmpSz;
#ifdef WOLFSSL_SMALL_STACK
if (saltTmp != NULL)
XFREE(saltTmp, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (cbcIv != NULL)
XFREE(cbcIv, heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
if (*outSz < inOutIdx + tmpSz + MAX_LENGTH_SZ) {
XFREE(tmp, heap, DYNAMIC_TYPE_TMP_BUFFER);
return BUFFER_E;
}
/* set length of key and copy over encrypted key */
seqSz = SetLength(tmpSz, out + inOutIdx);
inOutIdx += seqSz; totalSz += seqSz;
XMEMCPY(out + inOutIdx, tmp, tmpSz);
XFREE(tmp, heap, DYNAMIC_TYPE_TMP_BUFFER);
/* set total size at begining */
sz = SetSequence(totalSz, out);
XMEMMOVE(out + sz, out + MAX_SEQ_SZ, totalSz);
return totalSz + sz;
}
/* Remove Encrypted PKCS8 header, move beginning of traditional to beginning
of input */
int ToTraditionalEnc(byte* input, word32 sz,const char* password,int passwordSz)
{
word32 inOutIdx = 0, seqEnd, oid;
int ret = 0, first, second, length = 0, version, saltSz, id;
int iterations = 0, keySz = 0;
#ifdef WOLFSSL_SMALL_STACK
byte* salt = NULL;
byte* cbcIv = NULL;
#else
byte salt[MAX_SALT_SIZE];
byte cbcIv[MAX_IV_SIZE];
#endif
if (passwordSz < 0) {
WOLFSSL_MSG("Bad password size");
return BAD_FUNC_ARG;
}
if (GetSequence(input, &inOutIdx, &length, sz) < 0) {
ERROR_OUT(ASN_PARSE_E, exit_tte);
}
if (GetAlgoId(input, &inOutIdx, &oid, oidIgnoreType, sz) < 0) {
ERROR_OUT(ASN_PARSE_E, exit_tte);
}
first = input[inOutIdx - 2]; /* PKCS version always 2nd to last byte */
second = input[inOutIdx - 1]; /* version.algo, algo id last byte */
if (CheckAlgo(first, second, &id, &version) < 0) {
ERROR_OUT(ASN_INPUT_E, exit_tte); /* Algo ID error */
}
if (version == PKCS5v2) {
if (GetSequence(input, &inOutIdx, &length, sz) < 0) {
ERROR_OUT(ASN_PARSE_E, exit_tte);
}
if (GetAlgoId(input, &inOutIdx, &oid, oidKdfType, sz) < 0) {
ERROR_OUT(ASN_PARSE_E, exit_tte);
}
if (oid != PBKDF2_OID) {
ERROR_OUT(ASN_PARSE_E, exit_tte);
}
}
if (GetSequence(input, &inOutIdx, &length, sz) <= 0) {
ERROR_OUT(ASN_PARSE_E, exit_tte);
}
/* Find the end of this SEQUENCE so we can check for the OPTIONAL and
* DEFAULT items. */
seqEnd = inOutIdx + length;
ret = GetOctetString(input, &inOutIdx, &saltSz, sz);
if (ret < 0)
goto exit_tte;
if (saltSz > MAX_SALT_SIZE) {
ERROR_OUT(ASN_PARSE_E, exit_tte);
}
#ifdef WOLFSSL_SMALL_STACK
salt = (byte*)XMALLOC(MAX_SALT_SIZE, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (salt == NULL) {
ERROR_OUT(MEMORY_E, exit_tte);
}
#endif
XMEMCPY(salt, &input[inOutIdx], saltSz);
inOutIdx += saltSz;
if (GetShortInt(input, &inOutIdx, &iterations, sz) < 0) {
ERROR_OUT(ASN_PARSE_E, exit_tte);
}
/* OPTIONAL key length */
if (seqEnd > inOutIdx && input[inOutIdx] == ASN_INTEGER) {
if (GetShortInt(input, &inOutIdx, &keySz, sz) < 0) {
ERROR_OUT(ASN_PARSE_E, exit_tte);
}
}
/* DEFAULT HMAC is SHA-1 */
if (seqEnd > inOutIdx) {
if (GetAlgoId(input, &inOutIdx, &oid, oidHmacType, sz) < 0) {
ERROR_OUT(ASN_PARSE_E, exit_tte);
}
}
#ifdef WOLFSSL_SMALL_STACK
cbcIv = (byte*)XMALLOC(MAX_IV_SIZE, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (cbcIv == NULL) {
ERROR_OUT(MEMORY_E, exit_tte);
}
#endif
if (version == PKCS5v2) {
/* get encryption algo */
if (GetAlgoId(input, &inOutIdx, &oid, oidBlkType, sz) < 0) {
ERROR_OUT(ASN_PARSE_E, exit_tte);
}
if (CheckAlgoV2(oid, &id) < 0) {
ERROR_OUT(ASN_PARSE_E, exit_tte); /* PKCS v2 algo id error */
}
ret = GetOctetString(input, &inOutIdx, &length, sz);
if (ret < 0)
goto exit_tte;
if (length > MAX_IV_SIZE) {
ERROR_OUT(ASN_PARSE_E, exit_tte);
}
XMEMCPY(cbcIv, &input[inOutIdx], length);
inOutIdx += length;
}
ret = GetOctetString(input, &inOutIdx, &length, sz);
if (ret < 0)
goto exit_tte;
ret = wc_CryptKey(password, passwordSz, salt, saltSz, iterations, id,
input + inOutIdx, length, version, cbcIv, 0);
exit_tte:
#ifdef WOLFSSL_SMALL_STACK
XFREE(salt, NULL, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(cbcIv, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
if (ret == 0) {
XMEMMOVE(input, input + inOutIdx, length);
ret = ToTraditional(input, length);
}
return ret;
}
/* encrypt PKCS 12 content
*
* NOTE: if out is NULL then outSz is set with the total buffer size needed and
* the error value LENGTH_ONLY_E is returned.
*
* input data to encrypt
* inputSz size of input buffer
* out buffer to hold the result
* outSz size of out buffer
* password password if used. Can be NULL for no password
* passwordSz size of password buffer
* vPKCS version of PKCS i.e. PKCS5v2
* vAlgo algorithm version
* salt buffer holding salt if used. If NULL then a random salt is created
* saltSz size of salt buffer if it is not NULL
* itt number of iterations used
* rng random number generator to use
* heap possible heap hint for mallocs/frees
*
* returns the total size of encrypted content on success.
*/
int EncryptContent(byte* input, word32 inputSz, byte* out, word32* outSz,
const char* password, int passwordSz, int vPKCS, int vAlgo,
byte* salt, word32 saltSz, int itt, WC_RNG* rng, void* heap)
{
word32 sz;
word32 inOutIdx = 0;
word32 tmpIdx = 0;
word32 totalSz = 0;
word32 seqSz;
int ret;
int version, id;
#ifdef WOLFSSL_SMALL_STACK
byte* saltTmp = NULL;
byte* cbcIv = NULL;
#else
byte saltTmp[MAX_SALT_SIZE];
byte cbcIv[MAX_IV_SIZE];
#endif
(void)heap;
WOLFSSL_ENTER("EncryptContent()");
if (CheckAlgo(vPKCS, vAlgo, &id, &version) < 0)
return ASN_INPUT_E; /* Algo ID error */
if (version == PKCS5v2) {
WOLFSSL_MSG("PKCS#5 version 2 not supported yet");
return BAD_FUNC_ARG;
}
if (saltSz > MAX_SALT_SIZE)
return ASN_PARSE_E;
if (outSz == NULL) {
return BAD_FUNC_ARG;
}
if (out == NULL) {
sz = inputSz;
switch (id) {
#if !defined(NO_DES3) && (!defined(NO_MD5) || !defined(NO_SHA))
case PBE_MD5_DES:
case PBE_SHA1_DES:
case PBE_SHA1_DES3:
/* set to block size of 8 for DES operations. This rounds up
* to the nearset multiple of 8 */
sz &= 0xfffffff8;
sz += 8;
break;
#endif /* !NO_DES3 && (!NO_MD5 || !NO_SHA) */
#if !defined(NO_RC4) && !defined(NO_SHA)
case PBE_SHA1_RC4_128:
break;
#endif
case -1:
break;
default:
return ALGO_ID_E;
}
if (saltSz <= 0) {
sz += MAX_SALT_SIZE;
}
else {
sz += saltSz;
}
/* add 2 for tags */
*outSz = sz + MAX_ALGO_SZ + MAX_SEQ_SZ + MAX_LENGTH_SZ +
MAX_LENGTH_SZ + MAX_LENGTH_SZ + MAX_SHORT_SZ + 2;
return LENGTH_ONLY_E;
}
if (inOutIdx + MAX_ALGO_SZ + MAX_SEQ_SZ + 1 > *outSz)
return BUFFER_E;
sz = SetAlgoID(id, out + inOutIdx, oidPBEType, 0);
inOutIdx += sz; totalSz += sz;
tmpIdx = inOutIdx;
tmpIdx += MAX_SEQ_SZ; /* save room for salt and itter sequence */
out[tmpIdx++] = ASN_OCTET_STRING;
/* create random salt if one not provided */
if (salt == NULL || saltSz <= 0) {
saltSz = 8;
#ifdef WOLFSSL_SMALL_STACK
saltTmp = (byte*)XMALLOC(saltSz, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (saltTmp == NULL)
return MEMORY_E;
#endif
salt = saltTmp;
if ((ret = wc_RNG_GenerateBlock(rng, saltTmp, saltSz)) != 0) {
WOLFSSL_MSG("Error generating random salt");
#ifdef WOLFSSL_SMALL_STACK
XFREE(saltTmp, heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
}
if (tmpIdx + MAX_LENGTH_SZ + saltSz + MAX_SHORT_SZ > *outSz) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(saltTmp, heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return BUFFER_E;
}
sz = SetLength(saltSz, out + tmpIdx);
tmpIdx += sz;
XMEMCPY(out + tmpIdx, salt, saltSz);
tmpIdx += saltSz;
/* place itteration setting in buffer */
ret = SetShortInt(out, &tmpIdx, itt, *outSz);
if (ret < 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(saltTmp, heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
/* rewind and place sequence */
sz = tmpIdx - inOutIdx - MAX_SEQ_SZ;
seqSz = SetSequence(sz, out + inOutIdx);
XMEMMOVE(out + inOutIdx + seqSz, out + inOutIdx + MAX_SEQ_SZ, sz);
inOutIdx += seqSz; totalSz += seqSz;
inOutIdx += sz; totalSz += sz;
#ifdef WOLFSSL_SMALL_STACK
cbcIv = (byte*)XMALLOC(MAX_IV_SIZE, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (cbcIv == NULL) {
XFREE(saltTmp, heap, DYNAMIC_TYPE_TMP_BUFFER);
return MEMORY_E;
}
#endif
if ((ret = wc_CryptKey(password, passwordSz, salt, saltSz, itt, id,
input, inputSz, version, cbcIv, 1)) < 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(cbcIv, heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(saltTmp, heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret; /* encrypt failure */
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(cbcIv, heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(saltTmp, heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
if (inOutIdx + 1 + MAX_LENGTH_SZ + inputSz > *outSz)
return BUFFER_E;
out[inOutIdx++] = ASN_LONG_LENGTH; totalSz++;
sz = SetLength(inputSz, out + inOutIdx);
inOutIdx += sz; totalSz += sz;
XMEMCPY(out + inOutIdx, input, inputSz);
totalSz += inputSz;
return totalSz;
}
/* decrypt PKCS
*
* NOTE: input buffer is overwritten with decrypted data!
*
* input[in/out] data to decrypt and results are written to
* sz size of input buffer
* password password if used. Can be NULL for no password
* passwordSz size of password buffer
*
* returns the total size of decrypted content on success.
*/
int DecryptContent(byte* input, word32 sz,const char* password,int passwordSz)
{
word32 inOutIdx = 0, seqEnd, oid;
int ret = 0;
int first, second, length = 0, version, saltSz, id;
int iterations = 0, keySz = 0;
#ifdef WOLFSSL_SMALL_STACK
byte* salt = NULL;
byte* cbcIv = NULL;
#else
byte salt[MAX_SALT_SIZE];
byte cbcIv[MAX_IV_SIZE];
#endif
if (GetAlgoId(input, &inOutIdx, &oid, oidIgnoreType, sz) < 0) {
ERROR_OUT(ASN_PARSE_E, exit_dc);
}
first = input[inOutIdx - 2]; /* PKCS version always 2nd to last byte */
second = input[inOutIdx - 1]; /* version.algo, algo id last byte */
if (CheckAlgo(first, second, &id, &version) < 0) {
ERROR_OUT(ASN_INPUT_E, exit_dc); /* Algo ID error */
}
if (version == PKCS5v2) {
if (GetSequence(input, &inOutIdx, &length, sz) < 0) {
ERROR_OUT(ASN_PARSE_E, exit_dc);
}
if (GetAlgoId(input, &inOutIdx, &oid, oidKdfType, sz) < 0) {
ERROR_OUT(ASN_PARSE_E, exit_dc);
}
if (oid != PBKDF2_OID) {
ERROR_OUT(ASN_PARSE_E, exit_dc);
}
}
if (GetSequence(input, &inOutIdx, &length, sz) <= 0) {
ERROR_OUT(ASN_PARSE_E, exit_dc);
}
/* Find the end of this SEQUENCE so we can check for the OPTIONAL and
* DEFAULT items. */
seqEnd = inOutIdx + length;
ret = GetOctetString(input, &inOutIdx, &saltSz, sz);
if (ret < 0)
goto exit_dc;
if (saltSz > MAX_SALT_SIZE) {
ERROR_OUT(ASN_PARSE_E, exit_dc);
}
#ifdef WOLFSSL_SMALL_STACK
salt = (byte*)XMALLOC(MAX_SALT_SIZE, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (salt == NULL) {
ERROR_OUT(MEMORY_E, exit_dc);
}
#endif
XMEMCPY(salt, &input[inOutIdx], saltSz);
inOutIdx += saltSz;
if (GetShortInt(input, &inOutIdx, &iterations, sz) < 0) {
ERROR_OUT(ASN_PARSE_E, exit_dc);
}
/* OPTIONAL key length */
if (seqEnd > inOutIdx && input[inOutIdx] == ASN_INTEGER) {
if (GetShortInt(input, &inOutIdx, &keySz, sz) < 0) {
ERROR_OUT(ASN_PARSE_E, exit_dc);
}
}
/* DEFAULT HMAC is SHA-1 */
if (seqEnd > inOutIdx) {
if (GetAlgoId(input, &inOutIdx, &oid, oidHmacType, sz) < 0) {
ERROR_OUT(ASN_PARSE_E, exit_dc);
}
}
#ifdef WOLFSSL_SMALL_STACK
cbcIv = (byte*)XMALLOC(MAX_IV_SIZE, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (cbcIv == NULL) {
ERROR_OUT(MEMORY_E, exit_dc);
}
#endif
if (version == PKCS5v2) {
/* get encryption algo */
if (GetAlgoId(input, &inOutIdx, &oid, oidBlkType, sz) < 0) {
ERROR_OUT(ASN_PARSE_E, exit_dc);
}
if (CheckAlgoV2(oid, &id) < 0) {
ERROR_OUT(ASN_PARSE_E, exit_dc); /* PKCS v2 algo id error */
}
ret = GetOctetString(input, &inOutIdx, &length, sz);
if (ret < 0)
goto exit_dc;
if (length > MAX_IV_SIZE) {
ERROR_OUT(ASN_PARSE_E, exit_dc);
}
XMEMCPY(cbcIv, &input[inOutIdx], length);
inOutIdx += length;
}
if (input[inOutIdx++] != (ASN_CONTEXT_SPECIFIC | 0)) {
ERROR_OUT(ASN_PARSE_E, exit_dc);
}
if (GetLength(input, &inOutIdx, &length, sz) < 0) {
ERROR_OUT(ASN_PARSE_E, exit_dc);
}
ret = wc_CryptKey(password, passwordSz, salt, saltSz, iterations, id,
input + inOutIdx, length, version, cbcIv, 0);
exit_dc:
#ifdef WOLFSSL_SMALL_STACK
XFREE(salt, NULL, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(cbcIv, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
if (ret == 0) {
XMEMMOVE(input, input + inOutIdx, length);
ret = length;
}
return ret;
}
#endif /* NO_PWDBASED */
#ifndef NO_RSA
#ifndef HAVE_USER_RSA
int wc_RsaPublicKeyDecode(const byte* input, word32* inOutIdx, RsaKey* key,
word32 inSz)
{
int length;
#if defined(OPENSSL_EXTRA) || defined(RSA_DECODE_EXTRA)
byte b;
#endif
int ret;
if (input == NULL || inOutIdx == NULL || key == NULL)
return BAD_FUNC_ARG;
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
key->type = RSA_PUBLIC;
#if defined(OPENSSL_EXTRA) || defined(RSA_DECODE_EXTRA)
if ((*inOutIdx + 1) > inSz)
return BUFFER_E;
b = input[*inOutIdx];
if (b != ASN_INTEGER) {
/* not from decoded cert, will have algo id, skip past */
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
if (SkipObjectId(input, inOutIdx, inSz) < 0)
return ASN_PARSE_E;
/* Option NULL ASN.1 tag */
if (*inOutIdx >= inSz) {
return BUFFER_E;
}
if (input[*inOutIdx] == ASN_TAG_NULL) {
ret = GetASNNull(input, inOutIdx, inSz);
if (ret != 0)
return ret;
}
/* should have bit tag length and seq next */
ret = CheckBitString(input, inOutIdx, NULL, inSz, 1, NULL);
if (ret != 0)
return ret;
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
}
#endif /* OPENSSL_EXTRA */
if (GetInt(&key->n, input, inOutIdx, inSz) < 0)
return ASN_RSA_KEY_E;
if (GetInt(&key->e, input, inOutIdx, inSz) < 0) {
mp_clear(&key->n);
return ASN_RSA_KEY_E;
}
#ifdef WOLFSSL_XILINX_CRYPT
if (wc_InitRsaHw(key) != 0) {
return BAD_STATE_E;
}
#endif
return 0;
}
/* import RSA public key elements (n, e) into RsaKey structure (key) */
int wc_RsaPublicKeyDecodeRaw(const byte* n, word32 nSz, const byte* e,
word32 eSz, RsaKey* key)
{
if (n == NULL || e == NULL || key == NULL)
return BAD_FUNC_ARG;
key->type = RSA_PUBLIC;
if (mp_init(&key->n) != MP_OKAY)
return MP_INIT_E;
if (mp_read_unsigned_bin(&key->n, n, nSz) != 0) {
mp_clear(&key->n);
return ASN_GETINT_E;
}
if (mp_init(&key->e) != MP_OKAY) {
mp_clear(&key->n);
return MP_INIT_E;
}
if (mp_read_unsigned_bin(&key->e, e, eSz) != 0) {
mp_clear(&key->n);
mp_clear(&key->e);
return ASN_GETINT_E;
}
#ifdef WOLFSSL_XILINX_CRYPT
if (wc_InitRsaHw(key) != 0) {
return BAD_STATE_E;
}
#endif
return 0;
}
#endif /* HAVE_USER_RSA */
#endif
#ifndef NO_DH
int wc_DhKeyDecode(const byte* input, word32* inOutIdx, DhKey* key, word32 inSz)
{
int length;
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
if (GetInt(&key->p, input, inOutIdx, inSz) < 0 ||
GetInt(&key->g, input, inOutIdx, inSz) < 0) {
return ASN_DH_KEY_E;
}
return 0;
}
int wc_DhParamsLoad(const byte* input, word32 inSz, byte* p, word32* pInOutSz,
byte* g, word32* gInOutSz)
{
word32 idx = 0;
int ret;
int length;
if (GetSequence(input, &idx, &length, inSz) <= 0)
return ASN_PARSE_E;
ret = GetASNInt(input, &idx, &length, inSz);
if (ret != 0)
return ret;
if (length <= (int)*pInOutSz) {
XMEMCPY(p, &input[idx], length);
*pInOutSz = length;
}
else {
return BUFFER_E;
}
idx += length;
ret = GetASNInt(input, &idx, &length, inSz);
if (ret != 0)
return ret;
if (length <= (int)*gInOutSz) {
XMEMCPY(g, &input[idx], length);
*gInOutSz = length;
}
else {
return BUFFER_E;
}
return 0;
}
#endif /* NO_DH */
#ifndef NO_DSA
int DsaPublicKeyDecode(const byte* input, word32* inOutIdx, DsaKey* key,
word32 inSz)
{
int length;
if (input == NULL || inOutIdx == NULL || key == NULL) {
return BAD_FUNC_ARG;
}
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
if (GetInt(&key->p, input, inOutIdx, inSz) < 0 ||
GetInt(&key->q, input, inOutIdx, inSz) < 0 ||
GetInt(&key->g, input, inOutIdx, inSz) < 0 ||
GetInt(&key->y, input, inOutIdx, inSz) < 0 )
return ASN_DH_KEY_E;
key->type = DSA_PUBLIC;
return 0;
}
int DsaPrivateKeyDecode(const byte* input, word32* inOutIdx, DsaKey* key,
word32 inSz)
{
int length, version;
/* Sanity checks on input */
if (input == NULL || inOutIdx == NULL || key == NULL) {
return BAD_FUNC_ARG;
}
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
if (GetMyVersion(input, inOutIdx, &version, inSz) < 0)
return ASN_PARSE_E;
if (GetInt(&key->p, input, inOutIdx, inSz) < 0 ||
GetInt(&key->q, input, inOutIdx, inSz) < 0 ||
GetInt(&key->g, input, inOutIdx, inSz) < 0 ||
GetInt(&key->y, input, inOutIdx, inSz) < 0 ||
GetInt(&key->x, input, inOutIdx, inSz) < 0 )
return ASN_DH_KEY_E;
key->type = DSA_PRIVATE;
return 0;
}
static mp_int* GetDsaInt(DsaKey* key, int idx)
{
if (idx == 0)
return &key->p;
if (idx == 1)
return &key->q;
if (idx == 2)
return &key->g;
if (idx == 3)
return &key->y;
if (idx == 4)
return &key->x;
return NULL;
}
/* Release Tmp DSA resources */
static WC_INLINE void FreeTmpDsas(byte** tmps, void* heap)
{
int i;
for (i = 0; i < DSA_INTS; i++)
XFREE(tmps[i], heap, DYNAMIC_TYPE_DSA);
(void)heap;
}
/* Convert DsaKey key to DER format, write to output (inLen), return bytes
written */
int wc_DsaKeyToDer(DsaKey* key, byte* output, word32 inLen)
{
word32 seqSz, verSz, rawLen, intTotalLen = 0;
word32 sizes[DSA_INTS];
int i, j, outLen, ret = 0, mpSz;
byte seq[MAX_SEQ_SZ];
byte ver[MAX_VERSION_SZ];
byte* tmps[DSA_INTS];
if (!key || !output)
return BAD_FUNC_ARG;
if (key->type != DSA_PRIVATE)
return BAD_FUNC_ARG;
for (i = 0; i < DSA_INTS; i++)
tmps[i] = NULL;
/* write all big ints from key to DER tmps */
for (i = 0; i < DSA_INTS; i++) {
mp_int* keyInt = GetDsaInt(key, i);
rawLen = mp_unsigned_bin_size(keyInt) + 1;
tmps[i] = (byte*)XMALLOC(rawLen + MAX_SEQ_SZ, key->heap,
DYNAMIC_TYPE_DSA);
if (tmps[i] == NULL) {
ret = MEMORY_E;
break;
}
mpSz = SetASNIntMP(keyInt, -1, tmps[i]);
if (mpSz < 0) {
ret = mpSz;
break;
}
intTotalLen += (sizes[i] = mpSz);
}
if (ret != 0) {
FreeTmpDsas(tmps, key->heap);
return ret;
}
/* make headers */
verSz = SetMyVersion(0, ver, FALSE);
seqSz = SetSequence(verSz + intTotalLen, seq);
outLen = seqSz + verSz + intTotalLen;
if (outLen > (int)inLen)
return BAD_FUNC_ARG;
/* write to output */
XMEMCPY(output, seq, seqSz);
j = seqSz;
XMEMCPY(output + j, ver, verSz);
j += verSz;
for (i = 0; i < DSA_INTS; i++) {
XMEMCPY(output + j, tmps[i], sizes[i]);
j += sizes[i];
}
FreeTmpDsas(tmps, key->heap);
return outLen;
}
#endif /* NO_DSA */
void InitDecodedCert(DecodedCert* cert, byte* source, word32 inSz, void* heap)
{
if (cert != NULL) {
XMEMSET(cert, 0, sizeof(DecodedCert));
cert->subjectCNEnc = CTC_UTF8;
cert->issuer[0] = '\0';
cert->subject[0] = '\0';
cert->source = source; /* don't own */
cert->maxIdx = inSz; /* can't go over this index */
cert->heap = heap;
#ifdef WOLFSSL_CERT_GEN
cert->subjectSNEnc = CTC_UTF8;
cert->subjectCEnc = CTC_PRINTABLE;
cert->subjectLEnc = CTC_UTF8;
cert->subjectSTEnc = CTC_UTF8;
cert->subjectOEnc = CTC_UTF8;
cert->subjectOUEnc = CTC_UTF8;
#endif /* WOLFSSL_CERT_GEN */
InitSignatureCtx(&cert->sigCtx, heap, INVALID_DEVID);
}
}
void FreeAltNames(DNS_entry* altNames, void* heap)
{
(void)heap;
while (altNames) {
DNS_entry* tmp = altNames->next;
XFREE(altNames->name, heap, DYNAMIC_TYPE_ALTNAME);
XFREE(altNames, heap, DYNAMIC_TYPE_ALTNAME);
altNames = tmp;
}
}
#ifndef IGNORE_NAME_CONSTRAINTS
void FreeNameSubtrees(Base_entry* names, void* heap)
{
(void)heap;
while (names) {
Base_entry* tmp = names->next;
XFREE(names->name, heap, DYNAMIC_TYPE_ALTNAME);
XFREE(names, heap, DYNAMIC_TYPE_ALTNAME);
names = tmp;
}
}
#endif /* IGNORE_NAME_CONSTRAINTS */
void FreeDecodedCert(DecodedCert* cert)
{
if (cert->subjectCNStored == 1)
XFREE(cert->subjectCN, cert->heap, DYNAMIC_TYPE_SUBJECT_CN);
if (cert->pubKeyStored == 1)
XFREE(cert->publicKey, cert->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (cert->weOwnAltNames && cert->altNames)
FreeAltNames(cert->altNames, cert->heap);
#ifndef IGNORE_NAME_CONSTRAINTS
if (cert->altEmailNames)
FreeAltNames(cert->altEmailNames, cert->heap);
if (cert->permittedNames)
FreeNameSubtrees(cert->permittedNames, cert->heap);
if (cert->excludedNames)
FreeNameSubtrees(cert->excludedNames, cert->heap);
#endif /* IGNORE_NAME_CONSTRAINTS */
#ifdef WOLFSSL_SEP
XFREE(cert->deviceType, cert->heap, DYNAMIC_TYPE_X509_EXT);
XFREE(cert->hwType, cert->heap, DYNAMIC_TYPE_X509_EXT);
XFREE(cert->hwSerialNum, cert->heap, DYNAMIC_TYPE_X509_EXT);
#endif /* WOLFSSL_SEP */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
if (cert->issuerName.fullName != NULL)
XFREE(cert->issuerName.fullName, cert->heap, DYNAMIC_TYPE_X509);
if (cert->subjectName.fullName != NULL)
XFREE(cert->subjectName.fullName, cert->heap, DYNAMIC_TYPE_X509);
#endif /* OPENSSL_EXTRA */
FreeSignatureCtx(&cert->sigCtx);
}
static int GetCertHeader(DecodedCert* cert)
{
int ret = 0, len;
if (GetSequence(cert->source, &cert->srcIdx, &len, cert->maxIdx) < 0)
return ASN_PARSE_E;
cert->certBegin = cert->srcIdx;
if (GetSequence(cert->source, &cert->srcIdx, &len, cert->maxIdx) < 0)
return ASN_PARSE_E;
cert->sigIndex = len + cert->srcIdx;
if (GetExplicitVersion(cert->source, &cert->srcIdx, &cert->version,
cert->maxIdx) < 0)
return ASN_PARSE_E;
if (GetSerialNumber(cert->source, &cert->srcIdx, cert->serial,
&cert->serialSz, cert->maxIdx) < 0)
return ASN_PARSE_E;
return ret;
}
#if !defined(NO_RSA)
/* Store Rsa Key, may save later, Dsa could use in future */
static int StoreRsaKey(DecodedCert* cert)
{
int length;
word32 recvd = cert->srcIdx;
if (GetSequence(cert->source, &cert->srcIdx, &length, cert->maxIdx) < 0)
return ASN_PARSE_E;
recvd = cert->srcIdx - recvd;
length += recvd;
while (recvd--)
cert->srcIdx--;
cert->pubKeySize = length;
cert->publicKey = cert->source + cert->srcIdx;
cert->srcIdx += length;
return 0;
}
#endif /* !NO_RSA */
#ifdef HAVE_ECC
/* return 0 on success if the ECC curve oid sum is supported */
static int CheckCurve(word32 oid)
{
int ret = 0;
word32 oidSz = 0;
ret = wc_ecc_get_oid(oid, NULL, &oidSz);
if (ret < 0 || oidSz <= 0) {
WOLFSSL_MSG("CheckCurve not found");
ret = ALGO_ID_E;
}
return ret;
}
#endif /* HAVE_ECC */
static int GetKey(DecodedCert* cert)
{
int length;
#if defined(HAVE_ECC) || defined(HAVE_NTRU)
int tmpIdx = cert->srcIdx;
#endif
if (GetSequence(cert->source, &cert->srcIdx, &length, cert->maxIdx) < 0)
return ASN_PARSE_E;
if (GetAlgoId(cert->source, &cert->srcIdx,
&cert->keyOID, oidKeyType, cert->maxIdx) < 0)
return ASN_PARSE_E;
switch (cert->keyOID) {
#ifndef NO_RSA
case RSAk:
{
int ret;
ret = CheckBitString(cert->source, &cert->srcIdx, NULL,
cert->maxIdx, 1, NULL);
if (ret != 0)
return ret;
return StoreRsaKey(cert);
}
#endif /* NO_RSA */
#ifdef HAVE_NTRU
case NTRUk:
{
const byte* key = &cert->source[tmpIdx];
byte* next = (byte*)key;
word16 keyLen;
word32 rc;
word32 remaining = cert->maxIdx - cert->srcIdx;
#ifdef WOLFSSL_SMALL_STACK
byte* keyBlob = NULL;
#else
byte keyBlob[MAX_NTRU_KEY_SZ];
#endif
rc = ntru_crypto_ntru_encrypt_subjectPublicKeyInfo2PublicKey(key,
&keyLen, NULL, &next, &remaining);
if (rc != NTRU_OK)
return ASN_NTRU_KEY_E;
if (keyLen > MAX_NTRU_KEY_SZ)
return ASN_NTRU_KEY_E;
#ifdef WOLFSSL_SMALL_STACK
keyBlob = (byte*)XMALLOC(MAX_NTRU_KEY_SZ, cert->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (keyBlob == NULL)
return MEMORY_E;
#endif
rc = ntru_crypto_ntru_encrypt_subjectPublicKeyInfo2PublicKey(key,
&keyLen, keyBlob, &next, &remaining);
if (rc != NTRU_OK) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(keyBlob, cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ASN_NTRU_KEY_E;
}
if ( (next - key) < 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(keyBlob, cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ASN_NTRU_KEY_E;
}
cert->srcIdx = tmpIdx + (int)(next - key);
cert->publicKey = (byte*)XMALLOC(keyLen, cert->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (cert->publicKey == NULL) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(keyBlob, cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return MEMORY_E;
}
XMEMCPY(cert->publicKey, keyBlob, keyLen);
cert->pubKeyStored = 1;
cert->pubKeySize = keyLen;
#ifdef WOLFSSL_SMALL_STACK
XFREE(keyBlob, cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return 0;
}
#endif /* HAVE_NTRU */
#ifdef HAVE_ECC
case ECDSAk:
{
int ret;
byte seq[5];
int pubLen = length + 1 + SetLength(length, seq);
if (cert->source[cert->srcIdx] !=
(ASN_SEQUENCE | ASN_CONSTRUCTED)) {
if (GetObjectId(cert->source, &cert->srcIdx,
&cert->pkCurveOID, oidCurveType, cert->maxIdx) < 0)
return ASN_PARSE_E;
if (CheckCurve(cert->pkCurveOID) < 0)
return ECC_CURVE_OID_E;
/* key header */
ret = CheckBitString(cert->source, &cert->srcIdx, &length,
cert->maxIdx, 1, NULL);
if (ret != 0)
return ret;
}
cert->publicKey = (byte*)XMALLOC(pubLen, cert->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (cert->publicKey == NULL)
return MEMORY_E;
XMEMCPY(cert->publicKey, &cert->source[tmpIdx], pubLen);
cert->pubKeyStored = 1;
cert->pubKeySize = pubLen;
cert->srcIdx = tmpIdx + pubLen;
return 0;
}
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
case ED25519k:
{
int ret;
cert->pkCurveOID = ED25519k;
ret = CheckBitString(cert->source, &cert->srcIdx, &length,
cert->maxIdx, 1, NULL);
if (ret != 0)
return ret;
cert->publicKey = (byte*) XMALLOC(length, cert->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (cert->publicKey == NULL)
return MEMORY_E;
XMEMCPY(cert->publicKey, &cert->source[cert->srcIdx], length);
cert->pubKeyStored = 1;
cert->pubKeySize = length;
cert->srcIdx += length;
return 0;
}
#endif /* HAVE_ED25519 */
default:
return ASN_UNKNOWN_OID_E;
}
}
/* process NAME, either issuer or subject */
static int GetName(DecodedCert* cert, int nameType)
{
int length; /* length of all distinguished names */
int dummy;
int ret;
char* full;
byte* hash;
word32 idx;
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
DecodedName* dName =
(nameType == ISSUER) ? &cert->issuerName : &cert->subjectName;
int dcnum = 0;
#endif /* OPENSSL_EXTRA */
WOLFSSL_MSG("Getting Cert Name");
if (nameType == ISSUER) {
full = cert->issuer;
hash = cert->issuerHash;
}
else {
full = cert->subject;
hash = cert->subjectHash;
}
if (cert->srcIdx >= cert->maxIdx) {
return BUFFER_E;
}
if (cert->source[cert->srcIdx] == ASN_OBJECT_ID) {
WOLFSSL_MSG("Trying optional prefix...");
if (SkipObjectId(cert->source, &cert->srcIdx, cert->maxIdx) < 0)
return ASN_PARSE_E;
WOLFSSL_MSG("Got optional prefix");
}
/* For OCSP, RFC2560 section 4.1.1 states the issuer hash should be
* calculated over the entire DER encoding of the Name field, including
* the tag and length. */
idx = cert->srcIdx;
if (GetSequence(cert->source, &cert->srcIdx, &length, cert->maxIdx) < 0)
return ASN_PARSE_E;
#ifdef NO_SHA
ret = wc_Sha256Hash(&cert->source[idx], length + cert->srcIdx - idx, hash);
#else
ret = wc_ShaHash(&cert->source[idx], length + cert->srcIdx - idx, hash);
#endif
if (ret != 0)
return ret;
length += cert->srcIdx;
idx = 0;
#ifdef HAVE_PKCS7
/* store pointer to raw issuer */
if (nameType == ISSUER) {
cert->issuerRaw = &cert->source[cert->srcIdx];
cert->issuerRawLen = length - cert->srcIdx;
}
#endif
#ifndef IGNORE_NAME_CONSTRAINTS
if (nameType == SUBJECT) {
cert->subjectRaw = &cert->source[cert->srcIdx];
cert->subjectRawLen = length - cert->srcIdx;
}
#endif
while (cert->srcIdx < (word32)length) {
byte b;
byte joint[2];
byte tooBig = FALSE;
int oidSz;
if (GetSet(cert->source, &cert->srcIdx, &dummy, cert->maxIdx) < 0) {
WOLFSSL_MSG("Cert name lacks set header, trying sequence");
}
if (GetSequence(cert->source, &cert->srcIdx, &dummy, cert->maxIdx) <= 0)
return ASN_PARSE_E;
ret = GetASNObjectId(cert->source, &cert->srcIdx, &oidSz, cert->maxIdx);
if (ret != 0)
return ret;
/* make sure there is room for joint */
if ((cert->srcIdx + sizeof(joint)) > cert->maxIdx)
return ASN_PARSE_E;
XMEMCPY(joint, &cert->source[cert->srcIdx], sizeof(joint));
/* v1 name types */
if (joint[0] == 0x55 && joint[1] == 0x04) {
const char* copy = NULL;
int strLen;
byte id;
cert->srcIdx += 2;
id = cert->source[cert->srcIdx++];
b = cert->source[cert->srcIdx++]; /* encoding */
if (GetLength(cert->source, &cert->srcIdx, &strLen,
cert->maxIdx) < 0)
return ASN_PARSE_E;
if ( (strLen + 14) > (int)(ASN_NAME_MAX - idx)) {
/* include biggest pre fix header too 4 = "/serialNumber=" */
WOLFSSL_MSG("ASN Name too big, skipping");
tooBig = TRUE;
}
if (id == ASN_COMMON_NAME) {
if (nameType == SUBJECT) {
cert->subjectCN = (char *)&cert->source[cert->srcIdx];
cert->subjectCNLen = strLen;
cert->subjectCNEnc = b;
}
copy = WOLFSSL_COMMON_NAME;
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
dName->cnIdx = cert->srcIdx;
dName->cnLen = strLen;
#endif /* OPENSSL_EXTRA */
}
else if (id == ASN_SUR_NAME) {
copy = WOLFSSL_SUR_NAME;
#ifdef WOLFSSL_CERT_GEN
if (nameType == SUBJECT) {
cert->subjectSN = (char*)&cert->source[cert->srcIdx];
cert->subjectSNLen = strLen;
cert->subjectSNEnc = b;
}
#endif /* WOLFSSL_CERT_GEN */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
dName->snIdx = cert->srcIdx;
dName->snLen = strLen;
#endif /* OPENSSL_EXTRA */
}
else if (id == ASN_COUNTRY_NAME) {
copy = WOLFSSL_COUNTRY_NAME;
#ifdef WOLFSSL_CERT_GEN
if (nameType == SUBJECT) {
cert->subjectC = (char*)&cert->source[cert->srcIdx];
cert->subjectCLen = strLen;
cert->subjectCEnc = b;
}
#endif /* WOLFSSL_CERT_GEN */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
dName->cIdx = cert->srcIdx;
dName->cLen = strLen;
#endif /* OPENSSL_EXTRA */
}
else if (id == ASN_LOCALITY_NAME) {
copy = WOLFSSL_LOCALITY_NAME;
#ifdef WOLFSSL_CERT_GEN
if (nameType == SUBJECT) {
cert->subjectL = (char*)&cert->source[cert->srcIdx];
cert->subjectLLen = strLen;
cert->subjectLEnc = b;
}
#endif /* WOLFSSL_CERT_GEN */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
dName->lIdx = cert->srcIdx;
dName->lLen = strLen;
#endif /* OPENSSL_EXTRA */
}
else if (id == ASN_STATE_NAME) {
copy = WOLFSSL_STATE_NAME;
#ifdef WOLFSSL_CERT_GEN
if (nameType == SUBJECT) {
cert->subjectST = (char*)&cert->source[cert->srcIdx];
cert->subjectSTLen = strLen;
cert->subjectSTEnc = b;
}
#endif /* WOLFSSL_CERT_GEN */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
dName->stIdx = cert->srcIdx;
dName->stLen = strLen;
#endif /* OPENSSL_EXTRA */
}
else if (id == ASN_ORG_NAME) {
copy = WOLFSSL_ORG_NAME;
#ifdef WOLFSSL_CERT_GEN
if (nameType == SUBJECT) {
cert->subjectO = (char*)&cert->source[cert->srcIdx];
cert->subjectOLen = strLen;
cert->subjectOEnc = b;
}
#endif /* WOLFSSL_CERT_GEN */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
dName->oIdx = cert->srcIdx;
dName->oLen = strLen;
#endif /* OPENSSL_EXTRA */
}
else if (id == ASN_ORGUNIT_NAME) {
copy = WOLFSSL_ORGUNIT_NAME;
#ifdef WOLFSSL_CERT_GEN
if (nameType == SUBJECT) {
cert->subjectOU = (char*)&cert->source[cert->srcIdx];
cert->subjectOULen = strLen;
cert->subjectOUEnc = b;
}
#endif /* WOLFSSL_CERT_GEN */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
dName->ouIdx = cert->srcIdx;
dName->ouLen = strLen;
#endif /* OPENSSL_EXTRA */
}
else if (id == ASN_SERIAL_NUMBER) {
copy = WOLFSSL_SERIAL_NUMBER;
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
dName->snIdx = cert->srcIdx;
dName->snLen = strLen;
#endif /* OPENSSL_EXTRA */
}
if (copy && !tooBig) {
XMEMCPY(&full[idx], copy, XSTRLEN(copy));
idx += (word32)XSTRLEN(copy);
#ifdef WOLFSSL_WPAS
full[idx] = '=';
idx++;
#endif
XMEMCPY(&full[idx], &cert->source[cert->srcIdx], strLen);
idx += strLen;
}
cert->srcIdx += strLen;
}
else {
/* skip */
byte email = FALSE;
byte pilot = FALSE;
byte id = 0;
int adv;
if (joint[0] == 0x2a && joint[1] == 0x86) /* email id hdr */
email = TRUE;
if (joint[0] == 0x9 && joint[1] == 0x92) { /* uid id hdr */
/* last value of OID is the type of pilot attribute */
id = cert->source[cert->srcIdx + oidSz - 1];
pilot = TRUE;
}
cert->srcIdx += oidSz + 1;
if (GetLength(cert->source, &cert->srcIdx, &adv, cert->maxIdx) < 0)
return ASN_PARSE_E;
if (adv > (int)(ASN_NAME_MAX - idx)) {
WOLFSSL_MSG("ASN name too big, skipping");
tooBig = TRUE;
}
if (email) {
if ( (14 + adv) > (int)(ASN_NAME_MAX - idx)) {
WOLFSSL_MSG("ASN name too big, skipping");
tooBig = TRUE;
}
if (!tooBig) {
XMEMCPY(&full[idx], "/emailAddress=", 14);
idx += 14;
}
#ifdef WOLFSSL_CERT_GEN
if (nameType == SUBJECT) {
cert->subjectEmail = (char*)&cert->source[cert->srcIdx];
cert->subjectEmailLen = adv;
}
#endif /* WOLFSSL_CERT_GEN */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
dName->emailIdx = cert->srcIdx;
dName->emailLen = adv;
#endif /* OPENSSL_EXTRA */
#ifndef IGNORE_NAME_CONSTRAINTS
{
DNS_entry* emailName = NULL;
emailName = (DNS_entry*)XMALLOC(sizeof(DNS_entry),
cert->heap, DYNAMIC_TYPE_ALTNAME);
if (emailName == NULL) {
WOLFSSL_MSG("\tOut of Memory");
return MEMORY_E;
}
emailName->type = 0;
emailName->name = (char*)XMALLOC(adv + 1,
cert->heap, DYNAMIC_TYPE_ALTNAME);
if (emailName->name == NULL) {
WOLFSSL_MSG("\tOut of Memory");
XFREE(emailName, cert->heap, DYNAMIC_TYPE_ALTNAME);
return MEMORY_E;
}
emailName->len = adv;
XMEMCPY(emailName->name,
&cert->source[cert->srcIdx], adv);
emailName->name[adv] = '\0';
emailName->next = cert->altEmailNames;
cert->altEmailNames = emailName;
}
#endif /* IGNORE_NAME_CONSTRAINTS */
if (!tooBig) {
XMEMCPY(&full[idx], &cert->source[cert->srcIdx], adv);
idx += adv;
}
}
if (pilot) {
if ( (5 + adv) > (int)(ASN_NAME_MAX - idx)) {
WOLFSSL_MSG("ASN name too big, skipping");
tooBig = TRUE;
}
if (!tooBig) {
switch (id) {
case ASN_USER_ID:
XMEMCPY(&full[idx], "/UID=", 5);
idx += 5;
#if defined(OPENSSL_EXTRA) || \
defined(OPENSSL_EXTRA_X509_SMALL)
dName->uidIdx = cert->srcIdx;
dName->uidLen = adv;
#endif /* OPENSSL_EXTRA */
break;
case ASN_DOMAIN_COMPONENT:
XMEMCPY(&full[idx], "/DC=", 4);
idx += 4;
#if defined(OPENSSL_EXTRA) || \
defined(OPENSSL_EXTRA_X509_SMALL)
dName->dcIdx[dcnum] = cert->srcIdx;
dName->dcLen[dcnum] = adv;
dName->dcNum = dcnum + 1;
dcnum++;
#endif /* OPENSSL_EXTRA */
break;
default:
WOLFSSL_MSG("Unknown pilot attribute type");
return ASN_PARSE_E;
}
XMEMCPY(&full[idx], &cert->source[cert->srcIdx], adv);
idx += adv;
}
}
cert->srcIdx += adv;
}
}
full[idx++] = 0;
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
{
int totalLen = 0;
int i = 0;
if (dName->cnLen != 0)
totalLen += dName->cnLen + 4;
if (dName->snLen != 0)
totalLen += dName->snLen + 4;
if (dName->cLen != 0)
totalLen += dName->cLen + 3;
if (dName->lLen != 0)
totalLen += dName->lLen + 3;
if (dName->stLen != 0)
totalLen += dName->stLen + 4;
if (dName->oLen != 0)
totalLen += dName->oLen + 3;
if (dName->ouLen != 0)
totalLen += dName->ouLen + 4;
if (dName->emailLen != 0)
totalLen += dName->emailLen + 14;
if (dName->uidLen != 0)
totalLen += dName->uidLen + 5;
if (dName->serialLen != 0)
totalLen += dName->serialLen + 14;
if (dName->dcNum != 0){
for (i = 0;i < dName->dcNum;i++)
totalLen += dName->dcLen[i] + 4;
}
dName->fullName = (char*)XMALLOC(totalLen + 1, cert->heap,
DYNAMIC_TYPE_X509);
if (dName->fullName != NULL) {
idx = 0;
if (dName->cnLen != 0) {
dName->entryCount++;
XMEMCPY(&dName->fullName[idx], WOLFSSL_COMMON_NAME, 4);
idx += 4;
XMEMCPY(&dName->fullName[idx],
&cert->source[dName->cnIdx], dName->cnLen);
dName->cnIdx = idx;
idx += dName->cnLen;
}
if (dName->snLen != 0) {
dName->entryCount++;
XMEMCPY(&dName->fullName[idx], WOLFSSL_SUR_NAME, 4);
idx += 4;
XMEMCPY(&dName->fullName[idx],
&cert->source[dName->snIdx], dName->snLen);
dName->snIdx = idx;
idx += dName->snLen;
}
if (dName->cLen != 0) {
dName->entryCount++;
XMEMCPY(&dName->fullName[idx], WOLFSSL_COUNTRY_NAME, 3);
idx += 3;
XMEMCPY(&dName->fullName[idx],
&cert->source[dName->cIdx], dName->cLen);
dName->cIdx = idx;
idx += dName->cLen;
}
if (dName->lLen != 0) {
dName->entryCount++;
XMEMCPY(&dName->fullName[idx], WOLFSSL_LOCALITY_NAME, 3);
idx += 3;
XMEMCPY(&dName->fullName[idx],
&cert->source[dName->lIdx], dName->lLen);
dName->lIdx = idx;
idx += dName->lLen;
}
if (dName->stLen != 0) {
dName->entryCount++;
XMEMCPY(&dName->fullName[idx], WOLFSSL_STATE_NAME, 4);
idx += 4;
XMEMCPY(&dName->fullName[idx],
&cert->source[dName->stIdx], dName->stLen);
dName->stIdx = idx;
idx += dName->stLen;
}
if (dName->oLen != 0) {
dName->entryCount++;
XMEMCPY(&dName->fullName[idx], WOLFSSL_ORG_NAME, 3);
idx += 3;
XMEMCPY(&dName->fullName[idx],
&cert->source[dName->oIdx], dName->oLen);
dName->oIdx = idx;
idx += dName->oLen;
}
if (dName->ouLen != 0) {
dName->entryCount++;
XMEMCPY(&dName->fullName[idx], WOLFSSL_ORGUNIT_NAME, 4);
idx += 4;
XMEMCPY(&dName->fullName[idx],
&cert->source[dName->ouIdx], dName->ouLen);
dName->ouIdx = idx;
idx += dName->ouLen;
}
if (dName->emailLen != 0) {
dName->entryCount++;
XMEMCPY(&dName->fullName[idx], "/emailAddress=", 14);
idx += 14;
XMEMCPY(&dName->fullName[idx],
&cert->source[dName->emailIdx], dName->emailLen);
dName->emailIdx = idx;
idx += dName->emailLen;
}
for (i = 0;i < dName->dcNum;i++){
if (dName->dcLen[i] != 0) {
dName->entryCount++;
XMEMCPY(&dName->fullName[idx], WOLFSSL_DOMAIN_COMPONENT, 4);
idx += 4;
XMEMCPY(&dName->fullName[idx],
&cert->source[dName->dcIdx[i]], dName->dcLen[i]);
dName->dcIdx[i] = idx;
idx += dName->dcLen[i];
}
}
if (dName->uidLen != 0) {
dName->entryCount++;
XMEMCPY(&dName->fullName[idx], "/UID=", 5);
idx += 5;
XMEMCPY(&dName->fullName[idx],
&cert->source[dName->uidIdx], dName->uidLen);
dName->uidIdx = idx;
idx += dName->uidLen;
}
if (dName->serialLen != 0) {
dName->entryCount++;
XMEMCPY(&dName->fullName[idx], WOLFSSL_SERIAL_NUMBER, 14);
idx += 14;
XMEMCPY(&dName->fullName[idx],
&cert->source[dName->serialIdx], dName->serialLen);
dName->serialIdx = idx;
idx += dName->serialLen;
}
dName->fullName[idx] = '\0';
dName->fullNameLen = totalLen;
}
}
#endif /* OPENSSL_EXTRA */
return 0;
}
#ifndef NO_ASN_TIME
/* two byte date/time, add to value */
static WC_INLINE void GetTime(int* value, const byte* date, int* idx)
{
int i = *idx;
*value += btoi(date[i++]) * 10;
*value += btoi(date[i++]);
*idx = i;
}
int ExtractDate(const unsigned char* date, unsigned char format,
struct tm* certTime, int* idx)
{
XMEMSET(certTime, 0, sizeof(struct tm));
if (format == ASN_UTC_TIME) {
if (btoi(date[0]) >= 5)
certTime->tm_year = 1900;
else
certTime->tm_year = 2000;
}
else { /* format == GENERALIZED_TIME */
certTime->tm_year += btoi(date[*idx]) * 1000; *idx = *idx + 1;
certTime->tm_year += btoi(date[*idx]) * 100; *idx = *idx + 1;
}
/* adjust tm_year, tm_mon */
GetTime((int*)&certTime->tm_year, date, idx); certTime->tm_year -= 1900;
GetTime((int*)&certTime->tm_mon, date, idx); certTime->tm_mon -= 1;
GetTime((int*)&certTime->tm_mday, date, idx);
GetTime((int*)&certTime->tm_hour, date, idx);
GetTime((int*)&certTime->tm_min, date, idx);
GetTime((int*)&certTime->tm_sec, date, idx);
return 1;
}
#if defined(OPENSSL_ALL) || defined(WOLFSSL_MYSQL_COMPATIBLE) || \
defined(OPENSSL_EXTRA) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY)
int GetTimeString(byte* date, int format, char* buf, int len)
{
struct tm t;
int idx = 0;
if (!ExtractDate(date, (unsigned char)format, &t, &idx)) {
return 0;
}
if (date[idx] != 'Z') {
WOLFSSL_MSG("UTCtime, not Zulu") ;
return 0;
}
/* place month in buffer */
buf[0] = '\0';
switch(t.tm_mon) {
case 0: XSTRNCAT(buf, "Jan ", 4); break;
case 1: XSTRNCAT(buf, "Feb ", 4); break;
case 2: XSTRNCAT(buf, "Mar ", 4); break;
case 3: XSTRNCAT(buf, "Apr ", 4); break;
case 4: XSTRNCAT(buf, "May ", 4); break;
case 5: XSTRNCAT(buf, "Jun ", 4); break;
case 6: XSTRNCAT(buf, "Jul ", 4); break;
case 7: XSTRNCAT(buf, "Aug ", 4); break;
case 8: XSTRNCAT(buf, "Sep ", 4); break;
case 9: XSTRNCAT(buf, "Oct ", 4); break;
case 10: XSTRNCAT(buf, "Nov ", 4); break;
case 11: XSTRNCAT(buf, "Dec ", 4); break;
default:
return 0;
}
idx = 4; /* use idx now for char buffer */
buf[idx] = ' ';
XSNPRINTF(buf + idx, len - idx, "%2d %02d:%02d:%02d %d GMT",
t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec, t.tm_year + 1900);
return 1;
}
#endif /* OPENSSL_ALL || WOLFSSL_MYSQL_COMPATIBLE || WOLFSSL_NGINX || WOLFSSL_HAPROXY */
#if defined(USE_WOLF_VALIDDATE)
/* to the second */
static int DateGreaterThan(const struct tm* a, const struct tm* b)
{
if (a->tm_year > b->tm_year)
return 1;
if (a->tm_year == b->tm_year && a->tm_mon > b->tm_mon)
return 1;
if (a->tm_year == b->tm_year && a->tm_mon == b->tm_mon &&
a->tm_mday > b->tm_mday)
return 1;
if (a->tm_year == b->tm_year && a->tm_mon == b->tm_mon &&
a->tm_mday == b->tm_mday && a->tm_hour > b->tm_hour)
return 1;
if (a->tm_year == b->tm_year && a->tm_mon == b->tm_mon &&
a->tm_mday == b->tm_mday && a->tm_hour == b->tm_hour &&
a->tm_min > b->tm_min)
return 1;
if (a->tm_year == b->tm_year && a->tm_mon == b->tm_mon &&
a->tm_mday == b->tm_mday && a->tm_hour == b->tm_hour &&
a->tm_min == b->tm_min && a->tm_sec > b->tm_sec)
return 1;
return 0; /* false */
}
static WC_INLINE int DateLessThan(const struct tm* a, const struct tm* b)
{
return DateGreaterThan(b,a);
}
/* like atoi but only use first byte */
/* Make sure before and after dates are valid */
int ValidateDate(const byte* date, byte format, int dateType)
{
time_t ltime;
struct tm certTime;
struct tm* localTime;
struct tm* tmpTime = NULL;
int i = 0;
int timeDiff = 0 ;
int diffHH = 0 ; int diffMM = 0 ;
int diffSign = 0 ;
#if defined(NEED_TMP_TIME)
struct tm tmpTimeStorage;
tmpTime = &tmpTimeStorage;
#else
(void)tmpTime;
#endif
ltime = XTIME(0);
#ifdef WOLFSSL_BEFORE_DATE_CLOCK_SKEW
if (dateType == BEFORE) {
WOLFSSL_MSG("Skewing local time for before date check");
ltime += WOLFSSL_BEFORE_DATE_CLOCK_SKEW;
}
#endif
#ifdef WOLFSSL_AFTER_DATE_CLOCK_SKEW
if (dateType == AFTER) {
WOLFSSL_MSG("Skewing local time for after date check");
ltime -= WOLFSSL_AFTER_DATE_CLOCK_SKEW;
}
#endif
if (!ExtractDate(date, format, &certTime, &i)) {
WOLFSSL_MSG("Error extracting the date");
return 0;
}
if ((date[i] == '+') || (date[i] == '-')) {
WOLFSSL_MSG("Using time differential, not Zulu") ;
diffSign = date[i++] == '+' ? 1 : -1 ;
GetTime(&diffHH, date, &i);
GetTime(&diffMM, date, &i);
timeDiff = diffSign * (diffHH*60 + diffMM) * 60 ;
} else if (date[i] != 'Z') {
WOLFSSL_MSG("UTCtime, niether Zulu or time differential") ;
return 0;
}
ltime -= (time_t)timeDiff ;
localTime = XGMTIME(&ltime, tmpTime);
if (localTime == NULL) {
WOLFSSL_MSG("XGMTIME failed");
return 0;
}
if (dateType == BEFORE) {
if (DateLessThan(localTime, &certTime)) {
WOLFSSL_MSG("Date BEFORE check failed");
return 0;
}
}
else { /* dateType == AFTER */
if (DateGreaterThan(localTime, &certTime)) {
WOLFSSL_MSG("Date AFTER check failed");
return 0;
}
}
return 1;
}
#endif /* USE_WOLF_VALIDDATE */
int wc_GetTime(void* timePtr, word32 timeSize)
{
time_t* ltime = (time_t*)timePtr;
if (timePtr == NULL) {
return BAD_FUNC_ARG;
}
if ((word32)sizeof(time_t) > timeSize) {
return BUFFER_E;
}
*ltime = XTIME(0);
return 0;
}
#endif /* !NO_ASN_TIME */
/* Get date buffer, format and length. Returns 0=success or error */
static int GetDateInfo(const byte* source, word32* idx, const byte** pDate,
byte* pFormat, int* pLength, word32 maxIdx)
{
int length;
byte format;
if (source == NULL || idx == NULL)
return BAD_FUNC_ARG;
/* get ASN format header */
if (*idx+1 > maxIdx)
return BUFFER_E;
format = source[*idx];
*idx += 1;
if (format != ASN_UTC_TIME && format != ASN_GENERALIZED_TIME)
return ASN_TIME_E;
/* get length */
if (GetLength(source, idx, &length, maxIdx) < 0)
return ASN_PARSE_E;
if (length > MAX_DATE_SIZE || length < MIN_DATE_SIZE)
return ASN_DATE_SZ_E;
/* return format, date and length */
if (pFormat)
*pFormat = format;
if (pDate)
*pDate = &source[*idx];
if (pLength)
*pLength = length;
*idx += length;
return 0;
}
static int GetDate(DecodedCert* cert, int dateType, int verify)
{
int ret, length;
const byte *datePtr = NULL;
byte date[MAX_DATE_SIZE];
byte format;
word32 startIdx = 0;
if (dateType == BEFORE)
cert->beforeDate = &cert->source[cert->srcIdx];
else
cert->afterDate = &cert->source[cert->srcIdx];
startIdx = cert->srcIdx;
ret = GetDateInfo(cert->source, &cert->srcIdx, &datePtr, &format,
&length, cert->maxIdx);
if (ret < 0)
return ret;
XMEMSET(date, 0, MAX_DATE_SIZE);
XMEMCPY(date, datePtr, length);
if (dateType == BEFORE)
cert->beforeDateLen = cert->srcIdx - startIdx;
else
cert->afterDateLen = cert->srcIdx - startIdx;
#ifndef NO_ASN_TIME
if (verify != NO_VERIFY && !XVALIDATE_DATE(date, format, dateType)) {
if (dateType == BEFORE)
return ASN_BEFORE_DATE_E;
else
return ASN_AFTER_DATE_E;
}
#else
(void)verify;
#endif
return 0;
}
static int GetValidity(DecodedCert* cert, int verify)
{
int length;
int badDate = 0;
if (GetSequence(cert->source, &cert->srcIdx, &length, cert->maxIdx) < 0)
return ASN_PARSE_E;
if (GetDate(cert, BEFORE, verify) < 0)
badDate = ASN_BEFORE_DATE_E; /* continue parsing */
if (GetDate(cert, AFTER, verify) < 0)
return ASN_AFTER_DATE_E;
if (badDate != 0)
return badDate;
return 0;
}
int wc_GetDateInfo(const byte* certDate, int certDateSz, const byte** date,
byte* format, int* length)
{
int ret;
word32 idx = 0;
ret = GetDateInfo(certDate, &idx, date, format, length, certDateSz);
if (ret < 0)
return ret;
return 0;
}
#ifndef NO_ASN_TIME
int wc_GetDateAsCalendarTime(const byte* date, int length, byte format,
struct tm* timearg)
{
int idx = 0;
(void)length;
if (!ExtractDate(date, format, timearg, &idx))
return ASN_TIME_E;
return 0;
}
#if defined(WOLFSSL_CERT_GEN) && defined(WOLFSSL_ALT_NAMES)
int wc_GetCertDates(Cert* cert, struct tm* before, struct tm* after)
{
int ret = 0;
const byte* date;
byte format;
int length;
if (cert == NULL)
return BAD_FUNC_ARG;
if (before && cert->beforeDateSz > 0) {
ret = wc_GetDateInfo(cert->beforeDate, cert->beforeDateSz, &date,
&format, &length);
if (ret == 0)
ret = wc_GetDateAsCalendarTime(date, length, format, before);
}
if (after && cert->afterDateSz > 0) {
ret = wc_GetDateInfo(cert->afterDate, cert->afterDateSz, &date,
&format, &length);
if (ret == 0)
ret = wc_GetDateAsCalendarTime(date, length, format, after);
}
return ret;
}
#endif /* WOLFSSL_CERT_GEN && WOLFSSL_ALT_NAMES */
#endif /* !NO_ASN_TIME */
int DecodeToKey(DecodedCert* cert, int verify)
{
int badDate = 0;
int ret;
if ( (ret = GetCertHeader(cert)) < 0)
return ret;
WOLFSSL_MSG("Got Cert Header");
if ( (ret = GetAlgoId(cert->source, &cert->srcIdx, &cert->signatureOID,
oidSigType, cert->maxIdx)) < 0)
return ret;
WOLFSSL_MSG("Got Algo ID");
if ( (ret = GetName(cert, ISSUER)) < 0)
return ret;
if ( (ret = GetValidity(cert, verify)) < 0)
badDate = ret;
if ( (ret = GetName(cert, SUBJECT)) < 0)
return ret;
WOLFSSL_MSG("Got Subject Name");
if ( (ret = GetKey(cert)) < 0)
return ret;
WOLFSSL_MSG("Got Key");
if (badDate != 0)
return badDate;
return ret;
}
static int GetSignature(DecodedCert* cert)
{
int length;
int ret;
ret = CheckBitString(cert->source, &cert->srcIdx, &length, cert->maxIdx, 1,
NULL);
if (ret != 0)
return ret;
cert->sigLength = length;
cert->signature = &cert->source[cert->srcIdx];
cert->srcIdx += cert->sigLength;
return 0;
}
static word32 SetOctetString8Bit(word32 len, byte* output)
{
output[0] = ASN_OCTET_STRING;
output[1] = (byte)len;
return 2;
}
static word32 SetDigest(const byte* digest, word32 digSz, byte* output)
{
word32 idx = SetOctetString8Bit(digSz, output);
XMEMCPY(&output[idx], digest, digSz);
return idx + digSz;
}
static word32 BytePrecision(word32 value)
{
word32 i;
for (i = sizeof(value); i; --i)
if (value >> ((i - 1) * WOLFSSL_BIT_SIZE))
break;
return i;
}
WOLFSSL_LOCAL word32 SetLength(word32 length, byte* output)
{
word32 i = 0, j;
if (length < ASN_LONG_LENGTH)
output[i++] = (byte)length;
else {
output[i++] = (byte)(BytePrecision(length) | ASN_LONG_LENGTH);
for (j = BytePrecision(length); j; --j) {
output[i] = (byte)(length >> ((j - 1) * WOLFSSL_BIT_SIZE));
i++;
}
}
return i;
}
WOLFSSL_LOCAL word32 SetSequence(word32 len, byte* output)
{
output[0] = ASN_SEQUENCE | ASN_CONSTRUCTED;
return SetLength(len, output + 1) + 1;
}
WOLFSSL_LOCAL word32 SetOctetString(word32 len, byte* output)
{
output[0] = ASN_OCTET_STRING;
return SetLength(len, output + 1) + 1;
}
/* Write a set header to output */
WOLFSSL_LOCAL word32 SetSet(word32 len, byte* output)
{
output[0] = ASN_SET | ASN_CONSTRUCTED;
return SetLength(len, output + 1) + 1;
}
WOLFSSL_LOCAL word32 SetImplicit(byte tag, byte number, word32 len, byte* output)
{
output[0] = ((tag == ASN_SEQUENCE || tag == ASN_SET) ? ASN_CONSTRUCTED : 0)
| ASN_CONTEXT_SPECIFIC | number;
return SetLength(len, output + 1) + 1;
}
WOLFSSL_LOCAL word32 SetExplicit(byte number, word32 len, byte* output)
{
output[0] = ASN_CONSTRUCTED | ASN_CONTEXT_SPECIFIC | number;
return SetLength(len, output + 1) + 1;
}
#if defined(HAVE_ECC)
static int SetCurve(ecc_key* key, byte* output)
{
#ifdef HAVE_OID_ENCODING
int ret;
#endif
int idx = 0;
word32 oidSz = 0;
/* validate key */
if (key == NULL || key->dp == NULL) {
return BAD_FUNC_ARG;
}
#ifdef HAVE_OID_ENCODING
ret = EncodeObjectId(key->dp->oid, key->dp->oidSz, NULL, &oidSz);
if (ret != 0) {
return ret;
}
#else
oidSz = key->dp->oidSz;
#endif
idx += SetObjectId(oidSz, output);
#ifdef HAVE_OID_ENCODING
ret = EncodeObjectId(key->dp->oid, key->dp->oidSz, output+idx, &oidSz);
if (ret != 0) {
return ret;
}
#else
XMEMCPY(output+idx, key->dp->oid, oidSz);
#endif
idx += oidSz;
return idx;
}
#endif /* HAVE_ECC */
#ifdef HAVE_ECC
static WC_INLINE int IsSigAlgoECDSA(int algoOID)
{
/* ECDSA sigAlgo must not have ASN1 NULL parameters */
if (algoOID == CTC_SHAwECDSA || algoOID == CTC_SHA256wECDSA ||
algoOID == CTC_SHA384wECDSA || algoOID == CTC_SHA512wECDSA) {
return 1;
}
return 0;
}
#endif
WOLFSSL_LOCAL word32 SetAlgoID(int algoOID, byte* output, int type, int curveSz)
{
word32 tagSz, idSz, seqSz, algoSz = 0;
const byte* algoName = 0;
byte ID_Length[1 + MAX_LENGTH_SZ];
byte seqArray[MAX_SEQ_SZ + 1]; /* add object_id to end */
tagSz = (type == oidHashType ||
(type == oidSigType
#ifdef HAVE_ECC
&& !IsSigAlgoECDSA(algoOID)
#endif
#ifdef HAVE_ED25519
&& algoOID != ED25519k
#endif
) ||
(type == oidKeyType && algoOID == RSAk)) ? 2 : 0;
algoName = OidFromId(algoOID, type, &algoSz);
if (algoName == NULL) {
WOLFSSL_MSG("Unknown Algorithm");
return 0;
}
idSz = SetObjectId(algoSz, ID_Length);
seqSz = SetSequence(idSz + algoSz + tagSz + curveSz, seqArray);
XMEMCPY(output, seqArray, seqSz);
XMEMCPY(output + seqSz, ID_Length, idSz);
XMEMCPY(output + seqSz + idSz, algoName, algoSz);
if (tagSz == 2)
SetASNNull(&output[seqSz + idSz + algoSz]);
return seqSz + idSz + algoSz + tagSz;
}
word32 wc_EncodeSignature(byte* out, const byte* digest, word32 digSz,
int hashOID)
{
byte digArray[MAX_ENCODED_DIG_SZ];
byte algoArray[MAX_ALGO_SZ];
byte seqArray[MAX_SEQ_SZ];
word32 encDigSz, algoSz, seqSz;
encDigSz = SetDigest(digest, digSz, digArray);
algoSz = SetAlgoID(hashOID, algoArray, oidHashType, 0);
seqSz = SetSequence(encDigSz + algoSz, seqArray);
XMEMCPY(out, seqArray, seqSz);
XMEMCPY(out + seqSz, algoArray, algoSz);
XMEMCPY(out + seqSz + algoSz, digArray, encDigSz);
return encDigSz + algoSz + seqSz;
}
int wc_GetCTC_HashOID(int type)
{
int ret;
enum wc_HashType hType;
hType = wc_HashTypeConvert(type);
ret = wc_HashGetOID(hType);
if (ret < 0)
ret = 0; /* backwards compatibility */
return ret;
}
void InitSignatureCtx(SignatureCtx* sigCtx, void* heap, int devId)
{
if (sigCtx) {
XMEMSET(sigCtx, 0, sizeof(SignatureCtx));
sigCtx->devId = devId;
sigCtx->heap = heap;
}
}
void FreeSignatureCtx(SignatureCtx* sigCtx)
{
if (sigCtx == NULL)
return;
if (sigCtx->digest) {
XFREE(sigCtx->digest, sigCtx->heap, DYNAMIC_TYPE_DIGEST);
sigCtx->digest = NULL;
}
#ifndef NO_RSA
if (sigCtx->plain) {
XFREE(sigCtx->plain, sigCtx->heap, DYNAMIC_TYPE_SIGNATURE);
sigCtx->plain = NULL;
}
#endif
if (sigCtx->key.ptr) {
switch (sigCtx->keyOID) {
#ifndef NO_RSA
case RSAk:
wc_FreeRsaKey(sigCtx->key.rsa);
XFREE(sigCtx->key.ptr, sigCtx->heap, DYNAMIC_TYPE_RSA);
break;
#endif /* !NO_RSA */
#ifdef HAVE_ECC
case ECDSAk:
wc_ecc_free(sigCtx->key.ecc);
XFREE(sigCtx->key.ecc, sigCtx->heap, DYNAMIC_TYPE_ECC);
break;
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
case ED25519k:
wc_ed25519_free(sigCtx->key.ed25519);
XFREE(sigCtx->key.ed25519, sigCtx->heap, DYNAMIC_TYPE_ED25519);
break;
#endif /* HAVE_ED25519 */
default:
break;
} /* switch (keyOID) */
sigCtx->key.ptr = NULL;
}
/* reset state, we are done */
sigCtx->state = SIG_STATE_BEGIN;
}
static int HashForSignature(const byte* buf, word32 bufSz, word32 sigOID,
byte* digest, int* typeH, int* digestSz, int verify)
{
int ret = 0;
(void)verify;
switch (sigOID) {
#if defined(WOLFSSL_MD2)
case CTC_MD2wRSA:
if (!verify) {
ret = HASH_TYPE_E;
WOLFSSL_MSG("MD2 not supported for signing");
}
else if ((ret = wc_Md2Hash(buf, bufSz, digest)) == 0) {
*typeH = MD2h;
*digestSz = MD2_DIGEST_SIZE;
}
break;
#endif
#ifndef NO_MD5
case CTC_MD5wRSA:
if ((ret = wc_Md5Hash(buf, bufSz, digest)) == 0) {
*typeH = MD5h;
*digestSz = WC_MD5_DIGEST_SIZE;
}
break;
#endif
#ifndef NO_SHA
case CTC_SHAwRSA:
case CTC_SHAwDSA:
case CTC_SHAwECDSA:
if ((ret = wc_ShaHash(buf, bufSz, digest)) == 0) {
*typeH = SHAh;
*digestSz = WC_SHA_DIGEST_SIZE;
}
break;
#endif
#ifdef WOLFSSL_SHA224
case CTC_SHA224wRSA:
case CTC_SHA224wECDSA:
if ((ret = wc_Sha224Hash(buf, bufSz, digest)) == 0) {
*typeH = SHA224h;
*digestSz = WC_SHA224_DIGEST_SIZE;
}
break;
#endif
#ifndef NO_SHA256
case CTC_SHA256wRSA:
case CTC_SHA256wECDSA:
if ((ret = wc_Sha256Hash(buf, bufSz, digest)) == 0) {
*typeH = SHA256h;
*digestSz = WC_SHA256_DIGEST_SIZE;
}
break;
#endif
#ifdef WOLFSSL_SHA384
case CTC_SHA384wRSA:
case CTC_SHA384wECDSA:
if ((ret = wc_Sha384Hash(buf, bufSz, digest)) == 0) {
*typeH = SHA384h;
*digestSz = WC_SHA384_DIGEST_SIZE;
}
break;
#endif
#ifdef WOLFSSL_SHA512
case CTC_SHA512wRSA:
case CTC_SHA512wECDSA:
if ((ret = wc_Sha512Hash(buf, bufSz, digest)) == 0) {
*typeH = SHA512h;
*digestSz = WC_SHA512_DIGEST_SIZE;
}
break;
#endif
case CTC_ED25519:
/* Hashes done in signing operation.
* Two dependent hashes with prefixes performed.
*/
break;
default:
ret = HASH_TYPE_E;
WOLFSSL_MSG("Hash for Signature has unsupported type");
}
return ret;
}
/* Return codes: 0=Success, Negative (see error-crypt.h), ASN_SIG_CONFIRM_E */
static int ConfirmSignature(SignatureCtx* sigCtx,
const byte* buf, word32 bufSz,
const byte* key, word32 keySz, word32 keyOID,
const byte* sig, word32 sigSz, word32 sigOID)
{
int ret = 0;
if (sigCtx == NULL || buf == NULL || bufSz == 0 || key == NULL ||
keySz == 0 || sig == NULL || sigSz == 0) {
return BAD_FUNC_ARG;
}
(void)key;
(void)keySz;
(void)sig;
(void)sigSz;
WOLFSSL_ENTER("ConfirmSignature");
switch (sigCtx->state) {
case SIG_STATE_BEGIN:
{
sigCtx->digest = (byte*)XMALLOC(WC_MAX_DIGEST_SIZE, sigCtx->heap,
DYNAMIC_TYPE_DIGEST);
if (sigCtx->digest == NULL) {
ERROR_OUT(MEMORY_E, exit_cs);
}
sigCtx->state = SIG_STATE_HASH;
} /* SIG_STATE_BEGIN */
FALL_THROUGH;
case SIG_STATE_HASH:
{
ret = HashForSignature(buf, bufSz, sigOID, sigCtx->digest,
&sigCtx->typeH, &sigCtx->digestSz, 1);
if (ret != 0) {
goto exit_cs;
}
sigCtx->state = SIG_STATE_KEY;
} /* SIG_STATE_HASH */
FALL_THROUGH;
case SIG_STATE_KEY:
{
sigCtx->keyOID = keyOID;
switch (keyOID) {
#ifndef NO_RSA
case RSAk:
{
word32 idx = 0;
sigCtx->key.rsa = (RsaKey*)XMALLOC(sizeof(RsaKey),
sigCtx->heap, DYNAMIC_TYPE_RSA);
sigCtx->plain = (byte*)XMALLOC(MAX_ENCODED_SIG_SZ,
sigCtx->heap, DYNAMIC_TYPE_SIGNATURE);
if (sigCtx->key.rsa == NULL || sigCtx->plain == NULL) {
ERROR_OUT(MEMORY_E, exit_cs);
}
if ((ret = wc_InitRsaKey_ex(sigCtx->key.rsa, sigCtx->heap,
sigCtx->devId)) != 0) {
goto exit_cs;
}
if (sigSz > MAX_ENCODED_SIG_SZ) {
WOLFSSL_MSG("Verify Signature is too big");
ERROR_OUT(BUFFER_E, exit_cs);
}
if ((ret = wc_RsaPublicKeyDecode(key, &idx, sigCtx->key.rsa,
keySz)) != 0) {
WOLFSSL_MSG("ASN Key decode error RSA");
goto exit_cs;
}
XMEMCPY(sigCtx->plain, sig, sigSz);
sigCtx->out = NULL;
#ifdef WOLFSSL_ASYNC_CRYPT
sigCtx->asyncDev = &sigCtx->key.rsa->asyncDev;
#endif
break;
}
#endif /* !NO_RSA */
#ifdef HAVE_ECC
case ECDSAk:
{
word32 idx = 0;
sigCtx->verify = 0;
sigCtx->key.ecc = (ecc_key*)XMALLOC(sizeof(ecc_key),
sigCtx->heap, DYNAMIC_TYPE_ECC);
if (sigCtx->key.ecc == NULL) {
ERROR_OUT(MEMORY_E, exit_cs);
}
if ((ret = wc_ecc_init_ex(sigCtx->key.ecc, sigCtx->heap,
sigCtx->devId)) < 0) {
goto exit_cs;
}
ret = wc_EccPublicKeyDecode(key, &idx, sigCtx->key.ecc,
keySz);
if (ret < 0) {
WOLFSSL_MSG("ASN Key import error ECC");
goto exit_cs;
}
#ifdef WOLFSSL_ASYNC_CRYPT
sigCtx->asyncDev = &sigCtx->key.ecc->asyncDev;
#endif
break;
}
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
case ED25519k:
{
sigCtx->verify = 0;
sigCtx->key.ed25519 = (ed25519_key*)XMALLOC(
sizeof(ed25519_key), sigCtx->heap,
DYNAMIC_TYPE_ED25519);
if (sigCtx->key.ed25519 == NULL) {
ERROR_OUT(MEMORY_E, exit_cs);
}
if ((ret = wc_ed25519_init(sigCtx->key.ed25519)) < 0) {
goto exit_cs;
}
if ((ret = wc_ed25519_import_public(key, keySz,
sigCtx->key.ed25519)) < 0) {
WOLFSSL_MSG("ASN Key import error ED25519");
goto exit_cs;
}
#ifdef WOLFSSL_ASYNC_CRYPT
sigCtx->asyncDev = &sigCtx->key.ed25519->asyncDev;
#endif
break;
}
#endif
default:
WOLFSSL_MSG("Verify Key type unknown");
ret = ASN_UNKNOWN_OID_E;
break;
} /* switch (keyOID) */
if (ret != 0) {
goto exit_cs;
}
sigCtx->state = SIG_STATE_DO;
#ifdef WOLFSSL_ASYNC_CRYPT
if (sigCtx->devId != INVALID_DEVID && sigCtx->asyncDev && sigCtx->asyncCtx) {
/* make sure event is intialized */
WOLF_EVENT* event = &sigCtx->asyncDev->event;
ret = wolfAsync_EventInit(event, WOLF_EVENT_TYPE_ASYNC_WOLFSSL,
sigCtx->asyncCtx, WC_ASYNC_FLAG_CALL_AGAIN);
}
#endif
} /* SIG_STATE_KEY */
FALL_THROUGH;
case SIG_STATE_DO:
{
switch (keyOID) {
#ifndef NO_RSA
case RSAk:
{
ret = wc_RsaSSL_VerifyInline(sigCtx->plain, sigSz,
&sigCtx->out, sigCtx->key.rsa);
break;
}
#endif /* !NO_RSA */
#ifdef HAVE_ECC
case ECDSAk:
{
ret = wc_ecc_verify_hash(sig, sigSz, sigCtx->digest,
sigCtx->digestSz, &sigCtx->verify, sigCtx->key.ecc);
break;
}
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
case ED25519k:
{
ret = wc_ed25519_verify_msg(sig, sigSz, buf, bufSz,
&sigCtx->verify, sigCtx->key.ed25519);
break;
}
#endif
default:
break;
} /* switch (keyOID) */
if (ret < 0) {
/* treat all non async RSA errors as ASN_SIG_CONFIRM_E */
if (ret != WC_PENDING_E)
ret = ASN_SIG_CONFIRM_E;
goto exit_cs;
}
sigCtx->state = SIG_STATE_CHECK;
} /* SIG_STATE_DO */
FALL_THROUGH;
case SIG_STATE_CHECK:
{
switch (keyOID) {
#ifndef NO_RSA
case RSAk:
{
int encodedSigSz, verifySz;
#ifdef WOLFSSL_SMALL_STACK
byte* encodedSig = (byte*)XMALLOC(MAX_ENCODED_SIG_SZ,
sigCtx->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (encodedSig == NULL) {
ERROR_OUT(MEMORY_E, exit_cs);
}
#else
byte encodedSig[MAX_ENCODED_SIG_SZ];
#endif
verifySz = ret;
/* make sure we're right justified */
encodedSigSz = wc_EncodeSignature(encodedSig,
sigCtx->digest, sigCtx->digestSz, sigCtx->typeH);
if (encodedSigSz == verifySz && sigCtx->out != NULL &&
XMEMCMP(sigCtx->out, encodedSig, encodedSigSz) == 0) {
ret = 0;
}
else {
WOLFSSL_MSG("RSA SSL verify match encode error");
ret = ASN_SIG_CONFIRM_E;
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(encodedSig, sigCtx->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
break;
}
#endif /* NO_RSA */
#ifdef HAVE_ECC
case ECDSAk:
{
if (sigCtx->verify == 1) {
ret = 0;
}
else {
WOLFSSL_MSG("ECC Verify didn't match");
ret = ASN_SIG_CONFIRM_E;
}
break;
}
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
case ED25519k:
{
if (sigCtx->verify == 1) {
ret = 0;
}
else {
WOLFSSL_MSG("ED25519 Verify didn't match");
ret = ASN_SIG_CONFIRM_E;
}
break;
}
#endif /* HAVE_ED25519 */
default:
break;
} /* switch (keyOID) */
break;
} /* SIG_STATE_CHECK */
} /* switch (sigCtx->state) */
exit_cs:
WOLFSSL_LEAVE("ConfirmSignature", ret);
if (ret != WC_PENDING_E) {
FreeSignatureCtx(sigCtx);
}
return ret;
}
#ifndef IGNORE_NAME_CONSTRAINTS
static int MatchBaseName(int type, const char* name, int nameSz,
const char* base, int baseSz)
{
if (base == NULL || baseSz <= 0 || name == NULL || nameSz <= 0 ||
name[0] == '.' || nameSz < baseSz ||
(type != ASN_RFC822_TYPE && type != ASN_DNS_TYPE))
return 0;
/* If an email type, handle special cases where the base is only
* a domain, or is an email address itself. */
if (type == ASN_RFC822_TYPE) {
const char* p = NULL;
int count = 0;
if (base[0] != '.') {
p = base;
count = 0;
/* find the '@' in the base */
while (*p != '@' && count < baseSz) {
count++;
p++;
}
/* No '@' in base, reset p to NULL */
if (count >= baseSz)
p = NULL;
}
if (p == NULL) {
/* Base isn't an email address, it is a domain name,
* wind the name forward one character past its '@'. */
p = name;
count = 0;
while (*p != '@' && count < baseSz) {
count++;
p++;
}
if (count < baseSz && *p == '@') {
name = p + 1;
nameSz -= count + 1;
}
}
}
if ((type == ASN_DNS_TYPE || type == ASN_RFC822_TYPE) && base[0] == '.') {
int szAdjust = nameSz - baseSz;
name += szAdjust;
nameSz -= szAdjust;
}
while (nameSz > 0) {
if (XTOLOWER((unsigned char)*name++) !=
XTOLOWER((unsigned char)*base++))
return 0;
nameSz--;
}
return 1;
}
static int ConfirmNameConstraints(Signer* signer, DecodedCert* cert)
{
if (signer == NULL || cert == NULL)
return 0;
/* Check against the excluded list */
if (signer->excludedNames) {
Base_entry* base = signer->excludedNames;
while (base != NULL) {
switch (base->type) {
case ASN_DNS_TYPE:
{
DNS_entry* name = cert->altNames;
while (name != NULL) {
if (MatchBaseName(ASN_DNS_TYPE,
name->name, name->len,
base->name, base->nameSz)) {
return 0;
}
name = name->next;
}
break;
}
case ASN_RFC822_TYPE:
{
DNS_entry* name = cert->altEmailNames;
while (name != NULL) {
if (MatchBaseName(ASN_RFC822_TYPE,
name->name, name->len,
base->name, base->nameSz)) {
return 0;
}
name = name->next;
}
break;
}
case ASN_DIR_TYPE:
{
/* allow permitted dirName smaller than actual subject */
if (cert->subjectRawLen >= base->nameSz &&
XMEMCMP(cert->subjectRaw, base->name,
base->nameSz) == 0) {
return 0;
}
break;
}
}; /* switch */
base = base->next;
}
}
/* Check against the permitted list */
if (signer->permittedNames != NULL) {
int needDns = 0;
int matchDns = 0;
int needEmail = 0;
int matchEmail = 0;
int needDir = 0;
int matchDir = 0;
Base_entry* base = signer->permittedNames;
while (base != NULL) {
switch (base->type) {
case ASN_DNS_TYPE:
{
DNS_entry* name = cert->altNames;
if (name != NULL)
needDns = 1;
while (name != NULL) {
matchDns = MatchBaseName(ASN_DNS_TYPE,
name->name, name->len,
base->name, base->nameSz);
name = name->next;
}
break;
}
case ASN_RFC822_TYPE:
{
DNS_entry* name = cert->altEmailNames;
if (name != NULL)
needEmail = 1;
while (name != NULL) {
matchEmail = MatchBaseName(ASN_DNS_TYPE,
name->name, name->len,
base->name, base->nameSz);
name = name->next;
}
break;
}
case ASN_DIR_TYPE:
{
/* allow permitted dirName smaller than actual subject */
needDir = 1;
if (cert->subjectRaw != NULL &&
cert->subjectRawLen >= base->nameSz &&
XMEMCMP(cert->subjectRaw, base->name,
base->nameSz) == 0) {
matchDir = 1;
}
break;
}
} /* switch */
base = base->next;
}
if ((needDns && !matchDns) ||
(needEmail && !matchEmail) ||
(needDir && !matchDir)) {
return 0;
}
}
return 1;
}
#endif /* IGNORE_NAME_CONSTRAINTS */
static int DecodeAltNames(byte* input, int sz, DecodedCert* cert)
{
word32 idx = 0;
int length = 0;
WOLFSSL_ENTER("DecodeAltNames");
if (GetSequence(input, &idx, &length, sz) < 0) {
WOLFSSL_MSG("\tBad Sequence");
return ASN_PARSE_E;
}
cert->weOwnAltNames = 1;
while (length > 0) {
byte b = input[idx++];
length--;
/* Save DNS Type names in the altNames list. */
/* Save Other Type names in the cert's OidMap */
if (b == (ASN_CONTEXT_SPECIFIC | ASN_DNS_TYPE)) {
DNS_entry* dnsEntry;
int strLen;
word32 lenStartIdx = idx;
if (GetLength(input, &idx, &strLen, sz) < 0) {
WOLFSSL_MSG("\tfail: str length");
return ASN_PARSE_E;
}
length -= (idx - lenStartIdx);
dnsEntry = (DNS_entry*)XMALLOC(sizeof(DNS_entry), cert->heap,
DYNAMIC_TYPE_ALTNAME);
if (dnsEntry == NULL) {
WOLFSSL_MSG("\tOut of Memory");
return MEMORY_E;
}
dnsEntry->type = ASN_DNS_TYPE;
dnsEntry->name = (char*)XMALLOC(strLen + 1, cert->heap,
DYNAMIC_TYPE_ALTNAME);
if (dnsEntry->name == NULL) {
WOLFSSL_MSG("\tOut of Memory");
XFREE(dnsEntry, cert->heap, DYNAMIC_TYPE_ALTNAME);
return MEMORY_E;
}
dnsEntry->len = strLen;
XMEMCPY(dnsEntry->name, &input[idx], strLen);
dnsEntry->name[strLen] = '\0';
dnsEntry->next = cert->altNames;
cert->altNames = dnsEntry;
length -= strLen;
idx += strLen;
}
#ifndef IGNORE_NAME_CONSTRAINTS
else if (b == (ASN_CONTEXT_SPECIFIC | ASN_RFC822_TYPE)) {
DNS_entry* emailEntry;
int strLen;
word32 lenStartIdx = idx;
if (GetLength(input, &idx, &strLen, sz) < 0) {
WOLFSSL_MSG("\tfail: str length");
return ASN_PARSE_E;
}
length -= (idx - lenStartIdx);
emailEntry = (DNS_entry*)XMALLOC(sizeof(DNS_entry), cert->heap,
DYNAMIC_TYPE_ALTNAME);
if (emailEntry == NULL) {
WOLFSSL_MSG("\tOut of Memory");
return MEMORY_E;
}
emailEntry->type = ASN_RFC822_TYPE;
emailEntry->name = (char*)XMALLOC(strLen + 1, cert->heap,
DYNAMIC_TYPE_ALTNAME);
if (emailEntry->name == NULL) {
WOLFSSL_MSG("\tOut of Memory");
XFREE(emailEntry, cert->heap, DYNAMIC_TYPE_ALTNAME);
return MEMORY_E;
}
emailEntry->len = strLen;
XMEMCPY(emailEntry->name, &input[idx], strLen);
emailEntry->name[strLen] = '\0';
emailEntry->next = cert->altEmailNames;
cert->altEmailNames = emailEntry;
length -= strLen;
idx += strLen;
}
else if (b == (ASN_CONTEXT_SPECIFIC | ASN_URI_TYPE)) {
DNS_entry* uriEntry;
int strLen;
word32 lenStartIdx = idx;
WOLFSSL_MSG("\tPutting URI into list but not using");
if (GetLength(input, &idx, &strLen, sz) < 0) {
WOLFSSL_MSG("\tfail: str length");
return ASN_PARSE_E;
}
length -= (idx - lenStartIdx);
/* check that strLen at index is not past input buffer */
if (strLen + (int)idx > sz) {
return BUFFER_E;
}
#ifndef WOLFSSL_NO_ASN_STRICT
/* Verify RFC 5280 Sec 4.2.1.6 rule:
"The name MUST NOT be a relative URI" */
{
int i;
/* skip past scheme (i.e http,ftp,...) finding first ':' char */
for (i = 0; i < strLen; i++) {
if (input[idx + i] == ':') {
break;
}
if (input[idx + i] == '/') {
i = strLen; /* error, found relative path since '/' was
* encountered before ':'. Returning error
* value in next if statement. */
}
}
/* test if no ':' char was found and test that the next two
* chars are // to match the pattern "://" */
if (i >= strLen - 2 || (input[idx + i + 1] != '/' ||
input[idx + i + 2] != '/')) {
WOLFSSL_MSG("\tAlt Name must be absolute URI");
return ASN_ALT_NAME_E;
}
}
#endif
uriEntry = (DNS_entry*)XMALLOC(sizeof(DNS_entry), cert->heap,
DYNAMIC_TYPE_ALTNAME);
if (uriEntry == NULL) {
WOLFSSL_MSG("\tOut of Memory");
return MEMORY_E;
}
uriEntry->type = ASN_URI_TYPE;
uriEntry->name = (char*)XMALLOC(strLen + 1, cert->heap,
DYNAMIC_TYPE_ALTNAME);
if (uriEntry->name == NULL) {
WOLFSSL_MSG("\tOut of Memory");
XFREE(uriEntry, cert->heap, DYNAMIC_TYPE_ALTNAME);
return MEMORY_E;
}
uriEntry->len = strLen;
XMEMCPY(uriEntry->name, &input[idx], strLen);
uriEntry->name[strLen] = '\0';
uriEntry->next = cert->altNames;
cert->altNames = uriEntry;
length -= strLen;
idx += strLen;
}
#endif /* IGNORE_NAME_CONSTRAINTS */
#ifdef WOLFSSL_SEP
else if (b == (ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | ASN_OTHER_TYPE))
{
int strLen;
word32 lenStartIdx = idx;
word32 oid = 0;
int ret;
if (GetLength(input, &idx, &strLen, sz) < 0) {
WOLFSSL_MSG("\tfail: other name length");
return ASN_PARSE_E;
}
/* Consume the rest of this sequence. */
length -= (strLen + idx - lenStartIdx);
if (GetObjectId(input, &idx, &oid, oidCertAltNameType, sz) < 0) {
WOLFSSL_MSG("\tbad OID");
return ASN_PARSE_E;
}
if (oid != HW_NAME_OID) {
WOLFSSL_MSG("\tincorrect OID");
return ASN_PARSE_E;
}
if (input[idx++] != (ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED)) {
WOLFSSL_MSG("\twrong type");
return ASN_PARSE_E;
}
if (GetLength(input, &idx, &strLen, sz) < 0) {
WOLFSSL_MSG("\tfail: str len");
return ASN_PARSE_E;
}
if (GetSequence(input, &idx, &strLen, sz) < 0) {
WOLFSSL_MSG("\tBad Sequence");
return ASN_PARSE_E;
}
ret = GetASNObjectId(input, &idx, &strLen, sz);
if (ret != 0) {
WOLFSSL_MSG("\tbad OID");
return ret;
}
cert->hwType = (byte*)XMALLOC(strLen, cert->heap,
DYNAMIC_TYPE_X509_EXT);
if (cert->hwType == NULL) {
WOLFSSL_MSG("\tOut of Memory");
return MEMORY_E;
}
XMEMCPY(cert->hwType, &input[idx], strLen);
cert->hwTypeSz = strLen;
idx += strLen;
ret = GetOctetString(input, &idx, &strLen, sz);
if (ret < 0)
return ret;
cert->hwSerialNum = (byte*)XMALLOC(strLen + 1, cert->heap,
DYNAMIC_TYPE_X509_EXT);
if (cert->hwSerialNum == NULL) {
WOLFSSL_MSG("\tOut of Memory");
return MEMORY_E;
}
XMEMCPY(cert->hwSerialNum, &input[idx], strLen);
cert->hwSerialNum[strLen] = '\0';
cert->hwSerialNumSz = strLen;
idx += strLen;
}
#endif /* WOLFSSL_SEP */
else {
int strLen;
word32 lenStartIdx = idx;
WOLFSSL_MSG("\tUnsupported name type, skipping");
if (GetLength(input, &idx, &strLen, sz) < 0) {
WOLFSSL_MSG("\tfail: unsupported name length");
return ASN_PARSE_E;
}
length -= (strLen + idx - lenStartIdx);
idx += strLen;
}
}
return 0;
}
static int DecodeBasicCaConstraint(byte* input, int sz, DecodedCert* cert)
{
word32 idx = 0;
int length = 0;
int ret;
WOLFSSL_ENTER("DecodeBasicCaConstraint");
if (GetSequence(input, &idx, &length, sz) < 0) {
WOLFSSL_MSG("\tfail: bad SEQUENCE");
return ASN_PARSE_E;
}
if (length == 0)
return 0;
/* If the basic ca constraint is false, this extension may be named, but
* left empty. So, if the length is 0, just return. */
ret = GetBoolean(input, &idx, sz);
if (ret < 0) {
WOLFSSL_MSG("\tfail: constraint not valid BOOLEAN");
return ret;
}
cert->isCA = (byte)ret;
/* If there isn't any more data, return. */
if (idx >= (word32)sz)
return 0;
ret = GetInteger7Bit(input, &idx, sz);
if (ret < 0)
return ret;
cert->pathLength = (byte)ret;
cert->pathLengthSet = 1;
return 0;
}
#define CRLDP_FULL_NAME 0
/* From RFC3280 SS4.2.1.14, Distribution Point Name*/
#define GENERALNAME_URI 6
/* From RFC3280 SS4.2.1.7, GeneralName */
static int DecodeCrlDist(byte* input, int sz, DecodedCert* cert)
{
word32 idx = 0;
int length = 0;
WOLFSSL_ENTER("DecodeCrlDist");
/* Unwrap the list of Distribution Points*/
if (GetSequence(input, &idx, &length, sz) < 0)
return ASN_PARSE_E;
/* Unwrap a single Distribution Point */
if (GetSequence(input, &idx, &length, sz) < 0)
return ASN_PARSE_E;
/* The Distribution Point has three explicit optional members
* First check for a DistributionPointName
*/
if (input[idx] == (ASN_CONSTRUCTED | ASN_CONTEXT_SPECIFIC | 0))
{
idx++;
if (GetLength(input, &idx, &length, sz) < 0)
return ASN_PARSE_E;
if (input[idx] ==
(ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | CRLDP_FULL_NAME))
{
idx++;
if (GetLength(input, &idx, &length, sz) < 0)
return ASN_PARSE_E;
if (input[idx] == (ASN_CONTEXT_SPECIFIC | GENERALNAME_URI))
{
idx++;
if (GetLength(input, &idx, &length, sz) < 0)
return ASN_PARSE_E;
cert->extCrlInfoSz = length;
cert->extCrlInfo = input + idx;
idx += length;
}
else
/* This isn't a URI, skip it. */
idx += length;
}
else {
/* This isn't a FULLNAME, skip it. */
idx += length;
}
}
/* Check for reasonFlags */
if (idx < (word32)sz &&
input[idx] == (ASN_CONSTRUCTED | ASN_CONTEXT_SPECIFIC | 1))
{
idx++;
if (GetLength(input, &idx, &length, sz) < 0)
return ASN_PARSE_E;
idx += length;
}
/* Check for cRLIssuer */
if (idx < (word32)sz &&
input[idx] == (ASN_CONSTRUCTED | ASN_CONTEXT_SPECIFIC | 2))
{
idx++;
if (GetLength(input, &idx, &length, sz) < 0)
return ASN_PARSE_E;
idx += length;
}
if (idx < (word32)sz)
{
WOLFSSL_MSG("\tThere are more CRL Distribution Point records, "
"but we only use the first one.");
}
return 0;
}
static int DecodeAuthInfo(byte* input, int sz, DecodedCert* cert)
/*
* Read the first of the Authority Information Access records. If there are
* any issues, return without saving the record.
*/
{
word32 idx = 0;
int length = 0;
byte b;
word32 oid;
WOLFSSL_ENTER("DecodeAuthInfo");
/* Unwrap the list of AIAs */
if (GetSequence(input, &idx, &length, sz) < 0)
return ASN_PARSE_E;
while (idx < (word32)sz) {
/* Unwrap a single AIA */
if (GetSequence(input, &idx, &length, sz) < 0)
return ASN_PARSE_E;
oid = 0;
if (GetObjectId(input, &idx, &oid, oidCertAuthInfoType, sz) < 0)
return ASN_PARSE_E;
/* Only supporting URIs right now. */
b = input[idx++];
if (GetLength(input, &idx, &length, sz) < 0)
return ASN_PARSE_E;
if (b == (ASN_CONTEXT_SPECIFIC | GENERALNAME_URI) &&
oid == AIA_OCSP_OID)
{
cert->extAuthInfoSz = length;
cert->extAuthInfo = input + idx;
break;
}
idx += length;
}
return 0;
}
static int DecodeAuthKeyId(byte* input, int sz, DecodedCert* cert)
{
word32 idx = 0;
int length = 0, ret = 0;
WOLFSSL_ENTER("DecodeAuthKeyId");
if (GetSequence(input, &idx, &length, sz) < 0) {
WOLFSSL_MSG("\tfail: should be a SEQUENCE\n");
return ASN_PARSE_E;
}
if (input[idx++] != (ASN_CONTEXT_SPECIFIC | 0)) {
WOLFSSL_MSG("\tinfo: OPTIONAL item 0, not available\n");
return 0;
}
if (GetLength(input, &idx, &length, sz) <= 0) {
WOLFSSL_MSG("\tfail: extension data length");
return ASN_PARSE_E;
}
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
cert->extAuthKeyIdSrc = &input[idx];
cert->extAuthKeyIdSz = length;
#endif /* OPENSSL_EXTRA */
if (length == KEYID_SIZE) {
XMEMCPY(cert->extAuthKeyId, input + idx, length);
}
else {
#ifdef NO_SHA
ret = wc_Sha256Hash(input + idx, length, cert->extAuthKeyId);
#else
ret = wc_ShaHash(input + idx, length, cert->extAuthKeyId);
#endif
}
return ret;
}
static int DecodeSubjKeyId(byte* input, int sz, DecodedCert* cert)
{
word32 idx = 0;
int length = 0, ret = 0;
WOLFSSL_ENTER("DecodeSubjKeyId");
if (sz <= 0)
return ASN_PARSE_E;
ret = GetOctetString(input, &idx, &length, sz);
if (ret < 0)
return ret;
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
cert->extSubjKeyIdSrc = &input[idx];
cert->extSubjKeyIdSz = length;
#endif /* OPENSSL_EXTRA */
if (length == SIGNER_DIGEST_SIZE) {
XMEMCPY(cert->extSubjKeyId, input + idx, length);
}
else {
#ifdef NO_SHA
ret = wc_Sha256Hash(input + idx, length, cert->extSubjKeyId);
#else
ret = wc_ShaHash(input + idx, length, cert->extSubjKeyId);
#endif
}
return ret;
}
static int DecodeKeyUsage(byte* input, int sz, DecodedCert* cert)
{
word32 idx = 0;
int length;
int ret;
WOLFSSL_ENTER("DecodeKeyUsage");
ret = CheckBitString(input, &idx, &length, sz, 0, NULL);
if (ret != 0)
return ret;
cert->extKeyUsage = (word16)(input[idx]);
if (length == 2)
cert->extKeyUsage |= (word16)(input[idx+1] << 8);
return 0;
}
static int DecodeExtKeyUsage(byte* input, int sz, DecodedCert* cert)
{
word32 idx = 0, oid;
int length;
WOLFSSL_ENTER("DecodeExtKeyUsage");
if (GetSequence(input, &idx, &length, sz) < 0) {
WOLFSSL_MSG("\tfail: should be a SEQUENCE");
return ASN_PARSE_E;
}
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
cert->extExtKeyUsageSrc = input + idx;
cert->extExtKeyUsageSz = length;
#endif
while (idx < (word32)sz) {
if (GetObjectId(input, &idx, &oid, oidCertKeyUseType, sz) < 0)
return ASN_PARSE_E;
switch (oid) {
case EKU_ANY_OID:
cert->extExtKeyUsage |= EXTKEYUSE_ANY;
break;
case EKU_SERVER_AUTH_OID:
cert->extExtKeyUsage |= EXTKEYUSE_SERVER_AUTH;
break;
case EKU_CLIENT_AUTH_OID:
cert->extExtKeyUsage |= EXTKEYUSE_CLIENT_AUTH;
break;
case EKU_CODESIGNING_OID:
cert->extExtKeyUsage |= EXTKEYUSE_CODESIGN;
break;
case EKU_EMAILPROTECT_OID:
cert->extExtKeyUsage |= EXTKEYUSE_EMAILPROT;
break;
case EKU_TIMESTAMP_OID:
cert->extExtKeyUsage |= EXTKEYUSE_TIMESTAMP;
break;
case EKU_OCSP_SIGN_OID:
cert->extExtKeyUsage |= EXTKEYUSE_OCSP_SIGN;
break;
}
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
cert->extExtKeyUsageCount++;
#endif
}
return 0;
}
#ifndef IGNORE_NAME_CONSTRAINTS
#define ASN_TYPE_MASK 0xF
static int DecodeSubtree(byte* input, int sz, Base_entry** head, void* heap)
{
word32 idx = 0;
(void)heap;
while (idx < (word32)sz) {
int seqLength, strLength;
word32 nameIdx;
byte b, bType;
if (GetSequence(input, &idx, &seqLength, sz) < 0) {
WOLFSSL_MSG("\tfail: should be a SEQUENCE");
return ASN_PARSE_E;
}
nameIdx = idx;
b = input[nameIdx++];
if (GetLength(input, &nameIdx, &strLength, sz) <= 0) {
WOLFSSL_MSG("\tinvalid length");
return ASN_PARSE_E;
}
/* Get type, LSB 4-bits */
bType = (b & ASN_TYPE_MASK);
if (bType == ASN_DNS_TYPE || bType == ASN_RFC822_TYPE ||
bType == ASN_DIR_TYPE) {
Base_entry* entry;
/* if constructed has leading sequence */
if (b & ASN_CONSTRUCTED) {
if (GetSequence(input, &nameIdx, &strLength, sz) < 0) {
WOLFSSL_MSG("\tfail: constructed be a SEQUENCE");
return ASN_PARSE_E;
}
}
entry = (Base_entry*)XMALLOC(sizeof(Base_entry), heap,
DYNAMIC_TYPE_ALTNAME);
if (entry == NULL) {
WOLFSSL_MSG("allocate error");
return MEMORY_E;
}
entry->name = (char*)XMALLOC(strLength, heap, DYNAMIC_TYPE_ALTNAME);
if (entry->name == NULL) {
WOLFSSL_MSG("allocate error");
XFREE(entry, heap, DYNAMIC_TYPE_ALTNAME);
return MEMORY_E;
}
XMEMCPY(entry->name, &input[nameIdx], strLength);
entry->nameSz = strLength;
entry->type = bType;
entry->next = *head;
*head = entry;
}
idx += seqLength;
}
return 0;
}
static int DecodeNameConstraints(byte* input, int sz, DecodedCert* cert)
{
word32 idx = 0;
int length = 0;
WOLFSSL_ENTER("DecodeNameConstraints");
if (GetSequence(input, &idx, &length, sz) < 0) {
WOLFSSL_MSG("\tfail: should be a SEQUENCE");
return ASN_PARSE_E;
}
while (idx < (word32)sz) {
byte b = input[idx++];
Base_entry** subtree = NULL;
if (GetLength(input, &idx, &length, sz) <= 0) {
WOLFSSL_MSG("\tinvalid length");
return ASN_PARSE_E;
}
if (b == (ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 0))
subtree = &cert->permittedNames;
else if (b == (ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 1))
subtree = &cert->excludedNames;
else {
WOLFSSL_MSG("\tinvalid subtree");
return ASN_PARSE_E;
}
DecodeSubtree(input + idx, length, subtree, cert->heap);
idx += length;
}
return 0;
}
#endif /* IGNORE_NAME_CONSTRAINTS */
#if (defined(WOLFSSL_CERT_EXT) && !defined(WOLFSSL_SEP)) || defined(OPENSSL_EXTRA)
static int Word32ToString(char* d, word32 number)
{
int i = 0;
if (d != NULL) {
word32 order = 1000000000;
word32 digit;
if (number == 0) {
d[i++] = '0';
}
else {
while (order) {
digit = number / order;
if (i > 0 || digit != 0) {
d[i++] = (char)digit + '0';
}
if (digit != 0)
number %= digit * order;
if (order > 1)
order /= 10;
else
order = 0;
}
}
d[i] = 0;
}
return i;
}
/* Decode ITU-T X.690 OID format to a string representation
* return string length */
int DecodePolicyOID(char *out, word32 outSz, byte *in, word32 inSz)
{
word32 val, idx = 0, nb_bytes;
size_t w_bytes = 0;
if (out == NULL || in == NULL || outSz < 4 || inSz < 2)
return BAD_FUNC_ARG;
/* first two byte must be interpreted as : 40 * int1 + int2 */
val = (word16)in[idx++];
w_bytes = Word32ToString(out, val / 40);
out[w_bytes++] = '.';
w_bytes += Word32ToString(out+w_bytes, val % 40);
while (idx < inSz) {
/* init value */
val = 0;
nb_bytes = 0;
/* check that output size is ok */
if (w_bytes > (outSz - 3))
return BUFFER_E;
/* first bit is used to set if value is coded on 1 or multiple bytes */
while ((in[idx+nb_bytes] & 0x80))
nb_bytes++;
if (!nb_bytes)
val = (word32)(in[idx++] & 0x7f);
else {
word32 base = 1, tmp = nb_bytes;
while (tmp != 0) {
val += (word32)(in[idx+tmp] & 0x7f) * base;
base *= 128;
tmp--;
}
val += (word32)(in[idx++] & 0x7f) * base;
idx += nb_bytes;
}
out[w_bytes++] = '.';
w_bytes += Word32ToString(out+w_bytes, val);
}
return (int)w_bytes;
}
#endif /* WOLFSSL_CERT_EXT && !WOLFSSL_SEP */
#if defined(WOLFSSL_SEP) || defined(WOLFSSL_CERT_EXT)
/* Reference: https://tools.ietf.org/html/rfc5280#section-4.2.1.4 */
static int DecodeCertPolicy(byte* input, int sz, DecodedCert* cert)
{
word32 idx = 0;
word32 oldIdx;
int ret;
int total_length = 0, policy_length = 0, length = 0;
#if !defined(WOLFSSL_SEP) && defined(WOLFSSL_CERT_EXT) && \
!defined(WOLFSSL_DUP_CERTPOL)
int i;
#endif
WOLFSSL_ENTER("DecodeCertPolicy");
if (GetSequence(input, &idx, &total_length, sz) < 0) {
WOLFSSL_MSG("\tGet CertPolicy total seq failed");
return ASN_PARSE_E;
}
/* Validate total length */
if (total_length > (sz - (int)idx)) {
WOLFSSL_MSG("\tCertPolicy length mismatch");
return ASN_PARSE_E;
}
/* Unwrap certificatePolicies */
do {
if (GetSequence(input, &idx, &policy_length, sz) < 0) {
WOLFSSL_MSG("\tGet CertPolicy seq failed");
return ASN_PARSE_E;
}
oldIdx = idx;
ret = GetASNObjectId(input, &idx, &length, sz);
if (ret != 0)
return ret;
policy_length -= idx - oldIdx;
if (length > 0) {
/* Verify length won't overrun buffer */
if (length > (sz - (int)idx)) {
WOLFSSL_MSG("\tCertPolicy length exceeds input buffer");
return ASN_PARSE_E;
}
#if defined(WOLFSSL_SEP)
cert->deviceType = (byte*)XMALLOC(length, cert->heap,
DYNAMIC_TYPE_X509_EXT);
if (cert->deviceType == NULL) {
WOLFSSL_MSG("\tCouldn't alloc memory for deviceType");
return MEMORY_E;
}
cert->deviceTypeSz = length;
XMEMCPY(cert->deviceType, input + idx, length);
break;
#elif defined(WOLFSSL_CERT_EXT)
/* decode cert policy */
if (DecodePolicyOID(cert->extCertPolicies[cert->extCertPoliciesNb], MAX_CERTPOL_SZ,
input + idx, length) <= 0) {
WOLFSSL_MSG("\tCouldn't decode CertPolicy");
return ASN_PARSE_E;
}
#ifndef WOLFSSL_DUP_CERTPOL
/* From RFC 5280 section 4.2.1.3 "A certificate policy OID MUST
* NOT appear more than once in a certificate policies
* extension". This is a sanity check for duplicates.
* extCertPolicies should only have OID values, additional
* qualifiers need to be stored in a seperate array. */
for (i = 0; i < cert->extCertPoliciesNb; i++) {
if (XMEMCMP(cert->extCertPolicies[i],
cert->extCertPolicies[cert->extCertPoliciesNb],
MAX_CERTPOL_SZ) == 0) {
WOLFSSL_MSG("Duplicate policy OIDs not allowed");
WOLFSSL_MSG("Use WOLFSSL_DUP_CERTPOL if wanted");
return CERTPOLICIES_E;
}
}
#endif /* !WOLFSSL_DUP_CERTPOL */
cert->extCertPoliciesNb++;
#else
WOLFSSL_LEAVE("DecodeCertPolicy : unsupported mode", 0);
return 0;
#endif
}
idx += policy_length;
} while((int)idx < total_length
#if defined(WOLFSSL_CERT_EXT)
&& cert->extCertPoliciesNb < MAX_CERTPOL_NB
#endif
);
WOLFSSL_LEAVE("DecodeCertPolicy", 0);
return 0;
}
#endif /* WOLFSSL_SEP */
/* Macro to check if bit is set, if not sets and return success.
Otherwise returns failure */
/* Macro required here because bit-field operation */
#ifndef WOLFSSL_NO_ASN_STRICT
#define VERIFY_AND_SET_OID(bit) \
if (bit == 0) \
bit = 1; \
else \
return ASN_OBJECT_ID_E;
#else
/* With no strict defined, the verify is skipped */
#define VERIFY_AND_SET_OID(bit) bit = 1;
#endif
static int DecodeCertExtensions(DecodedCert* cert)
/*
* Processing the Certificate Extensions. This does not modify the current
* index. It is works starting with the recorded extensions pointer.
*/
{
int ret = 0;
word32 idx = 0;
int sz = cert->extensionsSz;
byte* input = cert->extensions;
int length;
word32 oid;
byte critical = 0;
byte criticalFail = 0;
WOLFSSL_ENTER("DecodeCertExtensions");
if (input == NULL || sz == 0)
return BAD_FUNC_ARG;
if (input[idx++] != ASN_EXTENSIONS) {
WOLFSSL_MSG("\tfail: should be an EXTENSIONS");
return ASN_PARSE_E;
}
if (GetLength(input, &idx, &length, sz) < 0) {
WOLFSSL_MSG("\tfail: invalid length");
return ASN_PARSE_E;
}
if (GetSequence(input, &idx, &length, sz) < 0) {
WOLFSSL_MSG("\tfail: should be a SEQUENCE (1)");
return ASN_PARSE_E;
}
while (idx < (word32)sz) {
if (GetSequence(input, &idx, &length, sz) < 0) {
WOLFSSL_MSG("\tfail: should be a SEQUENCE");
return ASN_PARSE_E;
}
oid = 0;
if ((ret = GetObjectId(input, &idx, &oid, oidCertExtType, sz)) < 0) {
WOLFSSL_MSG("\tfail: OBJECT ID");
return ret;
}
/* check for critical flag */
critical = 0;
if (input[idx] == ASN_BOOLEAN) {
ret = GetBoolean(input, &idx, sz);
if (ret < 0) {
WOLFSSL_MSG("\tfail: critical boolean");
return ret;
}
critical = (byte)ret;
}
/* process the extension based on the OID */
ret = GetOctetString(input, &idx, &length, sz);
if (ret < 0) {
WOLFSSL_MSG("\tfail: bad OCTET STRING");
return ret;
}
switch (oid) {
case BASIC_CA_OID:
VERIFY_AND_SET_OID(cert->extBasicConstSet);
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
cert->extBasicConstCrit = critical;
#endif
if (DecodeBasicCaConstraint(&input[idx], length, cert) < 0)
return ASN_PARSE_E;
break;
case CRL_DIST_OID:
VERIFY_AND_SET_OID(cert->extCRLdistSet);
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
cert->extCRLdistCrit = critical;
#endif
if (DecodeCrlDist(&input[idx], length, cert) < 0)
return ASN_PARSE_E;
break;
case AUTH_INFO_OID:
VERIFY_AND_SET_OID(cert->extAuthInfoSet);
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
cert->extAuthInfoCrit = critical;
#endif
if (DecodeAuthInfo(&input[idx], length, cert) < 0)
return ASN_PARSE_E;
break;
case ALT_NAMES_OID:
VERIFY_AND_SET_OID(cert->extSubjAltNameSet);
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
cert->extSubjAltNameCrit = critical;
#endif
ret = DecodeAltNames(&input[idx], length, cert);
if (ret < 0)
return ret;
break;
case AUTH_KEY_OID:
VERIFY_AND_SET_OID(cert->extAuthKeyIdSet);
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
cert->extAuthKeyIdCrit = critical;
#endif
#ifndef WOLFSSL_ALLOW_CRIT_SKID
/* This check is added due to RFC 5280 section 4.2.1.1
* stating that conforming CA's must mark this extension
* as non-critical. When parsing extensions check that
* certificate was made in compliance with this. */
if (critical) {
WOLFSSL_MSG("Critical Auth Key ID is not allowed");
WOLFSSL_MSG("Use macro WOLFSSL_ALLOW_CRIT_SKID if wanted");
return ASN_CRIT_EXT_E;
}
#endif
if (DecodeAuthKeyId(&input[idx], length, cert) < 0)
return ASN_PARSE_E;
break;
case SUBJ_KEY_OID:
VERIFY_AND_SET_OID(cert->extSubjKeyIdSet);
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
cert->extSubjKeyIdCrit = critical;
#endif
#ifndef WOLFSSL_ALLOW_CRIT_SKID
/* This check is added due to RFC 5280 section 4.2.1.2
* stating that conforming CA's must mark this extension
* as non-critical. When parsing extensions check that
* certificate was made in compliance with this. */
if (critical) {
WOLFSSL_MSG("Critical Subject Key ID is not allowed");
WOLFSSL_MSG("Use macro WOLFSSL_ALLOW_CRIT_SKID if wanted");
return ASN_CRIT_EXT_E;
}
#endif
if (DecodeSubjKeyId(&input[idx], length, cert) < 0)
return ASN_PARSE_E;
break;
case CERT_POLICY_OID:
#ifdef WOLFSSL_SEP
VERIFY_AND_SET_OID(cert->extCertPolicySet);
#if defined(OPENSSL_EXTRA) || \
defined(OPENSSL_EXTRA_X509_SMALL)
cert->extCertPolicyCrit = critical;
#endif
#endif
#if defined(WOLFSSL_SEP) || defined(WOLFSSL_CERT_EXT)
if (DecodeCertPolicy(&input[idx], length, cert) < 0) {
return ASN_PARSE_E;
}
#else
WOLFSSL_MSG("Certificate Policy extension not supported yet.");
#endif
break;
case KEY_USAGE_OID:
VERIFY_AND_SET_OID(cert->extKeyUsageSet);
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
cert->extKeyUsageCrit = critical;
#endif
if (DecodeKeyUsage(&input[idx], length, cert) < 0)
return ASN_PARSE_E;
break;
case EXT_KEY_USAGE_OID:
VERIFY_AND_SET_OID(cert->extExtKeyUsageSet);
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
cert->extExtKeyUsageCrit = critical;
#endif
if (DecodeExtKeyUsage(&input[idx], length, cert) < 0)
return ASN_PARSE_E;
break;
#ifndef IGNORE_NAME_CONSTRAINTS
case NAME_CONS_OID:
#ifndef WOLFSSL_NO_ASN_STRICT
/* Verify RFC 5280 Sec 4.2.1.10 rule:
"The name constraints extension,
which MUST be used only in a CA certificate" */
if (!cert->isCA) {
WOLFSSL_MSG("Name constraints allowed only for CA certs");
return ASN_NAME_INVALID_E;
}
#endif
VERIFY_AND_SET_OID(cert->extNameConstraintSet);
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
cert->extNameConstraintCrit = critical;
#endif
if (DecodeNameConstraints(&input[idx], length, cert) < 0)
return ASN_PARSE_E;
break;
#endif /* IGNORE_NAME_CONSTRAINTS */
case INHIBIT_ANY_OID:
VERIFY_AND_SET_OID(cert->inhibitAnyOidSet);
WOLFSSL_MSG("Inhibit anyPolicy extension not supported yet.");
break;
default:
/* While it is a failure to not support critical extensions,
* still parse the certificate ignoring the unsupported
* extension to allow caller to accept it with the verify
* callback. */
if (critical)
criticalFail = 1;
break;
}
idx += length;
}
return criticalFail ? ASN_CRIT_EXT_E : 0;
}
int ParseCert(DecodedCert* cert, int type, int verify, void* cm)
{
int ret;
char* ptr;
ret = ParseCertRelative(cert, type, verify, cm);
if (ret < 0)
return ret;
if (cert->subjectCNLen > 0) {
ptr = (char*) XMALLOC(cert->subjectCNLen + 1, cert->heap,
DYNAMIC_TYPE_SUBJECT_CN);
if (ptr == NULL)
return MEMORY_E;
XMEMCPY(ptr, cert->subjectCN, cert->subjectCNLen);
ptr[cert->subjectCNLen] = '\0';
cert->subjectCN = ptr;
cert->subjectCNStored = 1;
}
if (cert->keyOID == RSAk &&
cert->publicKey != NULL && cert->pubKeySize > 0) {
ptr = (char*) XMALLOC(cert->pubKeySize, cert->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (ptr == NULL)
return MEMORY_E;
XMEMCPY(ptr, cert->publicKey, cert->pubKeySize);
cert->publicKey = (byte *)ptr;
cert->pubKeyStored = 1;
}
return ret;
}
/* from SSL proper, for locking can't do find here anymore */
#ifdef __cplusplus
extern "C" {
#endif
WOLFSSL_LOCAL Signer* GetCA(void* signers, byte* hash);
#ifndef NO_SKID
WOLFSSL_LOCAL Signer* GetCAByName(void* signers, byte* hash);
#endif
#ifdef __cplusplus
}
#endif
#if defined(WOLFCRYPT_ONLY) || defined(NO_CERTS)
/* dummy functions, not using wolfSSL so don't need actual ones */
Signer* GetCA(void* signers, byte* hash)
{
(void)hash;
return (Signer*)signers;
}
#ifndef NO_SKID
Signer* GetCAByName(void* signers, byte* hash)
{
(void)hash;
return (Signer*)signers;
}
#endif /* NO_SKID */
#endif /* WOLFCRYPT_ONLY || NO_CERTS */
#if (defined(WOLFSSL_ALT_CERT_CHAINS) || \
defined(WOLFSSL_NO_TRUSTED_CERTS_VERIFY)) && !defined(NO_SKID)
static Signer* GetCABySubjectAndPubKey(DecodedCert* cert, void* cm)
{
Signer* ca = NULL;
if (cert->extSubjKeyIdSet)
ca = GetCA(cm, cert->extSubjKeyId);
if (ca == NULL)
ca = GetCAByName(cm, cert->subjectHash);
if (ca) {
if ((ca->pubKeySize == cert->pubKeySize) &&
(XMEMCMP(ca->publicKey, cert->publicKey, ca->pubKeySize) == 0)) {
return ca;
}
}
return NULL;
}
#endif
int ParseCertRelative(DecodedCert* cert, int type, int verify, void* cm)
{
int ret = 0;
int badDate = 0;
int criticalExt = 0;
word32 confirmOID;
int selfSigned = 0;
if (cert == NULL) {
return BAD_FUNC_ARG;
}
if (cert->sigCtx.state == SIG_STATE_BEGIN) {
if ((ret = DecodeToKey(cert, verify)) < 0) {
if (ret == ASN_BEFORE_DATE_E || ret == ASN_AFTER_DATE_E)
badDate = ret;
else
return ret;
}
WOLFSSL_MSG("Parsed Past Key");
if (cert->srcIdx < cert->sigIndex) {
#ifndef ALLOW_V1_EXTENSIONS
if (cert->version < 2) {
WOLFSSL_MSG("\tv1 and v2 certs not allowed extensions");
return ASN_VERSION_E;
}
#endif
/* save extensions */
cert->extensions = &cert->source[cert->srcIdx];
cert->extensionsSz = cert->sigIndex - cert->srcIdx;
cert->extensionsIdx = cert->srcIdx; /* for potential later use */
if ((ret = DecodeCertExtensions(cert)) < 0) {
if (ret == ASN_CRIT_EXT_E)
criticalExt = ret;
else
return ret;
}
/* advance past extensions */
cert->srcIdx = cert->sigIndex;
}
if ((ret = GetAlgoId(cert->source, &cert->srcIdx, &confirmOID,
oidSigType, cert->maxIdx)) < 0)
return ret;
if ((ret = GetSignature(cert)) < 0)
return ret;
if (confirmOID != cert->signatureOID)
return ASN_SIG_OID_E;
#ifndef NO_SKID
if (cert->extSubjKeyIdSet == 0 && cert->publicKey != NULL &&
cert->pubKeySize > 0) {
#ifdef NO_SHA
ret = wc_Sha256Hash(cert->publicKey, cert->pubKeySize,
cert->extSubjKeyId);
#else
ret = wc_ShaHash(cert->publicKey, cert->pubKeySize,
cert->extSubjKeyId);
#endif /* NO_SHA */
if (ret != 0)
return ret;
}
#endif /* !NO_SKID */
if (verify != NO_VERIFY && type != CA_TYPE && type != TRUSTED_PEER_TYPE) {
cert->ca = NULL;
#ifndef NO_SKID
if (cert->extAuthKeyIdSet)
cert->ca = GetCA(cm, cert->extAuthKeyId);
if (cert->ca == NULL)
cert->ca = GetCAByName(cm, cert->issuerHash);
/* OCSP Only: alt lookup using subject and pub key w/o sig check */
#ifdef WOLFSSL_NO_TRUSTED_CERTS_VERIFY
if (cert->ca == NULL && verify == VERIFY_OCSP) {
cert->ca = GetCABySubjectAndPubKey(cert, cm);
if (cert->ca) {
ret = 0; /* success */
goto exit_pcr;
}
}
#endif /* WOLFSSL_NO_TRUSTED_CERTS_VERIFY */
/* alt lookup using subject and public key */
#ifdef WOLFSSL_ALT_CERT_CHAINS
if (cert->ca == NULL)
cert->ca = GetCABySubjectAndPubKey(cert, cm);
#endif
#else
cert->ca = GetCA(cm, cert->issuerHash);
if (XMEMCMP(cert->issuerHash, cert->subjectHash, KEYID_SIZE) == 0)
selfSigned = 1;
#endif /* !NO_SKID */
WOLFSSL_MSG("About to verify certificate signature");
if (cert->ca) {
if (cert->isCA && cert->ca->pathLengthSet) {
if (selfSigned) {
if (cert->ca->pathLength != 0) {
WOLFSSL_MSG("Root CA with path length > 0");
return ASN_PATHLEN_INV_E;
}
}
else {
if (cert->ca->pathLength == 0) {
WOLFSSL_MSG("CA with path length 0 signing a CA");
return ASN_PATHLEN_INV_E;
}
else if (cert->pathLength >= cert->ca->pathLength) {
WOLFSSL_MSG("CA signing CA with longer path length");
return ASN_PATHLEN_INV_E;
}
}
}
#ifdef HAVE_OCSP
/* Need the CA's public key hash for OCSP */
#ifdef NO_SHA
ret = wc_Sha256Hash(cert->ca->publicKey, cert->ca->pubKeySize,
cert->issuerKeyHash);
#else
ret = wc_ShaHash(cert->ca->publicKey, cert->ca->pubKeySize,
cert->issuerKeyHash);
#endif /* NO_SHA */
if (ret != 0)
return ret;
#endif /* HAVE_OCSP */
}
}
}
if (verify != NO_VERIFY && type != CA_TYPE && type != TRUSTED_PEER_TYPE) {
if (cert->ca) {
if (verify == VERIFY || verify == VERIFY_OCSP) {
/* try to confirm/verify signature */
if ((ret = ConfirmSignature(&cert->sigCtx,
cert->source + cert->certBegin,
cert->sigIndex - cert->certBegin,
cert->ca->publicKey, cert->ca->pubKeySize,
cert->ca->keyOID, cert->signature,
cert->sigLength, cert->signatureOID)) != 0) {
if (ret != WC_PENDING_E) {
WOLFSSL_MSG("Confirm signature failed");
}
return ret;
}
#ifndef IGNORE_NAME_CONSTRAINTS
/* check that this cert's name is permitted by the signer's
* name constraints */
if (!ConfirmNameConstraints(cert->ca, cert)) {
WOLFSSL_MSG("Confirm name constraint failed");
return ASN_NAME_INVALID_E;
}
#endif /* IGNORE_NAME_CONSTRAINTS */
}
}
else {
/* no signer */
WOLFSSL_MSG("No CA signer to verify with");
return ASN_NO_SIGNER_E;
}
}
#if defined(WOLFSSL_NO_TRUSTED_CERTS_VERIFY) && !defined(NO_SKID)
exit_pcr:
#endif
if (badDate != 0)
return badDate;
if (criticalExt != 0)
return criticalExt;
return ret;
}
/* Create and init an new signer */
Signer* MakeSigner(void* heap)
{
Signer* signer = (Signer*) XMALLOC(sizeof(Signer), heap,
DYNAMIC_TYPE_SIGNER);
if (signer) {
signer->pubKeySize = 0;
signer->keyOID = 0;
signer->publicKey = NULL;
signer->nameLen = 0;
signer->name = NULL;
#ifndef IGNORE_NAME_CONSTRAINTS
signer->permittedNames = NULL;
signer->excludedNames = NULL;
#endif /* IGNORE_NAME_CONSTRAINTS */
signer->pathLengthSet = 0;
signer->pathLength = 0;
#ifdef WOLFSSL_SIGNER_DER_CERT
signer->derCert = NULL;
#endif
signer->next = NULL;
}
(void)heap;
return signer;
}
/* Free an individual signer */
void FreeSigner(Signer* signer, void* heap)
{
XFREE(signer->name, heap, DYNAMIC_TYPE_SUBJECT_CN);
XFREE(signer->publicKey, heap, DYNAMIC_TYPE_PUBLIC_KEY);
#ifndef IGNORE_NAME_CONSTRAINTS
if (signer->permittedNames)
FreeNameSubtrees(signer->permittedNames, heap);
if (signer->excludedNames)
FreeNameSubtrees(signer->excludedNames, heap);
#endif
#ifdef WOLFSSL_SIGNER_DER_CERT
FreeDer(&signer->derCert);
#endif
XFREE(signer, heap, DYNAMIC_TYPE_SIGNER);
(void)heap;
}
/* Free the whole singer table with number of rows */
void FreeSignerTable(Signer** table, int rows, void* heap)
{
int i;
for (i = 0; i < rows; i++) {
Signer* signer = table[i];
while (signer) {
Signer* next = signer->next;
FreeSigner(signer, heap);
signer = next;
}
table[i] = NULL;
}
}
#ifdef WOLFSSL_TRUST_PEER_CERT
/* Free an individual trusted peer cert */
void FreeTrustedPeer(TrustedPeerCert* tp, void* heap)
{
if (tp == NULL) {
return;
}
if (tp->name) {
XFREE(tp->name, heap, DYNAMIC_TYPE_SUBJECT_CN);
}
if (tp->sig) {
XFREE(tp->sig, heap, DYNAMIC_TYPE_SIGNATURE);
}
#ifndef IGNORE_NAME_CONSTRAINTS
if (tp->permittedNames)
FreeNameSubtrees(tp->permittedNames, heap);
if (tp->excludedNames)
FreeNameSubtrees(tp->excludedNames, heap);
#endif
XFREE(tp, heap, DYNAMIC_TYPE_CERT);
(void)heap;
}
/* Free the whole Trusted Peer linked list */
void FreeTrustedPeerTable(TrustedPeerCert** table, int rows, void* heap)
{
int i;
for (i = 0; i < rows; i++) {
TrustedPeerCert* tp = table[i];
while (tp) {
TrustedPeerCert* next = tp->next;
FreeTrustedPeer(tp, heap);
tp = next;
}
table[i] = NULL;
}
}
#endif /* WOLFSSL_TRUST_PEER_CERT */
WOLFSSL_LOCAL int SetMyVersion(word32 version, byte* output, int header)
{
int i = 0;
if (output == NULL)
return BAD_FUNC_ARG;
if (header) {
output[i++] = ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED;
output[i++] = 3;
}
output[i++] = ASN_INTEGER;
output[i++] = 0x01;
output[i++] = (byte)version;
return i;
}
WOLFSSL_LOCAL int SetSerialNumber(const byte* sn, word32 snSz, byte* output,
int maxSnSz)
{
int i = 0;
int snSzInt = (int)snSz;
if (sn == NULL || output == NULL || snSzInt < 0)
return BAD_FUNC_ARG;
/* remove leading zeros */
while (snSzInt > 0 && sn[0] == 0) {
snSzInt--;
sn++;
}
/* truncate if input is too long */
if (snSzInt > maxSnSz)
snSzInt = maxSnSz;
/* encode ASN Integer, with length and value */
output[i++] = ASN_INTEGER;
/* handle MSB, to make sure value is positive */
if (sn[0] & 0x80) {
/* make room for zero pad */
if (snSzInt > maxSnSz-1)
snSzInt = maxSnSz-1;
/* add zero pad */
i += SetLength(snSzInt+1, &output[i]);
output[i++] = 0x00;
XMEMCPY(&output[i], sn, snSzInt);
}
else {
i += SetLength(snSzInt, &output[i]);
XMEMCPY(&output[i], sn, snSzInt);
}
/* compute final length */
i += snSzInt;
return i;
}
WOLFSSL_LOCAL int GetSerialNumber(const byte* input, word32* inOutIdx,
byte* serial, int* serialSz, word32 maxIdx)
{
int result = 0;
int ret;
WOLFSSL_ENTER("GetSerialNumber");
if (serial == NULL || input == NULL || serialSz == NULL) {
return BAD_FUNC_ARG;
}
/* First byte is ASN type */
if ((*inOutIdx+1) > maxIdx) {
WOLFSSL_MSG("Bad idx first");
return BUFFER_E;
}
ret = GetASNInt(input, inOutIdx, serialSz, maxIdx);
if (ret != 0)
return ret;
if (*serialSz > EXTERNAL_SERIAL_SIZE) {
WOLFSSL_MSG("Serial size bad");
return ASN_PARSE_E;
}
/* return serial */
XMEMCPY(serial, &input[*inOutIdx], *serialSz);
*inOutIdx += *serialSz;
return result;
}
int AllocDer(DerBuffer** pDer, word32 length, int type, void* heap)
{
int ret = BAD_FUNC_ARG;
if (pDer) {
int dynType = 0;
DerBuffer* der;
/* Determine dynamic type */
switch (type) {
case CA_TYPE: dynType = DYNAMIC_TYPE_CA; break;
case CERT_TYPE: dynType = DYNAMIC_TYPE_CERT; break;
case CRL_TYPE: dynType = DYNAMIC_TYPE_CRL; break;
case DSA_TYPE: dynType = DYNAMIC_TYPE_DSA; break;
case ECC_TYPE: dynType = DYNAMIC_TYPE_ECC; break;
case RSA_TYPE: dynType = DYNAMIC_TYPE_RSA; break;
default: dynType = DYNAMIC_TYPE_KEY; break;
}
/* Setup new buffer */
*pDer = (DerBuffer*)XMALLOC(sizeof(DerBuffer) + length, heap, dynType);
if (*pDer == NULL) {
return MEMORY_E;
}
XMEMSET(*pDer, 0, sizeof(DerBuffer) + length);
der = *pDer;
der->type = type;
der->dynType = dynType; /* Cache this for FreeDer */
der->heap = heap;
der->buffer = (byte*)der + sizeof(DerBuffer);
der->length = length;
ret = 0; /* Success */
}
return ret;
}
void FreeDer(DerBuffer** pDer)
{
if (pDer && *pDer)
{
DerBuffer* der = (DerBuffer*)*pDer;
/* ForceZero private keys */
if (der->type == PRIVATEKEY_TYPE) {
ForceZero(der->buffer, der->length);
}
der->buffer = NULL;
der->length = 0;
XFREE(der, der->heap, der->dynType);
*pDer = NULL;
}
}
#if defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM)
/* Max X509 header length indicates the max length + 2 ('\n', '\0') */
#define MAX_X509_HEADER_SZ (37 + 2)
const char* const BEGIN_CERT = "-----BEGIN CERTIFICATE-----";
const char* const END_CERT = "-----END CERTIFICATE-----";
#ifdef WOLFSSL_CERT_REQ
const char* const BEGIN_CERT_REQ = "-----BEGIN CERTIFICATE REQUEST-----";
const char* const END_CERT_REQ = "-----END CERTIFICATE REQUEST-----";
#endif
#ifndef NO_DH
const char* const BEGIN_DH_PARAM = "-----BEGIN DH PARAMETERS-----";
const char* const END_DH_PARAM = "-----END DH PARAMETERS-----";
#endif
#ifndef NO_DSA
const char* const BEGIN_DSA_PARAM = "-----BEGIN DSA PARAMETERS-----";
const char* const END_DSA_PARAM = "-----END DSA PARAMETERS-----";
#endif
const char* const BEGIN_X509_CRL = "-----BEGIN X509 CRL-----";
const char* const END_X509_CRL = "-----END X509 CRL-----";
const char* const BEGIN_RSA_PRIV = "-----BEGIN RSA PRIVATE KEY-----";
const char* const END_RSA_PRIV = "-----END RSA PRIVATE KEY-----";
const char* const BEGIN_PRIV_KEY = "-----BEGIN PRIVATE KEY-----";
const char* const END_PRIV_KEY = "-----END PRIVATE KEY-----";
const char* const BEGIN_ENC_PRIV_KEY = "-----BEGIN ENCRYPTED PRIVATE KEY-----";
const char* const END_ENC_PRIV_KEY = "-----END ENCRYPTED PRIVATE KEY-----";
#ifdef HAVE_ECC
const char* const BEGIN_EC_PRIV = "-----BEGIN EC PRIVATE KEY-----";
const char* const END_EC_PRIV = "-----END EC PRIVATE KEY-----";
#endif
#if defined(HAVE_ECC) || defined(HAVE_ED25519) || !defined(NO_DSA)
const char* const BEGIN_DSA_PRIV = "-----BEGIN DSA PRIVATE KEY-----";
const char* const END_DSA_PRIV = "-----END DSA PRIVATE KEY-----";
#endif
const char* const BEGIN_PUB_KEY = "-----BEGIN PUBLIC KEY-----";
const char* const END_PUB_KEY = "-----END PUBLIC KEY-----";
#ifdef HAVE_ED25519
const char* const BEGIN_EDDSA_PRIV = "-----BEGIN EDDSA PRIVATE KEY-----";
const char* const END_EDDSA_PRIV = "-----END EDDSA PRIVATE KEY-----";
#endif
#ifdef HAVE_CRL
const char *const BEGIN_CRL = "-----BEGIN X509 CRL-----";
const char* const END_CRL = "-----END X509 CRL-----";
#endif
int wc_PemGetHeaderFooter(int type, const char** header, const char** footer)
{
int ret = BAD_FUNC_ARG;
switch (type) {
case CA_TYPE: /* same as below */
case TRUSTED_PEER_TYPE:
case CERT_TYPE:
if (header) *header = BEGIN_CERT;
if (footer) *footer = END_CERT;
ret = 0;
break;
case CRL_TYPE:
if (header) *header = BEGIN_X509_CRL;
if (footer) *footer = END_X509_CRL;
ret = 0;
break;
#ifndef NO_DH
case DH_PARAM_TYPE:
if (header) *header = BEGIN_DH_PARAM;
if (footer) *footer = END_DH_PARAM;
ret = 0;
break;
#endif
#ifndef NO_DSA
case DSA_PARAM_TYPE:
if (header) *header = BEGIN_DSA_PARAM;
if (footer) *footer = END_DSA_PARAM;
ret = 0;
break;
#endif
#ifdef WOLFSSL_CERT_REQ
case CERTREQ_TYPE:
if (header) *header = BEGIN_CERT_REQ;
if (footer) *footer = END_CERT_REQ;
ret = 0;
break;
#endif
#ifndef NO_DSA
case DSA_TYPE:
case DSA_PRIVATEKEY_TYPE:
if (header) *header = BEGIN_DSA_PRIV;
if (footer) *footer = END_DSA_PRIV;
ret = 0;
break;
#endif
#ifdef HAVE_ECC
case ECC_TYPE:
case ECC_PRIVATEKEY_TYPE:
if (header) *header = BEGIN_EC_PRIV;
if (footer) *footer = END_EC_PRIV;
ret = 0;
break;
#endif
case RSA_TYPE:
case PRIVATEKEY_TYPE:
if (header) *header = BEGIN_RSA_PRIV;
if (footer) *footer = END_RSA_PRIV;
ret = 0;
break;
#ifdef HAVE_ED25519
case ED25519_TYPE:
case EDDSA_PRIVATEKEY_TYPE:
if (header) *header = BEGIN_EDDSA_PRIV;
if (footer) *footer = END_EDDSA_PRIV;
ret = 0;
break;
#endif
case PUBLICKEY_TYPE:
if (header) *header = BEGIN_PUB_KEY;
if (footer) *footer = END_PUB_KEY;
ret = 0;
break;
default:
break;
}
return ret;
}
#ifdef WOLFSSL_ENCRYPTED_KEYS
static const char* const kProcTypeHeader = "Proc-Type";
static const char* const kDecInfoHeader = "DEK-Info";
#ifdef WOLFSSL_PEM_TO_DER
#ifndef NO_DES3
static const char* const kEncTypeDes = "DES-CBC";
static const char* const kEncTypeDes3 = "DES-EDE3-CBC";
#endif
#if !defined(NO_AES) && defined(HAVE_AES_CBC) && defined(WOLFSSL_AES_128)
static const char* const kEncTypeAesCbc128 = "AES-128-CBC";
#endif
#if !defined(NO_AES) && defined(HAVE_AES_CBC) && defined(WOLFSSL_AES_192)
static const char* const kEncTypeAesCbc192 = "AES-192-CBC";
#endif
#if !defined(NO_AES) && defined(HAVE_AES_CBC) && defined(WOLFSSL_AES_256)
static const char* const kEncTypeAesCbc256 = "AES-256-CBC";
#endif
int wc_EncryptedInfoGet(EncryptedInfo* info, const char* cipherInfo)
{
int ret = 0;
if (info == NULL || cipherInfo == NULL)
return BAD_FUNC_ARG;
/* determine cipher information */
#ifndef NO_DES3
if (XSTRNCMP(cipherInfo, kEncTypeDes, XSTRLEN(kEncTypeDes)) == 0) {
info->cipherType = WC_CIPHER_DES;
info->keySz = DES_KEY_SIZE;
if (info->ivSz == 0) info->ivSz = DES_IV_SIZE;
}
else if (XSTRNCMP(cipherInfo, kEncTypeDes3, XSTRLEN(kEncTypeDes3)) == 0) {
info->cipherType = WC_CIPHER_DES3;
info->keySz = DES3_KEY_SIZE;
if (info->ivSz == 0) info->ivSz = DES_IV_SIZE;
}
else
#endif /* !NO_DES3 */
#if !defined(NO_AES) && defined(HAVE_AES_CBC) && defined(WOLFSSL_AES_128)
if (XSTRNCMP(cipherInfo, kEncTypeAesCbc128, XSTRLEN(kEncTypeAesCbc128)) == 0) {
info->cipherType = WC_CIPHER_AES_CBC;
info->keySz = AES_128_KEY_SIZE;
if (info->ivSz == 0) info->ivSz = AES_IV_SIZE;
}
else
#endif
#if !defined(NO_AES) && defined(HAVE_AES_CBC) && defined(WOLFSSL_AES_192)
if (XSTRNCMP(cipherInfo, kEncTypeAesCbc192, XSTRLEN(kEncTypeAesCbc192)) == 0) {
info->cipherType = WC_CIPHER_AES_CBC;
info->keySz = AES_192_KEY_SIZE;
if (info->ivSz == 0) info->ivSz = AES_IV_SIZE;
}
else
#endif
#if !defined(NO_AES) && defined(HAVE_AES_CBC) && defined(WOLFSSL_AES_256)
if (XSTRNCMP(cipherInfo, kEncTypeAesCbc256, XSTRLEN(kEncTypeAesCbc256)) == 0) {
info->cipherType = WC_CIPHER_AES_CBC;
info->keySz = AES_256_KEY_SIZE;
if (info->ivSz == 0) info->ivSz = AES_IV_SIZE;
}
else
#endif
{
ret = NOT_COMPILED_IN;
}
return ret;
}
static int wc_EncryptedInfoParse(EncryptedInfo* info,
char** pBuffer, size_t bufSz)
{
int err = 0;
char* bufferStart;
char* bufferEnd;
char* line;
word32 lineSz;
char* finish;
word32 finishSz;
char* start = NULL;
word32 startSz;
char* newline = NULL;
if (info == NULL || pBuffer == NULL || bufSz == 0)
return BAD_FUNC_ARG;
bufferStart = *pBuffer;
bufferEnd = bufferStart + bufSz;
/* find encrypted info marker */
line = XSTRNSTR(bufferStart, kProcTypeHeader,
min((word32)bufSz, PEM_LINE_LEN));
if (line != NULL) {
if (line >= bufferEnd) {
return BUFFER_E;
}
lineSz = (word32)(bufferEnd - line);
/* find DEC-Info marker */
start = XSTRNSTR(line, kDecInfoHeader, min(lineSz, PEM_LINE_LEN));
if (start == NULL)
return BUFFER_E;
/* skip dec-info and ": " */
start += XSTRLEN(kDecInfoHeader);
if (start >= bufferEnd)
return BUFFER_E;
if (start[0] == ':') {
start++;
if (start >= bufferEnd)
return BUFFER_E;
}
if (start[0] == ' ')
start++;
startSz = (word32)(bufferEnd - start);
finish = XSTRNSTR(start, ",", min(startSz, PEM_LINE_LEN));
if ((start != NULL) && (finish != NULL) && (start < finish)) {
if (finish >= bufferEnd) {
return BUFFER_E;
}
finishSz = (word32)(bufferEnd - finish);
newline = XSTRNSTR(finish, "\r", min(finishSz, PEM_LINE_LEN));
/* get cipher name */
if (NAME_SZ < (finish - start)) /* buffer size of info->name */
return BUFFER_E;
if (XMEMCPY(info->name, start, finish - start) == NULL)
return BUFFER_E;
info->name[finish - start] = '\0'; /* null term */
/* get IV */
if (finishSz < sizeof(info->iv) + 1)
return BUFFER_E;
if (XMEMCPY(info->iv, finish + 1, sizeof(info->iv)) == NULL)
return BUFFER_E;
if (newline == NULL)
newline = XSTRNSTR(finish, "\n", min(finishSz,
PEM_LINE_LEN));
if ((newline != NULL) && (newline > finish)) {
info->ivSz = (word32)(newline - (finish + 1));
info->set = 1;
}
else
return BUFFER_E;
}
else
return BUFFER_E;
/* eat blank line */
while (newline < bufferEnd &&
(*newline == '\r' || *newline == '\n')) {
newline++;
}
/* return new headerEnd */
if (pBuffer)
*pBuffer = newline;
/* populate info */
err = wc_EncryptedInfoGet(info, info->name);
}
return err;
}
#endif /* WOLFSSL_PEM_TO_DER */
#ifdef WOLFSSL_DER_TO_PEM
static int wc_EncryptedInfoAppend(char* dest, char* cipherInfo)
{
if (cipherInfo != NULL) {
size_t cipherInfoStrLen = XSTRLEN(cipherInfo);
if (cipherInfoStrLen > HEADER_ENCRYPTED_KEY_SIZE - (9+14+10+3))
cipherInfoStrLen = HEADER_ENCRYPTED_KEY_SIZE - (9+14+10+3);
XSTRNCAT(dest, kProcTypeHeader, 9);
XSTRNCAT(dest, ": 4,ENCRYPTED\n", 14);
XSTRNCAT(dest, kDecInfoHeader, 8);
XSTRNCAT(dest, ": ", 2);
XSTRNCAT(dest, cipherInfo, cipherInfoStrLen);
XSTRNCAT(dest, "\n\n", 3);
}
return 0;
}
#endif /* WOLFSSL_DER_TO_PEM */
#endif /* WOLFSSL_ENCRYPTED_KEYS */
#ifdef WOLFSSL_DER_TO_PEM
/* Used for compatibility API */
int wc_DerToPem(const byte* der, word32 derSz,
byte* output, word32 outSz, int type)
{
return wc_DerToPemEx(der, derSz, output, outSz, NULL, type);
}
/* convert der buffer to pem into output, can't do inplace, der and output
need to be different */
int wc_DerToPemEx(const byte* der, word32 derSz, byte* output, word32 outSz,
byte *cipher_info, int type)
{
const char* headerStr = NULL;
const char* footerStr = NULL;
#ifdef WOLFSSL_SMALL_STACK
char* header = NULL;
char* footer = NULL;
#else
char header[MAX_X509_HEADER_SZ + HEADER_ENCRYPTED_KEY_SIZE];
char footer[MAX_X509_HEADER_SZ];
#endif
int headerLen = MAX_X509_HEADER_SZ + HEADER_ENCRYPTED_KEY_SIZE;
int footerLen = MAX_X509_HEADER_SZ;
int i;
int err;
int outLen; /* return length or error */
(void)cipher_info;
if (der == output) /* no in place conversion */
return BAD_FUNC_ARG;
err = wc_PemGetHeaderFooter(type, &headerStr, &footerStr);
if (err != 0)
return err;
#ifdef WOLFSSL_SMALL_STACK
header = (char*)XMALLOC(headerLen, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (header == NULL)
return MEMORY_E;
footer = (char*)XMALLOC(footerLen, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (footer == NULL) {
XFREE(header, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return MEMORY_E;
}
#endif
/* null term and leave room for newline */
header[--headerLen] = '\0'; header[--headerLen] = '\0';
footer[--footerLen] = '\0'; footer[--footerLen] = '\0';
/* build header and footer based on type */
XSTRNCPY(header, headerStr, headerLen);
XSTRNCPY(footer, footerStr, footerLen);
/* add new line to end */
XSTRNCAT(header, "\n", 2);
XSTRNCAT(footer, "\n", 2);
#ifdef WOLFSSL_ENCRYPTED_KEYS
err = wc_EncryptedInfoAppend(header, (char*)cipher_info);
if (err != 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(header, NULL, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(footer, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return err;
}
#endif
headerLen = (int)XSTRLEN(header);
footerLen = (int)XSTRLEN(footer);
/* if null output and 0 size passed in then return size needed */
if (!output && outSz == 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(header, NULL, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(footer, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
outLen = 0;
if ((err = Base64_Encode(der, derSz, NULL, (word32*)&outLen))
!= LENGTH_ONLY_E) {
return err;
}
return headerLen + footerLen + outLen;
}
if (!der || !output) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(header, NULL, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(footer, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return BAD_FUNC_ARG;
}
/* don't even try if outSz too short */
if (outSz < headerLen + footerLen + derSz) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(header, NULL, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(footer, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return BAD_FUNC_ARG;
}
/* header */
XMEMCPY(output, header, headerLen);
i = headerLen;
#ifdef WOLFSSL_SMALL_STACK
XFREE(header, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
/* body */
outLen = outSz - (headerLen + footerLen); /* input to Base64_Encode */
if ( (err = Base64_Encode(der, derSz, output + i, (word32*)&outLen)) < 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(footer, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return err;
}
i += outLen;
/* footer */
if ( (i + footerLen) > (int)outSz) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(footer, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return BAD_FUNC_ARG;
}
XMEMCPY(output + i, footer, footerLen);
#ifdef WOLFSSL_SMALL_STACK
XFREE(footer, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return outLen + headerLen + footerLen;
}
#endif /* WOLFSSL_DER_TO_PEM */
#ifdef WOLFSSL_PEM_TO_DER
/* Remove PEM header/footer, convert to ASN1, store any encrypted data
info->consumed tracks of PEM bytes consumed in case multiple parts */
int PemToDer(const unsigned char* buff, long longSz, int type,
DerBuffer** pDer, void* heap, EncryptedInfo* info, int* eccKey)
{
const char* header = NULL;
const char* footer = NULL;
char* headerEnd;
char* footerEnd;
char* consumedEnd;
char* bufferEnd = (char*)(buff + longSz);
long neededSz;
int ret = 0;
int sz = (int)longSz;
int encrypted_key = 0;
DerBuffer* der;
WOLFSSL_ENTER("PemToDer");
/* get PEM header and footer based on type */
ret = wc_PemGetHeaderFooter(type, &header, &footer);
if (ret != 0)
return ret;
/* map header if not found for type */
for (;;) {
headerEnd = XSTRNSTR((char*)buff, header, sz);
if (headerEnd || type != PRIVATEKEY_TYPE) {
break;
} else
if (header == BEGIN_RSA_PRIV) {
header = BEGIN_PRIV_KEY; footer = END_PRIV_KEY;
} else
if (header == BEGIN_PRIV_KEY) {
header = BEGIN_ENC_PRIV_KEY; footer = END_ENC_PRIV_KEY;
} else
#ifdef HAVE_ECC
if (header == BEGIN_ENC_PRIV_KEY) {
header = BEGIN_EC_PRIV; footer = END_EC_PRIV;
} else
if (header == BEGIN_EC_PRIV) {
header = BEGIN_DSA_PRIV; footer = END_DSA_PRIV;
} else
#endif
#ifdef HAVE_ED25519
#ifdef HAVE_ECC
if (header == BEGIN_DSA_PRIV)
#else
if (header == BEGIN_ENC_PRIV_KEY)
#endif
{
header = BEGIN_EDDSA_PRIV; footer = END_EDDSA_PRIV;
} else
#endif
#ifdef HAVE_CRL
if (type == CRL_TYPE) {
header = BEGIN_CRL; footer = END_CRL;
} else
#endif
{
break;
}
}
if (!headerEnd) {
WOLFSSL_MSG("Couldn't find PEM header");
return ASN_NO_PEM_HEADER;
}
headerEnd += XSTRLEN(header);
if ((headerEnd + 1) >= bufferEnd)
return BUFFER_E;
/* eat end of line */
if (headerEnd[0] == '\n')
headerEnd++;
else if (headerEnd[1] == '\n')
headerEnd += 2;
else {
if (info)
info->consumed = (long)(headerEnd+2 - (char*)buff);
return BUFFER_E;
}
if (type == PRIVATEKEY_TYPE) {
if (eccKey) {
#ifdef HAVE_ECC
*eccKey = (header == BEGIN_EC_PRIV) ? 1 : 0;
#else
*eccKey = 0;
#endif
}
}
#ifdef WOLFSSL_ENCRYPTED_KEYS
if (info) {
ret = wc_EncryptedInfoParse(info, &headerEnd, bufferEnd - headerEnd);
if (ret < 0)
return ret;
if (info->set)
encrypted_key = 1;
}
#endif /* WOLFSSL_ENCRYPTED_KEYS */
/* find footer */
footerEnd = XSTRNSTR((char*)buff, footer, sz);
if (!footerEnd) {
if (info)
info->consumed = longSz; /* No more certs if no footer */
return BUFFER_E;
}
consumedEnd = footerEnd + XSTRLEN(footer);
if (consumedEnd < bufferEnd) { /* handle no end of line on last line */
/* eat end of line */
if (consumedEnd[0] == '\n')
consumedEnd++;
else if ((consumedEnd + 1 < bufferEnd) && consumedEnd[1] == '\n')
consumedEnd += 2;
else {
if (info)
info->consumed = (long)(consumedEnd+2 - (char*)buff);
return BUFFER_E;
}
}
if (info)
info->consumed = (long)(consumedEnd - (char*)buff);
/* set up der buffer */
neededSz = (long)(footerEnd - headerEnd);
if (neededSz > sz || neededSz <= 0)
return BUFFER_E;
ret = AllocDer(pDer, (word32)neededSz, type, heap);
if (ret < 0) {
return ret;
}
der = *pDer;
if (Base64_Decode((byte*)headerEnd, (word32)neededSz,
der->buffer, &der->length) < 0)
return BUFFER_E;
if (header == BEGIN_PRIV_KEY && !encrypted_key) {
/* pkcs8 key, convert and adjust length */
if ((ret = ToTraditional(der->buffer, der->length)) < 0)
return ret;
der->length = ret;
return 0;
}
#ifdef WOLFSSL_ENCRYPTED_KEYS
if (encrypted_key || header == BEGIN_ENC_PRIV_KEY) {
int passwordSz = NAME_SZ;
#ifdef WOLFSSL_SMALL_STACK
char* password = NULL;
#else
char password[NAME_SZ];
#endif
if (!info || !info->passwd_cb) {
WOLFSSL_MSG("No password callback set");
return NO_PASSWORD;
}
#ifdef WOLFSSL_SMALL_STACK
password = (char*)XMALLOC(passwordSz, heap, DYNAMIC_TYPE_STRING);
if (password == NULL)
return MEMORY_E;
#endif
/* get password */
ret = info->passwd_cb(password, passwordSz, PEM_PASS_READ,
info->passwd_userdata);
if (ret >= 0) {
passwordSz = ret;
/* convert and adjust length */
if (header == BEGIN_ENC_PRIV_KEY) {
#ifndef NO_PWDBASED
ret = ToTraditionalEnc(der->buffer, der->length,
password, passwordSz);
if (ret >= 0) {
der->length = ret;
}
#else
ret = NOT_COMPILED_IN;
#endif
}
/* decrypt the key */
else {
ret = wc_BufferKeyDecrypt(info, der->buffer, der->length,
(byte*)password, passwordSz, WC_MD5);
}
ForceZero(password, passwordSz);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(password, heap, DYNAMIC_TYPE_STRING);
#endif
}
#endif /* WOLFSSL_ENCRYPTED_KEYS */
return ret;
}
int wc_PemToDer(const unsigned char* buff, long longSz, int type,
DerBuffer** pDer, void* heap, EncryptedInfo* info, int* eccKey)
{
return PemToDer(buff, longSz, type, pDer, heap, info, eccKey);
}
/* our KeyPemToDer password callback, password in userData */
static WC_INLINE int OurPasswordCb(char* passwd, int sz, int rw, void* userdata)
{
(void)rw;
if (userdata == NULL)
return 0;
XSTRNCPY(passwd, (char*)userdata, sz);
return min((word32)sz, (word32)XSTRLEN((char*)userdata));
}
/* Return bytes written to buff or < 0 for error */
int wc_KeyPemToDer(const unsigned char* pem, int pemSz,
unsigned char* buff, int buffSz, const char* pass)
{
int eccKey = 0;
int ret;
DerBuffer* der = NULL;
#ifdef WOLFSSL_SMALL_STACK
EncryptedInfo* info = NULL;
#else
EncryptedInfo info[1];
#endif
WOLFSSL_ENTER("wc_KeyPemToDer");
if (pem == NULL || buff == NULL || buffSz <= 0) {
WOLFSSL_MSG("Bad pem der args");
return BAD_FUNC_ARG;
}
#ifdef WOLFSSL_SMALL_STACK
info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), NULL,
DYNAMIC_TYPE_ENCRYPTEDINFO);
if (info == NULL)
return MEMORY_E;
#endif
XMEMSET(info, 0, sizeof(EncryptedInfo));
info->passwd_cb = OurPasswordCb;
info->passwd_userdata = (void*)pass;
ret = PemToDer(pem, pemSz, PRIVATEKEY_TYPE, &der, NULL, info, &eccKey);
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
if (ret < 0) {
WOLFSSL_MSG("Bad Pem To Der");
}
else {
if (der->length <= (word32)buffSz) {
XMEMCPY(buff, der->buffer, der->length);
ret = der->length;
}
else {
WOLFSSL_MSG("Bad der length");
ret = BAD_FUNC_ARG;
}
}
FreeDer(&der);
return ret;
}
/* Return bytes written to buff or < 0 for error */
int wc_CertPemToDer(const unsigned char* pem, int pemSz,
unsigned char* buff, int buffSz, int type)
{
int eccKey = 0;
int ret;
DerBuffer* der = NULL;
WOLFSSL_ENTER("wc_CertPemToDer");
if (pem == NULL || buff == NULL || buffSz <= 0) {
WOLFSSL_MSG("Bad pem der args");
return BAD_FUNC_ARG;
}
if (type != CERT_TYPE && type != CA_TYPE && type != CERTREQ_TYPE) {
WOLFSSL_MSG("Bad cert type");
return BAD_FUNC_ARG;
}
ret = PemToDer(pem, pemSz, type, &der, NULL, NULL, &eccKey);
if (ret < 0) {
WOLFSSL_MSG("Bad Pem To Der");
}
else {
if (der->length <= (word32)buffSz) {
XMEMCPY(buff, der->buffer, der->length);
ret = der->length;
}
else {
WOLFSSL_MSG("Bad der length");
ret = BAD_FUNC_ARG;
}
}
FreeDer(&der);
return ret;
}
#endif /* WOLFSSL_PEM_TO_DER */
#endif /* WOLFSSL_PEM_TO_DER || WOLFSSL_DER_TO_PEM */
#ifndef NO_FILESYSTEM
#ifdef WOLFSSL_PEM_TO_DER
#if defined(WOLFSSL_CERT_EXT) || defined(WOLFSSL_PUB_PEM_TO_DER)
/* Return bytes written to buff or < 0 for error */
int wc_PubKeyPemToDer(const unsigned char* pem, int pemSz,
unsigned char* buff, int buffSz)
{
int ret;
DerBuffer* der = NULL;
WOLFSSL_ENTER("wc_PubKeyPemToDer");
if (pem == NULL || buff == NULL || buffSz <= 0) {
WOLFSSL_MSG("Bad pem der args");
return BAD_FUNC_ARG;
}
ret = PemToDer(pem, pemSz, PUBLICKEY_TYPE, &der, NULL, NULL, NULL);
if (ret < 0) {
WOLFSSL_MSG("Bad Pem To Der");
}
else {
if (der->length <= (word32)buffSz) {
XMEMCPY(buff, der->buffer, der->length);
ret = der->length;
}
else {
WOLFSSL_MSG("Bad der length");
ret = BAD_FUNC_ARG;
}
}
FreeDer(&der);
return ret;
}
#endif /* WOLFSSL_CERT_EXT || WOLFSSL_PUB_PEM_TO_DER */
#endif /* WOLFSSL_PEM_TO_DER */
#ifdef WOLFSSL_CERT_GEN
/* load pem cert from file into der buffer, return der size or error */
int wc_PemCertToDer(const char* fileName, unsigned char* derBuf, int derSz)
{
#ifdef WOLFSSL_SMALL_STACK
byte staticBuffer[1]; /* force XMALLOC */
#else
byte staticBuffer[FILE_BUFFER_SIZE];
#endif
byte* fileBuf = staticBuffer;
int dynamic = 0;
int ret = 0;
long sz = 0;
XFILE file = XFOPEN(fileName, "rb");
DerBuffer* converted = NULL;
WOLFSSL_ENTER("wc_PemCertToDer");
if (file == XBADFILE) {
ret = BUFFER_E;
}
else {
XFSEEK(file, 0, XSEEK_END);
sz = XFTELL(file);
XREWIND(file);
if (sz <= 0) {
ret = BUFFER_E;
}
else if (sz > (long)sizeof(staticBuffer)) {
#ifdef WOLFSSL_STATIC_MEMORY
WOLFSSL_MSG("File was larger then static buffer");
return MEMORY_E;
#endif
fileBuf = (byte*)XMALLOC(sz, NULL, DYNAMIC_TYPE_FILE);
if (fileBuf == NULL)
ret = MEMORY_E;
else
dynamic = 1;
}
if (ret == 0) {
if ( (ret = (int)XFREAD(fileBuf, 1, sz, file)) != sz) {
ret = BUFFER_E;
}
#ifdef WOLFSSL_PEM_TO_DER
else {
ret = PemToDer(fileBuf, sz, CA_TYPE, &converted, 0, NULL,NULL);
}
#endif
if (ret == 0) {
if (converted->length < (word32)derSz) {
XMEMCPY(derBuf, converted->buffer, converted->length);
ret = converted->length;
}
else
ret = BUFFER_E;
}
FreeDer(&converted);
}
XFCLOSE(file);
if (dynamic)
XFREE(fileBuf, NULL, DYNAMIC_TYPE_FILE);
}
return ret;
}
#endif /* WOLFSSL_CERT_GEN */
#if defined(WOLFSSL_CERT_EXT) || defined(WOLFSSL_PUB_PEM_TO_DER)
/* load pem public key from file into der buffer, return der size or error */
int wc_PemPubKeyToDer(const char* fileName,
unsigned char* derBuf, int derSz)
{
#ifdef WOLFSSL_SMALL_STACK
byte staticBuffer[1]; /* force XMALLOC */
#else
byte staticBuffer[FILE_BUFFER_SIZE];
#endif
byte* fileBuf = staticBuffer;
int dynamic = 0;
int ret = 0;
long sz = 0;
XFILE file = XFOPEN(fileName, "rb");
DerBuffer* converted = NULL;
WOLFSSL_ENTER("wc_PemPubKeyToDer");
if (file == XBADFILE) {
ret = BUFFER_E;
}
else {
XFSEEK(file, 0, XSEEK_END);
sz = XFTELL(file);
XREWIND(file);
if (sz <= 0) {
ret = BUFFER_E;
}
else if (sz > (long)sizeof(staticBuffer)) {
#ifdef WOLFSSL_STATIC_MEMORY
WOLFSSL_MSG("File was larger then static buffer");
return MEMORY_E;
#endif
fileBuf = (byte*)XMALLOC(sz, NULL, DYNAMIC_TYPE_FILE);
if (fileBuf == NULL)
ret = MEMORY_E;
else
dynamic = 1;
}
if (ret == 0) {
if ( (ret = (int)XFREAD(fileBuf, 1, sz, file)) != sz) {
ret = BUFFER_E;
}
#ifdef WOLFSSL_PEM_TO_DER
else {
ret = PemToDer(fileBuf, sz, PUBLICKEY_TYPE, &converted,
0, NULL, NULL);
}
#endif
if (ret == 0) {
if (converted->length < (word32)derSz) {
XMEMCPY(derBuf, converted->buffer, converted->length);
ret = converted->length;
}
else
ret = BUFFER_E;
}
FreeDer(&converted);
}
XFCLOSE(file);
if (dynamic)
XFREE(fileBuf, NULL, DYNAMIC_TYPE_FILE);
}
return ret;
}
#endif /* WOLFSSL_CERT_EXT || WOLFSSL_PUB_PEM_TO_DER */
#endif /* !NO_FILESYSTEM */
#if !defined(NO_RSA) && (defined(WOLFSSL_CERT_GEN) || \
((defined(WOLFSSL_KEY_GEN) || defined(OPENSSL_EXTRA)) && !defined(HAVE_USER_RSA)))
/* USER RSA ifdef portions used instead of refactor in consideration for
possible fips build */
/* Write a public RSA key to output */
static int SetRsaPublicKey(byte* output, RsaKey* key,
int outLen, int with_header)
{
#ifdef WOLFSSL_SMALL_STACK
byte* n = NULL;
byte* e = NULL;
#else
byte n[MAX_RSA_INT_SZ];
byte e[MAX_RSA_E_SZ];
#endif
byte seq[MAX_SEQ_SZ];
byte bitString[1 + MAX_LENGTH_SZ + 1];
int nSz;
int eSz;
int seqSz;
int bitStringSz;
int idx;
if (output == NULL || key == NULL || outLen < MAX_SEQ_SZ)
return BAD_FUNC_ARG;
/* n */
#ifdef WOLFSSL_SMALL_STACK
n = (byte*)XMALLOC(MAX_RSA_INT_SZ, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (n == NULL)
return MEMORY_E;
#endif
#ifdef HAVE_USER_RSA
nSz = SetASNIntRSA(key->n, n);
#else
nSz = SetASNIntMP(&key->n, MAX_RSA_INT_SZ, n);
#endif
if (nSz < 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(n, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return nSz;
}
/* e */
#ifdef WOLFSSL_SMALL_STACK
e = (byte*)XMALLOC(MAX_RSA_E_SZ, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (e == NULL) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(n, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return MEMORY_E;
}
#endif
#ifdef HAVE_USER_RSA
eSz = SetASNIntRSA(key->e, e);
#else
eSz = SetASNIntMP(&key->e, MAX_RSA_INT_SZ, e);
#endif
if (eSz < 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(n, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(e, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return eSz;
}
seqSz = SetSequence(nSz + eSz, seq);
/* check output size */
if ( (seqSz + nSz + eSz) > outLen) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(n, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(e, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return BUFFER_E;
}
/* headers */
if (with_header) {
int algoSz;
#ifdef WOLFSSL_SMALL_STACK
byte* algo = NULL;
algo = (byte*)XMALLOC(MAX_ALGO_SZ, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (algo == NULL) {
XFREE(n, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(e, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
return MEMORY_E;
}
#else
byte algo[MAX_ALGO_SZ];
#endif
algoSz = SetAlgoID(RSAk, algo, oidKeyType, 0);
bitStringSz = SetBitString(seqSz + nSz + eSz, 0, bitString);
idx = SetSequence(nSz + eSz + seqSz + bitStringSz + algoSz, output);
/* check output size */
if ( (idx + algoSz + bitStringSz + seqSz + nSz + eSz) > outLen) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(n, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(e, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(algo, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return BUFFER_E;
}
/* algo */
XMEMCPY(output + idx, algo, algoSz);
idx += algoSz;
/* bit string */
XMEMCPY(output + idx, bitString, bitStringSz);
idx += bitStringSz;
#ifdef WOLFSSL_SMALL_STACK
XFREE(algo, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
}
else
idx = 0;
/* seq */
XMEMCPY(output + idx, seq, seqSz);
idx += seqSz;
/* n */
XMEMCPY(output + idx, n, nSz);
idx += nSz;
/* e */
XMEMCPY(output + idx, e, eSz);
idx += eSz;
#ifdef WOLFSSL_SMALL_STACK
XFREE(n, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(e, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return idx;
}
int RsaPublicKeyDerSize(RsaKey* key, int with_header)
{
byte* dummy = NULL;
byte seq[MAX_SEQ_SZ];
byte bitString[1 + MAX_LENGTH_SZ + 1];
int nSz;
int eSz;
int seqSz;
int bitStringSz;
int idx;
if (key == NULL)
return BAD_FUNC_ARG;
/* n */
dummy = (byte*)XMALLOC(MAX_RSA_INT_SZ, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (dummy == NULL)
return MEMORY_E;
#ifdef HAVE_USER_RSA
nSz = SetASNIntRSA(key->n, dummy);
#else
nSz = SetASNIntMP(&key->n, MAX_RSA_INT_SZ, dummy);
#endif
XFREE(dummy, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (nSz < 0) {
return nSz;
}
/* e */
dummy = (byte*)XMALLOC(MAX_RSA_E_SZ, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (dummy == NULL) {
XFREE(dummy, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
return MEMORY_E;
}
#ifdef HAVE_USER_RSA
eSz = SetASNIntRSA(key->e, dummy);
#else
eSz = SetASNIntMP(&key->e, MAX_RSA_INT_SZ, dummy);
#endif
XFREE(dummy, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (eSz < 0) {
return eSz;
}
seqSz = SetSequence(nSz + eSz, seq);
/* headers */
if (with_header) {
int algoSz;
dummy = (byte*)XMALLOC(MAX_RSA_INT_SZ, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (dummy == NULL)
return MEMORY_E;
algoSz = SetAlgoID(RSAk, dummy, oidKeyType, 0);
bitStringSz = SetBitString(seqSz + nSz + eSz, 0, bitString);
idx = SetSequence(nSz + eSz + seqSz + bitStringSz + algoSz, dummy);
XFREE(dummy, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
/* algo */
idx += algoSz;
/* bit string */
idx += bitStringSz;
}
else
idx = 0;
/* seq */
idx += seqSz;
/* n */
idx += nSz;
/* e */
idx += eSz;
return idx;
}
#endif /* !NO_RSA && (WOLFSSL_CERT_GEN || (WOLFSSL_KEY_GEN &&
!HAVE_USER_RSA))) */
#if defined(WOLFSSL_KEY_GEN) && !defined(NO_RSA) && !defined(HAVE_USER_RSA)
static mp_int* GetRsaInt(RsaKey* key, int idx)
{
if (idx == 0)
return &key->n;
if (idx == 1)
return &key->e;
if (idx == 2)
return &key->d;
if (idx == 3)
return &key->p;
if (idx == 4)
return &key->q;
if (idx == 5)
return &key->dP;
if (idx == 6)
return &key->dQ;
if (idx == 7)
return &key->u;
return NULL;
}
/* Release Tmp RSA resources */
static WC_INLINE void FreeTmpRsas(byte** tmps, void* heap)
{
int i;
(void)heap;
for (i = 0; i < RSA_INTS; i++)
XFREE(tmps[i], heap, DYNAMIC_TYPE_RSA);
}
/* Convert RsaKey key to DER format, write to output (inLen), return bytes
written */
int wc_RsaKeyToDer(RsaKey* key, byte* output, word32 inLen)
{
word32 seqSz, verSz, rawLen, intTotalLen = 0;
word32 sizes[RSA_INTS];
int i, j, outLen, ret = 0, mpSz;
byte seq[MAX_SEQ_SZ];
byte ver[MAX_VERSION_SZ];
byte* tmps[RSA_INTS];
if (!key || !output)
return BAD_FUNC_ARG;
if (key->type != RSA_PRIVATE)
return BAD_FUNC_ARG;
for (i = 0; i < RSA_INTS; i++)
tmps[i] = NULL;
/* write all big ints from key to DER tmps */
for (i = 0; i < RSA_INTS; i++) {
mp_int* keyInt = GetRsaInt(key, i);
rawLen = mp_unsigned_bin_size(keyInt) + 1;
tmps[i] = (byte*)XMALLOC(rawLen + MAX_SEQ_SZ, key->heap,
DYNAMIC_TYPE_RSA);
if (tmps[i] == NULL) {
ret = MEMORY_E;
break;
}
mpSz = SetASNIntMP(keyInt, MAX_RSA_INT_SZ, tmps[i]);
if (mpSz < 0) {
ret = mpSz;
break;
}
intTotalLen += (sizes[i] = mpSz);
}
if (ret != 0) {
FreeTmpRsas(tmps, key->heap);
return ret;
}
/* make headers */
verSz = SetMyVersion(0, ver, FALSE);
seqSz = SetSequence(verSz + intTotalLen, seq);
outLen = seqSz + verSz + intTotalLen;
if (outLen > (int)inLen) {
FreeTmpRsas(tmps, key->heap);
return BAD_FUNC_ARG;
}
/* write to output */
XMEMCPY(output, seq, seqSz);
j = seqSz;
XMEMCPY(output + j, ver, verSz);
j += verSz;
for (i = 0; i < RSA_INTS; i++) {
XMEMCPY(output + j, tmps[i], sizes[i]);
j += sizes[i];
}
FreeTmpRsas(tmps, key->heap);
return outLen;
}
#endif
#if (defined(WOLFSSL_KEY_GEN) || defined(OPENSSL_EXTRA)) && !defined(NO_RSA) && !defined(HAVE_USER_RSA)
/* Convert Rsa Public key to DER format, write to output (inLen), return bytes
written */
int wc_RsaKeyToPublicDer(RsaKey* key, byte* output, word32 inLen)
{
return SetRsaPublicKey(output, key, inLen, 1);
}
#endif /* WOLFSSL_KEY_GEN && !NO_RSA && !HAVE_USER_RSA */
#ifdef WOLFSSL_CERT_GEN
/* Initialize and Set Certificate defaults:
version = 3 (0x2)
serial = 0
sigType = SHA_WITH_RSA
issuer = blank
daysValid = 500
selfSigned = 1 (true) use subject as issuer
subject = blank
*/
int wc_InitCert(Cert* cert)
{
#ifdef WOLFSSL_MULTI_ATTRIB
int i;
#endif
if (cert == NULL) {
return BAD_FUNC_ARG;
}
XMEMSET(cert, 0, sizeof(Cert));
cert->version = 2; /* version 3 is hex 2 */
#ifndef NO_SHA
cert->sigType = CTC_SHAwRSA;
#elif !defined(NO_SHA256)
cert->sigType = CTC_SHA256wRSA;
#else
cert->sigType = 0;
#endif
cert->daysValid = 500;
cert->selfSigned = 1;
cert->keyType = RSA_KEY;
cert->issuer.countryEnc = CTC_PRINTABLE;
cert->issuer.stateEnc = CTC_UTF8;
cert->issuer.localityEnc = CTC_UTF8;
cert->issuer.surEnc = CTC_UTF8;
cert->issuer.orgEnc = CTC_UTF8;
cert->issuer.unitEnc = CTC_UTF8;
cert->issuer.commonNameEnc = CTC_UTF8;
cert->subject.countryEnc = CTC_PRINTABLE;
cert->subject.stateEnc = CTC_UTF8;
cert->subject.localityEnc = CTC_UTF8;
cert->subject.surEnc = CTC_UTF8;
cert->subject.orgEnc = CTC_UTF8;
cert->subject.unitEnc = CTC_UTF8;
cert->subject.commonNameEnc = CTC_UTF8;
#ifdef WOLFSSL_MULTI_ATTRIB
for (i = 0; i < CTC_MAX_ATTRIB; i++) {
cert->issuer.name[i].type = CTC_UTF8;
cert->subject.name[i].type = CTC_UTF8;
}
#endif /* WOLFSSL_MULTI_ATTRIB */
#ifdef WOLFSSL_HEAP_TEST
cert->heap = (void*)WOLFSSL_HEAP_TEST;
#endif
return 0;
}
/* DER encoded x509 Certificate */
typedef struct DerCert {
byte size[MAX_LENGTH_SZ]; /* length encoded */
byte version[MAX_VERSION_SZ]; /* version encoded */
byte serial[(int)CTC_SERIAL_SIZE + (int)MAX_LENGTH_SZ]; /* serial number encoded */
byte sigAlgo[MAX_ALGO_SZ]; /* signature algo encoded */
byte issuer[ASN_NAME_MAX]; /* issuer encoded */
byte subject[ASN_NAME_MAX]; /* subject encoded */
byte validity[MAX_DATE_SIZE*2 + MAX_SEQ_SZ*2]; /* before and after dates */
byte publicKey[MAX_PUBLIC_KEY_SZ]; /* rsa / ntru public key encoded */
byte ca[MAX_CA_SZ]; /* basic constraint CA true size */
byte extensions[MAX_EXTENSIONS_SZ]; /* all extensions */
#ifdef WOLFSSL_CERT_EXT
byte skid[MAX_KID_SZ]; /* Subject Key Identifier extension */
byte akid[MAX_KID_SZ]; /* Authority Key Identifier extension */
byte keyUsage[MAX_KEYUSAGE_SZ]; /* Key Usage extension */
byte extKeyUsage[MAX_EXTKEYUSAGE_SZ]; /* Extended Key Usage extension */
byte certPolicies[MAX_CERTPOL_NB*MAX_CERTPOL_SZ]; /* Certificate Policies */
#endif
#ifdef WOLFSSL_CERT_REQ
byte attrib[MAX_ATTRIB_SZ]; /* Cert req attributes encoded */
#endif
#ifdef WOLFSSL_ALT_NAMES
byte altNames[CTC_MAX_ALT_SIZE]; /* Alternative Names encoded */
#endif
int sizeSz; /* encoded size length */
int versionSz; /* encoded version length */
int serialSz; /* encoded serial length */
int sigAlgoSz; /* encoded sig alog length */
int issuerSz; /* encoded issuer length */
int subjectSz; /* encoded subject length */
int validitySz; /* encoded validity length */
int publicKeySz; /* encoded public key length */
int caSz; /* encoded CA extension length */
#ifdef WOLFSSL_CERT_EXT
int skidSz; /* encoded SKID extension length */
int akidSz; /* encoded SKID extension length */
int keyUsageSz; /* encoded KeyUsage extension length */
int extKeyUsageSz; /* encoded ExtendedKeyUsage extension length */
int certPoliciesSz; /* encoded CertPolicies extension length*/
#endif
#ifdef WOLFSSL_ALT_NAMES
int altNamesSz; /* encoded AltNames extension length */
#endif
int extensionsSz; /* encoded extensions total length */
int total; /* total encoded lengths */
#ifdef WOLFSSL_CERT_REQ
int attribSz;
#endif
} DerCert;
#ifdef WOLFSSL_CERT_REQ
/* Write a set header to output */
static word32 SetUTF8String(word32 len, byte* output)
{
output[0] = ASN_UTF8STRING;
return SetLength(len, output + 1) + 1;
}
#endif /* WOLFSSL_CERT_REQ */
#endif /*WOLFSSL_CERT_GEN */
#if defined(HAVE_ECC)
/* Write a public ECC key to output */
static int SetEccPublicKey(byte* output, ecc_key* key, int with_header)
{
byte bitString[1 + MAX_LENGTH_SZ + 1];
int algoSz;
int curveSz;
int bitStringSz;
int idx;
word32 pubSz = ECC_BUFSIZE;
#ifdef WOLFSSL_SMALL_STACK
byte* algo = NULL;
byte* curve = NULL;
byte* pub = NULL;
#else
byte algo[MAX_ALGO_SZ];
byte curve[MAX_ALGO_SZ];
byte pub[ECC_BUFSIZE];
#endif
int ret;
#ifdef WOLFSSL_SMALL_STACK
pub = (byte*)XMALLOC(ECC_BUFSIZE, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (pub == NULL)
return MEMORY_E;
#endif
ret = wc_ecc_export_x963(key, pub, &pubSz);
if (ret != 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(pub, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
/* headers */
if (with_header) {
#ifdef WOLFSSL_SMALL_STACK
curve = (byte*)XMALLOC(MAX_ALGO_SZ, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (curve == NULL) {
XFREE(pub, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
return MEMORY_E;
}
#endif
curveSz = SetCurve(key, curve);
if (curveSz <= 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(curve, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(pub, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return curveSz;
}
#ifdef WOLFSSL_SMALL_STACK
algo = (byte*)XMALLOC(MAX_ALGO_SZ, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (algo == NULL) {
XFREE(curve, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(pub, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
return MEMORY_E;
}
#endif
algoSz = SetAlgoID(ECDSAk, algo, oidKeyType, curveSz);
bitStringSz = SetBitString(pubSz, 0, bitString);
idx = SetSequence(pubSz + curveSz + bitStringSz + algoSz, output);
/* algo */
XMEMCPY(output + idx, algo, algoSz);
idx += algoSz;
/* curve */
XMEMCPY(output + idx, curve, curveSz);
idx += curveSz;
/* bit string */
XMEMCPY(output + idx, bitString, bitStringSz);
idx += bitStringSz;
}
else
idx = 0;
/* pub */
XMEMCPY(output + idx, pub, pubSz);
idx += pubSz;
#ifdef WOLFSSL_SMALL_STACK
if (with_header) {
XFREE(algo, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(curve, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
XFREE(pub, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return idx;
}
/* returns the size of buffer used, the public ECC key in DER format is stored
in output buffer
with_AlgCurve is a flag for when to include a header that has the Algorithm
and Curve infromation */
int wc_EccPublicKeyToDer(ecc_key* key, byte* output, word32 inLen,
int with_AlgCurve)
{
word32 infoSz = 0;
word32 keySz = 0;
int ret;
if (output == NULL || key == NULL) {
return BAD_FUNC_ARG;
}
if (with_AlgCurve) {
/* buffer space for algorithm/curve */
infoSz += MAX_SEQ_SZ;
infoSz += 2 * MAX_ALGO_SZ;
/* buffer space for public key sequence */
infoSz += MAX_SEQ_SZ;
infoSz += TRAILING_ZERO;
}
if ((ret = wc_ecc_export_x963(key, NULL, &keySz)) != LENGTH_ONLY_E) {
WOLFSSL_MSG("Error in getting ECC public key size");
return ret;
}
if (inLen < keySz + infoSz) {
return BUFFER_E;
}
return SetEccPublicKey(output, key, with_AlgCurve);
}
#endif /* HAVE_ECC */
#if defined(HAVE_ED25519) && (defined(WOLFSSL_CERT_GEN) || \
defined(WOLFSSL_KEY_GEN))
/* Write a public ECC key to output */
static int SetEd25519PublicKey(byte* output, ed25519_key* key, int with_header)
{
byte bitString[1 + MAX_LENGTH_SZ + 1];
int algoSz;
int bitStringSz;
int idx;
word32 pubSz = ED25519_PUB_KEY_SIZE;
#ifdef WOLFSSL_SMALL_STACK
byte* algo = NULL;
byte* pub = NULL;
#else
byte algo[MAX_ALGO_SZ];
byte pub[ED25519_PUB_KEY_SIZE];
#endif
#ifdef WOLFSSL_SMALL_STACK
pub = (byte*)XMALLOC(ECC_BUFSIZE, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (pub == NULL)
return MEMORY_E;
#endif
int ret = wc_ed25519_export_public(key, pub, &pubSz);
if (ret != 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(pub, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
/* headers */
if (with_header) {
#ifdef WOLFSSL_SMALL_STACK
algo = (byte*)XMALLOC(MAX_ALGO_SZ, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (algo == NULL) {
XFREE(pub, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
return MEMORY_E;
}
#endif
algoSz = SetAlgoID(ED25519k, algo, oidKeyType, 0);
bitStringSz = SetBitString(pubSz, 0, bitString);
idx = SetSequence(pubSz + bitStringSz + algoSz, output);
/* algo */
XMEMCPY(output + idx, algo, algoSz);
idx += algoSz;
/* bit string */
XMEMCPY(output + idx, bitString, bitStringSz);
idx += bitStringSz;
}
else
idx = 0;
/* pub */
XMEMCPY(output + idx, pub, pubSz);
idx += pubSz;
#ifdef WOLFSSL_SMALL_STACK
if (with_header) {
XFREE(algo, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
XFREE(pub, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return idx;
}
int wc_Ed25519PublicKeyToDer(ed25519_key* key, byte* output, word32 inLen,
int withAlg)
{
word32 infoSz = 0;
word32 keySz = 0;
int ret;
if (output == NULL || key == NULL) {
return BAD_FUNC_ARG;
}
if (withAlg) {
/* buffer space for algorithm */
infoSz += MAX_SEQ_SZ;
infoSz += MAX_ALGO_SZ;
/* buffer space for public key sequence */
infoSz += MAX_SEQ_SZ;
infoSz += TRAILING_ZERO;
}
if ((ret = wc_ed25519_export_public(key, output, &keySz)) != BUFFER_E) {
WOLFSSL_MSG("Error in getting ECC public key size");
return ret;
}
if (inLen < keySz + infoSz) {
return BUFFER_E;
}
return SetEd25519PublicKey(output, key, withAlg);
}
#endif /* HAVE_ED25519 && (WOLFSSL_CERT_GEN || WOLFSSL_KEY_GEN) */
#ifdef WOLFSSL_CERT_GEN
static WC_INLINE byte itob(int number)
{
return (byte)number + 0x30;
}
/* write time to output, format */
static void SetTime(struct tm* date, byte* output)
{
int i = 0;
output[i++] = itob((date->tm_year % 10000) / 1000);
output[i++] = itob((date->tm_year % 1000) / 100);
output[i++] = itob((date->tm_year % 100) / 10);
output[i++] = itob( date->tm_year % 10);
output[i++] = itob(date->tm_mon / 10);
output[i++] = itob(date->tm_mon % 10);
output[i++] = itob(date->tm_mday / 10);
output[i++] = itob(date->tm_mday % 10);
output[i++] = itob(date->tm_hour / 10);
output[i++] = itob(date->tm_hour % 10);
output[i++] = itob(date->tm_min / 10);
output[i++] = itob(date->tm_min % 10);
output[i++] = itob(date->tm_sec / 10);
output[i++] = itob(date->tm_sec % 10);
output[i] = 'Z'; /* Zulu profile */
}
#ifdef WOLFSSL_ALT_NAMES
/* Copy Dates from cert, return bytes written */
static int CopyValidity(byte* output, Cert* cert)
{
int seqSz;
WOLFSSL_ENTER("CopyValidity");
/* headers and output */
seqSz = SetSequence(cert->beforeDateSz + cert->afterDateSz, output);
XMEMCPY(output + seqSz, cert->beforeDate, cert->beforeDateSz);
XMEMCPY(output + seqSz + cert->beforeDateSz, cert->afterDate,
cert->afterDateSz);
return seqSz + cert->beforeDateSz + cert->afterDateSz;
}
#endif
/* for systems where mktime() doesn't normalize fully */
static void RebuildTime(time_t* in, struct tm* out)
{
#if defined(FREESCALE_MQX) || defined(FREESCALE_KSDK_MQX)
out = localtime_r(in, out);
#else
(void)in;
(void)out;
#endif
}
/* Set Date validity from now until now + daysValid
* return size in bytes written to output, 0 on error */
static int SetValidity(byte* output, int daysValid)
{
byte before[MAX_DATE_SIZE];
byte after[MAX_DATE_SIZE];
int beforeSz;
int afterSz;
int seqSz;
time_t ticks;
time_t normalTime;
struct tm* now;
struct tm* tmpTime = NULL;
struct tm local;
#if defined(NEED_TMP_TIME)
/* for use with gmtime_r */
struct tm tmpTimeStorage;
tmpTime = &tmpTimeStorage;
#else
(void)tmpTime;
#endif
ticks = XTIME(0);
now = XGMTIME(&ticks, tmpTime);
if (now == NULL) {
WOLFSSL_MSG("XGMTIME failed");
return 0; /* error */
}
/* before now */
local = *now;
before[0] = ASN_GENERALIZED_TIME;
beforeSz = SetLength(ASN_GEN_TIME_SZ, before + 1) + 1; /* gen tag */
/* subtract 1 day for more compliance */
local.tm_mday -= 1;
normalTime = mktime(&local);
RebuildTime(&normalTime, &local);
/* adjust */
local.tm_year += 1900;
local.tm_mon += 1;
SetTime(&local, before + beforeSz);
beforeSz += ASN_GEN_TIME_SZ;
/* after now + daysValid */
local = *now;
after[0] = ASN_GENERALIZED_TIME;
afterSz = SetLength(ASN_GEN_TIME_SZ, after + 1) + 1; /* gen tag */
/* add daysValid */
local.tm_mday += daysValid;
normalTime = mktime(&local);
RebuildTime(&normalTime, &local);
/* adjust */
local.tm_year += 1900;
local.tm_mon += 1;
SetTime(&local, after + afterSz);
afterSz += ASN_GEN_TIME_SZ;
/* headers and output */
seqSz = SetSequence(beforeSz + afterSz, output);
XMEMCPY(output + seqSz, before, beforeSz);
XMEMCPY(output + seqSz + beforeSz, after, afterSz);
return seqSz + beforeSz + afterSz;
}
/* ASN Encoded Name field */
typedef struct EncodedName {
int nameLen; /* actual string value length */
int totalLen; /* total encoded length */
int type; /* type of name */
int used; /* are we actually using this one */
byte encoded[CTC_NAME_SIZE * 2]; /* encoding */
} EncodedName;
/* Get Which Name from index */
static const char* GetOneName(CertName* name, int idx)
{
switch (idx) {
case 0:
return name->country;
case 1:
return name->state;
case 2:
return name->locality;
case 3:
return name->sur;
case 4:
return name->org;
case 5:
return name->unit;
case 6:
return name->commonName;
case 7:
return name->email;
default:
return 0;
}
}
/* Get Which Name Encoding from index */
static char GetNameType(CertName* name, int idx)
{
switch (idx) {
case 0:
return name->countryEnc;
case 1:
return name->stateEnc;
case 2:
return name->localityEnc;
case 3:
return name->surEnc;
case 4:
return name->orgEnc;
case 5:
return name->unitEnc;
case 6:
return name->commonNameEnc;
default:
return 0;
}
}
/* Get ASN Name from index */
static byte GetNameId(int idx)
{
switch (idx) {
case 0:
return ASN_COUNTRY_NAME;
case 1:
return ASN_STATE_NAME;
case 2:
return ASN_LOCALITY_NAME;
case 3:
return ASN_SUR_NAME;
case 4:
return ASN_ORG_NAME;
case 5:
return ASN_ORGUNIT_NAME;
case 6:
return ASN_COMMON_NAME;
case 7:
return ASN_EMAIL_NAME;
default:
return 0;
}
}
/*
Extensions ::= SEQUENCE OF Extension
Extension ::= SEQUENCE {
extnId OBJECT IDENTIFIER,
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING }
*/
/* encode all extensions, return total bytes written */
static int SetExtensions(byte* out, word32 outSz, int *IdxInOut,
const byte* ext, int extSz)
{
if (out == NULL || IdxInOut == NULL || ext == NULL)
return BAD_FUNC_ARG;
if (outSz < (word32)(*IdxInOut+extSz))
return BUFFER_E;
XMEMCPY(&out[*IdxInOut], ext, extSz); /* extensions */
*IdxInOut += extSz;
return *IdxInOut;
}
/* encode extensions header, return total bytes written */
static int SetExtensionsHeader(byte* out, word32 outSz, int extSz)
{
byte sequence[MAX_SEQ_SZ];
byte len[MAX_LENGTH_SZ];
int seqSz, lenSz, idx = 0;
if (out == NULL)
return BAD_FUNC_ARG;
if (outSz < 3)
return BUFFER_E;
seqSz = SetSequence(extSz, sequence);
/* encode extensions length provided */
lenSz = SetLength(extSz+seqSz, len);
if (outSz < (word32)(lenSz+seqSz+1))
return BUFFER_E;
out[idx++] = ASN_EXTENSIONS; /* extensions id */
XMEMCPY(&out[idx], len, lenSz); /* length */
idx += lenSz;
XMEMCPY(&out[idx], sequence, seqSz); /* sequence */
idx += seqSz;
return idx;
}
/* encode CA basic constraint true, return total bytes written */
static int SetCa(byte* out, word32 outSz)
{
static const byte ca[] = { 0x30, 0x0c, 0x06, 0x03, 0x55, 0x1d, 0x13, 0x04,
0x05, 0x30, 0x03, 0x01, 0x01, 0xff };
if (out == NULL)
return BAD_FUNC_ARG;
if (outSz < sizeof(ca))
return BUFFER_E;
XMEMCPY(out, ca, sizeof(ca));
return (int)sizeof(ca);
}
#ifdef WOLFSSL_CERT_EXT
/* encode OID and associated value, return total bytes written */
static int SetOidValue(byte* out, word32 outSz, const byte *oid, word32 oidSz,
byte *in, word32 inSz)
{
int idx = 0;
if (out == NULL || oid == NULL || in == NULL)
return BAD_FUNC_ARG;
if (outSz < 3)
return BUFFER_E;
/* sequence, + 1 => byte to put value size */
idx = SetSequence(inSz + oidSz + 1, out);
if ((idx + inSz + oidSz + 1) > outSz)
return BUFFER_E;
XMEMCPY(out+idx, oid, oidSz);
idx += oidSz;
out[idx++] = (byte)inSz;
XMEMCPY(out+idx, in, inSz);
return (idx+inSz);
}
/* encode Subject Key Identifier, return total bytes written
* RFC5280 : non-critical */
static int SetSKID(byte* output, word32 outSz, const byte *input, word32 length)
{
byte skid_len[1 + MAX_LENGTH_SZ];
byte skid_enc_len[MAX_LENGTH_SZ];
int idx = 0, skid_lenSz, skid_enc_lenSz;
static const byte skid_oid[] = { 0x06, 0x03, 0x55, 0x1d, 0x0e, 0x04 };
if (output == NULL || input == NULL)
return BAD_FUNC_ARG;
/* Octet String header */
skid_lenSz = SetOctetString(length, skid_len);
/* length of encoded value */
skid_enc_lenSz = SetLength(length + skid_lenSz, skid_enc_len);
if (outSz < 3)
return BUFFER_E;
idx = SetSequence(length + sizeof(skid_oid) + skid_lenSz + skid_enc_lenSz,
output);
if ((length + sizeof(skid_oid) + skid_lenSz + skid_enc_lenSz) > outSz)
return BUFFER_E;
/* put oid */
XMEMCPY(output+idx, skid_oid, sizeof(skid_oid));
idx += sizeof(skid_oid);
/* put encoded len */
XMEMCPY(output+idx, skid_enc_len, skid_enc_lenSz);
idx += skid_enc_lenSz;
/* put octet header */
XMEMCPY(output+idx, skid_len, skid_lenSz);
idx += skid_lenSz;
/* put value */
XMEMCPY(output+idx, input, length);
idx += length;
return idx;
}
/* encode Authority Key Identifier, return total bytes written
* RFC5280 : non-critical */
static int SetAKID(byte* output, word32 outSz,
byte *input, word32 length, void* heap)
{
byte *enc_val;
int ret, enc_valSz;
static const byte akid_oid[] = { 0x06, 0x03, 0x55, 0x1d, 0x23, 0x04 };
static const byte akid_cs[] = { 0x80 };
if (output == NULL || input == NULL)
return BAD_FUNC_ARG;
enc_valSz = length + 3 + sizeof(akid_cs);
enc_val = (byte *)XMALLOC(enc_valSz, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (enc_val == NULL)
return MEMORY_E;
/* sequence for ContentSpec & value */
ret = SetOidValue(enc_val, enc_valSz, akid_cs, sizeof(akid_cs),
input, length);
if (ret > 0) {
enc_valSz = ret;
ret = SetOidValue(output, outSz, akid_oid, sizeof(akid_oid),
enc_val, enc_valSz);
}
XFREE(enc_val, heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
/* encode Key Usage, return total bytes written
* RFC5280 : critical */
static int SetKeyUsage(byte* output, word32 outSz, word16 input)
{
byte ku[5];
int idx;
static const byte keyusage_oid[] = { 0x06, 0x03, 0x55, 0x1d, 0x0f,
0x01, 0x01, 0xff, 0x04};
if (output == NULL)
return BAD_FUNC_ARG;
idx = SetBitString16Bit(input, ku);
return SetOidValue(output, outSz, keyusage_oid, sizeof(keyusage_oid),
ku, idx);
}
static int SetOjectIdValue(byte* output, word32 outSz, int* idx,
const byte* oid, word32 oidSz)
{
/* verify room */
if (*idx + 2 + oidSz >= outSz)
return ASN_PARSE_E;
*idx += SetObjectId(oidSz, &output[*idx]);
XMEMCPY(&output[*idx], oid, oidSz);
*idx += oidSz;
return 0;
}
/* encode Extended Key Usage (RFC 5280 4.2.1.12), return total bytes written */
static int SetExtKeyUsage(Cert* cert, byte* output, word32 outSz, byte input)
{
int idx = 0, oidListSz = 0, totalSz, ret = 0;
static const byte extkeyusage_oid[] = { 0x06, 0x03, 0x55, 0x1d, 0x25 };
if (output == NULL)
return BAD_FUNC_ARG;
/* Skip to OID List */
totalSz = 2 + sizeof(extkeyusage_oid) + 4;
idx = totalSz;
/* Build OID List */
/* If any set, then just use it */
if (input & EXTKEYUSE_ANY) {
ret |= SetOjectIdValue(output, outSz, &idx,
extExtKeyUsageAnyOid, sizeof(extExtKeyUsageAnyOid));
}
else {
if (input & EXTKEYUSE_SERVER_AUTH)
ret |= SetOjectIdValue(output, outSz, &idx,
extExtKeyUsageServerAuthOid, sizeof(extExtKeyUsageServerAuthOid));
if (input & EXTKEYUSE_CLIENT_AUTH)
ret |= SetOjectIdValue(output, outSz, &idx,
extExtKeyUsageClientAuthOid, sizeof(extExtKeyUsageClientAuthOid));
if (input & EXTKEYUSE_CODESIGN)
ret |= SetOjectIdValue(output, outSz, &idx,
extExtKeyUsageCodeSigningOid, sizeof(extExtKeyUsageCodeSigningOid));
if (input & EXTKEYUSE_EMAILPROT)
ret |= SetOjectIdValue(output, outSz, &idx,
extExtKeyUsageEmailProtectOid, sizeof(extExtKeyUsageEmailProtectOid));
if (input & EXTKEYUSE_TIMESTAMP)
ret |= SetOjectIdValue(output, outSz, &idx,
extExtKeyUsageTimestampOid, sizeof(extExtKeyUsageTimestampOid));
if (input & EXTKEYUSE_OCSP_SIGN)
ret |= SetOjectIdValue(output, outSz, &idx,
extExtKeyUsageOcspSignOid, sizeof(extExtKeyUsageOcspSignOid));
#ifdef WOLFSSL_EKU_OID
/* iterate through OID values */
if (input & EXTKEYUSE_USER) {
int i, sz;
for (i = 0; i < CTC_MAX_EKU_NB; i++) {
sz = cert->extKeyUsageOIDSz[i];
if (sz > 0) {
ret |= SetOjectIdValue(output, outSz, &idx,
cert->extKeyUsageOID[i], sz);
}
}
}
#endif /* WOLFSSL_EKU_OID */
}
if (ret != 0)
return ASN_PARSE_E;
/* Calculate Sizes */
oidListSz = idx - totalSz;
totalSz = idx - 2; /* exclude first seq/len (2) */
/* 1. Seq + Total Len (2) */
idx = SetSequence(totalSz, output);
/* 2. Object ID (2) */
XMEMCPY(&output[idx], extkeyusage_oid, sizeof(extkeyusage_oid));
idx += sizeof(extkeyusage_oid);
/* 3. Octect String (2) */
idx += SetOctetString(totalSz - idx, &output[idx]);
/* 4. Seq + OidListLen (2) */
idx += SetSequence(oidListSz, &output[idx]);
/* 5. Oid List (already set in-place above) */
idx += oidListSz;
(void)cert;
return idx;
}
/* Encode OID string representation to ITU-T X.690 format */
static int EncodePolicyOID(byte *out, word32 *outSz, const char *in, void* heap)
{
word32 val, idx = 0, nb_val;
char *token, *str, *ptr;
word32 len;
if (out == NULL || outSz == NULL || *outSz < 2 || in == NULL)
return BAD_FUNC_ARG;
len = (word32)XSTRLEN(in);
str = (char *)XMALLOC(len+1, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (str == NULL)
return MEMORY_E;
XSTRNCPY(str, in, len);
str[len] = '\0';
nb_val = 0;
/* parse value, and set corresponding Policy OID value */
token = XSTRTOK(str, ".", &ptr);
while (token != NULL)
{
val = (word32)atoi(token);
if (nb_val == 0) {
if (val > 2) {
XFREE(str, heap, DYNAMIC_TYPE_TMP_BUFFER);
return ASN_OBJECT_ID_E;
}
out[idx] = (byte)(40 * val);
}
else if (nb_val == 1) {
if (val > 127) {
XFREE(str, heap, DYNAMIC_TYPE_TMP_BUFFER);
return ASN_OBJECT_ID_E;
}
if (idx > *outSz) {
XFREE(str, heap, DYNAMIC_TYPE_TMP_BUFFER);
return BUFFER_E;
}
out[idx++] += (byte)val;
}
else {
word32 tb = 0, x;
int i = 0;
byte oid[MAX_OID_SZ];
while (val >= 128) {
x = val % 128;
val /= 128;
oid[i++] = (byte) (((tb++) ? 0x80 : 0) | x);
}
if ((idx+(word32)i) > *outSz) {
XFREE(str, heap, DYNAMIC_TYPE_TMP_BUFFER);
return BUFFER_E;
}
oid[i] = (byte) (((tb++) ? 0x80 : 0) | val);
/* push value in the right order */
while (i >= 0)
out[idx++] = oid[i--];
}
token = XSTRTOK(NULL, ".", &ptr);
nb_val++;
}
*outSz = idx;
XFREE(str, heap, DYNAMIC_TYPE_TMP_BUFFER);
return 0;
}
/* encode Certificate Policies, return total bytes written
* each input value must be ITU-T X.690 formatted : a.b.c...
* input must be an array of values with a NULL terminated for the latest
* RFC5280 : non-critical */
static int SetCertificatePolicies(byte *output,
word32 outputSz,
char input[MAX_CERTPOL_NB][MAX_CERTPOL_SZ],
word16 nb_certpol,
void* heap)
{
byte oid[MAX_OID_SZ],
der_oid[MAX_CERTPOL_NB][MAX_OID_SZ],
out[MAX_CERTPOL_SZ];
word32 oidSz;
word32 outSz, i = 0, der_oidSz[MAX_CERTPOL_NB];
int ret;
static const byte certpol_oid[] = { 0x06, 0x03, 0x55, 0x1d, 0x20, 0x04 };
static const byte oid_oid[] = { 0x06 };
if (output == NULL || input == NULL || nb_certpol > MAX_CERTPOL_NB)
return BAD_FUNC_ARG;
for (i = 0; i < nb_certpol; i++) {
oidSz = sizeof(oid);
XMEMSET(oid, 0, oidSz);
ret = EncodePolicyOID(oid, &oidSz, input[i], heap);
if (ret != 0)
return ret;
/* compute sequence value for the oid */
ret = SetOidValue(der_oid[i], MAX_OID_SZ, oid_oid,
sizeof(oid_oid), oid, oidSz);
if (ret <= 0)
return ret;
else
der_oidSz[i] = (word32)ret;
}
/* concatenate oid, keep two byte for sequence/size of the created value */
for (i = 0, outSz = 2; i < nb_certpol; i++) {
XMEMCPY(out+outSz, der_oid[i], der_oidSz[i]);
outSz += der_oidSz[i];
}
/* add sequence */
ret = SetSequence(outSz-2, out);
if (ret <= 0)
return ret;
/* add Policy OID to compute final value */
return SetOidValue(output, outputSz, certpol_oid, sizeof(certpol_oid),
out, outSz);
}
#endif /* WOLFSSL_CERT_EXT */
#ifdef WOLFSSL_ALT_NAMES
/* encode Alternative Names, return total bytes written */
static int SetAltNames(byte *out, word32 outSz, byte *input, word32 length)
{
if (out == NULL || input == NULL)
return BAD_FUNC_ARG;
if (outSz < length)
return BUFFER_E;
/* Alternative Names come from certificate or computed by
* external function, so already encoded. Just copy value */
XMEMCPY(out, input, length);
return length;
}
#endif /* WOLFSL_ALT_NAMES */
/* Encodes one attribute of the name (issuer/subject)
*
* name structure to hold result of encoding
* nameStr value to be encoded
* nameType type of encoding i.e CTC_UTF8
* type id of attribute i.e ASN_COMMON_NAME
*
* returns length on success
*/
static int wc_EncodeName(EncodedName* name, const char* nameStr, char nameType,
byte type)
{
word32 idx = 0;
if (nameStr) {
/* bottom up */
byte firstLen[1 + MAX_LENGTH_SZ];
byte secondLen[MAX_LENGTH_SZ];
byte sequence[MAX_SEQ_SZ];
byte set[MAX_SET_SZ];
int strLen = (int)XSTRLEN(nameStr);
int thisLen = strLen;
int firstSz, secondSz, seqSz, setSz;
if (strLen == 0) { /* no user data for this item */
name->used = 0;
return 0;
}
/* Restrict country code size */
if (ASN_COUNTRY_NAME == type && strLen != CTC_COUNTRY_SIZE) {
return ASN_COUNTRY_SIZE_E;
}
secondSz = SetLength(strLen, secondLen);
thisLen += secondSz;
switch (type) {
case ASN_EMAIL_NAME: /* email */
thisLen += EMAIL_JOINT_LEN;
firstSz = EMAIL_JOINT_LEN;
break;
case ASN_DOMAIN_COMPONENT:
thisLen += PILOT_JOINT_LEN;
firstSz = PILOT_JOINT_LEN;
break;
default:
thisLen++; /* str type */
thisLen += JOINT_LEN;
firstSz = JOINT_LEN + 1;
}
thisLen++; /* id type */
firstSz = SetObjectId(firstSz, firstLen);
thisLen += firstSz;
seqSz = SetSequence(thisLen, sequence);
thisLen += seqSz;
setSz = SetSet(thisLen, set);
thisLen += setSz;
if (thisLen > (int)sizeof(name->encoded)) {
return BUFFER_E;
}
/* store it */
idx = 0;
/* set */
XMEMCPY(name->encoded, set, setSz);
idx += setSz;
/* seq */
XMEMCPY(name->encoded + idx, sequence, seqSz);
idx += seqSz;
/* asn object id */
XMEMCPY(name->encoded + idx, firstLen, firstSz);
idx += firstSz;
switch (type) {
case ASN_EMAIL_NAME:
{
const byte EMAIL_OID[] = { 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
0x01, 0x09, 0x01, 0x16 };
/* email joint id */
XMEMCPY(name->encoded + idx, EMAIL_OID, sizeof(EMAIL_OID));
idx += (int)sizeof(EMAIL_OID);
}
break;
case ASN_DOMAIN_COMPONENT:
{
const byte PILOT_OID[] = { 0x09, 0x92, 0x26, 0x89,
0x93, 0xF2, 0x2C, 0x64, 0x01
};
XMEMCPY(name->encoded + idx, PILOT_OID,
sizeof(PILOT_OID));
idx += (int)sizeof(PILOT_OID);
/* id type */
name->encoded[idx++] = type;
/* str type */
name->encoded[idx++] = nameType;
}
break;
default:
name->encoded[idx++] = 0x55;
name->encoded[idx++] = 0x04;
/* id type */
name->encoded[idx++] = type;
/* str type */
name->encoded[idx++] = nameType;
}
/* second length */
XMEMCPY(name->encoded + idx, secondLen, secondSz);
idx += secondSz;
/* str value */
XMEMCPY(name->encoded + idx, nameStr, strLen);
idx += strLen;
name->type = type;
name->totalLen = idx;
name->used = 1;
}
else
name->used = 0;
return idx;
}
/* encode CertName into output, return total bytes written */
int SetName(byte* output, word32 outputSz, CertName* name)
{
int totalBytes = 0, i, idx;
#ifdef WOLFSSL_SMALL_STACK
EncodedName* names = NULL;
#else
EncodedName names[NAME_ENTRIES];
#endif
#ifdef WOLFSSL_MULTI_ATTRIB
EncodedName addNames[CTC_MAX_ATTRIB];
int j, type;
#endif
if (output == NULL || name == NULL)
return BAD_FUNC_ARG;
if (outputSz < 3)
return BUFFER_E;
#ifdef WOLFSSL_SMALL_STACK
names = (EncodedName*)XMALLOC(sizeof(EncodedName) * NAME_ENTRIES, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (names == NULL)
return MEMORY_E;
#endif
for (i = 0; i < NAME_ENTRIES; i++) {
int ret;
const char* nameStr = GetOneName(name, i);
ret = wc_EncodeName(&names[i], nameStr, GetNameType(name, i),
GetNameId(i));
if (ret < 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(names, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return BUFFER_E;
}
totalBytes += ret;
}
#ifdef WOLFSSL_MULTI_ATTRIB
for (i = 0; i < CTC_MAX_ATTRIB; i++) {
if (name->name[i].sz > 0) {
int ret;
ret = wc_EncodeName(&addNames[i], name->name[i].value,
name->name[i].type, name->name[i].id);
if (ret < 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(names, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return BUFFER_E;
}
totalBytes += ret;
}
else {
addNames[i].used = 0;
}
}
#endif /* WOLFSSL_MULTI_ATTRIB */
/* header */
idx = SetSequence(totalBytes, output);
totalBytes += idx;
if (totalBytes > ASN_NAME_MAX) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(names, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return BUFFER_E;
}
for (i = 0; i < NAME_ENTRIES; i++) {
#ifdef WOLFSSL_MULTI_ATTRIB
type = GetNameId(i);
/* list all DC values before OUs */
if (type == ASN_ORGUNIT_NAME) {
type = ASN_DOMAIN_COMPONENT;
for (j = 0; j < CTC_MAX_ATTRIB; j++) {
if (name->name[j].sz > 0 && type == name->name[j].id) {
if (outputSz < (word32)(idx+addNames[j].totalLen)) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(names, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return BUFFER_E;
}
XMEMCPY(output + idx, addNames[j].encoded,
addNames[j].totalLen);
idx += addNames[j].totalLen;
}
}
type = ASN_ORGUNIT_NAME;
}
/* write all similar types to the buffer */
for (j = 0; j < CTC_MAX_ATTRIB; j++) {
if (name->name[j].sz > 0 && type == name->name[j].id) {
if (outputSz < (word32)(idx+addNames[j].totalLen)) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(names, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return BUFFER_E;
}
XMEMCPY(output + idx, addNames[j].encoded,
addNames[j].totalLen);
idx += addNames[j].totalLen;
}
}
#endif /* WOLFSSL_MULTI_ATTRIB */
if (names[i].used) {
if (outputSz < (word32)(idx+names[i].totalLen)) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(names, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return BUFFER_E;
}
XMEMCPY(output + idx, names[i].encoded, names[i].totalLen);
idx += names[i].totalLen;
}
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(names, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return totalBytes;
}
/* encode info from cert into DER encoded format */
static int EncodeCert(Cert* cert, DerCert* der, RsaKey* rsaKey, ecc_key* eccKey,
WC_RNG* rng, const byte* ntruKey, word16 ntruSz,
ed25519_key* ed25519Key)
{
int ret;
if (cert == NULL || der == NULL || rng == NULL)
return BAD_FUNC_ARG;
/* make sure at least one key type is provided */
if (rsaKey == NULL && eccKey == NULL && ed25519Key == NULL && ntruKey == NULL)
return PUBLIC_KEY_E;
/* init */
XMEMSET(der, 0, sizeof(DerCert));
/* version */
der->versionSz = SetMyVersion(cert->version, der->version, TRUE);
/* serial number (must be positive) */
if (cert->serialSz == 0) {
/* generate random serial */
cert->serialSz = CTC_SERIAL_SIZE;
ret = wc_RNG_GenerateBlock(rng, cert->serial, cert->serialSz);
if (ret != 0)
return ret;
}
der->serialSz = SetSerialNumber(cert->serial, cert->serialSz, der->serial,
CTC_SERIAL_SIZE);
if (der->serialSz < 0)
return der->serialSz;
/* signature algo */
der->sigAlgoSz = SetAlgoID(cert->sigType, der->sigAlgo, oidSigType, 0);
if (der->sigAlgoSz <= 0)
return ALGO_ID_E;
/* public key */
#ifndef NO_RSA
if (cert->keyType == RSA_KEY) {
if (rsaKey == NULL)
return PUBLIC_KEY_E;
der->publicKeySz = SetRsaPublicKey(der->publicKey, rsaKey,
sizeof(der->publicKey), 1);
}
#endif
#ifdef HAVE_ECC
if (cert->keyType == ECC_KEY) {
if (eccKey == NULL)
return PUBLIC_KEY_E;
der->publicKeySz = SetEccPublicKey(der->publicKey, eccKey, 1);
}
#endif
#ifdef HAVE_ED25519
if (cert->keyType == ED25519_KEY) {
if (ed25519Key == NULL)
return PUBLIC_KEY_E;
der->publicKeySz = SetEd25519PublicKey(der->publicKey, ed25519Key, 1);
}
#endif
#ifdef HAVE_NTRU
if (cert->keyType == NTRU_KEY) {
word32 rc;
word16 encodedSz;
if (ntruKey == NULL)
return PUBLIC_KEY_E;
rc = ntru_crypto_ntru_encrypt_publicKey2SubjectPublicKeyInfo(ntruSz,
ntruKey, &encodedSz, NULL);
if (rc != NTRU_OK)
return PUBLIC_KEY_E;
if (encodedSz > MAX_PUBLIC_KEY_SZ)
return PUBLIC_KEY_E;
rc = ntru_crypto_ntru_encrypt_publicKey2SubjectPublicKeyInfo(ntruSz,
ntruKey, &encodedSz, der->publicKey);
if (rc != NTRU_OK)
return PUBLIC_KEY_E;
der->publicKeySz = encodedSz;
}
#else
(void)ntruSz;
#endif /* HAVE_NTRU */
if (der->publicKeySz <= 0)
return PUBLIC_KEY_E;
der->validitySz = 0;
#ifdef WOLFSSL_ALT_NAMES
/* date validity copy ? */
if (cert->beforeDateSz && cert->afterDateSz) {
der->validitySz = CopyValidity(der->validity, cert);
if (der->validitySz <= 0)
return DATE_E;
}
#endif
/* date validity */
if (der->validitySz == 0) {
der->validitySz = SetValidity(der->validity, cert->daysValid);
if (der->validitySz <= 0)
return DATE_E;
}
/* subject name */
der->subjectSz = SetName(der->subject, sizeof(der->subject), &cert->subject);
if (der->subjectSz <= 0)
return SUBJECT_E;
/* issuer name */
der->issuerSz = SetName(der->issuer, sizeof(der->issuer), cert->selfSigned ?
&cert->subject : &cert->issuer);
if (der->issuerSz <= 0)
return ISSUER_E;
/* set the extensions */
der->extensionsSz = 0;
/* CA */
if (cert->isCA) {
der->caSz = SetCa(der->ca, sizeof(der->ca));
if (der->caSz <= 0)
return CA_TRUE_E;
der->extensionsSz += der->caSz;
}
else
der->caSz = 0;
#ifdef WOLFSSL_ALT_NAMES
/* Alternative Name */
if (cert->altNamesSz) {
der->altNamesSz = SetAltNames(der->altNames, sizeof(der->altNames),
cert->altNames, cert->altNamesSz);
if (der->altNamesSz <= 0)
return ALT_NAME_E;
der->extensionsSz += der->altNamesSz;
}
else
der->altNamesSz = 0;
#endif
#ifdef WOLFSSL_CERT_EXT
/* SKID */
if (cert->skidSz) {
/* check the provided SKID size */
if (cert->skidSz > (int)sizeof(der->skid))
return SKID_E;
/* Note: different skid buffers sizes for der (MAX_KID_SZ) and
cert (CTC_MAX_SKID_SIZE). */
der->skidSz = SetSKID(der->skid, sizeof(der->skid),
cert->skid, cert->skidSz);
if (der->skidSz <= 0)
return SKID_E;
der->extensionsSz += der->skidSz;
}
else
der->skidSz = 0;
/* AKID */
if (cert->akidSz) {
/* check the provided AKID size */
if (cert->akidSz > (int)sizeof(der->akid))
return AKID_E;
der->akidSz = SetAKID(der->akid, sizeof(der->akid),
cert->akid, cert->akidSz, cert->heap);
if (der->akidSz <= 0)
return AKID_E;
der->extensionsSz += der->akidSz;
}
else
der->akidSz = 0;
/* Key Usage */
if (cert->keyUsage != 0){
der->keyUsageSz = SetKeyUsage(der->keyUsage, sizeof(der->keyUsage),
cert->keyUsage);
if (der->keyUsageSz <= 0)
return KEYUSAGE_E;
der->extensionsSz += der->keyUsageSz;
}
else
der->keyUsageSz = 0;
/* Extended Key Usage */
if (cert->extKeyUsage != 0){
der->extKeyUsageSz = SetExtKeyUsage(cert, der->extKeyUsage,
sizeof(der->extKeyUsage), cert->extKeyUsage);
if (der->extKeyUsageSz <= 0)
return EXTKEYUSAGE_E;
der->extensionsSz += der->extKeyUsageSz;
}
else
der->extKeyUsageSz = 0;
/* Certificate Policies */
if (cert->certPoliciesNb != 0) {
der->certPoliciesSz = SetCertificatePolicies(der->certPolicies,
sizeof(der->certPolicies),
cert->certPolicies,
cert->certPoliciesNb,
cert->heap);
if (der->certPoliciesSz <= 0)
return CERTPOLICIES_E;
der->extensionsSz += der->certPoliciesSz;
}
else
der->certPoliciesSz = 0;
#endif /* WOLFSSL_CERT_EXT */
/* put extensions */
if (der->extensionsSz > 0) {
/* put the start of extensions sequence (ID, Size) */
der->extensionsSz = SetExtensionsHeader(der->extensions,
sizeof(der->extensions),
der->extensionsSz);
if (der->extensionsSz <= 0)
return EXTENSIONS_E;
/* put CA */
if (der->caSz) {
ret = SetExtensions(der->extensions, sizeof(der->extensions),
&der->extensionsSz,
der->ca, der->caSz);
if (ret == 0)
return EXTENSIONS_E;
}
#ifdef WOLFSSL_ALT_NAMES
/* put Alternative Names */
if (der->altNamesSz) {
ret = SetExtensions(der->extensions, sizeof(der->extensions),
&der->extensionsSz,
der->altNames, der->altNamesSz);
if (ret <= 0)
return EXTENSIONS_E;
}
#endif
#ifdef WOLFSSL_CERT_EXT
/* put SKID */
if (der->skidSz) {
ret = SetExtensions(der->extensions, sizeof(der->extensions),
&der->extensionsSz,
der->skid, der->skidSz);
if (ret <= 0)
return EXTENSIONS_E;
}
/* put AKID */
if (der->akidSz) {
ret = SetExtensions(der->extensions, sizeof(der->extensions),
&der->extensionsSz,
der->akid, der->akidSz);
if (ret <= 0)
return EXTENSIONS_E;
}
/* put KeyUsage */
if (der->keyUsageSz) {
ret = SetExtensions(der->extensions, sizeof(der->extensions),
&der->extensionsSz,
der->keyUsage, der->keyUsageSz);
if (ret <= 0)
return EXTENSIONS_E;
}
/* put ExtendedKeyUsage */
if (der->extKeyUsageSz) {
ret = SetExtensions(der->extensions, sizeof(der->extensions),
&der->extensionsSz,
der->extKeyUsage, der->extKeyUsageSz);
if (ret <= 0)
return EXTENSIONS_E;
}
/* put Certificate Policies */
if (der->certPoliciesSz) {
ret = SetExtensions(der->extensions, sizeof(der->extensions),
&der->extensionsSz,
der->certPolicies, der->certPoliciesSz);
if (ret <= 0)
return EXTENSIONS_E;
}
#endif /* WOLFSSL_CERT_EXT */
}
der->total = der->versionSz + der->serialSz + der->sigAlgoSz +
der->publicKeySz + der->validitySz + der->subjectSz + der->issuerSz +
der->extensionsSz;
return 0;
}
/* write DER encoded cert to buffer, size already checked */
static int WriteCertBody(DerCert* der, byte* buffer)
{
int idx;
/* signed part header */
idx = SetSequence(der->total, buffer);
/* version */
XMEMCPY(buffer + idx, der->version, der->versionSz);
idx += der->versionSz;
/* serial */
XMEMCPY(buffer + idx, der->serial, der->serialSz);
idx += der->serialSz;
/* sig algo */
XMEMCPY(buffer + idx, der->sigAlgo, der->sigAlgoSz);
idx += der->sigAlgoSz;
/* issuer */
XMEMCPY(buffer + idx, der->issuer, der->issuerSz);
idx += der->issuerSz;
/* validity */
XMEMCPY(buffer + idx, der->validity, der->validitySz);
idx += der->validitySz;
/* subject */
XMEMCPY(buffer + idx, der->subject, der->subjectSz);
idx += der->subjectSz;
/* public key */
XMEMCPY(buffer + idx, der->publicKey, der->publicKeySz);
idx += der->publicKeySz;
if (der->extensionsSz) {
/* extensions */
XMEMCPY(buffer + idx, der->extensions, min(der->extensionsSz,
(int)sizeof(der->extensions)));
idx += der->extensionsSz;
}
return idx;
}
/* Make RSA signature from buffer (sz), write to sig (sigSz) */
static int MakeSignature(CertSignCtx* certSignCtx, const byte* buffer, int sz,
byte* sig, int sigSz, RsaKey* rsaKey, ecc_key* eccKey,
ed25519_key* ed25519Key, WC_RNG* rng, int sigAlgoType, void* heap)
{
int digestSz = 0, typeH = 0, ret = 0;
(void)digestSz;
(void)typeH;
(void)buffer;
(void)sz;
(void)sig;
(void)sigSz;
(void)rsaKey;
(void)eccKey;
(void)ed25519Key;
(void)rng;
switch (certSignCtx->state) {
case CERTSIGN_STATE_BEGIN:
case CERTSIGN_STATE_DIGEST:
certSignCtx->state = CERTSIGN_STATE_DIGEST;
certSignCtx->digest = (byte*)XMALLOC(WC_MAX_DIGEST_SIZE, heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (certSignCtx->digest == NULL) {
ret = MEMORY_E; goto exit_ms;
}
ret = HashForSignature(buffer, sz, sigAlgoType, certSignCtx->digest,
&typeH, &digestSz, 0);
/* set next state, since WC_PENDING rentry for these are not "call again" */
certSignCtx->state = CERTSIGN_STATE_ENCODE;
if (ret != 0) {
goto exit_ms;
}
FALL_THROUGH;
case CERTSIGN_STATE_ENCODE:
#ifndef NO_RSA
if (rsaKey) {
certSignCtx->encSig = (byte*)XMALLOC(MAX_DER_DIGEST_SZ, heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (certSignCtx->encSig == NULL) {
ret = MEMORY_E; goto exit_ms;
}
/* signature */
certSignCtx->encSigSz = wc_EncodeSignature(certSignCtx->encSig,
certSignCtx->digest, digestSz, typeH);
}
#endif /* !NO_RSA */
FALL_THROUGH;
case CERTSIGN_STATE_DO:
certSignCtx->state = CERTSIGN_STATE_DO;
ret = ALGO_ID_E; /* default to error */
#ifndef NO_RSA
if (rsaKey) {
/* signature */
ret = wc_RsaSSL_Sign(certSignCtx->encSig, certSignCtx->encSigSz,
sig, sigSz, rsaKey, rng);
}
#endif /* !NO_RSA */
#ifdef HAVE_ECC
if (!rsaKey && eccKey) {
word32 outSz = sigSz;
ret = wc_ecc_sign_hash(certSignCtx->digest, digestSz,
sig, &outSz, rng, eccKey);
if (ret == 0)
ret = outSz;
}
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
if (!rsaKey && !eccKey && ed25519Key) {
word32 outSz = sigSz;
ret = wc_ed25519_sign_msg(buffer, sz, sig, &outSz, ed25519Key);
if (ret == 0)
ret = outSz;
}
#endif /* HAVE_ECC */
break;
}
exit_ms:
if (ret == WC_PENDING_E) {
return ret;
}
#ifndef NO_RSA
if (rsaKey) {
XFREE(certSignCtx->encSig, heap, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif /* !NO_RSA */
XFREE(certSignCtx->digest, heap, DYNAMIC_TYPE_TMP_BUFFER);
certSignCtx->digest = NULL;
/* reset state */
certSignCtx->state = CERTSIGN_STATE_BEGIN;
return ret;
}
/* add signature to end of buffer, size of buffer assumed checked, return
new length */
static int AddSignature(byte* buffer, int bodySz, const byte* sig, int sigSz,
int sigAlgoType)
{
byte seq[MAX_SEQ_SZ];
int idx = bodySz, seqSz;
/* algo */
idx += SetAlgoID(sigAlgoType, buffer + idx, oidSigType, 0);
/* bit string */
idx += SetBitString(sigSz, 0, buffer + idx);
/* signature */
XMEMCPY(buffer + idx, sig, sigSz);
idx += sigSz;
/* make room for overall header */
seqSz = SetSequence(idx, seq);
XMEMMOVE(buffer + seqSz, buffer, idx);
XMEMCPY(buffer, seq, seqSz);
return idx + seqSz;
}
/* Make an x509 Certificate v3 any key type from cert input, write to buffer */
static int MakeAnyCert(Cert* cert, byte* derBuffer, word32 derSz,
RsaKey* rsaKey, ecc_key* eccKey, WC_RNG* rng,
const byte* ntruKey, word16 ntruSz,
ed25519_key* ed25519Key)
{
int ret;
#ifdef WOLFSSL_SMALL_STACK
DerCert* der;
#else
DerCert der[1];
#endif
cert->keyType = eccKey ? ECC_KEY : (rsaKey ? RSA_KEY :
(ed25519Key ? ED25519_KEY : NTRU_KEY));
#ifdef WOLFSSL_SMALL_STACK
der = (DerCert*)XMALLOC(sizeof(DerCert), cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (der == NULL)
return MEMORY_E;
#endif
ret = EncodeCert(cert, der, rsaKey, eccKey, rng, ntruKey, ntruSz,
ed25519Key);
if (ret == 0) {
if (der->total + MAX_SEQ_SZ * 2 > (int)derSz)
ret = BUFFER_E;
else
ret = cert->bodySz = WriteCertBody(der, derBuffer);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(der, cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
/* Make an x509 Certificate v3 RSA or ECC from cert input, write to buffer */
int wc_MakeCert_ex(Cert* cert, byte* derBuffer, word32 derSz, int keyType,
void* key, WC_RNG* rng)
{
RsaKey* rsaKey = NULL;
ecc_key* eccKey = NULL;
ed25519_key* ed25519Key = NULL;
if (keyType == RSA_TYPE)
rsaKey = (RsaKey*)key;
else if (keyType == ECC_TYPE)
eccKey = (ecc_key*)key;
else if (keyType == ED25519_TYPE)
ed25519Key = (ed25519_key*)key;
return MakeAnyCert(cert, derBuffer, derSz, rsaKey, eccKey, rng, NULL, 0,
ed25519Key);
}
/* Make an x509 Certificate v3 RSA or ECC from cert input, write to buffer */
int wc_MakeCert(Cert* cert, byte* derBuffer, word32 derSz, RsaKey* rsaKey,
ecc_key* eccKey, WC_RNG* rng)
{
return MakeAnyCert(cert, derBuffer, derSz, rsaKey, eccKey, rng, NULL, 0,
NULL);
}
#ifdef HAVE_NTRU
int wc_MakeNtruCert(Cert* cert, byte* derBuffer, word32 derSz,
const byte* ntruKey, word16 keySz, WC_RNG* rng)
{
return MakeAnyCert(cert, derBuffer, derSz, NULL, NULL, rng, ntruKey, keySz, NULL);
}
#endif /* HAVE_NTRU */
#ifdef WOLFSSL_CERT_REQ
static int SetReqAttrib(byte* output, char* pw, int extSz)
{
static const byte cpOid[] =
{ ASN_OBJECT_ID, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01,
0x09, 0x07 };
static const byte erOid[] =
{ ASN_OBJECT_ID, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01,
0x09, 0x0e };
int sz = 0; /* overall size */
int cpSz = 0; /* Challenge Password section size */
int cpSeqSz = 0;
int cpSetSz = 0;
int cpStrSz = 0;
int pwSz = 0;
int erSz = 0; /* Extension Request section size */
int erSeqSz = 0;
int erSetSz = 0;
byte cpSeq[MAX_SEQ_SZ];
byte cpSet[MAX_SET_SZ];
byte cpStr[MAX_PRSTR_SZ];
byte erSeq[MAX_SEQ_SZ];
byte erSet[MAX_SET_SZ];
output[0] = 0xa0;
sz++;
if (pw && pw[0]) {
pwSz = (int)XSTRLEN(pw);
cpStrSz = SetUTF8String(pwSz, cpStr);
cpSetSz = SetSet(cpStrSz + pwSz, cpSet);
cpSeqSz = SetSequence(sizeof(cpOid) + cpSetSz + cpStrSz + pwSz, cpSeq);
cpSz = cpSeqSz + sizeof(cpOid) + cpSetSz + cpStrSz + pwSz;
}
if (extSz) {
erSetSz = SetSet(extSz, erSet);
erSeqSz = SetSequence(erSetSz + sizeof(erOid) + extSz, erSeq);
erSz = extSz + erSetSz + erSeqSz + sizeof(erOid);
}
/* Put the pieces together. */
sz += SetLength(cpSz + erSz, &output[sz]);
if (cpSz) {
XMEMCPY(&output[sz], cpSeq, cpSeqSz);
sz += cpSeqSz;
XMEMCPY(&output[sz], cpOid, sizeof(cpOid));
sz += sizeof(cpOid);
XMEMCPY(&output[sz], cpSet, cpSetSz);
sz += cpSetSz;
XMEMCPY(&output[sz], cpStr, cpStrSz);
sz += cpStrSz;
XMEMCPY(&output[sz], pw, pwSz);
sz += pwSz;
}
if (erSz) {
XMEMCPY(&output[sz], erSeq, erSeqSz);
sz += erSeqSz;
XMEMCPY(&output[sz], erOid, sizeof(erOid));
sz += sizeof(erOid);
XMEMCPY(&output[sz], erSet, erSetSz);
sz += erSetSz;
/* The actual extension data will be tacked onto the output later. */
}
return sz;
}
/* encode info from cert into DER encoded format */
static int EncodeCertReq(Cert* cert, DerCert* der, RsaKey* rsaKey,
ecc_key* eccKey, ed25519_key* ed25519Key)
{
(void)eccKey;
(void)ed25519Key;
if (cert == NULL || der == NULL)
return BAD_FUNC_ARG;
if (rsaKey == NULL && eccKey == NULL && ed25519Key == NULL)
return PUBLIC_KEY_E;
/* init */
XMEMSET(der, 0, sizeof(DerCert));
/* version */
der->versionSz = SetMyVersion(cert->version, der->version, FALSE);
/* subject name */
der->subjectSz = SetName(der->subject, sizeof(der->subject), &cert->subject);
if (der->subjectSz <= 0)
return SUBJECT_E;
/* public key */
#ifndef NO_RSA
if (cert->keyType == RSA_KEY) {
if (rsaKey == NULL)
return PUBLIC_KEY_E;
der->publicKeySz = SetRsaPublicKey(der->publicKey, rsaKey,
sizeof(der->publicKey), 1);
}
#endif
#ifdef HAVE_ECC
if (cert->keyType == ECC_KEY) {
der->publicKeySz = SetEccPublicKey(der->publicKey, eccKey, 1);
}
#endif
#ifdef HAVE_ED25519
if (cert->keyType == ED25519_KEY) {
if (ed25519Key == NULL)
return PUBLIC_KEY_E;
der->publicKeySz = SetEd25519PublicKey(der->publicKey, ed25519Key, 1);
}
#endif
if (der->publicKeySz <= 0)
return PUBLIC_KEY_E;
/* set the extensions */
der->extensionsSz = 0;
/* CA */
if (cert->isCA) {
der->caSz = SetCa(der->ca, sizeof(der->ca));
if (der->caSz <= 0)
return CA_TRUE_E;
der->extensionsSz += der->caSz;
}
else
der->caSz = 0;
#ifdef WOLFSSL_CERT_EXT
/* SKID */
if (cert->skidSz) {
/* check the provided SKID size */
if (cert->skidSz > (int)sizeof(der->skid))
return SKID_E;
der->skidSz = SetSKID(der->skid, sizeof(der->skid),
cert->skid, cert->skidSz);
if (der->skidSz <= 0)
return SKID_E;
der->extensionsSz += der->skidSz;
}
else
der->skidSz = 0;
/* Key Usage */
if (cert->keyUsage != 0){
der->keyUsageSz = SetKeyUsage(der->keyUsage, sizeof(der->keyUsage),
cert->keyUsage);
if (der->keyUsageSz <= 0)
return KEYUSAGE_E;
der->extensionsSz += der->keyUsageSz;
}
else
der->keyUsageSz = 0;
/* Extended Key Usage */
if (cert->extKeyUsage != 0){
der->extKeyUsageSz = SetExtKeyUsage(cert, der->extKeyUsage,
sizeof(der->extKeyUsage), cert->extKeyUsage);
if (der->extKeyUsageSz <= 0)
return EXTKEYUSAGE_E;
der->extensionsSz += der->extKeyUsageSz;
}
else
der->extKeyUsageSz = 0;
#endif /* WOLFSSL_CERT_EXT */
/* put extensions */
if (der->extensionsSz > 0) {
int ret;
/* put the start of sequence (ID, Size) */
der->extensionsSz = SetSequence(der->extensionsSz, der->extensions);
if (der->extensionsSz <= 0)
return EXTENSIONS_E;
/* put CA */
if (der->caSz) {
ret = SetExtensions(der->extensions, sizeof(der->extensions),
&der->extensionsSz,
der->ca, der->caSz);
if (ret <= 0)
return EXTENSIONS_E;
}
#ifdef WOLFSSL_CERT_EXT
/* put SKID */
if (der->skidSz) {
ret = SetExtensions(der->extensions, sizeof(der->extensions),
&der->extensionsSz,
der->skid, der->skidSz);
if (ret <= 0)
return EXTENSIONS_E;
}
/* put AKID */
if (der->akidSz) {
ret = SetExtensions(der->extensions, sizeof(der->extensions),
&der->extensionsSz,
der->akid, der->akidSz);
if (ret <= 0)
return EXTENSIONS_E;
}
/* put KeyUsage */
if (der->keyUsageSz) {
ret = SetExtensions(der->extensions, sizeof(der->extensions),
&der->extensionsSz,
der->keyUsage, der->keyUsageSz);
if (ret <= 0)
return EXTENSIONS_E;
}
/* put ExtendedKeyUsage */
if (der->extKeyUsageSz) {
ret = SetExtensions(der->extensions, sizeof(der->extensions),
&der->extensionsSz,
der->extKeyUsage, der->extKeyUsageSz);
if (ret <= 0)
return EXTENSIONS_E;
}
#endif /* WOLFSSL_CERT_EXT */
}
der->attribSz = SetReqAttrib(der->attrib,
cert->challengePw, der->extensionsSz);
if (der->attribSz <= 0)
return REQ_ATTRIBUTE_E;
der->total = der->versionSz + der->subjectSz + der->publicKeySz +
der->extensionsSz + der->attribSz;
return 0;
}
/* write DER encoded cert req to buffer, size already checked */
static int WriteCertReqBody(DerCert* der, byte* buffer)
{
int idx;
/* signed part header */
idx = SetSequence(der->total, buffer);
/* version */
XMEMCPY(buffer + idx, der->version, der->versionSz);
idx += der->versionSz;
/* subject */
XMEMCPY(buffer + idx, der->subject, der->subjectSz);
idx += der->subjectSz;
/* public key */
XMEMCPY(buffer + idx, der->publicKey, der->publicKeySz);
idx += der->publicKeySz;
/* attributes */
XMEMCPY(buffer + idx, der->attrib, der->attribSz);
idx += der->attribSz;
/* extensions */
if (der->extensionsSz) {
XMEMCPY(buffer + idx, der->extensions, min(der->extensionsSz,
(int)sizeof(der->extensions)));
idx += der->extensionsSz;
}
return idx;
}
static int MakeCertReq(Cert* cert, byte* derBuffer, word32 derSz,
RsaKey* rsaKey, ecc_key* eccKey, ed25519_key* ed25519Key)
{
int ret;
#ifdef WOLFSSL_SMALL_STACK
DerCert* der;
#else
DerCert der[1];
#endif
cert->keyType = eccKey ? ECC_KEY : (ed25519Key ? ED25519_KEY : RSA_KEY);
#ifdef WOLFSSL_SMALL_STACK
der = (DerCert*)XMALLOC(sizeof(DerCert), cert->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (der == NULL)
return MEMORY_E;
#endif
ret = EncodeCertReq(cert, der, rsaKey, eccKey, ed25519Key);
if (ret == 0) {
if (der->total + MAX_SEQ_SZ * 2 > (int)derSz)
ret = BUFFER_E;
else
ret = cert->bodySz = WriteCertReqBody(der, derBuffer);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(der, cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
int wc_MakeCertReq_ex(Cert* cert, byte* derBuffer, word32 derSz, int keyType,
void* key)
{
RsaKey* rsaKey = NULL;
ecc_key* eccKey = NULL;
ed25519_key* ed25519Key = NULL;
if (keyType == RSA_TYPE)
rsaKey = (RsaKey*)key;
else if (keyType == ECC_TYPE)
eccKey = (ecc_key*)key;
else if (keyType == ED25519_TYPE)
ed25519Key = (ed25519_key*)key;
return MakeCertReq(cert, derBuffer, derSz, rsaKey, eccKey, ed25519Key);
}
int wc_MakeCertReq(Cert* cert, byte* derBuffer, word32 derSz,
RsaKey* rsaKey, ecc_key* eccKey)
{
return MakeCertReq(cert, derBuffer, derSz, rsaKey, eccKey, NULL);
}
#endif /* WOLFSSL_CERT_REQ */
static int SignCert(int requestSz, int sType, byte* buffer, word32 buffSz,
RsaKey* rsaKey, ecc_key* eccKey, ed25519_key* ed25519Key,
WC_RNG* rng)
{
int sigSz = 0;
void* heap = NULL;
CertSignCtx* certSignCtx = NULL;
#ifndef WOLFSSL_ASYNC_CRYPT
CertSignCtx certSignCtx_lcl;
certSignCtx = &certSignCtx_lcl;
XMEMSET(certSignCtx, 0, sizeof(CertSignCtx));
#endif
if (requestSz < 0)
return requestSz;
/* locate ctx */
if (rsaKey) {
#ifndef NO_RSA
#ifdef WOLFSSL_ASYNC_CRYPT
certSignCtx = &rsaKey->certSignCtx;
#endif
heap = rsaKey->heap;
#else
return NOT_COMPILED_IN;
#endif /* NO_RSA */
}
else if (eccKey) {
#ifdef HAVE_ECC
#ifdef WOLFSSL_ASYNC_CRYPT
certSignCtx = &eccKey->certSignCtx;
#endif
heap = eccKey->heap;
#else
return NOT_COMPILED_IN;
#endif /* HAVE_ECC */
}
#ifdef WOLFSSL_ASYNC_CRYPT
if (certSignCtx == NULL) {
return BAD_FUNC_ARG;
}
#endif
if (certSignCtx->sig == NULL) {
certSignCtx->sig = (byte*)XMALLOC(MAX_ENCODED_SIG_SZ, heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (certSignCtx->sig == NULL)
return MEMORY_E;
}
sigSz = MakeSignature(certSignCtx, buffer, requestSz, certSignCtx->sig,
MAX_ENCODED_SIG_SZ, rsaKey, eccKey, ed25519Key, rng, sType, heap);
if (sigSz == WC_PENDING_E) {
/* Not free'ing certSignCtx->sig here because it could still be in use
* with async operations. */
return sigSz;
}
if (sigSz >= 0) {
if (requestSz + MAX_SEQ_SZ * 2 + sigSz > (int)buffSz)
sigSz = BUFFER_E;
else
sigSz = AddSignature(buffer, requestSz, certSignCtx->sig, sigSz,
sType);
}
XFREE(certSignCtx->sig, heap, DYNAMIC_TYPE_TMP_BUFFER);
certSignCtx->sig = NULL;
return sigSz;
}
int wc_SignCert_ex(int requestSz, int sType, byte* buffer, word32 buffSz,
int keyType, void* key, WC_RNG* rng)
{
RsaKey* rsaKey = NULL;
ecc_key* eccKey = NULL;
ed25519_key* ed25519Key = NULL;
if (keyType == RSA_TYPE)
rsaKey = (RsaKey*)key;
else if (keyType == ECC_TYPE)
eccKey = (ecc_key*)key;
else if (keyType == ED25519_TYPE)
ed25519Key = (ed25519_key*)key;
return SignCert(requestSz, sType, buffer, buffSz, rsaKey, eccKey,
ed25519Key, rng);
}
int wc_SignCert(int requestSz, int sType, byte* buffer, word32 buffSz,
RsaKey* rsaKey, ecc_key* eccKey, WC_RNG* rng)
{
return SignCert(requestSz, sType, buffer, buffSz, rsaKey, eccKey, NULL,
rng);
}
int wc_MakeSelfCert(Cert* cert, byte* buffer, word32 buffSz,
RsaKey* key, WC_RNG* rng)
{
int ret;
ret = wc_MakeCert(cert, buffer, buffSz, key, NULL, rng);
if (ret < 0)
return ret;
return wc_SignCert(cert->bodySz, cert->sigType,
buffer, buffSz, key, NULL, rng);
}
#ifdef WOLFSSL_CERT_EXT
/* Set KID from public key */
static int SetKeyIdFromPublicKey(Cert *cert, RsaKey *rsakey, ecc_key *eckey,
byte *ntruKey, word16 ntruKeySz,
ed25519_key* ed25519Key, int kid_type)
{
byte *buffer;
int bufferSz, ret;
if (cert == NULL ||
(rsakey == NULL && eckey == NULL && ntruKey == NULL &&
ed25519Key == NULL) ||
(kid_type != SKID_TYPE && kid_type != AKID_TYPE))
return BAD_FUNC_ARG;
buffer = (byte *)XMALLOC(MAX_PUBLIC_KEY_SZ, cert->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (buffer == NULL)
return MEMORY_E;
/* Public Key */
bufferSz = -1;
#ifndef NO_RSA
/* RSA public key */
if (rsakey != NULL)
bufferSz = SetRsaPublicKey(buffer, rsakey, MAX_PUBLIC_KEY_SZ, 0);
#endif
#ifdef HAVE_ECC
/* ECC public key */
if (eckey != NULL)
bufferSz = SetEccPublicKey(buffer, eckey, 0);
#endif
#ifdef HAVE_NTRU
/* NTRU public key */
if (ntruKey != NULL) {
bufferSz = MAX_PUBLIC_KEY_SZ;
ret = ntru_crypto_ntru_encrypt_publicKey2SubjectPublicKeyInfo(
ntruKeySz, ntruKey, (word16 *)(&bufferSz), buffer);
if (ret != NTRU_OK)
bufferSz = -1;
}
#else
(void)ntruKeySz;
#endif
#ifdef HAVE_ED25519
/* ED25519 public key */
if (ed25519Key != NULL)
bufferSz = SetEd25519PublicKey(buffer, ed25519Key, 0);
#endif
if (bufferSz <= 0) {
XFREE(buffer, cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
return PUBLIC_KEY_E;
}
/* Compute SKID by hashing public key */
#ifdef NO_SHA
if (kid_type == SKID_TYPE) {
ret = wc_Sha256Hash(buffer, bufferSz, cert->skid);
cert->skidSz = WC_SHA256_DIGEST_SIZE;
}
else if (kid_type == AKID_TYPE) {
ret = wc_Sha256Hash(buffer, bufferSz, cert->akid);
cert->akidSz = WC_SHA256_DIGEST_SIZE;
}
else
ret = BAD_FUNC_ARG;
#else /* NO_SHA */
if (kid_type == SKID_TYPE) {
ret = wc_ShaHash(buffer, bufferSz, cert->skid);
cert->skidSz = WC_SHA_DIGEST_SIZE;
}
else if (kid_type == AKID_TYPE) {
ret = wc_ShaHash(buffer, bufferSz, cert->akid);
cert->akidSz = WC_SHA_DIGEST_SIZE;
}
else
ret = BAD_FUNC_ARG;
#endif /* NO_SHA */
XFREE(buffer, cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
int wc_SetSubjectKeyIdFromPublicKey_ex(Cert *cert, int keyType, void* key)
{
RsaKey* rsaKey = NULL;
ecc_key* eccKey = NULL;
ed25519_key* ed25519Key = NULL;
if (keyType == RSA_TYPE)
rsaKey = (RsaKey*)key;
else if (keyType == ECC_TYPE)
eccKey = (ecc_key*)key;
else if (keyType == ED25519_TYPE)
ed25519Key = (ed25519_key*)key;
return SetKeyIdFromPublicKey(cert, rsaKey, eccKey, NULL, 0, ed25519Key,
SKID_TYPE);
}
/* Set SKID from RSA or ECC public key */
int wc_SetSubjectKeyIdFromPublicKey(Cert *cert, RsaKey *rsakey, ecc_key *eckey)
{
return SetKeyIdFromPublicKey(cert, rsakey, eckey, NULL, 0, NULL, SKID_TYPE);
}
#ifdef HAVE_NTRU
/* Set SKID from NTRU public key */
int wc_SetSubjectKeyIdFromNtruPublicKey(Cert *cert,
byte *ntruKey, word16 ntruKeySz)
{
return SetKeyIdFromPublicKey(cert, NULL,NULL,ntruKey, ntruKeySz, NULL,
SKID_TYPE);
}
#endif
int wc_SetAuthKeyIdFromPublicKey_ex(Cert *cert, int keyType, void* key)
{
RsaKey* rsaKey = NULL;
ecc_key* eccKey = NULL;
ed25519_key* ed25519Key = NULL;
if (keyType == RSA_TYPE)
rsaKey = (RsaKey*)key;
else if (keyType == ECC_TYPE)
eccKey = (ecc_key*)key;
else if (keyType == ED25519_TYPE)
ed25519Key = (ed25519_key*)key;
return SetKeyIdFromPublicKey(cert, rsaKey, eccKey, NULL, 0, ed25519Key,
AKID_TYPE);
}
/* Set SKID from RSA or ECC public key */
int wc_SetAuthKeyIdFromPublicKey(Cert *cert, RsaKey *rsakey, ecc_key *eckey)
{
return SetKeyIdFromPublicKey(cert, rsakey, eckey, NULL, 0, NULL, AKID_TYPE);
}
#ifndef NO_FILESYSTEM
/* Set SKID from public key file in PEM */
int wc_SetSubjectKeyId(Cert *cert, const char* file)
{
int ret, derSz;
byte* der;
word32 idx;
RsaKey *rsakey = NULL;
ecc_key *eckey = NULL;
if (cert == NULL || file == NULL)
return BAD_FUNC_ARG;
der = (byte*)XMALLOC(MAX_PUBLIC_KEY_SZ, cert->heap, DYNAMIC_TYPE_CERT);
if (der == NULL) {
WOLFSSL_MSG("wc_SetSubjectKeyId memory Problem");
return MEMORY_E;
}
derSz = wc_PemPubKeyToDer(file, der, MAX_PUBLIC_KEY_SZ);
if (derSz <= 0)
{
XFREE(der, cert->heap, DYNAMIC_TYPE_CERT);
return derSz;
}
/* Load PubKey in internal structure */
#ifndef NO_RSA
rsakey = (RsaKey*) XMALLOC(sizeof(RsaKey), cert->heap, DYNAMIC_TYPE_RSA);
if (rsakey == NULL) {
XFREE(der, cert->heap, DYNAMIC_TYPE_CERT);
return MEMORY_E;
}
if (wc_InitRsaKey(rsakey, cert->heap) != 0) {
WOLFSSL_MSG("wc_InitRsaKey failure");
XFREE(rsakey, cert->heap, DYNAMIC_TYPE_RSA);
XFREE(der, cert->heap, DYNAMIC_TYPE_CERT);
return MEMORY_E;
}
idx = 0;
ret = wc_RsaPublicKeyDecode(der, &idx, rsakey, derSz);
if (ret != 0)
#endif
{
#ifndef NO_RSA
WOLFSSL_MSG("wc_RsaPublicKeyDecode failed");
wc_FreeRsaKey(rsakey);
XFREE(rsakey, cert->heap, DYNAMIC_TYPE_RSA);
rsakey = NULL;
#endif
#ifdef HAVE_ECC
/* Check to load ecc public key */
eckey = (ecc_key*) XMALLOC(sizeof(ecc_key), cert->heap,
DYNAMIC_TYPE_ECC);
if (eckey == NULL) {
XFREE(der, cert->heap, DYNAMIC_TYPE_CERT);
return MEMORY_E;
}
if (wc_ecc_init(eckey) != 0) {
WOLFSSL_MSG("wc_ecc_init failure");
wc_ecc_free(eckey);
XFREE(eckey, cert->heap, DYNAMIC_TYPE_ECC);
XFREE(der, cert->heap, DYNAMIC_TYPE_CERT);
return MEMORY_E;
}
idx = 0;
ret = wc_EccPublicKeyDecode(der, &idx, eckey, derSz);
if (ret != 0) {
WOLFSSL_MSG("wc_EccPublicKeyDecode failed");
XFREE(der, cert->heap, DYNAMIC_TYPE_CERT);
wc_ecc_free(eckey);
XFREE(eckey, cert->heap, DYNAMIC_TYPE_ECC);
return PUBLIC_KEY_E;
}
#else
XFREE(der, cert->heap, DYNAMIC_TYPE_CERT);
return PUBLIC_KEY_E;
#endif /* HAVE_ECC */
}
XFREE(der, cert->heap, DYNAMIC_TYPE_CERT);
ret = wc_SetSubjectKeyIdFromPublicKey(cert, rsakey, eckey);
#ifndef NO_RSA
wc_FreeRsaKey(rsakey);
XFREE(rsakey, cert->heap, DYNAMIC_TYPE_RSA);
#endif
#ifdef HAVE_ECC
wc_ecc_free(eckey);
XFREE(eckey, cert->heap, DYNAMIC_TYPE_ECC);
#endif
return ret;
}
#endif /* NO_FILESYSTEM */
/* Set AKID from certificate contains in buffer (DER encoded) */
int wc_SetAuthKeyIdFromCert(Cert *cert, const byte *der, int derSz)
{
int ret;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* decoded;
#else
DecodedCert decoded[1];
#endif
if (cert == NULL || der == NULL || derSz <= 0)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_SMALL_STACK
decoded = (DecodedCert*)XMALLOC(sizeof(DecodedCert),
cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (decoded == NULL)
return MEMORY_E;
#endif
/* decode certificate and get SKID that will be AKID of current cert */
InitDecodedCert(decoded, (byte*)der, derSz, NULL);
ret = ParseCert(decoded, CERT_TYPE, NO_VERIFY, 0);
if (ret != 0) {
FreeDecodedCert(decoded);
#ifdef WOLFSSL_SMALL_STACK
XFREE(decoded, cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
/* Subject Key Id not found !! */
if (decoded->extSubjKeyIdSet == 0) {
FreeDecodedCert(decoded);
#ifdef WOLFSSL_SMALL_STACK
XFREE(decoded, cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ASN_NO_SKID;
}
/* SKID invalid size */
if (sizeof(cert->akid) < sizeof(decoded->extSubjKeyId)) {
FreeDecodedCert(decoded);
#ifdef WOLFSSL_SMALL_STACK
XFREE(decoded, cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return MEMORY_E;
}
/* Put the SKID of CA to AKID of certificate */
XMEMCPY(cert->akid, decoded->extSubjKeyId, KEYID_SIZE);
cert->akidSz = KEYID_SIZE;
FreeDecodedCert(decoded);
#ifdef WOLFSSL_SMALL_STACK
XFREE(decoded, cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return 0;
}
#ifndef NO_FILESYSTEM
/* Set AKID from certificate file in PEM */
int wc_SetAuthKeyId(Cert *cert, const char* file)
{
int ret;
int derSz;
byte* der;
if (cert == NULL || file == NULL)
return BAD_FUNC_ARG;
der = (byte*)XMALLOC(EIGHTK_BUF, cert->heap, DYNAMIC_TYPE_CERT);
if (der == NULL) {
WOLFSSL_MSG("wc_SetAuthKeyId OOF Problem");
return MEMORY_E;
}
derSz = wc_PemCertToDer(file, der, EIGHTK_BUF);
if (derSz <= 0)
{
XFREE(der, cert->heap, DYNAMIC_TYPE_CERT);
return derSz;
}
ret = wc_SetAuthKeyIdFromCert(cert, der, derSz);
XFREE(der, cert->heap, DYNAMIC_TYPE_CERT);
return ret;
}
#endif /* NO_FILESYSTEM */
/* Set KeyUsage from human readable string */
int wc_SetKeyUsage(Cert *cert, const char *value)
{
int ret = 0;
char *token, *str, *ptr;
word32 len;
if (cert == NULL || value == NULL)
return BAD_FUNC_ARG;
cert->keyUsage = 0;
len = (word32)XSTRLEN(value);
str = (char*)XMALLOC(len+1, cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (str == NULL)
return MEMORY_E;
XSTRNCPY(str, value, len);
str[len] = '\0';
/* parse value, and set corresponding Key Usage value */
if ((token = XSTRTOK(str, ",", &ptr)) == NULL) {
XFREE(str, cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
return KEYUSAGE_E;
}
while (token != NULL)
{
len = (word32)XSTRLEN(token);
if (!XSTRNCASECMP(token, "digitalSignature", len))
cert->keyUsage |= KEYUSE_DIGITAL_SIG;
else if (!XSTRNCASECMP(token, "nonRepudiation", len) ||
!XSTRNCASECMP(token, "contentCommitment", len))
cert->keyUsage |= KEYUSE_CONTENT_COMMIT;
else if (!XSTRNCASECMP(token, "keyEncipherment", len))
cert->keyUsage |= KEYUSE_KEY_ENCIPHER;
else if (!XSTRNCASECMP(token, "dataEncipherment", len))
cert->keyUsage |= KEYUSE_DATA_ENCIPHER;
else if (!XSTRNCASECMP(token, "keyAgreement", len))
cert->keyUsage |= KEYUSE_KEY_AGREE;
else if (!XSTRNCASECMP(token, "keyCertSign", len))
cert->keyUsage |= KEYUSE_KEY_CERT_SIGN;
else if (!XSTRNCASECMP(token, "cRLSign", len))
cert->keyUsage |= KEYUSE_CRL_SIGN;
else if (!XSTRNCASECMP(token, "encipherOnly", len))
cert->keyUsage |= KEYUSE_ENCIPHER_ONLY;
else if (!XSTRNCASECMP(token, "decipherOnly", len))
cert->keyUsage |= KEYUSE_DECIPHER_ONLY;
else {
ret = KEYUSAGE_E;
break;
}
token = XSTRTOK(NULL, ",", &ptr);
}
XFREE(str, cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
/* Set ExtendedKeyUsage from human readable string */
int wc_SetExtKeyUsage(Cert *cert, const char *value)
{
int ret = 0;
char *token, *str, *ptr;
word32 len;
if (cert == NULL || value == NULL)
return BAD_FUNC_ARG;
cert->extKeyUsage = 0;
len = (word32)XSTRLEN(value);
str = (char*)XMALLOC(len+1, cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (str == NULL)
return MEMORY_E;
XSTRNCPY(str, value, len);
str[len] = '\0';
/* parse value, and set corresponding Key Usage value */
if ((token = XSTRTOK(str, ",", &ptr)) == NULL) {
XFREE(str, cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
return EXTKEYUSAGE_E;
}
while (token != NULL)
{
len = (word32)XSTRLEN(token);
if (!XSTRNCASECMP(token, "any", len))
cert->extKeyUsage |= EXTKEYUSE_ANY;
else if (!XSTRNCASECMP(token, "serverAuth", len))
cert->extKeyUsage |= EXTKEYUSE_SERVER_AUTH;
else if (!XSTRNCASECMP(token, "clientAuth", len))
cert->extKeyUsage |= EXTKEYUSE_CLIENT_AUTH;
else if (!XSTRNCASECMP(token, "codeSigning", len))
cert->extKeyUsage |= EXTKEYUSE_CODESIGN;
else if (!XSTRNCASECMP(token, "emailProtection", len))
cert->extKeyUsage |= EXTKEYUSE_EMAILPROT;
else if (!XSTRNCASECMP(token, "timeStamping", len))
cert->extKeyUsage |= EXTKEYUSE_TIMESTAMP;
else if (!XSTRNCASECMP(token, "OCSPSigning", len))
cert->extKeyUsage |= EXTKEYUSE_OCSP_SIGN;
else {
ret = EXTKEYUSAGE_E;
break;
}
token = XSTRTOK(NULL, ",", &ptr);
}
XFREE(str, cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
#ifdef WOLFSSL_EKU_OID
/*
* cert structure to set EKU oid in
* oid the oid in byte representation
* sz size of oid buffer
* idx index of array to place oid
*
* returns 0 on success
*/
int wc_SetExtKeyUsageOID(Cert *cert, const char *in, word32 sz, byte idx,
void* heap)
{
byte oid[MAX_OID_SZ];
word32 oidSz = MAX_OID_SZ;
if (idx >= CTC_MAX_EKU_NB || sz >= CTC_MAX_EKU_OID_SZ) {
WOLFSSL_MSG("Either idx or sz was too large");
return BAD_FUNC_ARG;
}
if (EncodePolicyOID(oid, &oidSz, in, heap) != 0) {
return BUFFER_E;
}
XMEMCPY(cert->extKeyUsageOID[idx], oid, oidSz);
cert->extKeyUsageOIDSz[idx] = oidSz;
cert->extKeyUsage |= EXTKEYUSE_USER;
return 0;
}
#endif /* WOLFSSL_EKU_OID */
#endif /* WOLFSSL_CERT_EXT */
#ifdef WOLFSSL_ALT_NAMES
/* Set Alt Names from der cert, return 0 on success */
static int SetAltNamesFromCert(Cert* cert, const byte* der, int derSz)
{
int ret;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* decoded;
#else
DecodedCert decoded[1];
#endif
if (derSz < 0)
return derSz;
#ifdef WOLFSSL_SMALL_STACK
decoded = (DecodedCert*)XMALLOC(sizeof(DecodedCert), cert->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (decoded == NULL)
return MEMORY_E;
#endif
InitDecodedCert(decoded, (byte*)der, derSz, NULL);
ret = ParseCertRelative(decoded, CA_TYPE, NO_VERIFY, 0);
if (ret < 0) {
WOLFSSL_MSG("ParseCertRelative error");
}
else if (decoded->extensions) {
byte b;
int length;
word32 maxExtensionsIdx;
decoded->srcIdx = decoded->extensionsIdx;
b = decoded->source[decoded->srcIdx++];
if (b != ASN_EXTENSIONS) {
ret = ASN_PARSE_E;
}
else if (GetLength(decoded->source, &decoded->srcIdx, &length,
decoded->maxIdx) < 0) {
ret = ASN_PARSE_E;
}
else if (GetSequence(decoded->source, &decoded->srcIdx, &length,
decoded->maxIdx) < 0) {
ret = ASN_PARSE_E;
}
else {
maxExtensionsIdx = decoded->srcIdx + length;
while (decoded->srcIdx < maxExtensionsIdx) {
word32 oid;
word32 startIdx = decoded->srcIdx;
word32 tmpIdx;
if (GetSequence(decoded->source, &decoded->srcIdx, &length,
decoded->maxIdx) < 0) {
ret = ASN_PARSE_E;
break;
}
tmpIdx = decoded->srcIdx;
decoded->srcIdx = startIdx;
if (GetAlgoId(decoded->source, &decoded->srcIdx, &oid,
oidCertExtType, decoded->maxIdx) < 0) {
ret = ASN_PARSE_E;
break;
}
if (oid == ALT_NAMES_OID) {
cert->altNamesSz = length + (tmpIdx - startIdx);
if (cert->altNamesSz < (int)sizeof(cert->altNames))
XMEMCPY(cert->altNames, &decoded->source[startIdx],
cert->altNamesSz);
else {
cert->altNamesSz = 0;
WOLFSSL_MSG("AltNames extensions too big");
ret = ALT_NAME_E;
break;
}
}
decoded->srcIdx = tmpIdx + length;
}
}
}
FreeDecodedCert(decoded);
#ifdef WOLFSSL_SMALL_STACK
XFREE(decoded, cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret < 0 ? ret : 0;
}
/* Set Dates from der cert, return 0 on success */
static int SetDatesFromCert(Cert* cert, const byte* der, int derSz)
{
int ret;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* decoded;
#else
DecodedCert decoded[1];
#endif
WOLFSSL_ENTER("SetDatesFromCert");
if (derSz < 0)
return derSz;
#ifdef WOLFSSL_SMALL_STACK
decoded = (DecodedCert*)XMALLOC(sizeof(DecodedCert), cert->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (decoded == NULL)
return MEMORY_E;
#endif
InitDecodedCert(decoded, (byte*)der, derSz, NULL);
ret = ParseCertRelative(decoded, CA_TYPE, NO_VERIFY, 0);
if (ret < 0) {
WOLFSSL_MSG("ParseCertRelative error");
}
else if (decoded->beforeDate == NULL || decoded->afterDate == NULL) {
WOLFSSL_MSG("Couldn't extract dates");
ret = -1;
}
else if (decoded->beforeDateLen > MAX_DATE_SIZE ||
decoded->afterDateLen > MAX_DATE_SIZE) {
WOLFSSL_MSG("Bad date size");
ret = -1;
}
else {
XMEMCPY(cert->beforeDate, decoded->beforeDate, decoded->beforeDateLen);
XMEMCPY(cert->afterDate, decoded->afterDate, decoded->afterDateLen);
cert->beforeDateSz = decoded->beforeDateLen;
cert->afterDateSz = decoded->afterDateLen;
}
FreeDecodedCert(decoded);
#ifdef WOLFSSL_SMALL_STACK
XFREE(decoded, cert->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret < 0 ? ret : 0;
}
#endif /* WOLFSSL_ALT_NAMES */
/* Set cn name from der buffer, return 0 on success */
static int SetNameFromCert(CertName* cn, const byte* der, int derSz)
{
int ret, sz;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* decoded;
#else
DecodedCert decoded[1];
#endif
if (derSz < 0)
return derSz;
#ifdef WOLFSSL_SMALL_STACK
decoded = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (decoded == NULL)
return MEMORY_E;
#endif
InitDecodedCert(decoded, (byte*)der, derSz, NULL);
ret = ParseCertRelative(decoded, CA_TYPE, NO_VERIFY, 0);
if (ret < 0) {
WOLFSSL_MSG("ParseCertRelative error");
}
else {
if (decoded->subjectCN) {
sz = (decoded->subjectCNLen < CTC_NAME_SIZE) ? decoded->subjectCNLen
: CTC_NAME_SIZE - 1;
XSTRNCPY(cn->commonName, decoded->subjectCN, CTC_NAME_SIZE);
cn->commonName[sz] = '\0';
cn->commonNameEnc = decoded->subjectCNEnc;
}
if (decoded->subjectC) {
sz = (decoded->subjectCLen < CTC_NAME_SIZE) ? decoded->subjectCLen
: CTC_NAME_SIZE - 1;
XSTRNCPY(cn->country, decoded->subjectC, CTC_NAME_SIZE);
cn->country[sz] = '\0';
cn->countryEnc = decoded->subjectCEnc;
}
if (decoded->subjectST) {
sz = (decoded->subjectSTLen < CTC_NAME_SIZE) ? decoded->subjectSTLen
: CTC_NAME_SIZE - 1;
XSTRNCPY(cn->state, decoded->subjectST, CTC_NAME_SIZE);
cn->state[sz] = '\0';
cn->stateEnc = decoded->subjectSTEnc;
}
if (decoded->subjectL) {
sz = (decoded->subjectLLen < CTC_NAME_SIZE) ? decoded->subjectLLen
: CTC_NAME_SIZE - 1;
XSTRNCPY(cn->locality, decoded->subjectL, CTC_NAME_SIZE);
cn->locality[sz] = '\0';
cn->localityEnc = decoded->subjectLEnc;
}
if (decoded->subjectO) {
sz = (decoded->subjectOLen < CTC_NAME_SIZE) ? decoded->subjectOLen
: CTC_NAME_SIZE - 1;
XSTRNCPY(cn->org, decoded->subjectO, CTC_NAME_SIZE);
cn->org[sz] = '\0';
cn->orgEnc = decoded->subjectOEnc;
}
if (decoded->subjectOU) {
sz = (decoded->subjectOULen < CTC_NAME_SIZE) ? decoded->subjectOULen
: CTC_NAME_SIZE - 1;
XSTRNCPY(cn->unit, decoded->subjectOU, CTC_NAME_SIZE);
cn->unit[sz] = '\0';
cn->unitEnc = decoded->subjectOUEnc;
}
if (decoded->subjectSN) {
sz = (decoded->subjectSNLen < CTC_NAME_SIZE) ? decoded->subjectSNLen
: CTC_NAME_SIZE - 1;
XSTRNCPY(cn->sur, decoded->subjectSN, CTC_NAME_SIZE);
cn->sur[sz] = '\0';
cn->surEnc = decoded->subjectSNEnc;
}
if (decoded->subjectEmail) {
sz = (decoded->subjectEmailLen < CTC_NAME_SIZE)
? decoded->subjectEmailLen : CTC_NAME_SIZE - 1;
XSTRNCPY(cn->email, decoded->subjectEmail, CTC_NAME_SIZE);
cn->email[sz] = '\0';
}
}
FreeDecodedCert(decoded);
#ifdef WOLFSSL_SMALL_STACK
XFREE(decoded, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret < 0 ? ret : 0;
}
#ifndef NO_FILESYSTEM
/* Set cert issuer from issuerFile in PEM */
int wc_SetIssuer(Cert* cert, const char* issuerFile)
{
int ret;
int derSz;
byte* der = (byte*)XMALLOC(EIGHTK_BUF, cert->heap, DYNAMIC_TYPE_CERT);
if (der == NULL) {
WOLFSSL_MSG("wc_SetIssuer OOF Problem");
return MEMORY_E;
}
derSz = wc_PemCertToDer(issuerFile, der, EIGHTK_BUF);
cert->selfSigned = 0;
ret = SetNameFromCert(&cert->issuer, der, derSz);
XFREE(der, cert->heap, DYNAMIC_TYPE_CERT);
return ret;
}
/* Set cert subject from subjectFile in PEM */
int wc_SetSubject(Cert* cert, const char* subjectFile)
{
int ret;
int derSz;
byte* der = (byte*)XMALLOC(EIGHTK_BUF, cert->heap, DYNAMIC_TYPE_CERT);
if (der == NULL) {
WOLFSSL_MSG("wc_SetSubject OOF Problem");
return MEMORY_E;
}
derSz = wc_PemCertToDer(subjectFile, der, EIGHTK_BUF);
ret = SetNameFromCert(&cert->subject, der, derSz);
XFREE(der, cert->heap, DYNAMIC_TYPE_CERT);
return ret;
}
#ifdef WOLFSSL_ALT_NAMES
/* Set alt names from file in PEM */
int wc_SetAltNames(Cert* cert, const char* file)
{
int ret;
int derSz;
byte* der = (byte*)XMALLOC(EIGHTK_BUF, cert->heap, DYNAMIC_TYPE_CERT);
if (der == NULL) {
WOLFSSL_MSG("wc_SetAltNames OOF Problem");
return MEMORY_E;
}
derSz = wc_PemCertToDer(file, der, EIGHTK_BUF);
ret = SetAltNamesFromCert(cert, der, derSz);
XFREE(der, cert->heap, DYNAMIC_TYPE_CERT);
return ret;
}
#endif /* WOLFSSL_ALT_NAMES */
#endif /* NO_FILESYSTEM */
/* Set cert issuer from DER buffer */
int wc_SetIssuerBuffer(Cert* cert, const byte* der, int derSz)
{
cert->selfSigned = 0;
return SetNameFromCert(&cert->issuer, der, derSz);
}
/* Set cert subject from DER buffer */
int wc_SetSubjectBuffer(Cert* cert, const byte* der, int derSz)
{
return SetNameFromCert(&cert->subject, der, derSz);
}
#ifdef WOLFSSL_ALT_NAMES
/* Set cert alt names from DER buffer */
int wc_SetAltNamesBuffer(Cert* cert, const byte* der, int derSz)
{
return SetAltNamesFromCert(cert, der, derSz);
}
/* Set cert dates from DER buffer */
int wc_SetDatesBuffer(Cert* cert, const byte* der, int derSz)
{
return SetDatesFromCert(cert, der, derSz);
}
#endif /* WOLFSSL_ALT_NAMES */
#endif /* WOLFSSL_CERT_GEN */
#ifdef HAVE_ECC
/* Der Encode r & s ints into out, outLen is (in/out) size */
int StoreECC_DSA_Sig(byte* out, word32* outLen, mp_int* r, mp_int* s)
{
word32 idx = 0;
int rSz; /* encoding size */
int sSz;
word32 headerSz = 4; /* 2*ASN_TAG + 2*LEN(ENUM) */
/* If the leading bit on the INTEGER is a 1, add a leading zero */
int rLeadingZero = mp_leading_bit(r);
int sLeadingZero = mp_leading_bit(s);
int rLen = mp_unsigned_bin_size(r); /* big int size */
int sLen = mp_unsigned_bin_size(s);
if (*outLen < (rLen + rLeadingZero + sLen + sLeadingZero +
headerSz + 2)) /* SEQ_TAG + LEN(ENUM) */
return BUFFER_E;
idx = SetSequence(rLen + rLeadingZero + sLen+sLeadingZero + headerSz, out);
/* store r */
rSz = SetASNIntMP(r, -1, &out[idx]);
if (rSz < 0)
return rSz;
idx += rSz;
/* store s */
sSz = SetASNIntMP(s, -1, &out[idx]);
if (sSz < 0)
return sSz;
idx += sSz;
*outLen = idx;
return 0;
}
/* Der Decode ECC-DSA Signature, r & s stored as big ints */
int DecodeECC_DSA_Sig(const byte* sig, word32 sigLen, mp_int* r, mp_int* s)
{
word32 idx = 0;
int len = 0;
if (GetSequence(sig, &idx, &len, sigLen) < 0) {
return ASN_ECC_KEY_E;
}
if ((word32)len > (sigLen - idx)) {
return ASN_ECC_KEY_E;
}
if (GetInt(r, sig, &idx, sigLen) < 0) {
return ASN_ECC_KEY_E;
}
if (GetInt(s, sig, &idx, sigLen) < 0) {
return ASN_ECC_KEY_E;
}
return 0;
}
int wc_EccPrivateKeyDecode(const byte* input, word32* inOutIdx, ecc_key* key,
word32 inSz)
{
word32 oidSum;
int version, length;
int privSz, pubSz = 0;
byte b;
int ret = 0;
int curve_id = ECC_CURVE_DEF;
#ifdef WOLFSSL_SMALL_STACK
byte* priv;
byte* pub;
#else
byte priv[ECC_MAXSIZE+1];
byte pub[2*(ECC_MAXSIZE+1)]; /* public key has two parts plus header */
#endif
byte* pubData = NULL;
if (input == NULL || inOutIdx == NULL || key == NULL || inSz == 0)
return BAD_FUNC_ARG;
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
if (GetMyVersion(input, inOutIdx, &version, inSz) < 0)
return ASN_PARSE_E;
if (*inOutIdx >= inSz)
return ASN_PARSE_E;
b = input[*inOutIdx];
*inOutIdx += 1;
/* priv type */
if (b != 4 && b != 6 && b != 7)
return ASN_PARSE_E;
if (GetLength(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
if (length > ECC_MAXSIZE)
return BUFFER_E;
#ifdef WOLFSSL_SMALL_STACK
priv = (byte*)XMALLOC(ECC_MAXSIZE+1, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (priv == NULL)
return MEMORY_E;
pub = (byte*)XMALLOC(2*(ECC_MAXSIZE+1), key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (pub == NULL) {
XFREE(priv, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
return MEMORY_E;
}
#endif
/* priv key */
privSz = length;
XMEMCPY(priv, &input[*inOutIdx], privSz);
*inOutIdx += length;
if (ret == 0 && (*inOutIdx + 1) < inSz) {
/* prefix 0, may have */
b = input[*inOutIdx];
if (b == ECC_PREFIX_0) {
*inOutIdx += 1;
if (GetLength(input, inOutIdx, &length, inSz) <= 0)
ret = ASN_PARSE_E;
else {
ret = GetObjectId(input, inOutIdx, &oidSum, oidIgnoreType,
inSz);
if (ret == 0) {
if ((ret = CheckCurve(oidSum)) < 0)
ret = ECC_CURVE_OID_E;
else {
curve_id = ret;
ret = 0;
}
}
}
}
}
if (ret == 0 && (*inOutIdx + 1) < inSz) {
/* prefix 1 */
b = input[*inOutIdx];
*inOutIdx += 1;
if (b != ECC_PREFIX_1) {
ret = ASN_ECC_KEY_E;
}
else if (GetLength(input, inOutIdx, &length, inSz) <= 0) {
ret = ASN_PARSE_E;
}
else {
/* key header */
ret = CheckBitString(input, inOutIdx, &length, inSz, 0, NULL);
if (ret == 0) {
/* pub key */
pubSz = length;
if (pubSz < 2*(ECC_MAXSIZE+1)) {
XMEMCPY(pub, &input[*inOutIdx], pubSz);
*inOutIdx += length;
pubData = pub;
}
else
ret = BUFFER_E;
}
}
}
if (ret == 0) {
ret = wc_ecc_import_private_key_ex(priv, privSz, pubData, pubSz, key,
curve_id);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(priv, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(pub, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
#ifdef WOLFSSL_CUSTOM_CURVES
static void ByteToHex(byte n, char* str)
{
static const char hexChar[] = { '0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };
str[0] = hexChar[n >> 4];
str[1] = hexChar[n & 0xf];
}
/* returns 0 on success */
static int ASNToHexString(const byte* input, word32* inOutIdx, char** out,
word32 inSz, void* heap, int heapType)
{
int len;
int i;
char* str;
if (*inOutIdx >= inSz) {
return BUFFER_E;
}
if (input[*inOutIdx] == ASN_INTEGER) {
if (GetASNInt(input, inOutIdx, &len, inSz) < 0)
return ASN_PARSE_E;
}
else {
if (GetOctetString(input, inOutIdx, &len, inSz) < 0)
return ASN_PARSE_E;
}
str = (char*)XMALLOC(len * 2 + 1, heap, heapType);
for (i=0; i<len; i++)
ByteToHex(input[*inOutIdx + i], str + i*2);
str[len*2] = '\0';
*inOutIdx += len;
*out = str;
return 0;
}
#endif
int wc_EccPublicKeyDecode(const byte* input, word32* inOutIdx,
ecc_key* key, word32 inSz)
{
int length;
int ret;
int curve_id = ECC_CURVE_DEF;
word32 oidSum;
if (input == NULL || inOutIdx == NULL || key == NULL || inSz == 0)
return BAD_FUNC_ARG;
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
ret = SkipObjectId(input, inOutIdx, inSz);
if (ret != 0)
return ret;
if (*inOutIdx >= inSz) {
return BUFFER_E;
}
if (input[*inOutIdx] == (ASN_SEQUENCE | ASN_CONSTRUCTED)) {
#ifdef WOLFSSL_CUSTOM_CURVES
ecc_set_type* curve;
int len;
char* point;
ret = 0;
curve = (ecc_set_type*)XMALLOC(sizeof(*curve), key->heap,
DYNAMIC_TYPE_ECC_BUFFER);
if (curve == NULL)
ret = MEMORY_E;
if (ret == 0) {
XMEMSET(curve, 0, sizeof(*curve));
curve->name = "Custom";
curve->id = ECC_CURVE_CUSTOM;
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
ret = ASN_PARSE_E;
}
if (ret == 0) {
GetInteger7Bit(input, inOutIdx, inSz);
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
ret = ASN_PARSE_E;
}
if (ret == 0) {
SkipObjectId(input, inOutIdx, inSz);
ret = ASNToHexString(input, inOutIdx, (char**)&curve->prime, inSz,
key->heap, DYNAMIC_TYPE_ECC_BUFFER);
}
if (ret == 0) {
curve->size = (int)XSTRLEN(curve->prime) / 2;
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
ret = ASN_PARSE_E;
}
if (ret == 0) {
ret = ASNToHexString(input, inOutIdx, (char**)&curve->Af, inSz,
key->heap, DYNAMIC_TYPE_ECC_BUFFER);
}
if (ret == 0) {
ret = ASNToHexString(input, inOutIdx, (char**)&curve->Bf, inSz,
key->heap, DYNAMIC_TYPE_ECC_BUFFER);
}
if (ret == 0) {
if (*inOutIdx < inSz && input[*inOutIdx] == ASN_BIT_STRING) {
len = 0;
ret = GetASNHeader(input, ASN_BIT_STRING, inOutIdx, &len, inSz);
*inOutIdx += len;
}
}
if (ret == 0) {
ret = ASNToHexString(input, inOutIdx, (char**)&point, inSz,
key->heap, DYNAMIC_TYPE_ECC_BUFFER);
/* sanity check that point buffer is not smaller than the expected
* size to hold ( 0 4 || Gx || Gy )
* where Gx and Gy are each the size of curve->size * 2 */
if (ret == 0 && (int)XSTRLEN(point) < (curve->size * 4) + 2) {
XFREE(point, key->heap, DYNAMIC_TYPE_ECC_BUFFER);
ret = BUFFER_E;
}
}
if (ret == 0) {
curve->Gx = (const char*)XMALLOC(curve->size * 2 + 2, key->heap,
DYNAMIC_TYPE_ECC_BUFFER);
curve->Gy = (const char*)XMALLOC(curve->size * 2 + 2, key->heap,
DYNAMIC_TYPE_ECC_BUFFER);
if (curve->Gx == NULL || curve->Gy == NULL) {
XFREE(point, key->heap, DYNAMIC_TYPE_ECC_BUFFER);
ret = MEMORY_E;
}
}
if (ret == 0) {
XMEMCPY((char*)curve->Gx, point + 2, curve->size * 2);
XMEMCPY((char*)curve->Gy, point + curve->size * 2 + 2,
curve->size * 2);
((char*)curve->Gx)[curve->size * 2] = '\0';
((char*)curve->Gy)[curve->size * 2] = '\0';
XFREE(point, key->heap, DYNAMIC_TYPE_ECC_BUFFER);
ret = ASNToHexString(input, inOutIdx, (char**)&curve->order, inSz,
key->heap, DYNAMIC_TYPE_ECC_BUFFER);
}
if (ret == 0) {
curve->cofactor = GetInteger7Bit(input, inOutIdx, inSz);
curve->oid = NULL;
curve->oidSz = 0;
curve->oidSum = 0;
if (wc_ecc_set_custom_curve(key, curve) < 0) {
ret = ASN_PARSE_E;
}
key->deallocSet = 1;
curve = NULL;
}
if (curve != NULL)
wc_ecc_free_curve(curve, key->heap);
if (ret < 0)
return ret;
#else
return ASN_PARSE_E;
#endif
}
else {
/* ecc params information */
ret = GetObjectId(input, inOutIdx, &oidSum, oidIgnoreType, inSz);
if (ret != 0)
return ret;
/* get curve id */
curve_id = wc_ecc_get_oid(oidSum, NULL, 0);
if (curve_id < 0)
return ECC_CURVE_OID_E;
}
/* key header */
ret = CheckBitString(input, inOutIdx, NULL, inSz, 1, NULL);
if (ret != 0)
return ret;
/* This is the raw point data compressed or uncompressed. */
if (wc_ecc_import_x963_ex(input + *inOutIdx, inSz - *inOutIdx, key,
curve_id) != 0) {
return ASN_ECC_KEY_E;
}
return 0;
}
/* build DER formatted ECC key, include optional public key if requested,
* return length on success, negative on error */
static int wc_BuildEccKeyDer(ecc_key* key, byte* output, word32 inLen,
int pubIn)
{
byte curve[MAX_ALGO_SZ+2];
byte ver[MAX_VERSION_SZ];
byte seq[MAX_SEQ_SZ];
byte *prv = NULL, *pub = NULL;
int ret, totalSz, curveSz, verSz;
int privHdrSz = ASN_ECC_HEADER_SZ;
int pubHdrSz = ASN_ECC_CONTEXT_SZ + ASN_ECC_HEADER_SZ;
word32 idx = 0, prvidx = 0, pubidx = 0, curveidx = 0;
word32 seqSz, privSz, pubSz = ECC_BUFSIZE;
if (key == NULL || output == NULL || inLen == 0)
return BAD_FUNC_ARG;
/* curve */
curve[curveidx++] = ECC_PREFIX_0;
curveidx++ /* to put the size after computation */;
curveSz = SetCurve(key, curve+curveidx);
if (curveSz < 0)
return curveSz;
/* set computed size */
curve[1] = (byte)curveSz;
curveidx += curveSz;
/* private */
privSz = key->dp->size;
prv = (byte*)XMALLOC(privSz + privHdrSz + MAX_SEQ_SZ,
key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (prv == NULL) {
return MEMORY_E;
}
prvidx += SetOctetString8Bit(key->dp->size, &prv[prvidx]);
ret = wc_ecc_export_private_only(key, prv + prvidx, &privSz);
if (ret < 0) {
XFREE(prv, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
prvidx += privSz;
/* pubIn */
if (pubIn) {
ret = wc_ecc_export_x963(key, NULL, &pubSz);
if (ret != LENGTH_ONLY_E) {
XFREE(prv, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
pub = (byte*)XMALLOC(pubSz + pubHdrSz + MAX_SEQ_SZ,
key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (pub == NULL) {
XFREE(prv, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
return MEMORY_E;
}
pub[pubidx++] = ECC_PREFIX_1;
if (pubSz > 128) /* leading zero + extra size byte */
pubidx += SetLength(pubSz + ASN_ECC_CONTEXT_SZ + 2, pub+pubidx);
else /* leading zero */
pubidx += SetLength(pubSz + ASN_ECC_CONTEXT_SZ + 1, pub+pubidx);
/* SetBitString adds leading zero */
pubidx += SetBitString(pubSz, 0, pub + pubidx);
ret = wc_ecc_export_x963(key, pub + pubidx, &pubSz);
if (ret != 0) {
XFREE(prv, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(pub, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
pubidx += pubSz;
}
/* make headers */
verSz = SetMyVersion(1, ver, FALSE);
seqSz = SetSequence(verSz + prvidx + pubidx + curveidx, seq);
totalSz = prvidx + pubidx + curveidx + verSz + seqSz;
if (totalSz > (int)inLen) {
XFREE(prv, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (pubIn) {
XFREE(pub, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
return BAD_FUNC_ARG;
}
/* write out */
/* seq */
XMEMCPY(output + idx, seq, seqSz);
idx = seqSz;
/* ver */
XMEMCPY(output + idx, ver, verSz);
idx += verSz;
/* private */
XMEMCPY(output + idx, prv, prvidx);
idx += prvidx;
XFREE(prv, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
/* curve */
XMEMCPY(output + idx, curve, curveidx);
idx += curveidx;
/* pubIn */
if (pubIn) {
XMEMCPY(output + idx, pub, pubidx);
/* idx += pubidx; not used after write, if more data remove comment */
XFREE(pub, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
return totalSz;
}
/* Write a Private ecc key, including public to DER format,
* length on success else < 0 */
int wc_EccKeyToDer(ecc_key* key, byte* output, word32 inLen)
{
return wc_BuildEccKeyDer(key, output, inLen, 1);
}
/* Write only private ecc key to DER format,
* length on success else < 0 */
int wc_EccPrivateKeyToDer(ecc_key* key, byte* output, word32 inLen)
{
return wc_BuildEccKeyDer(key, output, inLen, 0);
}
/* Write only private ecc key to unencrypted PKCS#8 format.
*
* If output is NULL, places required PKCS#8 buffer size in outLen and
* returns LENGTH_ONLY_E.
*
* return length on success else < 0 */
int wc_EccPrivateKeyToPKCS8(ecc_key* key, byte* output, word32* outLen)
{
int ret, tmpDerSz;
int algoID = 0;
word32 oidSz = 0;
word32 pkcs8Sz = 0;
const byte* curveOID = NULL;
byte* tmpDer = NULL;
if (key == NULL || outLen == NULL)
return BAD_FUNC_ARG;
/* set algoID, get curve OID */
algoID = ECDSAk;
ret = wc_ecc_get_oid(key->dp->oidSum, &curveOID, &oidSz);
if (ret < 0)
return ret;
/* temp buffer for plain DER key */
tmpDer = (byte*)XMALLOC(ECC_BUFSIZE, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (tmpDer == NULL)
return MEMORY_E;
XMEMSET(tmpDer, 0, ECC_BUFSIZE);
tmpDerSz = wc_BuildEccKeyDer(key, tmpDer, ECC_BUFSIZE, 0);
if (tmpDerSz < 0) {
XFREE(tmpDer, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
return tmpDerSz;
}
/* get pkcs8 expected output size */
ret = wc_CreatePKCS8Key(NULL, &pkcs8Sz, tmpDer, tmpDerSz, algoID,
curveOID, oidSz);
if (ret != LENGTH_ONLY_E) {
XFREE(tmpDer, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
if (output == NULL) {
XFREE(tmpDer, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
*outLen = pkcs8Sz;
return LENGTH_ONLY_E;
} else if (*outLen < pkcs8Sz) {
XFREE(tmpDer, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
WOLFSSL_MSG("Input buffer too small for ECC PKCS#8 key");
return BUFFER_E;
}
ret = wc_CreatePKCS8Key(output, &pkcs8Sz, tmpDer, tmpDerSz,
algoID, curveOID, oidSz);
if (ret < 0) {
XFREE(tmpDer, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
XFREE(tmpDer, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
*outLen = ret;
return ret;
}
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
int wc_Ed25519PrivateKeyDecode(const byte* input, word32* inOutIdx,
ed25519_key* key, word32 inSz)
{
word32 oid;
int ret, version, length, endKeyIdx, privSz, pubSz;
const byte* priv;
const byte* pub;
if (input == NULL || inOutIdx == NULL || key == NULL || inSz == 0)
return BAD_FUNC_ARG;
if (GetSequence(input, inOutIdx, &length, inSz) >= 0) {
endKeyIdx = *inOutIdx + length;
if (GetMyVersion(input, inOutIdx, &version, inSz) < 0)
return ASN_PARSE_E;
if (version != 0) {
WOLFSSL_MSG("Unrecognized version of ED25519 private key");
return ASN_PARSE_E;
}
if (GetAlgoId(input, inOutIdx, &oid, oidKeyType, inSz) < 0)
return ASN_PARSE_E;
if (oid != ED25519k)
return ASN_PARSE_E;
if (GetOctetString(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
if (GetOctetString(input, inOutIdx, &privSz, inSz) < 0)
return ASN_PARSE_E;
priv = input + *inOutIdx;
*inOutIdx += privSz;
}
else {
if (GetOctetString(input, inOutIdx, &privSz, inSz) < 0)
return ASN_PARSE_E;
priv = input + *inOutIdx;
*inOutIdx += privSz;
endKeyIdx = *inOutIdx;
}
if (endKeyIdx == (int)*inOutIdx) {
ret = wc_ed25519_import_private_only(priv, privSz, key);
}
else {
if (GetASNHeader(input, ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 1,
inOutIdx, &length, inSz) < 0) {
return ASN_PARSE_E;
}
if (GetOctetString(input, inOutIdx, &pubSz, inSz) < 0)
return ASN_PARSE_E;
pub = input + *inOutIdx;
*inOutIdx += pubSz;
ret = wc_ed25519_import_private_key(priv, privSz, pub, pubSz, key);
}
if (ret == 0 && endKeyIdx != (int)*inOutIdx)
return ASN_PARSE_E;
return ret;
}
int wc_Ed25519PublicKeyDecode(const byte* input, word32* inOutIdx,
ed25519_key* key, word32 inSz)
{
int length;
int ret;
if (input == NULL || inOutIdx == NULL || key == NULL || inSz == 0)
return BAD_FUNC_ARG;
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
ret = SkipObjectId(input, inOutIdx, inSz);
if (ret != 0)
return ret;
/* key header */
ret = CheckBitString(input, inOutIdx, NULL, inSz, 1, NULL);
if (ret != 0)
return ret;
/* This is the raw point data compressed or uncompressed. */
if (wc_ed25519_import_public(input + *inOutIdx, inSz - *inOutIdx, key) != 0)
return ASN_ECC_KEY_E;
return 0;
}
#ifdef WOLFSSL_KEY_GEN
/* build DER formatted ED25519 key,
* return length on success, negative on error */
static int wc_BuildEd25519KeyDer(ed25519_key* key, byte* output, word32 inLen,
int pubOut)
{
byte algoArray[MAX_ALGO_SZ];
byte ver[MAX_VERSION_SZ];
byte seq[MAX_SEQ_SZ];
int ret;
word32 idx = 0, seqSz, verSz, algoSz, privSz, pubSz = 0;
if (key == NULL || output == NULL || inLen == 0)
return BAD_FUNC_ARG;
if (pubOut)
pubSz = 2 + 2 + ED25519_PUB_KEY_SIZE;
privSz = 2 + 2 + ED25519_KEY_SIZE;
algoSz = SetAlgoID(ED25519k, algoArray, oidKeyType, 0);
verSz = SetMyVersion(0, ver, FALSE);
seqSz = SetSequence(verSz + algoSz + privSz + pubSz, seq);
if (seqSz + verSz + algoSz + privSz + pubSz > inLen)
return BAD_FUNC_ARG;
/* write out */
/* seq */
XMEMCPY(output + idx, seq, seqSz);
idx = seqSz;
/* ver */
XMEMCPY(output + idx, ver, verSz);
idx += verSz;
/* algo */
XMEMCPY(output + idx, algoArray, algoSz);
idx += algoSz;
/* privKey */
idx += SetOctetString(2 + ED25519_KEY_SIZE, output + idx);
idx += SetOctetString(ED25519_KEY_SIZE, output + idx);
ret = wc_ed25519_export_private_only(key, output + idx, &privSz);
if (ret != 0)
return ret;
idx += privSz;
/* pubKey */
if (pubOut) {
idx += SetExplicit(1, 2 + ED25519_PUB_KEY_SIZE, output + idx);
idx += SetOctetString(ED25519_KEY_SIZE, output + idx);
ret = wc_ed25519_export_public(key, output + idx, &pubSz);
if (ret != 0)
return ret;
idx += pubSz;
}
return idx;
}
/* Write a Private ecc key, including public to DER format,
* length on success else < 0 */
int wc_Ed25519KeyToDer(ed25519_key* key, byte* output, word32 inLen)
{
return wc_BuildEd25519KeyDer(key, output, inLen, 1);
}
/* Write only private ecc key to DER format,
* length on success else < 0 */
int wc_Ed25519PrivateKeyToDer(ed25519_key* key, byte* output, word32 inLen)
{
return wc_BuildEd25519KeyDer(key, output, inLen, 0);
}
#endif /* WOLFSSL_KEY_GEN */
#endif /* HAVE_ED25519 */
#if defined(HAVE_OCSP) || defined(HAVE_CRL)
/* Get raw Date only, no processing, 0 on success */
static int GetBasicDate(const byte* source, word32* idx, byte* date,
byte* format, int maxIdx)
{
int ret, length;
const byte *datePtr = NULL;
WOLFSSL_ENTER("GetBasicDate");
ret = GetDateInfo(source, idx, &datePtr, format, &length, maxIdx);
if (ret < 0)
return ret;
XMEMCPY(date, datePtr, length);
return 0;
}
#endif
#ifdef HAVE_OCSP
static int GetEnumerated(const byte* input, word32* inOutIdx, int *value)
{
word32 idx = *inOutIdx;
word32 len;
WOLFSSL_ENTER("GetEnumerated");
*value = 0;
if (input[idx++] != ASN_ENUMERATED)
return ASN_PARSE_E;
len = input[idx++];
if (len > 4)
return ASN_PARSE_E;
while (len--) {
*value = *value << 8 | input[idx++];
}
*inOutIdx = idx;
return *value;
}
static int DecodeSingleResponse(byte* source,
word32* ioIndex, OcspResponse* resp, word32 size)
{
word32 idx = *ioIndex, prevIndex, oid;
int length, wrapperSz;
CertStatus* cs = resp->status;
int ret;
WOLFSSL_ENTER("DecodeSingleResponse");
/* Outer wrapper of the SEQUENCE OF Single Responses. */
if (GetSequence(source, &idx, &wrapperSz, size) < 0)
return ASN_PARSE_E;
prevIndex = idx;
/* When making a request, we only request one status on one certificate
* at a time. There should only be one SingleResponse */
/* Wrapper around the Single Response */
if (GetSequence(source, &idx, &length, size) < 0)
return ASN_PARSE_E;
/* Wrapper around the CertID */
if (GetSequence(source, &idx, &length, size) < 0)
return ASN_PARSE_E;
/* Skip the hash algorithm */
if (GetAlgoId(source, &idx, &oid, oidIgnoreType, size) < 0)
return ASN_PARSE_E;
/* Save reference to the hash of CN */
ret = GetOctetString(source, &idx, &length, size);
if (ret < 0)
return ret;
resp->issuerHash = source + idx;
idx += length;
/* Save reference to the hash of the issuer public key */
ret = GetOctetString(source, &idx, &length, size);
if (ret < 0)
return ret;
resp->issuerKeyHash = source + idx;
idx += length;
/* Get serial number */
if (GetSerialNumber(source, &idx, cs->serial, &cs->serialSz, size) < 0)
return ASN_PARSE_E;
/* CertStatus */
switch (source[idx++])
{
case (ASN_CONTEXT_SPECIFIC | CERT_GOOD):
cs->status = CERT_GOOD;
idx++;
break;
case (ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | CERT_REVOKED):
cs->status = CERT_REVOKED;
if (GetLength(source, &idx, &length, size) < 0)
return ASN_PARSE_E;
idx += length;
break;
case (ASN_CONTEXT_SPECIFIC | CERT_UNKNOWN):
cs->status = CERT_UNKNOWN;
idx++;
break;
default:
return ASN_PARSE_E;
}
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY)
cs->thisDateAsn = source + idx;
#endif
if (GetBasicDate(source, &idx, cs->thisDate,
&cs->thisDateFormat, size) < 0)
return ASN_PARSE_E;
#ifndef NO_ASN_TIME
if (!XVALIDATE_DATE(cs->thisDate, cs->thisDateFormat, BEFORE))
return ASN_BEFORE_DATE_E;
#endif
/* The following items are optional. Only check for them if there is more
* unprocessed data in the singleResponse wrapper. */
if (((int)(idx - prevIndex) < wrapperSz) &&
(source[idx] == (ASN_CONSTRUCTED | ASN_CONTEXT_SPECIFIC | 0)))
{
idx++;
if (GetLength(source, &idx, &length, size) < 0)
return ASN_PARSE_E;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY)
cs->nextDateAsn = source + idx;
#endif
if (GetBasicDate(source, &idx, cs->nextDate,
&cs->nextDateFormat, size) < 0)
return ASN_PARSE_E;
#ifndef NO_ASN_TIME
if (!XVALIDATE_DATE(cs->nextDate, cs->nextDateFormat, AFTER))
return ASN_AFTER_DATE_E;
#endif
}
if (((int)(idx - prevIndex) < wrapperSz) &&
(source[idx] == (ASN_CONSTRUCTED | ASN_CONTEXT_SPECIFIC | 1)))
{
idx++;
if (GetLength(source, &idx, &length, size) < 0)
return ASN_PARSE_E;
idx += length;
}
*ioIndex = idx;
return 0;
}
static int DecodeOcspRespExtensions(byte* source,
word32* ioIndex, OcspResponse* resp, word32 sz)
{
word32 idx = *ioIndex;
int length;
int ext_bound; /* boundary index for the sequence of extensions */
word32 oid;
int ret;
WOLFSSL_ENTER("DecodeOcspRespExtensions");
if ((idx + 1) > sz)
return BUFFER_E;
if (source[idx++] != (ASN_CONSTRUCTED | ASN_CONTEXT_SPECIFIC | 1))
return ASN_PARSE_E;
if (GetLength(source, &idx, &length, sz) < 0)
return ASN_PARSE_E;
if (GetSequence(source, &idx, &length, sz) < 0)
return ASN_PARSE_E;
ext_bound = idx + length;
while (idx < (word32)ext_bound) {
if (GetSequence(source, &idx, &length, sz) < 0) {
WOLFSSL_MSG("\tfail: should be a SEQUENCE");
return ASN_PARSE_E;
}
oid = 0;
if (GetObjectId(source, &idx, &oid, oidOcspType, sz) < 0) {
WOLFSSL_MSG("\tfail: OBJECT ID");
return ASN_PARSE_E;
}
/* check for critical flag */
if (source[idx] == ASN_BOOLEAN) {
WOLFSSL_MSG("\tfound optional critical flag, moving past");
ret = GetBoolean(source, &idx, sz);
if (ret < 0)
return ret;
}
ret = GetOctetString(source, &idx, &length, sz);
if (ret < 0)
return ret;
if (oid == OCSP_NONCE_OID) {
/* get data inside extra OCTET_STRING */
ret = GetOctetString(source, &idx, &length, sz);
if (ret < 0)
return ret;
resp->nonce = source + idx;
resp->nonceSz = length;
}
idx += length;
}
*ioIndex = idx;
return 0;
}
static int DecodeResponseData(byte* source,
word32* ioIndex, OcspResponse* resp, word32 size)
{
word32 idx = *ioIndex, prev_idx;
int length;
int version;
word32 responderId = 0;
WOLFSSL_ENTER("DecodeResponseData");
resp->response = source + idx;
prev_idx = idx;
if (GetSequence(source, &idx, &length, size) < 0)
return ASN_PARSE_E;
resp->responseSz = length + idx - prev_idx;
/* Get version. It is an EXPLICIT[0] DEFAULT(0) value. If this
* item isn't an EXPLICIT[0], then set version to zero and move
* onto the next item.
*/
if (source[idx] == (ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED))
{
idx += 2; /* Eat the value and length */
if (GetMyVersion(source, &idx, &version, size) < 0)
return ASN_PARSE_E;
} else
version = 0;
responderId = source[idx++];
if ((responderId == (ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 1)) ||
(responderId == (ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 2)))
{
if (GetLength(source, &idx, &length, size) < 0)
return ASN_PARSE_E;
idx += length;
}
else
return ASN_PARSE_E;
/* save pointer to the producedAt time */
if (GetBasicDate(source, &idx, resp->producedDate,
&resp->producedDateFormat, size) < 0)
return ASN_PARSE_E;
if (DecodeSingleResponse(source, &idx, resp, size) < 0)
return ASN_PARSE_E;
/*
* Check the length of the ResponseData against the current index to
* see if there are extensions, they are optional.
*/
if (idx - prev_idx < resp->responseSz)
if (DecodeOcspRespExtensions(source, &idx, resp, size) < 0)
return ASN_PARSE_E;
*ioIndex = idx;
return 0;
}
#ifndef WOLFSSL_NO_OCSP_OPTIONAL_CERTS
static int DecodeCerts(byte* source,
word32* ioIndex, OcspResponse* resp, word32 size)
{
word32 idx = *ioIndex;
WOLFSSL_ENTER("DecodeCerts");
if (source[idx++] == (ASN_CONSTRUCTED | ASN_CONTEXT_SPECIFIC))
{
int length;
if (GetLength(source, &idx, &length, size) < 0)
return ASN_PARSE_E;
if (GetSequence(source, &idx, &length, size) < 0)
return ASN_PARSE_E;
resp->cert = source + idx;
resp->certSz = length;
idx += length;
}
*ioIndex = idx;
return 0;
}
#endif /* WOLFSSL_NO_OCSP_OPTIONAL_CERTS */
static int DecodeBasicOcspResponse(byte* source, word32* ioIndex,
OcspResponse* resp, word32 size, void* cm, void* heap, int noVerify)
{
int length;
word32 idx = *ioIndex;
word32 end_index;
int ret;
int sigLength;
WOLFSSL_ENTER("DecodeBasicOcspResponse");
(void)heap;
if (GetSequence(source, &idx, &length, size) < 0)
return ASN_PARSE_E;
if (idx + length > size)
return ASN_INPUT_E;
end_index = idx + length;
if (DecodeResponseData(source, &idx, resp, size) < 0)
return ASN_PARSE_E;
/* Get the signature algorithm */
if (GetAlgoId(source, &idx, &resp->sigOID, oidSigType, size) < 0)
return ASN_PARSE_E;
ret = CheckBitString(source, &idx, &sigLength, size, 1, NULL);
if (ret != 0)
return ret;
resp->sigSz = sigLength;
resp->sig = source + idx;
idx += sigLength;
/*
* Check the length of the BasicOcspResponse against the current index to
* see if there are certificates, they are optional.
*/
#ifndef WOLFSSL_NO_OCSP_OPTIONAL_CERTS
if (idx < end_index)
{
DecodedCert cert;
if (DecodeCerts(source, &idx, resp, size) < 0)
return ASN_PARSE_E;
InitDecodedCert(&cert, resp->cert, resp->certSz, heap);
/* Don't verify if we don't have access to Cert Manager. */
ret = ParseCertRelative(&cert, CERT_TYPE,
noVerify ? NO_VERIFY : VERIFY_OCSP, cm);
if (ret < 0) {
WOLFSSL_MSG("\tOCSP Responder certificate parsing failed");
FreeDecodedCert(&cert);
return ret;
}
#ifndef WOLFSSL_NO_OCSP_ISSUER_CHECK
if ((cert.extExtKeyUsage & EXTKEYUSE_OCSP_SIGN) == 0) {
if (XMEMCMP(cert.subjectHash,
resp->issuerHash, KEYID_SIZE) == 0) {
WOLFSSL_MSG("\tOCSP Response signed by issuer");
}
else {
WOLFSSL_MSG("\tOCSP Responder key usage check failed");
#ifdef OPENSSL_EXTRA
resp->verifyError = OCSP_BAD_ISSUER;
#else
FreeDecodedCert(&cert);
return BAD_OCSP_RESPONDER;
#endif
}
}
#endif
/* ConfirmSignature is blocking here */
ret = ConfirmSignature(&cert.sigCtx,
resp->response, resp->responseSz,
cert.publicKey, cert.pubKeySize, cert.keyOID,
resp->sig, resp->sigSz, resp->sigOID);
FreeDecodedCert(&cert);
if (ret != 0) {
WOLFSSL_MSG("\tOCSP Confirm signature failed");
return ASN_OCSP_CONFIRM_E;
}
}
else
#endif /* WOLFSSL_NO_OCSP_OPTIONAL_CERTS */
{
Signer* ca = NULL;
int sigValid = -1;
#ifndef NO_SKID
ca = GetCA(cm, resp->issuerKeyHash);
#else
ca = GetCA(cm, resp->issuerHash);
#endif
if (ca) {
SignatureCtx sigCtx;
InitSignatureCtx(&sigCtx, heap, INVALID_DEVID);
/* ConfirmSignature is blocking here */
sigValid = ConfirmSignature(&sigCtx, resp->response,
resp->responseSz, ca->publicKey, ca->pubKeySize, ca->keyOID,
resp->sig, resp->sigSz, resp->sigOID);
}
if (ca == NULL || sigValid != 0) {
WOLFSSL_MSG("\tOCSP Confirm signature failed");
return ASN_OCSP_CONFIRM_E;
}
(void)noVerify;
}
*ioIndex = idx;
return 0;
}
void InitOcspResponse(OcspResponse* resp, CertStatus* status,
byte* source, word32 inSz)
{
WOLFSSL_ENTER("InitOcspResponse");
XMEMSET(status, 0, sizeof(CertStatus));
XMEMSET(resp, 0, sizeof(OcspResponse));
resp->responseStatus = -1;
resp->status = status;
resp->source = source;
resp->maxIdx = inSz;
}
int OcspResponseDecode(OcspResponse* resp, void* cm, void* heap, int noVerify)
{
int ret;
int length = 0;
word32 idx = 0;
byte* source = resp->source;
word32 size = resp->maxIdx;
word32 oid;
WOLFSSL_ENTER("OcspResponseDecode");
/* peel the outer SEQUENCE wrapper */
if (GetSequence(source, &idx, &length, size) < 0)
return ASN_PARSE_E;
/* First get the responseStatus, an ENUMERATED */
if (GetEnumerated(source, &idx, &resp->responseStatus) < 0)
return ASN_PARSE_E;
if (resp->responseStatus != OCSP_SUCCESSFUL)
return 0;
/* Next is an EXPLICIT record called ResponseBytes, OPTIONAL */
if (idx >= size)
return ASN_INPUT_E;
if (source[idx++] != (ASN_CONSTRUCTED | ASN_CONTEXT_SPECIFIC))
return ASN_PARSE_E;
if (GetLength(source, &idx, &length, size) < 0)
return ASN_PARSE_E;
/* Get the responseBytes SEQUENCE */
if (GetSequence(source, &idx, &length, size) < 0)
return ASN_PARSE_E;
/* Check ObjectID for the resposeBytes */
if (GetObjectId(source, &idx, &oid, oidOcspType, size) < 0)
return ASN_PARSE_E;
if (oid != OCSP_BASIC_OID)
return ASN_PARSE_E;
ret = GetOctetString(source, &idx, &length, size);
if (ret < 0)
return ret;
ret = DecodeBasicOcspResponse(source, &idx, resp, size, cm, heap, noVerify);
if (ret < 0)
return ret;
return 0;
}
word32 EncodeOcspRequestExtensions(OcspRequest* req, byte* output, word32 size)
{
static const byte NonceObjId[] = { 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07,
0x30, 0x01, 0x02 };
byte seqArray[5][MAX_SEQ_SZ];
word32 seqSz[5], totalSz = (word32)sizeof(NonceObjId);
WOLFSSL_ENTER("SetOcspReqExtensions");
if (!req || !output || !req->nonceSz)
return 0;
totalSz += req->nonceSz;
totalSz += seqSz[0] = SetOctetString(req->nonceSz, seqArray[0]);
totalSz += seqSz[1] = SetOctetString(req->nonceSz + seqSz[0], seqArray[1]);
totalSz += seqSz[2] = SetObjectId(sizeof(NonceObjId), seqArray[2]);
totalSz += seqSz[3] = SetSequence(totalSz, seqArray[3]);
totalSz += seqSz[4] = SetSequence(totalSz, seqArray[4]);
if (totalSz > size)
return 0;
totalSz = 0;
XMEMCPY(output + totalSz, seqArray[4], seqSz[4]);
totalSz += seqSz[4];
XMEMCPY(output + totalSz, seqArray[3], seqSz[3]);
totalSz += seqSz[3];
XMEMCPY(output + totalSz, seqArray[2], seqSz[2]);
totalSz += seqSz[2];
XMEMCPY(output + totalSz, NonceObjId, sizeof(NonceObjId));
totalSz += (word32)sizeof(NonceObjId);
XMEMCPY(output + totalSz, seqArray[1], seqSz[1]);
totalSz += seqSz[1];
XMEMCPY(output + totalSz, seqArray[0], seqSz[0]);
totalSz += seqSz[0];
XMEMCPY(output + totalSz, req->nonce, req->nonceSz);
totalSz += req->nonceSz;
return totalSz;
}
int EncodeOcspRequest(OcspRequest* req, byte* output, word32 size)
{
byte seqArray[5][MAX_SEQ_SZ];
/* The ASN.1 of the OCSP Request is an onion of sequences */
byte algoArray[MAX_ALGO_SZ];
byte issuerArray[MAX_ENCODED_DIG_SZ];
byte issuerKeyArray[MAX_ENCODED_DIG_SZ];
byte snArray[MAX_SN_SZ];
byte extArray[MAX_OCSP_EXT_SZ];
word32 seqSz[5], algoSz, issuerSz, issuerKeySz, extSz, totalSz;
int i, snSz;
WOLFSSL_ENTER("EncodeOcspRequest");
#ifdef NO_SHA
algoSz = SetAlgoID(SHA256h, algoArray, oidHashType, 0);
#else
algoSz = SetAlgoID(SHAh, algoArray, oidHashType, 0);
#endif
issuerSz = SetDigest(req->issuerHash, KEYID_SIZE, issuerArray);
issuerKeySz = SetDigest(req->issuerKeyHash, KEYID_SIZE, issuerKeyArray);
snSz = SetSerialNumber(req->serial, req->serialSz, snArray, MAX_SN_SZ);
extSz = 0;
if (snSz < 0)
return snSz;
if (req->nonceSz) {
/* TLS Extensions use this function too - put extensions after
* ASN.1: Context Specific [2].
*/
extSz = EncodeOcspRequestExtensions(req, extArray + 2,
OCSP_NONCE_EXT_SZ);
extSz += SetExplicit(2, extSz, extArray);
}
totalSz = algoSz + issuerSz + issuerKeySz + snSz;
for (i = 4; i >= 0; i--) {
seqSz[i] = SetSequence(totalSz, seqArray[i]);
totalSz += seqSz[i];
if (i == 2) totalSz += extSz;
}
if (output == NULL)
return totalSz;
if (totalSz > size)
return BUFFER_E;
totalSz = 0;
for (i = 0; i < 5; i++) {
XMEMCPY(output + totalSz, seqArray[i], seqSz[i]);
totalSz += seqSz[i];
}
XMEMCPY(output + totalSz, algoArray, algoSz);
totalSz += algoSz;
XMEMCPY(output + totalSz, issuerArray, issuerSz);
totalSz += issuerSz;
XMEMCPY(output + totalSz, issuerKeyArray, issuerKeySz);
totalSz += issuerKeySz;
XMEMCPY(output + totalSz, snArray, snSz);
totalSz += snSz;
if (extSz != 0) {
XMEMCPY(output + totalSz, extArray, extSz);
totalSz += extSz;
}
return totalSz;
}
int InitOcspRequest(OcspRequest* req, DecodedCert* cert, byte useNonce,
void* heap)
{
int ret;
WOLFSSL_ENTER("InitOcspRequest");
if (req == NULL)
return BAD_FUNC_ARG;
ForceZero(req, sizeof(OcspRequest));
req->heap = heap;
if (cert) {
XMEMCPY(req->issuerHash, cert->issuerHash, KEYID_SIZE);
XMEMCPY(req->issuerKeyHash, cert->issuerKeyHash, KEYID_SIZE);
req->serial = (byte*)XMALLOC(cert->serialSz, req->heap,
DYNAMIC_TYPE_OCSP_REQUEST);
if (req->serial == NULL)
return MEMORY_E;
XMEMCPY(req->serial, cert->serial, cert->serialSz);
req->serialSz = cert->serialSz;
if (cert->extAuthInfoSz != 0 && cert->extAuthInfo != NULL) {
req->url = (byte*)XMALLOC(cert->extAuthInfoSz, req->heap,
DYNAMIC_TYPE_OCSP_REQUEST);
if (req->url == NULL) {
XFREE(req->serial, req->heap, DYNAMIC_TYPE_OCSP);
return MEMORY_E;
}
XMEMCPY(req->url, cert->extAuthInfo, cert->extAuthInfoSz);
req->urlSz = cert->extAuthInfoSz;
}
}
if (useNonce) {
WC_RNG rng;
#ifndef HAVE_FIPS
ret = wc_InitRng_ex(&rng, req->heap, INVALID_DEVID);
#else
ret = wc_InitRng(&rng);
#endif
if (ret != 0) {
WOLFSSL_MSG("\tCannot initialize RNG. Skipping the OSCP Nonce.");
} else {
if (wc_RNG_GenerateBlock(&rng, req->nonce, MAX_OCSP_NONCE_SZ) != 0)
WOLFSSL_MSG("\tCannot run RNG. Skipping the OSCP Nonce.");
else
req->nonceSz = MAX_OCSP_NONCE_SZ;
wc_FreeRng(&rng);
}
}
return 0;
}
void FreeOcspRequest(OcspRequest* req)
{
WOLFSSL_ENTER("FreeOcspRequest");
if (req) {
if (req->serial)
XFREE(req->serial, req->heap, DYNAMIC_TYPE_OCSP_REQUEST);
if (req->url)
XFREE(req->url, req->heap, DYNAMIC_TYPE_OCSP_REQUEST);
}
}
int CompareOcspReqResp(OcspRequest* req, OcspResponse* resp)
{
int cmp;
WOLFSSL_ENTER("CompareOcspReqResp");
if (req == NULL)
{
WOLFSSL_MSG("\tReq missing");
return -1;
}
if (resp == NULL)
{
WOLFSSL_MSG("\tResp missing");
return 1;
}
/* Nonces are not critical. The responder may not necessarily add
* the nonce to the response. */
if (resp->nonceSz != 0) {
cmp = req->nonceSz - resp->nonceSz;
if (cmp != 0)
{
WOLFSSL_MSG("\tnonceSz mismatch");
return cmp;
}
cmp = XMEMCMP(req->nonce, resp->nonce, req->nonceSz);
if (cmp != 0)
{
WOLFSSL_MSG("\tnonce mismatch");
return cmp;
}
}
cmp = XMEMCMP(req->issuerHash, resp->issuerHash, KEYID_SIZE);
if (cmp != 0)
{
WOLFSSL_MSG("\tissuerHash mismatch");
return cmp;
}
cmp = XMEMCMP(req->issuerKeyHash, resp->issuerKeyHash, KEYID_SIZE);
if (cmp != 0)
{
WOLFSSL_MSG("\tissuerKeyHash mismatch");
return cmp;
}
cmp = req->serialSz - resp->status->serialSz;
if (cmp != 0)
{
WOLFSSL_MSG("\tserialSz mismatch");
return cmp;
}
cmp = XMEMCMP(req->serial, resp->status->serial, req->serialSz);
if (cmp != 0)
{
WOLFSSL_MSG("\tserial mismatch");
return cmp;
}
return 0;
}
#endif
/* store WC_SHA hash of NAME */
WOLFSSL_LOCAL int GetNameHash(const byte* source, word32* idx, byte* hash,
int maxIdx)
{
int length; /* length of all distinguished names */
int ret;
word32 dummy;
WOLFSSL_ENTER("GetNameHash");
if (source[*idx] == ASN_OBJECT_ID) {
WOLFSSL_MSG("Trying optional prefix...");
if (GetLength(source, idx, &length, maxIdx) < 0)
return ASN_PARSE_E;
*idx += length;
WOLFSSL_MSG("Got optional prefix");
}
/* For OCSP, RFC2560 section 4.1.1 states the issuer hash should be
* calculated over the entire DER encoding of the Name field, including
* the tag and length. */
dummy = *idx;
if (GetSequence(source, idx, &length, maxIdx) < 0)
return ASN_PARSE_E;
#ifdef NO_SHA
ret = wc_Sha256Hash(source + dummy, length + *idx - dummy, hash);
#else
ret = wc_ShaHash(source + dummy, length + *idx - dummy, hash);
#endif
*idx += length;
return ret;
}
#ifdef HAVE_CRL
/* initialize decoded CRL */
void InitDecodedCRL(DecodedCRL* dcrl, void* heap)
{
WOLFSSL_MSG("InitDecodedCRL");
dcrl->certBegin = 0;
dcrl->sigIndex = 0;
dcrl->sigLength = 0;
dcrl->signatureOID = 0;
dcrl->certs = NULL;
dcrl->totalCerts = 0;
dcrl->heap = heap;
#ifdef WOLFSSL_HEAP_TEST
dcrl->heap = (void*)WOLFSSL_HEAP_TEST;
#endif
}
/* free decoded CRL resources */
void FreeDecodedCRL(DecodedCRL* dcrl)
{
RevokedCert* tmp = dcrl->certs;
WOLFSSL_MSG("FreeDecodedCRL");
while(tmp) {
RevokedCert* next = tmp->next;
XFREE(tmp, dcrl->heap, DYNAMIC_TYPE_REVOKED);
tmp = next;
}
}
/* Get Revoked Cert list, 0 on success */
static int GetRevoked(const byte* buff, word32* idx, DecodedCRL* dcrl,
int maxIdx)
{
int ret, len;
word32 end;
byte b;
RevokedCert* rc;
WOLFSSL_ENTER("GetRevoked");
if (GetSequence(buff, idx, &len, maxIdx) < 0)
return ASN_PARSE_E;
end = *idx + len;
rc = (RevokedCert*)XMALLOC(sizeof(RevokedCert), dcrl->heap,
DYNAMIC_TYPE_REVOKED);
if (rc == NULL) {
WOLFSSL_MSG("Alloc Revoked Cert failed");
return MEMORY_E;
}
if (GetSerialNumber(buff, idx, rc->serialNumber, &rc->serialSz,
maxIdx) < 0) {
XFREE(rc, dcrl->heap, DYNAMIC_TYPE_REVOKED);
return ASN_PARSE_E;
}
/* add to list */
rc->next = dcrl->certs;
dcrl->certs = rc;
dcrl->totalCerts++;
/* get date */
ret = GetDateInfo(buff, idx, NULL, &b, NULL, maxIdx);
if (ret < 0) {
WOLFSSL_MSG("Expecting Date");
return ret;
}
if (*idx != end) /* skip extensions */
*idx = end;
return 0;
}
/* Get CRL Signature, 0 on success */
static int GetCRL_Signature(const byte* source, word32* idx, DecodedCRL* dcrl,
int maxIdx)
{
int length;
int ret;
WOLFSSL_ENTER("GetCRL_Signature");
ret = CheckBitString(source, idx, &length, maxIdx, 1, NULL);
if (ret != 0)
return ret;
dcrl->sigLength = length;
dcrl->signature = (byte*)&source[*idx];
*idx += dcrl->sigLength;
return 0;
}
int VerifyCRL_Signature(SignatureCtx* sigCtx, const byte* toBeSigned,
word32 tbsSz, const byte* signature, word32 sigSz,
word32 signatureOID, Signer *ca, void* heap)
{
/* try to confirm/verify signature */
#ifndef IGNORE_KEY_EXTENSIONS
if ((ca->keyUsage & KEYUSE_CRL_SIGN) == 0) {
WOLFSSL_MSG("CA cannot sign CRLs");
return ASN_CRL_NO_SIGNER_E;
}
#endif /* IGNORE_KEY_EXTENSIONS */
InitSignatureCtx(sigCtx, heap, INVALID_DEVID);
if (ConfirmSignature(sigCtx, toBeSigned, tbsSz, ca->publicKey,
ca->pubKeySize, ca->keyOID, signature, sigSz,
signatureOID) != 0) {
WOLFSSL_MSG("CRL Confirm signature failed");
return ASN_CRL_CONFIRM_E;
}
return 0;
}
/* prase crl buffer into decoded state, 0 on success */
int ParseCRL(DecodedCRL* dcrl, const byte* buff, word32 sz, void* cm)
{
int version, len, doNextDate = 1;
word32 oid, idx = 0, dateIdx;
Signer* ca = NULL;
SignatureCtx sigCtx;
WOLFSSL_MSG("ParseCRL");
/* raw crl hash */
/* hash here if needed for optimized comparisons
* wc_Sha sha;
* wc_InitSha(&sha);
* wc_ShaUpdate(&sha, buff, sz);
* wc_ShaFinal(&sha, dcrl->crlHash); */
if (GetSequence(buff, &idx, &len, sz) < 0)
return ASN_PARSE_E;
dcrl->certBegin = idx;
if (GetSequence(buff, &idx, &len, sz) < 0)
return ASN_PARSE_E;
dcrl->sigIndex = len + idx;
/* may have version */
if (buff[idx] == ASN_INTEGER) {
if (GetMyVersion(buff, &idx, &version, sz) < 0)
return ASN_PARSE_E;
}
if (GetAlgoId(buff, &idx, &oid, oidIgnoreType, sz) < 0)
return ASN_PARSE_E;
if (GetNameHash(buff, &idx, dcrl->issuerHash, sz) < 0)
return ASN_PARSE_E;
if (GetBasicDate(buff, &idx, dcrl->lastDate, &dcrl->lastDateFormat, sz) < 0)
return ASN_PARSE_E;
dateIdx = idx;
if (GetBasicDate(buff, &idx, dcrl->nextDate, &dcrl->nextDateFormat, sz) < 0)
{
#ifndef WOLFSSL_NO_CRL_NEXT_DATE
(void)dateIdx;
return ASN_PARSE_E;
#else
dcrl->nextDateFormat = ASN_OTHER_TYPE; /* skip flag */
doNextDate = 0;
idx = dateIdx;
#endif
}
if (doNextDate) {
#ifndef NO_ASN_TIME
if (!XVALIDATE_DATE(dcrl->nextDate, dcrl->nextDateFormat, AFTER)) {
WOLFSSL_MSG("CRL after date is no longer valid");
return ASN_AFTER_DATE_E;
}
#endif
}
if (idx != dcrl->sigIndex && buff[idx] != CRL_EXTENSIONS) {
if (GetSequence(buff, &idx, &len, sz) < 0)
return ASN_PARSE_E;
len += idx;
while (idx < (word32)len) {
if (GetRevoked(buff, &idx, dcrl, sz) < 0)
return ASN_PARSE_E;
}
}
if (idx != dcrl->sigIndex)
idx = dcrl->sigIndex; /* skip extensions */
if (GetAlgoId(buff, &idx, &dcrl->signatureOID, oidSigType, sz) < 0)
return ASN_PARSE_E;
if (GetCRL_Signature(buff, &idx, dcrl, sz) < 0)
return ASN_PARSE_E;
/* openssl doesn't add skid by default for CRLs cause firefox chokes
we're not assuming it's available yet */
#if !defined(NO_SKID) && defined(CRL_SKID_READY)
if (dcrl->extAuthKeyIdSet)
ca = GetCA(cm, dcrl->extAuthKeyId);
if (ca == NULL)
ca = GetCAByName(cm, dcrl->issuerHash);
#else
ca = GetCA(cm, dcrl->issuerHash);
#endif /* !NO_SKID && CRL_SKID_READY */
WOLFSSL_MSG("About to verify CRL signature");
if (ca == NULL) {
WOLFSSL_MSG("Did NOT find CRL issuer CA");
return ASN_CRL_NO_SIGNER_E;
}
WOLFSSL_MSG("Found CRL issuer CA");
return VerifyCRL_Signature(&sigCtx, buff + dcrl->certBegin,
dcrl->sigIndex - dcrl->certBegin, dcrl->signature, dcrl->sigLength,
dcrl->signatureOID, ca, dcrl->heap);
}
#endif /* HAVE_CRL */
#undef ERROR_OUT
#endif /* !NO_ASN */
#ifdef WOLFSSL_SEP
#endif /* WOLFSSL_SEP */