Files
wolfssl/src/wolfio.c
2025-07-28 17:04:33 -06:00

3747 lines
112 KiB
C

/* wolfio.c
*
* Copyright (C) 2006-2025 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifndef WOLFSSL_STRERROR_BUFFER_SIZE
#define WOLFSSL_STRERROR_BUFFER_SIZE 256
#endif
#include <wolfssl/wolfcrypt/libwolfssl_sources.h>
#ifndef WOLFCRYPT_ONLY
#if defined(HAVE_ERRNO_H) && defined(WOLFSSL_NO_SOCK) && \
(defined(USE_WOLFSSL_IO) || defined(HAVE_HTTP_CLIENT))
/* error codes are needed for TranslateIoReturnCode() and
* wolfIO_TcpConnect() even if defined(WOLFSSL_NO_SOCK), which inhibits
* inclusion of errno.h by wolfio.h.
*/
#include <errno.h>
#endif
#include <wolfssl/internal.h>
#include <wolfssl/error-ssl.h>
#include <wolfssl/wolfio.h>
#ifdef NUCLEUS_PLUS_2_3
/* Holds last Nucleus networking error number */
int Nucleus_Net_Errno;
#endif
#if defined(USE_WOLFSSL_IO) || defined(HAVE_HTTP_CLIENT)
#ifdef USE_WINDOWS_API
#include <winsock2.h>
#else
#if defined(WOLFSSL_LWIP) && !defined(WOLFSSL_APACHE_MYNEWT)
#elif defined(ARDUINO)
#elif defined(FREESCALE_MQX)
#elif defined(FREESCALE_KSDK_MQX)
#elif (defined(WOLFSSL_MDK_ARM) || defined(WOLFSSL_KEIL_TCP_NET))
#elif defined(WOLFSSL_CMSIS_RTOS)
#elif defined(WOLFSSL_CMSIS_RTOSv2)
#elif defined(WOLFSSL_TIRTOS)
#elif defined(FREERTOS_TCP)
#elif defined(WOLFSSL_IAR_ARM)
#elif defined(HAVE_NETX_BSD)
#elif defined(WOLFSSL_VXWORKS)
#elif defined(WOLFSSL_NUCLEUS_1_2)
#elif defined(WOLFSSL_LINUXKM)
/* the requisite linux/net.h is included in wc_port.h, with incompatible warnings masked out. */
#elif defined(WOLFSSL_ATMEL)
#elif defined(INTIME_RTOS)
#include <netdb.h>
#elif defined(WOLFSSL_PRCONNECT_PRO)
#include <netdb.h>
#include <sys/ioctl.h>
#elif defined(WOLFSSL_SGX)
#elif defined(WOLFSSL_APACHE_MYNEWT) && !defined(WOLFSSL_LWIP)
#elif defined(WOLFSSL_DEOS)
#elif defined(WOLFSSL_ZEPHYR)
#elif defined(MICROCHIP_PIC32)
#elif defined(HAVE_NETX)
#elif defined(FUSION_RTOS)
#elif !defined(WOLFSSL_NO_SOCK)
#if defined(HAVE_RTP_SYS)
#elif defined(EBSNET)
#elif defined(NETOS)
#elif !defined(DEVKITPRO) && !defined(WOLFSSL_PICOTCP) \
&& !defined(WOLFSSL_CONTIKI) && !defined(WOLFSSL_WICED) \
&& !defined(WOLFSSL_GNRC) && !defined(WOLFSSL_RIOT_OS)
#ifdef HAVE_NETDB_H
#include <netdb.h>
#endif
#ifdef __PPU
#include <netex/errno.h>
#else
#ifdef HAVE_SYS_IOCTL_H
#include <sys/ioctl.h>
#endif
#endif
#endif
#endif
#endif /* USE_WINDOWS_API */
#endif /* defined(USE_WOLFSSL_IO) || defined(HAVE_HTTP_CLIENT) */
#if defined(HAVE_HTTP_CLIENT)
#include <stdlib.h> /* strtol() */
#endif
/*
Possible IO enable options:
* WOLFSSL_USER_IO: Disables default Embed* callbacks and default: off
allows user to define their own using
wolfSSL_CTX_SetIORecv and wolfSSL_CTX_SetIOSend
* USE_WOLFSSL_IO: Enables the wolfSSL IO functions default: on
* HAVE_HTTP_CLIENT: Enables HTTP client API's default: off
(unless HAVE_OCSP or HAVE_CRL_IO defined)
* HAVE_IO_TIMEOUT: Enables support for connect timeout default: off
*
* DTLS_RECEIVEFROM_NO_TIMEOUT_ON_INVALID_PEER: This flag has effect only if
* ASN_NO_TIME is enabled. If enabled invalid peers messages are ignored
* indefinitely. If not enabled EmbedReceiveFrom will return timeout after
* DTLS_RECEIVEFROM_MAX_INVALID_PEER number of packets from invalid peers. When
* enabled, without a timer, EmbedReceivefrom can't check if the timeout is
* expired and it may never return under a continuous flow of invalid packets.
* default: off
*/
/* if user writes own I/O callbacks they can define WOLFSSL_USER_IO to remove
automatic setting of default I/O functions EmbedSend() and EmbedReceive()
but they'll still need SetCallback xxx() at end of file
*/
#if defined(NO_ASN_TIME) && !defined(DTLS_RECEIVEFROM_NO_TIMEOUT_ON_INVALID_PEER) \
&& !defined(DTLS_RECEIVEFROM_MAX_INVALID_PEER)
#define DTLS_RECEIVEFROM_MAX_INVALID_PEER 10
#endif
#if defined(USE_WOLFSSL_IO) || defined(HAVE_HTTP_CLIENT)
static WC_INLINE int wolfSSL_LastError(int err, SOCKET_T sd)
{
(void)sd;
if (err > 0)
return 0;
#ifdef USE_WINDOWS_API
return WSAGetLastError();
#elif defined(EBSNET)
return xn_getlasterror();
#elif defined(WOLFSSL_LINUXKM) || defined(WOLFSSL_EMNET)
return -err; /* Return provided error value with corrected sign. */
#elif defined(FUSION_RTOS)
#include <fclerrno.h>
return FCL_GET_ERRNO;
#elif defined(NUCLEUS_PLUS_2_3)
return Nucleus_Net_Errno;
#elif defined(FREESCALE_MQX) || defined(FREESCALE_KSDK_MQX)
if ((err == 0) || (err == -SOCKET_EWOULDBLOCK)) {
return SOCKET_EWOULDBLOCK; /* convert to BSD style wouldblock */
} else {
err = RTCS_geterror(sd);
if ((err == RTCSERR_TCP_CONN_CLOSING) ||
(err == RTCSERR_TCP_CONN_RLSD))
{
err = SOCKET_ECONNRESET;
}
return err;
}
#elif defined(WOLFSSL_EMNET)
/* Get the real socket error */
IP_SOCK_getsockopt(sd, SOL_SOCKET, SO_ERROR, &err, (int)sizeof(old));
return err;
#else
return errno;
#endif
}
/* Translates return codes returned from
* send(), recv(), and other network I/O calls.
*/
static int TranslateIoReturnCode(int err, SOCKET_T sd, int direction)
{
#if defined(_WIN32) && !defined(__WATCOMC__) && !defined(_WIN32_WCE)
size_t errstr_offset;
char errstr[WOLFSSL_STRERROR_BUFFER_SIZE];
#endif /* _WIN32 */
#if defined(FREESCALE_MQX) || defined(FREESCALE_KSDK_MQX)
if (err > 0)
return err;
#else
if (err >= 0)
return err;
#endif
err = wolfSSL_LastError(err, sd);
#if SOCKET_EWOULDBLOCK != SOCKET_EAGAIN
if ((err == SOCKET_EWOULDBLOCK) || (err == SOCKET_EAGAIN))
#else
if (err == SOCKET_EWOULDBLOCK)
#endif
{
WOLFSSL_MSG("\tWould block");
if (direction == SOCKET_SENDING)
return WOLFSSL_CBIO_ERR_WANT_WRITE;
else if (direction == SOCKET_RECEIVING)
return WOLFSSL_CBIO_ERR_WANT_READ;
else
return WOLFSSL_CBIO_ERR_GENERAL;
}
#ifdef SOCKET_ETIMEDOUT
else if (err == SOCKET_ETIMEDOUT) {
WOLFSSL_MSG("\tTimed out");
if (direction == SOCKET_SENDING)
return WOLFSSL_CBIO_ERR_WANT_WRITE;
else if (direction == SOCKET_RECEIVING)
return WOLFSSL_CBIO_ERR_WANT_READ;
else
return WOLFSSL_CBIO_ERR_TIMEOUT;
}
#endif /* SOCKET_ETIMEDOUT */
else if (err == SOCKET_ECONNRESET) {
WOLFSSL_MSG("\tConnection reset");
return WOLFSSL_CBIO_ERR_CONN_RST;
}
else if (err == SOCKET_EINTR) {
WOLFSSL_MSG("\tSocket interrupted");
return WOLFSSL_CBIO_ERR_ISR;
}
else if (err == SOCKET_EPIPE) {
WOLFSSL_MSG("\tBroken pipe");
return WOLFSSL_CBIO_ERR_CONN_CLOSE;
}
else if (err == SOCKET_ECONNABORTED) {
WOLFSSL_MSG("\tConnection aborted");
return WOLFSSL_CBIO_ERR_CONN_CLOSE;
}
#if defined(_WIN32) && !defined(__WATCOMC__) && !defined(_WIN32_WCE)
strcpy_s(errstr, sizeof(errstr), "\tGeneral error: ");
errstr_offset = strlen(errstr);
FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL,
err,
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
(LPSTR)(errstr + errstr_offset),
(DWORD)(sizeof(errstr) - errstr_offset),
NULL);
WOLFSSL_MSG(errstr);
#else
WOLFSSL_MSG_EX("\tGeneral error: %d", err);
#endif
return WOLFSSL_CBIO_ERR_GENERAL;
}
#endif /* USE_WOLFSSL_IO || HAVE_HTTP_CLIENT */
#ifdef OPENSSL_EXTRA
#ifndef NO_BIO
int wolfSSL_BioSend(WOLFSSL* ssl, char *buf, int sz, void *ctx)
{
return SslBioSend(ssl, buf, sz, ctx);
}
int wolfSSL_BioReceive(WOLFSSL* ssl, char* buf, int sz, void* ctx)
{
return SslBioReceive(ssl, buf, sz, ctx);
}
int BioReceiveInternal(WOLFSSL_BIO* biord, WOLFSSL_BIO* biowr, char* buf,
int sz)
{
int recvd = WC_NO_ERR_TRACE(WOLFSSL_CBIO_ERR_GENERAL);
WOLFSSL_ENTER("SslBioReceive");
if (biord == NULL) {
WOLFSSL_MSG("WOLFSSL biord not set");
return WOLFSSL_CBIO_ERR_GENERAL;
}
recvd = wolfSSL_BIO_read(biord, buf, sz);
if (recvd <= 0) {
if (/* ssl->biowr->wrIdx is checked for Bind9 */
wolfSSL_BIO_method_type(biowr) == WOLFSSL_BIO_BIO &&
wolfSSL_BIO_wpending(biowr) != 0 &&
/* Not sure this pending check is necessary but let's double
* check that the read BIO is empty before we signal a write
* need */
wolfSSL_BIO_supports_pending(biord) &&
wolfSSL_BIO_ctrl_pending(biord) == 0) {
/* Let's signal to the app layer that we have
* data pending that needs to be sent. */
return WOLFSSL_CBIO_ERR_WANT_WRITE;
}
else if (biord->type == WOLFSSL_BIO_SOCKET) {
if (recvd == 0) {
WOLFSSL_MSG("SslBioReceive connection closed");
return WOLFSSL_CBIO_ERR_CONN_CLOSE;
}
#ifdef USE_WOLFSSL_IO
recvd = TranslateIoReturnCode(recvd, biord->num.fd,
SOCKET_RECEIVING);
#endif
return recvd;
}
/* If retry and read flags are set, return WANT_READ */
if ((biord->flags & WOLFSSL_BIO_FLAG_READ) &&
(biord->flags & WOLFSSL_BIO_FLAG_RETRY)) {
return WOLFSSL_CBIO_ERR_WANT_READ;
}
WOLFSSL_MSG("BIO general error");
return WOLFSSL_CBIO_ERR_GENERAL;
}
return recvd;
}
/* Use the WOLFSSL read BIO for receiving data. This is set by the function
* wolfSSL_set_bio and can also be set by wolfSSL_CTX_SetIORecv.
*
* ssl WOLFSSL struct passed in that has this function set as the receive
* callback.
* buf buffer to fill with data read
* sz size of buf buffer
* ctx a user set context
*
* returns the amount of data read or want read. See WOLFSSL_CBIO_ERR_* values.
*/
int SslBioReceive(WOLFSSL* ssl, char* buf, int sz, void* ctx)
{
WOLFSSL_ENTER("SslBioReceive");
(void)ctx;
return BioReceiveInternal(ssl->biord, ssl->biowr, buf, sz);
}
/* Use the WOLFSSL write BIO for sending data. This is set by the function
* wolfSSL_set_bio and can also be set by wolfSSL_CTX_SetIOSend.
*
* ssl WOLFSSL struct passed in that has this function set as the send callback.
* buf buffer with data to write out
* sz size of buf buffer
* ctx a user set context
*
* returns the amount of data sent or want send. See WOLFSSL_CBIO_ERR_* values.
*/
int SslBioSend(WOLFSSL* ssl, char *buf, int sz, void *ctx)
{
int sent = WC_NO_ERR_TRACE(WOLFSSL_CBIO_ERR_GENERAL);
WOLFSSL_ENTER("SslBioSend");
if (ssl->biowr == NULL) {
WOLFSSL_MSG("WOLFSSL biowr not set");
return WOLFSSL_CBIO_ERR_GENERAL;
}
sent = wolfSSL_BIO_write(ssl->biowr, buf, sz);
if (sent <= 0) {
if (ssl->biowr->type == WOLFSSL_BIO_SOCKET) {
#ifdef USE_WOLFSSL_IO
sent = TranslateIoReturnCode(sent, ssl->biowr->num.fd,
SOCKET_SENDING);
#endif
return sent;
}
else if (ssl->biowr->type == WOLFSSL_BIO_BIO) {
if (sent == WOLFSSL_BIO_ERROR) {
WOLFSSL_MSG("\tWould Block");
return WOLFSSL_CBIO_ERR_WANT_WRITE;
}
}
/* If retry and write flags are set, return WANT_WRITE */
if ((ssl->biord->flags & WOLFSSL_BIO_FLAG_WRITE) &&
(ssl->biord->flags & WOLFSSL_BIO_FLAG_RETRY)) {
return WOLFSSL_CBIO_ERR_WANT_WRITE;
}
return WOLFSSL_CBIO_ERR_GENERAL;
}
(void)ctx;
return sent;
}
#endif /* !NO_BIO */
#endif /* OPENSSL_EXTRA */
#ifdef USE_WOLFSSL_IO
/* The receive embedded callback
* return : nb bytes read, or error
*/
int EmbedReceive(WOLFSSL *ssl, char *buf, int sz, void *ctx)
{
int recvd;
#ifndef WOLFSSL_LINUXKM
int sd = *(int*)ctx;
#else
struct socket *sd = (struct socket*)ctx;
#endif
recvd = wolfIO_Recv(sd, buf, sz, ssl->rflags);
if (recvd < 0) {
WOLFSSL_MSG("Embed Receive error");
}
else if (recvd == 0) {
WOLFSSL_MSG("Embed receive connection closed");
return WOLFSSL_CBIO_ERR_CONN_CLOSE;
}
return recvd;
}
/* The send embedded callback
* return : nb bytes sent, or error
*/
int EmbedSend(WOLFSSL* ssl, char *buf, int sz, void *ctx)
{
int sent;
#ifndef WOLFSSL_LINUXKM
int sd = *(int*)ctx;
#else
struct socket *sd = (struct socket*)ctx;
#endif
#ifdef WOLFSSL_MAX_SEND_SZ
if (sz > WOLFSSL_MAX_SEND_SZ)
sz = WOLFSSL_MAX_SEND_SZ;
#endif
sent = wolfIO_Send(sd, buf, sz, ssl->wflags);
if (sent < 0) {
WOLFSSL_MSG("Embed Send error");
}
return sent;
}
#ifdef WOLFSSL_DTLS
#include <wolfssl/wolfcrypt/sha.h>
#if defined(NUCLEUS_PLUS_2_3)
STATIC INT32 nucyassl_recv(INT sd, CHAR *buf, UINT16 sz, INT16 flags)
{
int recvd;
/* Read data from socket */
recvd = NU_Recv(sd, buf, sz, flags);
if (recvd < 0) {
if (recvd == NU_NOT_CONNECTED) {
recvd = 0;
} else {
Nucleus_Net_Errno = recvd;
recvd = WOLFSSL_FATAL_ERROR;
}
} else {
Nucleus_Net_Errno = 0;
}
return (recvd);
}
STATIC int nucyassl_send(INT sd, CHAR *buf, UINT16 sz, INT16 flags)
{
int sent;
/* Write data to socket */
sent = NU_Send(sd, buf, sz, flags);
if (sent < 0) {
Nucleus_Net_Errno = sent;
sent = WOLFSSL_FATAL_ERROR;
} else {
Nucleus_Net_Errno = 0;
}
return sent;
}
#define SELECT_FUNCTION nucyassl_select
int nucyassl_select(INT sd, UINT32 timeout)
{
FD_SET readfs;
STATUS status;
/* Init fs data for socket */
NU_FD_Init(&readfs);
NU_FD_Set(sd, &readfs);
/* Wait for data to arrive */
status = NU_Select((sd + 1), &readfs, NU_NULL, NU_NULL,
(timeout * NU_TICKS_PER_SECOND));
if (status < 0) {
Nucleus_Net_Errno = status;
status = WOLFSSL_FATAL_ERROR;
}
return status;
}
#define sockaddr_storage addr_struct
#define sockaddr addr_struct
STATIC INT32 nucyassl_recvfrom(INT sd, CHAR *buf, UINT16 sz, INT16 flags,
SOCKADDR *peer, XSOCKLENT *peersz)
{
int recvd;
memset(peer, 0, sizeof(struct addr_struct));
recvd = NU_Recv_From(sd, buf, sz, flags, (struct addr_struct *) peer,
(INT16*) peersz);
if (recvd < 0) {
Nucleus_Net_Errno = recvd;
recvd = WOLFSSL_FATAL_ERROR;
} else {
Nucleus_Net_Errno = 0;
}
return recvd;
}
STATIC int nucyassl_sendto(INT sd, CHAR *buf, UINT16 sz, INT16 flags,
const SOCKADDR *peer, INT16 peersz)
{
int sent;
sent = NU_Send_To(sd, buf, sz, flags, (const struct addr_struct *) peer,
peersz);
if (sent < 0) {
Nucleus_Net_Errno = sent;
sent = WOLFSSL_FATAL_ERROR;
} else {
Nucleus_Net_Errno = 0;
}
return sent;
}
#endif /* NUCLEUS_PLUS_2_3 */
#ifndef DTLS_SENDTO_FUNCTION
#define DTLS_SENDTO_FUNCTION sendto
#endif
#ifndef DTLS_RECVFROM_FUNCTION
#define DTLS_RECVFROM_FUNCTION recvfrom
#endif
int sockAddrEqual(
SOCKADDR_S *a, XSOCKLENT aLen, SOCKADDR_S *b, XSOCKLENT bLen)
{
if (aLen != bLen)
return 0;
if (a->ss_family != b->ss_family)
return 0;
if (a->ss_family == WOLFSSL_IP4) {
if (aLen < (XSOCKLENT)sizeof(SOCKADDR_IN))
return 0;
if (((SOCKADDR_IN*)a)->sin_port != ((SOCKADDR_IN*)b)->sin_port)
return 0;
if (((SOCKADDR_IN*)a)->sin_addr.s_addr !=
((SOCKADDR_IN*)b)->sin_addr.s_addr)
return 0;
return 1;
}
#ifdef WOLFSSL_IPV6
if (a->ss_family == WOLFSSL_IP6) {
SOCKADDR_IN6 *a6, *b6;
if (aLen < (XSOCKLENT)sizeof(SOCKADDR_IN6))
return 0;
a6 = (SOCKADDR_IN6*)a;
b6 = (SOCKADDR_IN6*)b;
if (((SOCKADDR_IN6*)a)->sin6_port != ((SOCKADDR_IN6*)b)->sin6_port)
return 0;
if (XMEMCMP((void*)&a6->sin6_addr, (void*)&b6->sin6_addr,
sizeof(a6->sin6_addr)) != 0)
return 0;
return 1;
}
#endif /* WOLFSSL_IPV6 */
return 0;
}
#ifndef WOLFSSL_IPV6
static int PeerIsIpv6(const SOCKADDR_S *peer, XSOCKLENT len)
{
if (len < (XSOCKLENT)sizeof(peer->ss_family))
return 0;
return peer->ss_family == WOLFSSL_IP6;
}
#endif /* !WOLFSSL_IPV6 */
static int isDGramSock(int sfd)
{
int type = 0;
/* optvalue 'type' is of size int */
XSOCKLENT length = (XSOCKLENT)sizeof(type);
if (getsockopt(sfd, SOL_SOCKET, SO_TYPE, (XSOCKOPT_TYPE_OPTVAL_TYPE)&type,
&length) == 0 && type != SOCK_DGRAM) {
return 0;
}
else {
return 1;
}
}
/* The receive embedded callback
* return : nb bytes read, or error
*/
int EmbedReceiveFrom(WOLFSSL *ssl, char *buf, int sz, void *ctx)
{
WOLFSSL_DTLS_CTX* dtlsCtx = (WOLFSSL_DTLS_CTX*)ctx;
int recvd;
int sd = dtlsCtx->rfd;
int dtls_timeout = wolfSSL_dtls_get_current_timeout(ssl);
byte doDtlsTimeout;
SOCKADDR_S lclPeer;
SOCKADDR_S* peer;
XSOCKLENT peerSz = 0;
#ifndef NO_ASN_TIME
word32 start = 0;
#elif !defined(DTLS_RECEIVEFROM_NO_TIMEOUT_ON_INVALID_PEER)
word32 invalidPeerPackets = 0;
#endif
int newPeer = 0;
int ret = 0;
WOLFSSL_ENTER("EmbedReceiveFrom");
(void)ret; /* possibly unused */
XMEMSET(&lclPeer, 0, sizeof(lclPeer));
#ifdef WOLFSSL_RW_THREADED
if (wc_LockRwLock_Rd(&ssl->buffers.dtlsCtx.peerLock) != 0)
return WOLFSSL_CBIO_ERR_GENERAL;
#endif
if (dtlsCtx->connected) {
peer = NULL;
}
else if (dtlsCtx->userSet) {
#ifndef WOLFSSL_IPV6
if (PeerIsIpv6((SOCKADDR_S*)dtlsCtx->peer.sa, dtlsCtx->peer.sz)) {
WOLFSSL_MSG("ipv6 dtls peer set but no ipv6 support compiled");
ret = WOLFSSL_CBIO_ERR_GENERAL;
}
#endif
peer = &lclPeer;
peerSz = sizeof(lclPeer);
}
else {
/* Store the peer address. It is used to calculate the DTLS cookie. */
newPeer = dtlsCtx->peer.sa == NULL || !ssl->options.dtlsStateful;
peer = &lclPeer;
if (dtlsCtx->peer.sa != NULL) {
XMEMCPY(peer, (SOCKADDR_S*)dtlsCtx->peer.sa, MIN(sizeof(lclPeer),
dtlsCtx->peer.sz));
}
peerSz = sizeof(lclPeer);
}
#ifdef WOLFSSL_RW_THREADED
/* We make a copy above to avoid holding the lock for the entire function */
if (wc_UnLockRwLock(&ssl->buffers.dtlsCtx.peerLock) != 0)
return WOLFSSL_CBIO_ERR_GENERAL;
#endif
if (ret != 0)
return ret;
/* Don't use ssl->options.handShakeDone since it is true even if
* we are in the process of renegotiation */
doDtlsTimeout = ssl->options.handShakeState != HANDSHAKE_DONE;
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls && IsAtLeastTLSv1_3(ssl->version)) {
doDtlsTimeout = doDtlsTimeout || ssl->dtls13Rtx.rtxRecords != NULL;
#ifdef WOLFSSL_RW_THREADED
ret = wc_LockMutex(&ssl->dtls13Rtx.mutex);
if (ret != 0)
return ret;
#endif
doDtlsTimeout = doDtlsTimeout ||
(ssl->dtls13FastTimeout && ssl->dtls13Rtx.seenRecords != NULL);
#ifdef WOLFSSL_RW_THREADED
wc_UnLockMutex(&ssl->dtls13Rtx.mutex);
#endif
}
#endif /* WOLFSSL_DTLS13 */
do {
if (!doDtlsTimeout) {
dtls_timeout = 0;
}
else {
#ifndef NO_ASN_TIME
if (start == 0) {
start = LowResTimer();
}
else {
dtls_timeout -= (int) (LowResTimer() - start);
start = LowResTimer();
if (dtls_timeout < 0 || dtls_timeout > DTLS_TIMEOUT_MAX)
return WOLFSSL_CBIO_ERR_TIMEOUT;
}
#endif
}
if (!wolfSSL_get_using_nonblock(ssl)) {
#ifdef USE_WINDOWS_API
DWORD timeout = dtls_timeout * 1000;
#ifdef WOLFSSL_DTLS13
if (wolfSSL_dtls13_use_quick_timeout(ssl) &&
IsAtLeastTLSv1_3(ssl->version))
timeout /= 4;
#endif /* WOLFSSL_DTLS13 */
#else
struct timeval timeout;
XMEMSET(&timeout, 0, sizeof(timeout));
#ifdef WOLFSSL_DTLS13
if (wolfSSL_dtls13_use_quick_timeout(ssl) &&
IsAtLeastTLSv1_3(ssl->version)) {
if (dtls_timeout >= 4)
timeout.tv_sec = dtls_timeout / 4;
else
timeout.tv_usec = dtls_timeout * 1000000 / 4;
}
else
#endif /* WOLFSSL_DTLS13 */
timeout.tv_sec = dtls_timeout;
#endif /* USE_WINDOWS_API */
if (setsockopt(sd, SOL_SOCKET, SO_RCVTIMEO, (char*)&timeout,
sizeof(timeout)) != 0) {
WOLFSSL_MSG("setsockopt rcvtimeo failed");
}
}
#ifndef NO_ASN_TIME
else if (IsSCR(ssl)) {
if (ssl->dtls_start_timeout &&
LowResTimer() - ssl->dtls_start_timeout >
(word32)dtls_timeout) {
ssl->dtls_start_timeout = 0;
return WOLFSSL_CBIO_ERR_TIMEOUT;
}
else if (!ssl->dtls_start_timeout) {
ssl->dtls_start_timeout = LowResTimer();
}
}
#endif /* !NO_ASN_TIME */
{
XSOCKLENT inPeerSz = peerSz;
recvd = (int)DTLS_RECVFROM_FUNCTION(sd, buf, (size_t)sz,
ssl->rflags, (SOCKADDR*)peer, peer != NULL ? &inPeerSz : NULL);
/* Truncate peerSz. From the RECV(2) man page
* The returned address is truncated if the buffer provided is too
* small; in this case, addrlen will return a value greater than was
* supplied to the call.
*/
peerSz = MIN(peerSz, inPeerSz);
}
recvd = TranslateIoReturnCode(recvd, sd, SOCKET_RECEIVING);
if (recvd < 0) {
WOLFSSL_MSG("Embed Receive From error");
if (recvd == WC_NO_ERR_TRACE(WOLFSSL_CBIO_ERR_WANT_READ) &&
!wolfSSL_dtls_get_using_nonblock(ssl)) {
recvd = WOLFSSL_CBIO_ERR_TIMEOUT;
}
return recvd;
}
else if (recvd == 0) {
if (!isDGramSock(sd)) {
/* Closed TCP connection */
recvd = WOLFSSL_CBIO_ERR_CONN_CLOSE;
}
else {
WOLFSSL_MSG("Ignoring 0-length datagram");
continue;
}
return recvd;
}
else if (dtlsCtx->connected) {
/* Nothing to do */
}
else if (dtlsCtx->userSet) {
/* Check we received the packet from the correct peer */
int ignore = 0;
#ifdef WOLFSSL_RW_THREADED
if (wc_LockRwLock_Rd(&ssl->buffers.dtlsCtx.peerLock) != 0)
return WOLFSSL_CBIO_ERR_GENERAL;
#endif
if (dtlsCtx->peer.sz > 0 &&
(peerSz != (XSOCKLENT)dtlsCtx->peer.sz ||
!sockAddrEqual(peer, peerSz, (SOCKADDR_S*)dtlsCtx->peer.sa,
dtlsCtx->peer.sz))) {
WOLFSSL_MSG(" Ignored packet from invalid peer");
ignore = 1;
}
#ifdef WOLFSSL_RW_THREADED
if (wc_UnLockRwLock(&ssl->buffers.dtlsCtx.peerLock) != 0)
return WOLFSSL_CBIO_ERR_GENERAL;
#endif
if (ignore) {
#if defined(NO_ASN_TIME) && \
!defined(DTLS_RECEIVEFROM_NO_TIMEOUT_ON_INVALID_PEER)
if (doDtlsTimeout) {
invalidPeerPackets++;
if (invalidPeerPackets > DTLS_RECEIVEFROM_MAX_INVALID_PEER)
return wolfSSL_dtls_get_using_nonblock(ssl)
? WOLFSSL_CBIO_ERR_WANT_READ
: WOLFSSL_CBIO_ERR_TIMEOUT;
}
#endif /* NO_ASN_TIME && !DTLS_RECEIVEFROM_NO_TIMEOUT_ON_INVALID_PEER */
continue;
}
}
else {
if (newPeer) {
/* Store size of saved address. Locking handled internally. */
if (wolfSSL_dtls_set_peer(ssl, peer, peerSz) != WOLFSSL_SUCCESS)
return WOLFSSL_CBIO_ERR_GENERAL;
}
#ifndef WOLFSSL_PEER_ADDRESS_CHANGES
else {
ret = 0;
#ifdef WOLFSSL_RW_THREADED
if (wc_LockRwLock_Rd(&ssl->buffers.dtlsCtx.peerLock) != 0)
return WOLFSSL_CBIO_ERR_GENERAL;
#endif /* WOLFSSL_RW_THREADED */
if (!sockAddrEqual(peer, peerSz, (SOCKADDR_S*)dtlsCtx->peer.sa,
dtlsCtx->peer.sz)) {
ret = WOLFSSL_CBIO_ERR_GENERAL;
}
#ifdef WOLFSSL_RW_THREADED
if (wc_UnLockRwLock(&ssl->buffers.dtlsCtx.peerLock) != 0)
return WOLFSSL_CBIO_ERR_GENERAL;
#endif /* WOLFSSL_RW_THREADED */
if (ret != 0)
return ret;
}
#endif /* !WOLFSSL_PEER_ADDRESS_CHANGES */
}
#ifndef NO_ASN_TIME
ssl->dtls_start_timeout = 0;
#endif /* !NO_ASN_TIME */
break;
} while (1);
return recvd;
}
/* The send embedded callback
* return : nb bytes sent, or error
*/
int EmbedSendTo(WOLFSSL* ssl, char *buf, int sz, void *ctx)
{
WOLFSSL_DTLS_CTX* dtlsCtx = (WOLFSSL_DTLS_CTX*)ctx;
int sd = dtlsCtx->wfd;
int sent;
const SOCKADDR_S* peer = NULL;
XSOCKLENT peerSz = 0;
WOLFSSL_ENTER("EmbedSendTo");
if (!isDGramSock(sd)) {
/* Probably a TCP socket. peer and peerSz MUST be NULL and 0 */
}
else if (!dtlsCtx->connected) {
peer = (const SOCKADDR_S*)dtlsCtx->peer.sa;
peerSz = dtlsCtx->peer.sz;
#ifndef WOLFSSL_IPV6
if (PeerIsIpv6(peer, peerSz)) {
WOLFSSL_MSG("ipv6 dtls peer set but no ipv6 support compiled");
return NOT_COMPILED_IN;
}
#endif
}
sent = (int)DTLS_SENDTO_FUNCTION(sd, buf, (size_t)sz, ssl->wflags,
(const SOCKADDR*)peer, peerSz);
sent = TranslateIoReturnCode(sent, sd, SOCKET_SENDING);
if (sent < 0) {
WOLFSSL_MSG("Embed Send To error");
}
return sent;
}
#ifdef WOLFSSL_MULTICAST
/* The alternate receive embedded callback for Multicast
* return : nb bytes read, or error
*/
int EmbedReceiveFromMcast(WOLFSSL *ssl, char *buf, int sz, void *ctx)
{
WOLFSSL_DTLS_CTX* dtlsCtx = (WOLFSSL_DTLS_CTX*)ctx;
int recvd;
int sd = dtlsCtx->rfd;
WOLFSSL_ENTER("EmbedReceiveFromMcast");
recvd = (int)DTLS_RECVFROM_FUNCTION(sd, buf, (size_t)sz, ssl->rflags, NULL, NULL);
recvd = TranslateIoReturnCode(recvd, sd, SOCKET_RECEIVING);
if (recvd < 0) {
WOLFSSL_MSG("Embed Receive From error");
if (recvd == WC_NO_ERR_TRACE(WOLFSSL_CBIO_ERR_WANT_READ) &&
!wolfSSL_dtls_get_using_nonblock(ssl)) {
recvd = WOLFSSL_CBIO_ERR_TIMEOUT;
}
}
return recvd;
}
#endif /* WOLFSSL_MULTICAST */
/* The DTLS Generate Cookie callback
* return : number of bytes copied into buf, or error
*/
int EmbedGenerateCookie(WOLFSSL* ssl, byte *buf, int sz, void *ctx)
{
int sd = ssl->wfd;
SOCKADDR_S peer;
XSOCKLENT peerSz = sizeof(peer);
byte digest[WC_SHA256_DIGEST_SIZE];
int ret = 0;
(void)ctx;
XMEMSET(&peer, 0, sizeof(peer));
if (getpeername(sd, (SOCKADDR*)&peer, &peerSz) != 0) {
WOLFSSL_MSG("getpeername failed in EmbedGenerateCookie");
return GEN_COOKIE_E;
}
ret = wc_Sha256Hash((byte*)&peer, peerSz, digest);
if (ret != 0)
return ret;
if (sz > WC_SHA256_DIGEST_SIZE)
sz = WC_SHA256_DIGEST_SIZE;
XMEMCPY(buf, digest, (size_t)sz);
return sz;
}
#endif /* WOLFSSL_DTLS */
#ifdef WOLFSSL_SESSION_EXPORT
#ifdef WOLFSSL_DTLS
static int EmbedGetPeerDTLS(WOLFSSL* ssl, char* ip, int* ipSz,
unsigned short* port, int* fam)
{
SOCKADDR_S peer;
word32 peerSz;
int ret;
/* get peer information stored in ssl struct */
peerSz = sizeof(SOCKADDR_S);
if ((ret = wolfSSL_dtls_get_peer(ssl, (void*)&peer, &peerSz))
!= WOLFSSL_SUCCESS) {
return ret;
}
/* extract family, ip, and port */
*fam = ((SOCKADDR_S*)&peer)->ss_family;
switch (*fam) {
case WOLFSSL_IP4:
if (XINET_NTOP(*fam, &(((SOCKADDR_IN*)&peer)->sin_addr),
ip, *ipSz) == NULL) {
WOLFSSL_MSG("XINET_NTOP error");
return SOCKET_ERROR_E;
}
*port = XNTOHS(((SOCKADDR_IN*)&peer)->sin_port);
break;
case WOLFSSL_IP6:
#ifdef WOLFSSL_IPV6
if (XINET_NTOP(*fam, &(((SOCKADDR_IN6*)&peer)->sin6_addr),
ip, *ipSz) == NULL) {
WOLFSSL_MSG("XINET_NTOP error");
return SOCKET_ERROR_E;
}
*port = XNTOHS(((SOCKADDR_IN6*)&peer)->sin6_port);
#endif /* WOLFSSL_IPV6 */
break;
default:
WOLFSSL_MSG("Unknown family type");
return SOCKET_ERROR_E;
}
ip[*ipSz - 1] = '\0'; /* make sure has terminator */
*ipSz = (word16)XSTRLEN(ip);
return WOLFSSL_SUCCESS;
}
static int EmbedSetPeerDTLS(WOLFSSL* ssl, char* ip, int ipSz,
unsigned short port, int fam)
{
int ret;
SOCKADDR_S addr;
/* sanity checks on arguments */
if (ssl == NULL || ip == NULL || ipSz < 0 || ipSz > MAX_EXPORT_IP) {
return BAD_FUNC_ARG;
}
addr.ss_family = fam;
switch (addr.ss_family) {
case WOLFSSL_IP4:
if (XINET_PTON(addr.ss_family, ip,
&(((SOCKADDR_IN*)&addr)->sin_addr)) <= 0) {
WOLFSSL_MSG("XINET_PTON error");
return SOCKET_ERROR_E;
}
((SOCKADDR_IN*)&addr)->sin_port = XHTONS(port);
/* peer sa is free'd in wolfSSL_ResourceFree */
if ((ret = wolfSSL_dtls_set_peer(ssl, (SOCKADDR_IN*)&addr,
sizeof(SOCKADDR_IN)))!= WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Import DTLS peer info error");
return ret;
}
break;
case WOLFSSL_IP6:
#ifdef WOLFSSL_IPV6
if (XINET_PTON(addr.ss_family, ip,
&(((SOCKADDR_IN6*)&addr)->sin6_addr)) <= 0) {
WOLFSSL_MSG("XINET_PTON error");
return SOCKET_ERROR_E;
}
((SOCKADDR_IN6*)&addr)->sin6_port = XHTONS(port);
/* peer sa is free'd in wolfSSL_ResourceFree */
if ((ret = wolfSSL_dtls_set_peer(ssl, (SOCKADDR_IN6*)&addr,
sizeof(SOCKADDR_IN6)))!= WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Import DTLS peer info error");
return ret;
}
#endif /* WOLFSSL_IPV6 */
break;
default:
WOLFSSL_MSG("Unknown address family");
return BUFFER_E;
}
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_DTLS */
/* get the peer information in human readable form (ip, port, family)
* default function assumes BSD sockets
* can be overridden with wolfSSL_CTX_SetIOGetPeer
*/
int EmbedGetPeer(WOLFSSL* ssl, char* ip, int* ipSz,
unsigned short* port, int* fam)
{
if (ssl == NULL || ip == NULL || ipSz == NULL ||
port == NULL || fam == NULL) {
return BAD_FUNC_ARG;
}
if (ssl->options.dtls) {
#ifdef WOLFSSL_DTLS
return EmbedGetPeerDTLS(ssl, ip, ipSz, port, fam);
#else
return NOT_COMPILED_IN;
#endif
}
else {
*port = wolfSSL_get_fd(ssl);
ip[0] = '\0';
*ipSz = 0;
*fam = 0;
return WOLFSSL_SUCCESS;
}
}
/* set the peer information in human readable form (ip, port, family)
* default function assumes BSD sockets
* can be overridden with wolfSSL_CTX_SetIOSetPeer
*/
int EmbedSetPeer(WOLFSSL* ssl, char* ip, int ipSz,
unsigned short port, int fam)
{
/* sanity checks on arguments */
if (ssl == NULL || ip == NULL || ipSz < 0 || ipSz > MAX_EXPORT_IP) {
return BAD_FUNC_ARG;
}
if (ssl->options.dtls) {
#ifdef WOLFSSL_DTLS
return EmbedSetPeerDTLS(ssl, ip, ipSz, port, fam);
#else
return NOT_COMPILED_IN;
#endif
}
else {
wolfSSL_set_fd(ssl, port);
(void)fam;
return WOLFSSL_SUCCESS;
}
}
#endif /* WOLFSSL_SESSION_EXPORT */
#ifdef WOLFSSL_LINUXKM
static int linuxkm_send(struct socket *socket, void *buf, int size,
unsigned int flags)
{
int ret;
struct kvec vec = { .iov_base = buf, .iov_len = size };
struct msghdr msg = { .msg_flags = flags };
ret = kernel_sendmsg(socket, &msg, &vec, 1, size);
return ret;
}
static int linuxkm_recv(struct socket *socket, void *buf, int size,
unsigned int flags)
{
int ret;
struct kvec vec = { .iov_base = buf, .iov_len = size };
struct msghdr msg = { .msg_flags = flags };
ret = kernel_recvmsg(socket, &msg, &vec, 1, size, msg.msg_flags);
return ret;
}
#endif /* WOLFSSL_LINUXKM */
int wolfIO_Recv(SOCKET_T sd, char *buf, int sz, int rdFlags)
{
int recvd;
recvd = (int)RECV_FUNCTION(sd, buf, (size_t)sz, rdFlags);
recvd = TranslateIoReturnCode(recvd, sd, SOCKET_RECEIVING);
return recvd;
}
int wolfIO_Send(SOCKET_T sd, char *buf, int sz, int wrFlags)
{
int sent;
sent = (int)SEND_FUNCTION(sd, buf, (size_t)sz, wrFlags);
sent = TranslateIoReturnCode(sent, sd, SOCKET_SENDING);
return sent;
}
#if defined(WOLFSSL_HAVE_BIO_ADDR) && defined(WOLFSSL_DTLS) && defined(OPENSSL_EXTRA)
int wolfIO_RecvFrom(SOCKET_T sd, WOLFSSL_BIO_ADDR *addr, char *buf, int sz, int rdFlags)
{
int recvd;
socklen_t addr_len = (socklen_t)sizeof(*addr);
recvd = (int)DTLS_RECVFROM_FUNCTION(sd, buf, (size_t)sz, rdFlags,
addr ? &addr->sa : NULL,
addr ? &addr_len : 0);
recvd = TranslateIoReturnCode(recvd, sd, SOCKET_RECEIVING);
return recvd;
}
int wolfIO_SendTo(SOCKET_T sd, WOLFSSL_BIO_ADDR *addr, char *buf, int sz, int wrFlags)
{
int sent;
socklen_t addr_len = addr ? wolfSSL_BIO_ADDR_size(addr) : 0;
sent = (int)DTLS_SENDTO_FUNCTION(sd, buf, (size_t)sz, wrFlags,
addr ? &addr->sa : NULL,
addr_len);
sent = TranslateIoReturnCode(sent, sd, SOCKET_SENDING);
return sent;
}
#endif /* WOLFSSL_HAVE_BIO_ADDR && WOLFSSL_DTLS && OPENSSL_EXTRA */
#endif /* USE_WOLFSSL_IO */
#ifdef HAVE_HTTP_CLIENT
#ifndef HAVE_IO_TIMEOUT
#define io_timeout_sec 0
#else
#ifndef DEFAULT_TIMEOUT_SEC
#define DEFAULT_TIMEOUT_SEC 0 /* no timeout */
#endif
static int io_timeout_sec = DEFAULT_TIMEOUT_SEC;
void wolfIO_SetTimeout(int to_sec)
{
io_timeout_sec = to_sec;
}
int wolfIO_SetBlockingMode(SOCKET_T sockfd, int non_blocking)
{
int ret = 0;
#ifdef USE_WINDOWS_API
unsigned long blocking = non_blocking;
ret = ioctlsocket(sockfd, FIONBIO, &blocking);
if (ret == SOCKET_ERROR)
ret = WOLFSSL_FATAL_ERROR;
#elif defined(__WATCOMC__) && defined(__OS2__)
if (ioctl(sockfd, FIONBIO, &non_blocking) == -1)
ret = WOLFSSL_FATAL_ERROR;
#else
ret = fcntl(sockfd, F_GETFL, 0);
if (ret >= 0) {
if (non_blocking)
ret |= O_NONBLOCK;
else
ret &= ~O_NONBLOCK;
ret = fcntl(sockfd, F_SETFL, ret);
}
#endif
if (ret < 0) {
WOLFSSL_MSG("wolfIO_SetBlockingMode failed");
}
return ret;
}
int wolfIO_Select(SOCKET_T sockfd, int to_sec)
{
fd_set rfds, wfds;
int nfds = 0;
struct timeval timeout = { (to_sec > 0) ? to_sec : 0, 0};
int ret;
#ifndef USE_WINDOWS_API
nfds = (int)sockfd + 1;
if ((sockfd < 0) || (sockfd >= FD_SETSIZE)) {
WOLFSSL_MSG("socket fd out of FDSET range");
return WOLFSSL_FATAL_ERROR;
}
#endif
FD_ZERO(&rfds);
FD_SET(sockfd, &rfds);
wfds = rfds;
ret = select(nfds, &rfds, &wfds, NULL, &timeout);
if (ret == 0) {
#ifdef DEBUG_HTTP
fprintf(stderr, "Timeout: %d\n", ret);
#endif
return HTTP_TIMEOUT;
}
else if (ret > 0) {
if (FD_ISSET(sockfd, &wfds)) {
if (!FD_ISSET(sockfd, &rfds)) {
return 0;
}
}
}
WOLFSSL_MSG("Select error");
return SOCKET_ERROR_E;
}
#endif /* HAVE_IO_TIMEOUT */
static word32 wolfIO_Word16ToString(char* d, word16 number)
{
word32 i = 0;
word16 order = 10000;
word16 digit;
if (d == NULL)
return i;
if (number == 0)
d[i++] = '0';
else {
while (order) {
digit = number / order;
if (i > 0 || digit != 0)
d[i++] = (char)digit + '0';
if (digit != 0)
number = (word16) (number % (digit * order));
order = (order > 1) ? order / 10 : 0;
}
}
d[i] = 0; /* null terminate */
return i;
}
int wolfIO_TcpConnect(SOCKET_T* sockfd, const char* ip, word16 port, int to_sec)
{
#ifdef HAVE_SOCKADDR
int ret = 0;
SOCKADDR_S addr;
socklen_t sockaddr_len;
#if defined(HAVE_GETADDRINFO)
/* use getaddrinfo */
ADDRINFO hints;
ADDRINFO* answer = NULL;
char strPort[6];
#else
/* use gethostbyname */
#if defined(__GLIBC__) && (__GLIBC__ >= 2) && defined(__USE_MISC) && \
!defined(SINGLE_THREADED)
HOSTENT entry_buf, *entry = NULL;
char *ghbn_r_buf = NULL;
int ghbn_r_errno;
#else
HOSTENT *entry;
#endif
#ifdef WOLFSSL_IPV6
SOCKADDR_IN6 *sin;
#else
SOCKADDR_IN *sin;
#endif /* WOLFSSL_IPV6 */
#endif /* HAVE_GETADDRINFO */
if (sockfd == NULL || ip == NULL) {
return WOLFSSL_FATAL_ERROR;
}
#if !defined(HAVE_GETADDRINFO)
#ifdef WOLFSSL_IPV6
sockaddr_len = sizeof(SOCKADDR_IN6);
#else
sockaddr_len = sizeof(SOCKADDR_IN);
#endif /* WOLFSSL_IPV6 */
#endif /* !HAVE_GETADDRINFO */
XMEMSET(&addr, 0, sizeof(addr));
#ifdef WOLFIO_DEBUG
printf("TCP Connect: %s:%d\n", ip, port);
#endif
/* use gethostbyname for c99 */
#if defined(HAVE_GETADDRINFO)
XMEMSET(&hints, 0, sizeof(hints));
#ifdef WOLFSSL_IPV6
hints.ai_family = AF_UNSPEC; /* detect IPv4 or IPv6 */
#else
hints.ai_family = AF_INET; /* detect only IPv4 */
#endif
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
if (wolfIO_Word16ToString(strPort, port) == 0) {
WOLFSSL_MSG("invalid port number for responder");
return WOLFSSL_FATAL_ERROR;
}
if (getaddrinfo(ip, strPort, &hints, &answer) < 0 || answer == NULL) {
WOLFSSL_MSG("no addr info for responder");
return WOLFSSL_FATAL_ERROR;
}
sockaddr_len = answer->ai_addrlen;
XMEMCPY(&addr, answer->ai_addr, (size_t)sockaddr_len);
freeaddrinfo(answer);
#else
#if defined(__GLIBC__) && (__GLIBC__ >= 2) && defined(__USE_MISC) && \
!defined(SINGLE_THREADED)
/* 2048 is a magic number that empirically works. the header and
* documentation provide no guidance on appropriate buffer size other than
* "if buf is too small, the functions will return ERANGE, and the call
* should be retried with a larger buffer."
*/
ghbn_r_buf = (char *)XMALLOC(2048, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (ghbn_r_buf != NULL) {
gethostbyname_r(ip, &entry_buf, ghbn_r_buf, 2048, &entry, &ghbn_r_errno);
}
#else
entry = gethostbyname(ip);
#endif
if (entry) {
#ifdef WOLFSSL_IPV6
sin = (SOCKADDR_IN6 *)&addr;
sin->sin6_family = AF_INET6;
sin->sin6_port = XHTONS(port);
XMEMCPY(&sin->sin6_addr, entry->h_addr_list[0], entry->h_length);
#else
sin = (SOCKADDR_IN *)&addr;
sin->sin_family = AF_INET;
sin->sin_port = XHTONS(port);
XMEMCPY(&sin->sin_addr.s_addr, entry->h_addr_list[0],
(size_t)entry->h_length);
#endif
}
#if defined(__GLIBC__) && (__GLIBC__ >= 2) && defined(__USE_MISC) && \
!defined(SINGLE_THREADED)
XFREE(ghbn_r_buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
if (entry == NULL) {
WOLFSSL_MSG("no addr info for responder");
return WOLFSSL_FATAL_ERROR;
}
#endif
*sockfd = (SOCKET_T)socket(addr.ss_family, SOCK_STREAM, 0);
#ifdef USE_WINDOWS_API
if (*sockfd == SOCKET_INVALID)
#else
if (*sockfd <= SOCKET_INVALID)
#endif
{
WOLFSSL_MSG("bad socket fd, out of fds?");
*sockfd = SOCKET_INVALID;
return WOLFSSL_FATAL_ERROR;
}
#ifdef HAVE_IO_TIMEOUT
/* if timeout value provided then set socket non-blocking */
if (to_sec > 0) {
wolfIO_SetBlockingMode(*sockfd, 1);
}
#else
(void)to_sec;
#endif /* HAVE_IO_TIMEOUT */
ret = connect(*sockfd, (SOCKADDR *)&addr, sockaddr_len);
#ifdef HAVE_IO_TIMEOUT
if ((ret != 0) && (to_sec > 0)) {
#ifdef USE_WINDOWS_API
if ((ret == SOCKET_ERROR) &&
(wolfSSL_LastError(ret, *sockfd) == SOCKET_EWOULDBLOCK))
#else
if (errno == EINPROGRESS)
#endif
{
/* wait for connect to complete */
ret = wolfIO_Select(*sockfd, to_sec);
/* restore blocking mode */
wolfIO_SetBlockingMode(*sockfd, 0);
}
}
#endif /* HAVE_IO_TIMEOUT */
if (ret != 0) {
WOLFSSL_MSG("Responder tcp connect failed");
CloseSocket(*sockfd);
*sockfd = SOCKET_INVALID;
return WOLFSSL_FATAL_ERROR;
}
return ret;
#else
(void)sockfd;
(void)ip;
(void)port;
(void)to_sec;
return WOLFSSL_FATAL_ERROR;
#endif /* HAVE_SOCKADDR */
}
int wolfIO_TcpBind(SOCKET_T* sockfd, word16 port)
{
#ifdef HAVE_SOCKADDR
int ret = 0;
SOCKADDR_S addr;
socklen_t sockaddr_len = sizeof(SOCKADDR_IN);
SOCKADDR_IN *sin = (SOCKADDR_IN *)&addr;
if (sockfd == NULL || port < 1) {
return WOLFSSL_FATAL_ERROR;
}
XMEMSET(&addr, 0, sizeof(addr));
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = INADDR_ANY;
sin->sin_port = XHTONS(port);
*sockfd = (SOCKET_T)socket(AF_INET, SOCK_STREAM, 0);
#ifdef USE_WINDOWS_API
if (*sockfd == SOCKET_INVALID)
#else
if (*sockfd <= SOCKET_INVALID)
#endif
{
WOLFSSL_MSG("socket failed");
*sockfd = SOCKET_INVALID;
return WOLFSSL_FATAL_ERROR;
}
#if !defined(USE_WINDOWS_API) && !defined(WOLFSSL_MDK_ARM)\
&& !defined(WOLFSSL_KEIL_TCP_NET) && !defined(WOLFSSL_ZEPHYR)
{
int optval = 1;
XSOCKLENT optlen = sizeof(optval);
ret = setsockopt(*sockfd, SOL_SOCKET, SO_REUSEADDR, &optval, optlen);
}
#endif
if (ret == 0)
ret = bind(*sockfd, (SOCKADDR *)sin, sockaddr_len);
if (ret == 0)
ret = listen(*sockfd, SOMAXCONN);
if (ret != 0) {
WOLFSSL_MSG("wolfIO_TcpBind failed");
CloseSocket(*sockfd);
*sockfd = SOCKET_INVALID;
ret = WOLFSSL_FATAL_ERROR;
}
return ret;
#else
(void)sockfd;
(void)port;
return WOLFSSL_FATAL_ERROR;
#endif /* HAVE_SOCKADDR */
}
#ifdef HAVE_SOCKADDR
int wolfIO_TcpAccept(SOCKET_T sockfd, SOCKADDR* peer_addr, XSOCKLENT* peer_len)
{
return (int)accept(sockfd, peer_addr, peer_len);
}
#endif /* HAVE_SOCKADDR */
#ifndef HTTP_SCRATCH_BUFFER_SIZE
#define HTTP_SCRATCH_BUFFER_SIZE 512
#endif
#ifndef MAX_URL_ITEM_SIZE
#define MAX_URL_ITEM_SIZE 80
#endif
int wolfIO_DecodeUrl(const char* url, int urlSz, char* outName, char* outPath,
word16* outPort)
{
int result = -1;
if (url == NULL || urlSz == 0) {
if (outName)
*outName = 0;
if (outPath)
*outPath = 0;
if (outPort)
*outPort = 0;
}
else {
int i, cur;
/* need to break the url down into scheme, address, and port */
/* "http://example.com:8080/" */
/* "http://[::1]:443/" */
if (XSTRNCMP(url, "http://", 7) == 0) {
cur = 7;
} else cur = 0;
i = 0;
if (url[cur] == '[') {
cur++;
/* copy until ']' */
while (i < MAX_URL_ITEM_SIZE-1 && cur < urlSz && url[cur] != 0 &&
url[cur] != ']') {
if (outName)
outName[i] = url[cur];
i++; cur++;
}
cur++; /* skip ']' */
}
else {
while (i < MAX_URL_ITEM_SIZE-1 && cur < urlSz && url[cur] != 0 &&
url[cur] != ':' && url[cur] != '/') {
if (outName)
outName[i] = url[cur];
i++; cur++;
}
}
if (outName)
outName[i] = 0;
/* Need to pick out the path after the domain name */
if (cur < urlSz && url[cur] == ':') {
char port[6];
int j;
word32 bigPort = 0;
i = 0;
cur++;
XMEMSET(port, 0, sizeof(port));
while (i < 6 && cur < urlSz && url[cur] != 0 && url[cur] != '/') {
port[i] = url[cur];
i++; cur++;
}
for (j = 0; j < i; j++) {
if (port[j] < '0' || port[j] > '9') return WOLFSSL_FATAL_ERROR;
bigPort = (bigPort * 10) + (word32)(port[j] - '0');
}
if (outPort)
*outPort = (word16)bigPort;
}
else if (outPort)
*outPort = 80;
if (cur < urlSz && url[cur] == '/') {
i = 0;
while (i < MAX_URL_ITEM_SIZE-1 && cur < urlSz && url[cur] != 0) {
if (outPath)
outPath[i] = url[cur];
i++; cur++;
}
if (outPath)
outPath[i] = 0;
}
else if (outPath) {
outPath[0] = '/';
outPath[1] = 0;
}
result = 0;
}
return result;
}
static int wolfIO_HttpProcessResponseBuf(WolfSSLGenericIORecvCb ioCb,
void* ioCbCtx, byte **recvBuf, int* recvBufSz, int chunkSz, char* start,
int len, int dynType, void* heap)
{
byte* newRecvBuf = NULL;
int newRecvSz = *recvBufSz + chunkSz;
int pos = 0;
WOLFSSL_MSG("Processing HTTP response");
#ifdef WOLFIO_DEBUG
printf("HTTP Chunk %d->%d\n", *recvBufSz, chunkSz);
#endif
(void)heap;
(void)dynType;
if (chunkSz < 0 || len < 0) {
WOLFSSL_MSG("wolfIO_HttpProcessResponseBuf invalid chunk or length size");
return MEMORY_E;
}
if (newRecvSz <= 0) {
WOLFSSL_MSG("wolfIO_HttpProcessResponseBuf new receive size overflow");
return MEMORY_E;
}
newRecvBuf = (byte*)XMALLOC((size_t)newRecvSz, heap, dynType);
if (newRecvBuf == NULL) {
WOLFSSL_MSG("wolfIO_HttpProcessResponseBuf malloc failed");
return MEMORY_E;
}
/* if buffer already exists, then we are growing it */
if (*recvBuf) {
XMEMCPY(&newRecvBuf[pos], *recvBuf, (size_t) *recvBufSz);
XFREE(*recvBuf, heap, dynType);
pos += *recvBufSz;
*recvBuf = NULL;
}
/* copy the remainder of the httpBuf into the respBuf */
if (len != 0) {
if (pos + len <= newRecvSz) {
XMEMCPY(&newRecvBuf[pos], start, (size_t)len);
pos += len;
}
else {
WOLFSSL_MSG("wolfIO_HttpProcessResponseBuf bad size");
XFREE(newRecvBuf, heap, dynType);
return WOLFSSL_FATAL_ERROR;
}
}
/* receive the remainder of chunk */
while (len < chunkSz) {
int rxSz = ioCb((char*)&newRecvBuf[pos], chunkSz-len, ioCbCtx);
if (rxSz > 0) {
len += rxSz;
pos += rxSz;
}
else {
WOLFSSL_MSG("wolfIO_HttpProcessResponseBuf recv failed");
XFREE(newRecvBuf, heap, dynType);
return WOLFSSL_FATAL_ERROR;
}
}
*recvBuf = newRecvBuf;
*recvBufSz = newRecvSz;
return 0;
}
int wolfIO_HttpProcessResponseGenericIO(WolfSSLGenericIORecvCb ioCb,
void* ioCbCtx, const char** appStrList, unsigned char** respBuf,
unsigned char* httpBuf, int httpBufSz, int dynType, void* heap)
{
static const char HTTP_PROTO[] = "HTTP/1.";
static const char HTTP_STATUS_200[] = "200";
int result = 0;
int len = 0;
char *start, *end;
int respBufSz = 0;
int isChunked = 0, chunkSz = 0;
enum phr_state { phr_init, phr_http_start, phr_have_length, phr_have_type,
phr_wait_end, phr_get_chunk_len, phr_get_chunk_data,
phr_http_end
} state = phr_init;
WOLFSSL_ENTER("wolfIO_HttpProcessResponse");
*respBuf = NULL;
start = end = NULL;
do {
if (state == phr_get_chunk_data) {
/* get chunk of data */
result = wolfIO_HttpProcessResponseBuf(ioCb, ioCbCtx, respBuf,
&respBufSz, chunkSz, start, len, dynType, heap);
state = (result != 0) ? phr_http_end : phr_get_chunk_len;
end = NULL;
len = 0;
}
/* read data if no \r\n or first time */
if ((start == NULL) || (end == NULL)) {
if (httpBufSz < len + 1) {
return BUFFER_ERROR; /* can't happen, but Coverity thinks it
* can.
*/
}
result = ioCb((char*)httpBuf+len, httpBufSz-len-1, ioCbCtx);
if (result > 0) {
len += result;
start = (char*)httpBuf;
start[len] = 0;
}
else {
if (result == WC_NO_ERR_TRACE(WOLFSSL_CBIO_ERR_WANT_READ)) {
return OCSP_WANT_READ;
}
WOLFSSL_MSG("wolfIO_HttpProcessResponse recv http from peer failed");
return HTTP_RECV_ERR;
}
}
end = XSTRSTR(start, "\r\n"); /* locate end */
/* handle incomplete rx */
if (end == NULL) {
if (len != 0)
XMEMMOVE(httpBuf, start, (size_t)len);
start = end = NULL;
}
/* when start is "\r\n" */
else if (end == start) {
/* if waiting for end or need chunk len */
if (state == phr_wait_end || state == phr_get_chunk_len) {
state = (isChunked) ? phr_get_chunk_len : phr_http_end;
len -= 2; start += 2; /* skip \r\n */
}
else {
WOLFSSL_MSG("wolfIO_HttpProcessResponse header ended early");
return HTTP_HEADER_ERR;
}
}
else {
*end = 0; /* null terminate */
len -= (int)(end - start) + 2;
/* adjust len to remove the first line including the /r/n */
#ifdef WOLFIO_DEBUG
printf("HTTP Resp: %s\n", start);
#endif
switch (state) {
case phr_init:
/* length of "HTTP/1.x 200" == 12*/
if (XSTRLEN(start) < 12) {
WOLFSSL_MSG("wolfIO_HttpProcessResponse HTTP header "
"too short.");
return HTTP_HEADER_ERR;
}
if (XSTRNCASECMP(start, HTTP_PROTO,
sizeof(HTTP_PROTO) - 1) != 0) {
WOLFSSL_MSG("wolfIO_HttpProcessResponse HTTP header "
"doesn't start with HTTP/1.");
return HTTP_PROTO_ERR;
}
/* +2 for HTTP minor version and space between version and
* status code. */
start += sizeof(HTTP_PROTO) - 1 + 2 ;
if (XSTRNCASECMP(start, HTTP_STATUS_200,
sizeof(HTTP_STATUS_200) - 1) != 0) {
WOLFSSL_MSG("wolfIO_HttpProcessResponse HTTP header "
"doesn't have status code 200.");
return HTTP_STATUS_ERR;
}
state = phr_http_start;
break;
case phr_http_start:
case phr_have_length:
case phr_have_type:
if (XSTRNCASECMP(start, "Content-Type:", 13) == 0) {
int i;
start += 13;
while (*start == ' ') start++;
/* try and match against appStrList */
i = 0;
while (appStrList[i] != NULL) {
if (XSTRNCASECMP(start, appStrList[i],
XSTRLEN(appStrList[i])) == 0) {
break;
}
i++;
}
if (appStrList[i] == NULL) {
WOLFSSL_MSG("wolfIO_HttpProcessResponse appstr mismatch");
return HTTP_APPSTR_ERR;
}
state = (state == phr_http_start) ? phr_have_type : phr_wait_end;
}
else if (XSTRNCASECMP(start, "Content-Length:", 15) == 0) {
start += 15;
while (*start == ' ') start++;
chunkSz = XATOI(start);
state = (state == phr_http_start) ? phr_have_length : phr_wait_end;
}
else if (XSTRNCASECMP(start, "Transfer-Encoding:", 18) == 0) {
start += 18;
while (*start == ' ') start++;
if (XSTRNCASECMP(start, "chunked", 7) == 0) {
isChunked = 1;
state = (state == phr_http_start) ? phr_have_length : phr_wait_end;
}
}
break;
case phr_get_chunk_len:
chunkSz = (int)strtol(start, NULL, 16); /* hex format */
state = (chunkSz == 0) ? phr_http_end : phr_get_chunk_data;
break;
case phr_get_chunk_data:
/* processing for chunk data done above, since \r\n isn't required */
case phr_wait_end:
case phr_http_end:
/* do nothing */
break;
} /* switch (state) */
/* skip to end plus \r\n */
start = end + 2;
}
} while (state != phr_http_end);
if (!isChunked) {
result = wolfIO_HttpProcessResponseBuf(ioCb, ioCbCtx, respBuf,
&respBufSz, chunkSz, start, len, dynType, heap);
}
if (result >= 0) {
result = respBufSz;
}
else {
WOLFSSL_ERROR(result);
}
return result;
}
static int httpResponseIoCb(char* buf, int sz, void* ctx)
{
/* Double cast to silence the compiler int/pointer width msg */
return wolfIO_Recv((SOCKET_T)(uintptr_t)ctx, buf, sz, 0);
}
int wolfIO_HttpProcessResponse(int sfd, const char** appStrList,
byte** respBuf, byte* httpBuf, int httpBufSz, int dynType, void* heap)
{
return wolfIO_HttpProcessResponseGenericIO(httpResponseIoCb,
/* Double cast to silence the compiler int/pointer width msg */
(void*)(uintptr_t)sfd, appStrList, respBuf, httpBuf, httpBufSz,
dynType, heap);
}
int wolfIO_HttpBuildRequest(const char *reqType, const char *domainName,
const char *path, int pathLen, int reqSz, const char *contentType,
byte *buf, int bufSize)
{
return wolfIO_HttpBuildRequest_ex(reqType, domainName, path, pathLen, reqSz, contentType, "", buf, bufSize);
}
int wolfIO_HttpBuildRequest_ex(const char *reqType, const char *domainName,
const char *path, int pathLen, int reqSz, const char *contentType,
const char *exHdrs, byte *buf, int bufSize)
{
word32 reqTypeLen, domainNameLen, reqSzStrLen, contentTypeLen, exHdrsLen, maxLen;
char reqSzStr[6];
char* req = (char*)buf;
const char* blankStr = " ";
const char* http11Str = " HTTP/1.1";
const char* hostStr = "\r\nHost: ";
const char* contentLenStr = "\r\nContent-Length: ";
const char* contentTypeStr = "\r\nContent-Type: ";
const char* singleCrLfStr = "\r\n";
const char* doubleCrLfStr = "\r\n\r\n";
word32 blankStrLen, http11StrLen, hostStrLen, contentLenStrLen,
contentTypeStrLen, singleCrLfStrLen, doubleCrLfStrLen;
reqTypeLen = (word32)XSTRLEN(reqType);
domainNameLen = (word32)XSTRLEN(domainName);
reqSzStrLen = wolfIO_Word16ToString(reqSzStr, (word16)reqSz);
contentTypeLen = (word32)XSTRLEN(contentType);
blankStrLen = (word32)XSTRLEN(blankStr);
http11StrLen = (word32)XSTRLEN(http11Str);
hostStrLen = (word32)XSTRLEN(hostStr);
contentLenStrLen = (word32)XSTRLEN(contentLenStr);
contentTypeStrLen = (word32)XSTRLEN(contentTypeStr);
if(exHdrs){
singleCrLfStrLen = (word32)XSTRLEN(singleCrLfStr);
exHdrsLen = (word32)XSTRLEN(exHdrs);
} else {
singleCrLfStrLen = 0;
exHdrsLen = 0;
}
doubleCrLfStrLen = (word32)XSTRLEN(doubleCrLfStr);
/* determine max length and check it */
maxLen =
reqTypeLen +
blankStrLen +
(word32)pathLen +
http11StrLen +
hostStrLen +
domainNameLen +
contentLenStrLen +
reqSzStrLen +
contentTypeStrLen +
contentTypeLen +
singleCrLfStrLen +
exHdrsLen +
doubleCrLfStrLen +
(word32)1 /* null term */;
if (maxLen > (word32)bufSize)
return 0;
XSTRNCPY((char*)buf, reqType, (size_t)bufSize);
buf += reqTypeLen; bufSize -= (int)reqTypeLen;
XSTRNCPY((char*)buf, blankStr, (size_t)bufSize);
buf += blankStrLen; bufSize -= (int)blankStrLen;
XSTRNCPY((char*)buf, path, (size_t)bufSize);
buf += pathLen; bufSize -= (int)pathLen;
XSTRNCPY((char*)buf, http11Str, (size_t)bufSize);
buf += http11StrLen; bufSize -= (int)http11StrLen;
if (domainNameLen > 0) {
XSTRNCPY((char*)buf, hostStr, (size_t)bufSize);
buf += hostStrLen; bufSize -= (int)hostStrLen;
XSTRNCPY((char*)buf, domainName, (size_t)bufSize);
buf += domainNameLen; bufSize -= (int)domainNameLen;
}
if (reqSz > 0 && reqSzStrLen > 0) {
XSTRNCPY((char*)buf, contentLenStr, (size_t)bufSize);
buf += contentLenStrLen; bufSize -= (int)contentLenStrLen;
XSTRNCPY((char*)buf, reqSzStr, (size_t)bufSize);
buf += reqSzStrLen; bufSize -= (int)reqSzStrLen;
}
if (contentTypeLen > 0) {
XSTRNCPY((char*)buf, contentTypeStr, (size_t)bufSize);
buf += contentTypeStrLen; bufSize -= (int)contentTypeStrLen;
XSTRNCPY((char*)buf, contentType, (size_t)bufSize);
buf += contentTypeLen; bufSize -= (int)contentTypeLen;
}
if (exHdrsLen > 0)
{
XSTRNCPY((char *)buf, singleCrLfStr, (size_t)bufSize);
buf += singleCrLfStrLen;
bufSize -= (int)singleCrLfStrLen;
XSTRNCPY((char *)buf, exHdrs, (size_t)bufSize);
buf += exHdrsLen;
bufSize -= (int)exHdrsLen;
}
XSTRNCPY((char*)buf, doubleCrLfStr, (size_t)bufSize);
buf += doubleCrLfStrLen;
#ifdef WOLFIO_DEBUG
printf("HTTP %s: %s", reqType, req);
#endif
/* calculate actual length based on original and new pointer */
return (int)((char*)buf - req);
}
#ifdef HAVE_OCSP
int wolfIO_HttpBuildRequestOcsp(const char* domainName, const char* path,
int ocspReqSz, byte* buf, int bufSize)
{
const char *cacheCtl = "Cache-Control: no-cache";
return wolfIO_HttpBuildRequest_ex("POST", domainName, path, (int)XSTRLEN(path),
ocspReqSz, "application/ocsp-request", cacheCtl, buf, bufSize);
}
static const char* ocspAppStrList[] = {
"application/ocsp-response",
NULL
};
int wolfIO_HttpProcessResponseOcspGenericIO(
WolfSSLGenericIORecvCb ioCb, void* ioCbCtx, unsigned char** respBuf,
unsigned char* httpBuf, int httpBufSz, void* heap)
{
return wolfIO_HttpProcessResponseGenericIO(ioCb, ioCbCtx,
ocspAppStrList, respBuf, httpBuf, httpBufSz, DYNAMIC_TYPE_OCSP, heap);
}
/* return: >0 OCSP Response Size
* -1 error */
int wolfIO_HttpProcessResponseOcsp(int sfd, byte** respBuf,
byte* httpBuf, int httpBufSz, void* heap)
{
return wolfIO_HttpProcessResponse(sfd, ocspAppStrList,
respBuf, httpBuf, httpBufSz, DYNAMIC_TYPE_OCSP, heap);
}
/* in default wolfSSL callback ctx is the heap pointer */
int EmbedOcspLookup(void* ctx, const char* url, int urlSz,
byte* ocspReqBuf, int ocspReqSz, byte** ocspRespBuf)
{
SOCKET_T sfd = SOCKET_INVALID;
word16 port;
int ret = -1;
#ifdef WOLFSSL_SMALL_STACK
char* path;
char* domainName;
#else
char path[MAX_URL_ITEM_SIZE];
char domainName[MAX_URL_ITEM_SIZE];
#endif
#ifdef WOLFSSL_SMALL_STACK
path = (char*)XMALLOC(MAX_URL_ITEM_SIZE, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (path == NULL)
return MEMORY_E;
domainName = (char*)XMALLOC(MAX_URL_ITEM_SIZE, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (domainName == NULL) {
XFREE(path, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return MEMORY_E;
}
#endif
if (ocspReqBuf == NULL || ocspReqSz == 0) {
WOLFSSL_MSG("OCSP request is required for lookup");
}
else if (ocspRespBuf == NULL) {
WOLFSSL_MSG("Cannot save OCSP response");
}
else if (wolfIO_DecodeUrl(url, urlSz, domainName, path, &port) < 0) {
WOLFSSL_MSG("Unable to decode OCSP URL");
}
else {
/* Note, the library uses the EmbedOcspRespFree() callback to
* free this buffer. */
int httpBufSz = HTTP_SCRATCH_BUFFER_SIZE;
byte* httpBuf = (byte*)XMALLOC((size_t)httpBufSz, ctx, DYNAMIC_TYPE_OCSP);
if (httpBuf == NULL) {
WOLFSSL_MSG("Unable to create OCSP response buffer");
}
else {
httpBufSz = wolfIO_HttpBuildRequestOcsp(domainName, path, ocspReqSz,
httpBuf, httpBufSz);
ret = wolfIO_TcpConnect(&sfd, domainName, port, io_timeout_sec);
if (ret != 0) {
WOLFSSL_MSG("OCSP Responder connection failed");
}
else if (wolfIO_Send(sfd, (char*)httpBuf, httpBufSz, 0) !=
httpBufSz) {
WOLFSSL_MSG("OCSP http request failed");
}
else if (wolfIO_Send(sfd, (char*)ocspReqBuf, ocspReqSz, 0) !=
ocspReqSz) {
WOLFSSL_MSG("OCSP ocsp request failed");
}
else {
ret = wolfIO_HttpProcessResponseOcsp((int)sfd, ocspRespBuf, httpBuf,
HTTP_SCRATCH_BUFFER_SIZE, ctx);
}
if (sfd != SOCKET_INVALID)
CloseSocket(sfd);
XFREE(httpBuf, ctx, DYNAMIC_TYPE_OCSP);
}
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(path, NULL, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(domainName, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
/* in default callback ctx is heap hint */
void EmbedOcspRespFree(void* ctx, byte *resp)
{
XFREE(resp, ctx, DYNAMIC_TYPE_OCSP);
(void)ctx;
}
#endif /* HAVE_OCSP */
#if defined(HAVE_CRL) && defined(HAVE_CRL_IO)
int wolfIO_HttpBuildRequestCrl(const char* url, int urlSz,
const char* domainName, byte* buf, int bufSize)
{
const char *cacheCtl = "Cache-Control: no-cache";
return wolfIO_HttpBuildRequest_ex("GET", domainName, url, urlSz, 0, "",
cacheCtl, buf, bufSize);
}
int wolfIO_HttpProcessResponseCrl(WOLFSSL_CRL* crl, int sfd, byte* httpBuf,
int httpBufSz)
{
int ret;
byte *respBuf = NULL;
const char* appStrList[] = {
"application/pkix-crl",
"application/x-pkcs7-crl",
NULL
};
ret = wolfIO_HttpProcessResponse(sfd, appStrList,
&respBuf, httpBuf, httpBufSz, DYNAMIC_TYPE_CRL, crl->heap);
if (ret >= 0) {
ret = BufferLoadCRL(crl, respBuf, ret, WOLFSSL_FILETYPE_ASN1, 0);
}
XFREE(respBuf, crl->heap, DYNAMIC_TYPE_CRL);
return ret;
}
int EmbedCrlLookup(WOLFSSL_CRL* crl, const char* url, int urlSz)
{
SOCKET_T sfd = SOCKET_INVALID;
word16 port;
int ret = -1;
#ifdef WOLFSSL_SMALL_STACK
char* domainName;
#else
char domainName[MAX_URL_ITEM_SIZE];
#endif
#ifdef WOLFSSL_SMALL_STACK
domainName = (char*)XMALLOC(MAX_URL_ITEM_SIZE, crl->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (domainName == NULL) {
return MEMORY_E;
}
#endif
if (wolfIO_DecodeUrl(url, urlSz, domainName, NULL, &port) < 0) {
WOLFSSL_MSG("Unable to decode CRL URL");
}
else {
int httpBufSz = HTTP_SCRATCH_BUFFER_SIZE;
byte* httpBuf = (byte*)XMALLOC((size_t)httpBufSz, crl->heap,
DYNAMIC_TYPE_CRL);
if (httpBuf == NULL) {
WOLFSSL_MSG("Unable to create CRL response buffer");
}
else {
httpBufSz = wolfIO_HttpBuildRequestCrl(url, urlSz, domainName,
httpBuf, httpBufSz);
ret = wolfIO_TcpConnect(&sfd, domainName, port, io_timeout_sec);
if (ret != 0) {
WOLFSSL_MSG("CRL connection failed");
}
else if (wolfIO_Send(sfd, (char*)httpBuf, httpBufSz, 0)
!= httpBufSz) {
WOLFSSL_MSG("CRL http get failed");
}
else {
ret = wolfIO_HttpProcessResponseCrl(crl, sfd, httpBuf,
HTTP_SCRATCH_BUFFER_SIZE);
}
if (sfd != SOCKET_INVALID)
CloseSocket(sfd);
XFREE(httpBuf, crl->heap, DYNAMIC_TYPE_CRL);
}
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(domainName, crl->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
#endif /* HAVE_CRL && HAVE_CRL_IO */
#endif /* HAVE_HTTP_CLIENT */
void wolfSSL_CTX_SetIORecv(WOLFSSL_CTX *ctx, CallbackIORecv CBIORecv)
{
if (ctx) {
ctx->CBIORecv = CBIORecv;
#ifdef OPENSSL_EXTRA
ctx->cbioFlag |= WOLFSSL_CBIO_RECV;
#endif
}
}
void wolfSSL_CTX_SetIOSend(WOLFSSL_CTX *ctx, CallbackIOSend CBIOSend)
{
if (ctx) {
ctx->CBIOSend = CBIOSend;
#ifdef OPENSSL_EXTRA
ctx->cbioFlag |= WOLFSSL_CBIO_SEND;
#endif
}
}
/* sets the IO callback to use for receives at WOLFSSL level */
void wolfSSL_SSLSetIORecv(WOLFSSL *ssl, CallbackIORecv CBIORecv)
{
if (ssl) {
ssl->CBIORecv = CBIORecv;
#ifdef OPENSSL_EXTRA
ssl->cbioFlag |= WOLFSSL_CBIO_RECV;
#endif
}
}
/* sets the IO callback to use for sends at WOLFSSL level */
void wolfSSL_SSLSetIOSend(WOLFSSL *ssl, CallbackIOSend CBIOSend)
{
if (ssl) {
ssl->CBIOSend = CBIOSend;
#ifdef OPENSSL_EXTRA
ssl->cbioFlag |= WOLFSSL_CBIO_SEND;
#endif
}
}
void wolfSSL_SSLDisableRead(WOLFSSL *ssl)
{
if (ssl) {
ssl->options.disableRead = 1;
}
}
void wolfSSL_SSLEnableRead(WOLFSSL *ssl)
{
if (ssl) {
ssl->options.disableRead = 0;
}
}
void wolfSSL_SetIOReadCtx(WOLFSSL* ssl, void *rctx)
{
if (ssl)
ssl->IOCB_ReadCtx = rctx;
}
void wolfSSL_SetIOWriteCtx(WOLFSSL* ssl, void *wctx)
{
if (ssl)
ssl->IOCB_WriteCtx = wctx;
}
void* wolfSSL_GetIOReadCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->IOCB_ReadCtx;
return NULL;
}
void* wolfSSL_GetIOWriteCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->IOCB_WriteCtx;
return NULL;
}
void wolfSSL_SetIOReadFlags(WOLFSSL* ssl, int flags)
{
if (ssl)
ssl->rflags = flags;
}
void wolfSSL_SetIOWriteFlags(WOLFSSL* ssl, int flags)
{
if (ssl)
ssl->wflags = flags;
}
#ifdef WOLFSSL_DTLS
void wolfSSL_CTX_SetGenCookie(WOLFSSL_CTX* ctx, CallbackGenCookie cb)
{
if (ctx)
ctx->CBIOCookie = cb;
}
void wolfSSL_SetCookieCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->IOCB_CookieCtx = ctx;
}
void* wolfSSL_GetCookieCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->IOCB_CookieCtx;
return NULL;
}
#endif /* WOLFSSL_DTLS */
#ifdef WOLFSSL_SESSION_EXPORT
void wolfSSL_CTX_SetIOGetPeer(WOLFSSL_CTX* ctx, CallbackGetPeer cb)
{
if (ctx)
ctx->CBGetPeer = cb;
}
void wolfSSL_CTX_SetIOSetPeer(WOLFSSL_CTX* ctx, CallbackSetPeer cb)
{
if (ctx)
ctx->CBSetPeer = cb;
}
#endif /* WOLFSSL_SESSION_EXPORT */
#ifdef HAVE_NETX
/* The NetX receive callback
* return : bytes read, or error
*/
int NetX_Receive(WOLFSSL *ssl, char *buf, int sz, void *ctx)
{
NetX_Ctx* nxCtx = (NetX_Ctx*)ctx;
ULONG left;
ULONG total;
ULONG copied = 0;
UINT status;
(void)ssl;
if (nxCtx == NULL || nxCtx->nxSocket == NULL) {
WOLFSSL_MSG("NetX Recv NULL parameters");
return WOLFSSL_CBIO_ERR_GENERAL;
}
if (nxCtx->nxPacket == NULL) {
status = nx_tcp_socket_receive(nxCtx->nxSocket, &nxCtx->nxPacket,
nxCtx->nxWait);
if (status != NX_SUCCESS) {
WOLFSSL_MSG("NetX Recv receive error");
return WOLFSSL_CBIO_ERR_GENERAL;
}
}
if (nxCtx->nxPacket) {
status = nx_packet_length_get(nxCtx->nxPacket, &total);
if (status != NX_SUCCESS) {
WOLFSSL_MSG("NetX Recv length get error");
return WOLFSSL_CBIO_ERR_GENERAL;
}
left = total - nxCtx->nxOffset;
status = nx_packet_data_extract_offset(nxCtx->nxPacket, nxCtx->nxOffset,
buf, sz, &copied);
if (status != NX_SUCCESS) {
WOLFSSL_MSG("NetX Recv data extract offset error");
return WOLFSSL_CBIO_ERR_GENERAL;
}
nxCtx->nxOffset += copied;
if (copied == left) {
WOLFSSL_MSG("NetX Recv Drained packet");
nx_packet_release(nxCtx->nxPacket);
nxCtx->nxPacket = NULL;
nxCtx->nxOffset = 0;
}
}
return copied;
}
/* The NetX send callback
* return : bytes sent, or error
*/
int NetX_Send(WOLFSSL* ssl, char *buf, int sz, void *ctx)
{
NetX_Ctx* nxCtx = (NetX_Ctx*)ctx;
NX_PACKET* packet;
NX_PACKET_POOL* pool; /* shorthand */
UINT status;
(void)ssl;
if (nxCtx == NULL || nxCtx->nxSocket == NULL) {
WOLFSSL_MSG("NetX Send NULL parameters");
return WOLFSSL_CBIO_ERR_GENERAL;
}
pool = nxCtx->nxSocket->nx_tcp_socket_ip_ptr->nx_ip_default_packet_pool;
status = nx_packet_allocate(pool, &packet, NX_TCP_PACKET,
nxCtx->nxWait);
if (status != NX_SUCCESS) {
WOLFSSL_MSG("NetX Send packet alloc error");
return WOLFSSL_CBIO_ERR_GENERAL;
}
status = nx_packet_data_append(packet, buf, sz, pool, nxCtx->nxWait);
if (status != NX_SUCCESS) {
nx_packet_release(packet);
WOLFSSL_MSG("NetX Send data append error");
return WOLFSSL_CBIO_ERR_GENERAL;
}
status = nx_tcp_socket_send(nxCtx->nxSocket, packet, nxCtx->nxWait);
if (status != NX_SUCCESS) {
nx_packet_release(packet);
WOLFSSL_MSG("NetX Send socket send error");
return WOLFSSL_CBIO_ERR_GENERAL;
}
return sz;
}
/* like set_fd, but for default NetX context */
void wolfSSL_SetIO_NetX(WOLFSSL* ssl, NX_TCP_SOCKET* nxSocket, ULONG waitOption)
{
if (ssl) {
ssl->nxCtx.nxSocket = nxSocket;
ssl->nxCtx.nxWait = waitOption;
}
}
#endif /* HAVE_NETX */
#ifdef MICRIUM
/* Micrium uTCP/IP port, using the NetSock API
* TCP and UDP are currently supported with the callbacks below.
*
* WOLFSSL_SESSION_EXPORT is not yet supported, would need EmbedGetPeer()
* and EmbedSetPeer() callbacks implemented.
*
* HAVE_CRL is not yet supported, would need an EmbedCrlLookup()
* callback implemented.
*
* HAVE_OCSP is not yet supported, would need an EmbedOCSPLookup()
* callback implemented.
*/
/* The Micrium uTCP/IP send callback
* return : bytes sent, or error
*/
int MicriumSend(WOLFSSL* ssl, char* buf, int sz, void* ctx)
{
NET_SOCK_ID sd = *(int*)ctx;
NET_SOCK_RTN_CODE ret;
NET_ERR err;
ret = NetSock_TxData(sd, buf, sz, ssl->wflags, &err);
if (ret < 0) {
WOLFSSL_MSG("Embed Send error");
if (err == NET_ERR_TX) {
WOLFSSL_MSG("\tWould block");
return WOLFSSL_CBIO_ERR_WANT_WRITE;
} else {
WOLFSSL_MSG("\tGeneral error");
return WOLFSSL_CBIO_ERR_GENERAL;
}
}
return ret;
}
/* The Micrium uTCP/IP receive callback
* return : nb bytes read, or error
*/
int MicriumReceive(WOLFSSL *ssl, char *buf, int sz, void *ctx)
{
NET_SOCK_ID sd = *(int*)ctx;
NET_SOCK_RTN_CODE ret;
NET_ERR err;
#ifdef WOLFSSL_DTLS
{
int dtls_timeout = wolfSSL_dtls_get_current_timeout(ssl);
/* Don't use ssl->options.handShakeDone since it is true even if
* we are in the process of renegotiation */
byte doDtlsTimeout = ssl->options.handShakeState != HANDSHAKE_DONE;
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls && IsAtLeastTLSv1_3(ssl->version)) {
doDtlsTimeout =
doDtlsTimeout || ssl->dtls13Rtx.rtxRecords != NULL ||
(ssl->dtls13FastTimeout && ssl->dtls13Rtx.seenRecords != NULL);
}
#endif /* WOLFSSL_DTLS13 */
if (!doDtlsTimeout)
dtls_timeout = 0;
if (!wolfSSL_dtls_get_using_nonblock(ssl)) {
/* needs timeout in milliseconds */
#ifdef WOLFSSL_DTLS13
if (wolfSSL_dtls13_use_quick_timeout(ssl) &&
IsAtLeastTLSv1_3(ssl->version)) {
dtls_timeout = (1000 * dtls_timeout) / 4;
} else
#endif /* WOLFSSL_DTLS13 */
dtls_timeout = 1000 * dtls_timeout;
NetSock_CfgTimeoutRxQ_Set(sd, dtls_timeout, &err);
if (err != NET_SOCK_ERR_NONE) {
WOLFSSL_MSG("NetSock_CfgTimeoutRxQ_Set failed");
}
}
}
#endif /* WOLFSSL_DTLS */
ret = NetSock_RxData(sd, buf, sz, ssl->rflags, &err);
if (ret < 0) {
WOLFSSL_MSG("Embed Receive error");
if (err == NET_ERR_RX || err == NET_SOCK_ERR_RX_Q_EMPTY ||
err == NET_ERR_FAULT_LOCK_ACQUIRE) {
if (!wolfSSL_dtls(ssl) || wolfSSL_dtls_get_using_nonblock(ssl)) {
WOLFSSL_MSG("\tWould block");
return WOLFSSL_CBIO_ERR_WANT_READ;
}
else {
WOLFSSL_MSG("\tSocket timeout");
return WOLFSSL_CBIO_ERR_TIMEOUT;
}
} else if (err == NET_SOCK_ERR_CLOSED) {
WOLFSSL_MSG("Embed receive connection closed");
return WOLFSSL_CBIO_ERR_CONN_CLOSE;
} else {
WOLFSSL_MSG("\tGeneral error");
return WOLFSSL_CBIO_ERR_GENERAL;
}
}
return ret;
}
/* The Micrium uTCP/IP receivefrom callback
* return : nb bytes read, or error
*/
int MicriumReceiveFrom(WOLFSSL *ssl, char *buf, int sz, void *ctx)
{
WOLFSSL_DTLS_CTX* dtlsCtx = (WOLFSSL_DTLS_CTX*)ctx;
NET_SOCK_ID sd = dtlsCtx->rfd;
NET_SOCK_ADDR peer;
NET_SOCK_ADDR_LEN peerSz = sizeof(peer);
NET_SOCK_RTN_CODE ret;
NET_ERR err;
WOLFSSL_ENTER("MicriumReceiveFrom");
#ifdef WOLFSSL_DTLS
{
int dtls_timeout = wolfSSL_dtls_get_current_timeout(ssl);
/* Don't use ssl->options.handShakeDone since it is true even if
* we are in the process of renegotiation */
byte doDtlsTimeout = ssl->options.handShakeState != HANDSHAKE_DONE;
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls && IsAtLeastTLSv1_3(ssl->version)) {
doDtlsTimeout =
doDtlsTimeout || ssl->dtls13Rtx.rtxRecords != NULL ||
(ssl->dtls13FastTimeout && ssl->dtls13Rtx.seenRecords != NULL);
}
#endif /* WOLFSSL_DTLS13 */
if (!doDtlsTimeout)
dtls_timeout = 0;
if (!wolfSSL_dtls_get_using_nonblock(ssl)) {
/* needs timeout in milliseconds */
#ifdef WOLFSSL_DTLS13
if (wolfSSL_dtls13_use_quick_timeout(ssl) &&
IsAtLeastTLSv1_3(ssl->version)) {
dtls_timeout = (1000 * dtls_timeout) / 4;
} else
#endif /* WOLFSSL_DTLS13 */
dtls_timeout = 1000 * dtls_timeout;
NetSock_CfgTimeoutRxQ_Set(sd, dtls_timeout, &err);
if (err != NET_SOCK_ERR_NONE) {
WOLFSSL_MSG("NetSock_CfgTimeoutRxQ_Set failed");
}
}
}
#endif /* WOLFSSL_DTLS */
ret = NetSock_RxDataFrom(sd, buf, sz, ssl->rflags, &peer, &peerSz,
0, 0, 0, &err);
if (ret < 0) {
WOLFSSL_MSG("Embed Receive From error");
if (err == NET_ERR_RX || err == NET_SOCK_ERR_RX_Q_EMPTY ||
err == NET_ERR_FAULT_LOCK_ACQUIRE) {
if (wolfSSL_dtls_get_using_nonblock(ssl)) {
WOLFSSL_MSG("\tWould block");
return WOLFSSL_CBIO_ERR_WANT_READ;
}
else {
WOLFSSL_MSG("\tSocket timeout");
return WOLFSSL_CBIO_ERR_TIMEOUT;
}
} else {
WOLFSSL_MSG("\tGeneral error");
return WOLFSSL_CBIO_ERR_GENERAL;
}
}
else {
if (dtlsCtx->peer.sz > 0
&& peerSz != (NET_SOCK_ADDR_LEN)dtlsCtx->peer.sz
&& XMEMCMP(&peer, dtlsCtx->peer.sa, peerSz) != 0) {
WOLFSSL_MSG("\tIgnored packet from invalid peer");
return WOLFSSL_CBIO_ERR_WANT_READ;
}
}
return ret;
}
/* The Micrium uTCP/IP sendto callback
* return : nb bytes sent, or error
*/
int MicriumSendTo(WOLFSSL* ssl, char *buf, int sz, void *ctx)
{
WOLFSSL_DTLS_CTX* dtlsCtx = (WOLFSSL_DTLS_CTX*)ctx;
NET_SOCK_ID sd = dtlsCtx->wfd;
NET_SOCK_RTN_CODE ret;
NET_ERR err;
WOLFSSL_ENTER("MicriumSendTo");
ret = NetSock_TxDataTo(sd, buf, sz, ssl->wflags,
(NET_SOCK_ADDR*)dtlsCtx->peer.sa,
(NET_SOCK_ADDR_LEN)dtlsCtx->peer.sz,
&err);
if (err < 0) {
WOLFSSL_MSG("Embed Send To error");
if (err == NET_ERR_TX) {
WOLFSSL_MSG("\tWould block");
return WOLFSSL_CBIO_ERR_WANT_WRITE;
} else {
WOLFSSL_MSG("\tGeneral error");
return WOLFSSL_CBIO_ERR_GENERAL;
}
}
return ret;
}
/* Micrium DTLS Generate Cookie callback
* return : number of bytes copied into buf, or error
*/
#if defined(NO_SHA) && !defined(NO_SHA256)
#define MICRIUM_COOKIE_DIGEST_SIZE WC_SHA256_DIGEST_SIZE
#elif !defined(NO_SHA)
#define MICRIUM_COOKIE_DIGEST_SIZE WC_SHA_DIGEST_SIZE
#else
#error Must enable either SHA-1 or SHA256 (or both) for Micrium.
#endif
int MicriumGenerateCookie(WOLFSSL* ssl, byte *buf, int sz, void *ctx)
{
NET_SOCK_ADDR peer;
NET_SOCK_ADDR_LEN peerSz = sizeof(peer);
byte digest[MICRIUM_COOKIE_DIGEST_SIZE];
int ret = 0;
(void)ctx;
XMEMSET(&peer, 0, sizeof(peer));
if (wolfSSL_dtls_get_peer(ssl, (void*)&peer,
(unsigned int*)&peerSz) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("getpeername failed in MicriumGenerateCookie");
return GEN_COOKIE_E;
}
#if defined(NO_SHA) && !defined(NO_SHA256)
ret = wc_Sha256Hash((byte*)&peer, peerSz, digest);
#else
ret = wc_ShaHash((byte*)&peer, peerSz, digest);
#endif
if (ret != 0)
return ret;
if (sz > MICRIUM_COOKIE_DIGEST_SIZE)
sz = MICRIUM_COOKIE_DIGEST_SIZE;
XMEMCPY(buf, digest, sz);
return sz;
}
#endif /* MICRIUM */
#if defined(WOLFSSL_APACHE_MYNEWT) && !defined(WOLFSSL_LWIP)
#include <os/os_error.h>
#include <os/os_mbuf.h>
#include <os/os_mempool.h>
#define MB_NAME "wolfssl_mb"
typedef struct Mynewt_Ctx {
struct mn_socket *mnSocket; /* send/recv socket handler */
struct mn_sockaddr_in mnSockAddrIn; /* socket address */
struct os_mbuf *mnPacket; /* incoming packet handle
for short reads */
int reading; /* reading flag */
/* private */
void *mnMemBuffer; /* memory buffer for mempool */
struct os_mempool mnMempool; /* mempool */
struct os_mbuf_pool mnMbufpool; /* mbuf pool */
} Mynewt_Ctx;
void mynewt_ctx_clear(void *ctx) {
Mynewt_Ctx *mynewt_ctx = (Mynewt_Ctx*)ctx;
if(!mynewt_ctx) return;
if(mynewt_ctx->mnPacket) {
os_mbuf_free_chain(mynewt_ctx->mnPacket);
mynewt_ctx->mnPacket = NULL;
}
os_mempool_clear(&mynewt_ctx->mnMempool);
XFREE(mynewt_ctx->mnMemBuffer, 0, 0);
XFREE(mynewt_ctx, 0, 0);
}
/* return Mynewt_Ctx instance */
void* mynewt_ctx_new() {
int rc = 0;
Mynewt_Ctx *mynewt_ctx;
int mem_buf_count = MYNEWT_VAL(WOLFSSL_MNSOCK_MEM_BUF_COUNT);
int mem_buf_size = MYNEWT_VAL(WOLFSSL_MNSOCK_MEM_BUF_SIZE);
int mempool_bytes = OS_MEMPOOL_BYTES(mem_buf_count, mem_buf_size);
mynewt_ctx = (Mynewt_Ctx *)XMALLOC(sizeof(struct Mynewt_Ctx),
NULL, DYNAMIC_TYPE_TMP_BUFFER);
if(!mynewt_ctx) return NULL;
XMEMSET(mynewt_ctx, 0, sizeof(Mynewt_Ctx));
mynewt_ctx->mnMemBuffer = (void *)XMALLOC(mempool_bytes, 0, 0);
if(!mynewt_ctx->mnMemBuffer) {
mynewt_ctx_clear((void*)mynewt_ctx);
return NULL;
}
rc = os_mempool_init(&mynewt_ctx->mnMempool,
mem_buf_count, mem_buf_size,
mynewt_ctx->mnMemBuffer, MB_NAME);
if(rc != 0) {
mynewt_ctx_clear((void*)mynewt_ctx);
return NULL;
}
rc = os_mbuf_pool_init(&mynewt_ctx->mnMbufpool, &mynewt_ctx->mnMempool,
mem_buf_count, mem_buf_size);
if(rc != 0) {
mynewt_ctx_clear((void*)mynewt_ctx);
return NULL;
}
return mynewt_ctx;
}
static void mynewt_sock_writable(void *arg, int err);
static void mynewt_sock_readable(void *arg, int err);
static const union mn_socket_cb mynewt_sock_cbs = {
.socket.writable = mynewt_sock_writable,
.socket.readable = mynewt_sock_readable,
};
static void mynewt_sock_writable(void *arg, int err)
{
/* do nothing */
}
static void mynewt_sock_readable(void *arg, int err)
{
Mynewt_Ctx *mynewt_ctx = (Mynewt_Ctx *)arg;
if (err && mynewt_ctx->reading) {
mynewt_ctx->reading = 0;
}
}
/* The Mynewt receive callback
* return : bytes read, or error
*/
int Mynewt_Receive(WOLFSSL *ssl, char *buf, int sz, void *ctx)
{
Mynewt_Ctx *mynewt_ctx = (Mynewt_Ctx*)ctx;
int rc = 0;
struct mn_sockaddr_in from;
struct os_mbuf *m;
int read_sz = 0;
word16 total;
if (mynewt_ctx == NULL || mynewt_ctx->mnSocket == NULL) {
WOLFSSL_MSG("Mynewt Recv NULL parameters");
return WOLFSSL_CBIO_ERR_GENERAL;
}
if(mynewt_ctx->mnPacket == NULL) {
mynewt_ctx->mnPacket = os_mbuf_get_pkthdr(&mynewt_ctx->mnMbufpool, 0);
if(mynewt_ctx->mnPacket == NULL) {
return MEMORY_E;
}
mynewt_ctx->reading = 1;
while(mynewt_ctx->reading && rc == 0) {
rc = mn_recvfrom(mynewt_ctx->mnSocket, &m, (struct mn_sockaddr *) &from);
if(rc == MN_ECONNABORTED) {
rc = 0;
mynewt_ctx->reading = 0;
break;
}
if (!(rc == 0 || rc == MN_EAGAIN)) {
WOLFSSL_MSG("Mynewt Recv receive error");
mynewt_ctx->reading = 0;
break;
}
if(rc == 0) {
int len = OS_MBUF_PKTLEN(m);
if(len == 0) {
break;
}
rc = os_mbuf_appendfrom(mynewt_ctx->mnPacket, m, 0, len);
if(rc != 0) {
WOLFSSL_MSG("Mynewt Recv os_mbuf_appendfrom error");
break;
}
os_mbuf_free_chain(m);
m = NULL;
} else if(rc == MN_EAGAIN) {
/* continue to until reading all of packet data. */
rc = 0;
break;
}
}
if(rc != 0) {
mynewt_ctx->reading = 0;
os_mbuf_free_chain(mynewt_ctx->mnPacket);
mynewt_ctx->mnPacket = NULL;
return rc;
}
}
if(mynewt_ctx->mnPacket) {
total = OS_MBUF_PKTLEN(mynewt_ctx->mnPacket);
read_sz = (total >= sz)? sz : total;
os_mbuf_copydata(mynewt_ctx->mnPacket, 0, read_sz, (void*)buf);
os_mbuf_adj(mynewt_ctx->mnPacket, read_sz);
if (read_sz == total) {
WOLFSSL_MSG("Mynewt Recv Drained packet");
os_mbuf_free_chain(mynewt_ctx->mnPacket);
mynewt_ctx->mnPacket = NULL;
}
}
return read_sz;
}
/* The Mynewt send callback
* return : bytes sent, or error
*/
int Mynewt_Send(WOLFSSL* ssl, char *buf, int sz, void *ctx)
{
Mynewt_Ctx *mynewt_ctx = (Mynewt_Ctx*)ctx;
int rc = 0;
struct os_mbuf *m;
int write_sz = 0;
m = os_msys_get_pkthdr(sz, 0);
if (!m) {
WOLFSSL_MSG("Mynewt Send os_msys_get_pkthdr error");
return WOLFSSL_CBIO_ERR_GENERAL;
}
rc = os_mbuf_copyinto(m, 0, buf, sz);
if (rc != 0) {
WOLFSSL_MSG("Mynewt Send os_mbuf_copyinto error");
os_mbuf_free_chain(m);
return rc;
}
rc = mn_sendto(mynewt_ctx->mnSocket, m, (struct mn_sockaddr *)&mynewt_ctx->mnSockAddrIn);
if(rc != 0) {
WOLFSSL_MSG("Mynewt Send mn_sendto error");
os_mbuf_free_chain(m);
return rc;
}
write_sz = sz;
return write_sz;
}
/* like set_fd, but for default NetX context */
void wolfSSL_SetIO_Mynewt(WOLFSSL* ssl, struct mn_socket* mnSocket, struct mn_sockaddr_in* mnSockAddrIn)
{
if (ssl && ssl->mnCtx) {
Mynewt_Ctx *mynewt_ctx = (Mynewt_Ctx *)ssl->mnCtx;
mynewt_ctx->mnSocket = mnSocket;
XMEMCPY(&mynewt_ctx->mnSockAddrIn, mnSockAddrIn, sizeof(struct mn_sockaddr_in));
mn_socket_set_cbs(mynewt_ctx->mnSocket, mnSocket, &mynewt_sock_cbs);
}
}
#endif /* defined(WOLFSSL_APACHE_MYNEWT) && !defined(WOLFSSL_LWIP) */
#ifdef WOLFSSL_UIP
#include <uip.h>
#include <stdio.h>
/* uIP TCP/IP port, using the native tcp/udp socket api.
* TCP and UDP are currently supported with the callbacks below.
*
*/
/* The uIP tcp send callback
* return : bytes sent, or error
*/
int uIPSend(WOLFSSL* ssl, char* buf, int sz, void* _ctx)
{
uip_wolfssl_ctx *ctx = (struct uip_wolfssl_ctx *)_ctx;
int total_written = 0;
(void)ssl;
do {
int ret;
unsigned int bytes_left = sz - total_written;
unsigned int max_sendlen = tcp_socket_max_sendlen(&ctx->conn.tcp);
if (bytes_left > max_sendlen) {
fprintf(stderr, "uIPSend: Send limited by buffer\r\n");
bytes_left = max_sendlen;
}
if (bytes_left == 0) {
fprintf(stderr, "uIPSend: Buffer full!\r\n");
break;
}
ret = tcp_socket_send(&ctx->conn.tcp, (unsigned char *)buf + total_written, bytes_left);
if (ret <= 0)
break;
total_written += ret;
} while(total_written < sz);
if (total_written == 0)
return WOLFSSL_CBIO_ERR_WANT_WRITE;
return total_written;
}
int uIPSendTo(WOLFSSL* ssl, char* buf, int sz, void* _ctx)
{
uip_wolfssl_ctx *ctx = (struct uip_wolfssl_ctx *)_ctx;
int ret = 0;
(void)ssl;
ret = udp_socket_sendto(&ctx->conn.udp, (unsigned char *)buf, sz, &ctx->peer_addr, ctx->peer_port );
if (ret == 0)
return WOLFSSL_CBIO_ERR_WANT_WRITE;
return ret;
}
/* The uIP uTCP/IP receive callback
* return : nb bytes read, or error
*/
int uIPReceive(WOLFSSL *ssl, char *buf, int sz, void *_ctx)
{
uip_wolfssl_ctx *ctx = (uip_wolfssl_ctx *)_ctx;
if (!ctx || !ctx->ssl_rx_databuf)
return WOLFSSL_FATAL_ERROR;
(void)ssl;
if (ctx->ssl_rb_len > 0) {
if (sz > ctx->ssl_rb_len - ctx->ssl_rb_off)
sz = ctx->ssl_rb_len - ctx->ssl_rb_off;
XMEMCPY(buf, ctx->ssl_rx_databuf + ctx->ssl_rb_off, sz);
ctx->ssl_rb_off += sz;
if (ctx->ssl_rb_off >= ctx->ssl_rb_len) {
ctx->ssl_rb_len = 0;
ctx->ssl_rb_off = 0;
}
return sz;
} else {
return WOLFSSL_CBIO_ERR_WANT_READ;
}
}
/* uIP DTLS Generate Cookie callback
* return : number of bytes copied into buf, or error
*/
#if defined(NO_SHA) && !defined(NO_SHA256)
#define UIP_COOKIE_DIGEST_SIZE WC_SHA256_DIGEST_SIZE
#elif !defined(NO_SHA)
#define UIP_COOKIE_DIGEST_SIZE WC_SHA_DIGEST_SIZE
#else
#error Must enable either SHA-1 or SHA256 (or both) for uIP.
#endif
int uIPGenerateCookie(WOLFSSL* ssl, byte *buf, int sz, void *_ctx)
{
uip_wolfssl_ctx *ctx = (uip_wolfssl_ctx *)_ctx;
byte token[32];
byte digest[UIP_COOKIE_DIGEST_SIZE];
int ret = 0;
XMEMSET(token, 0, sizeof(token));
XMEMCPY(token, &ctx->peer_addr, sizeof(uip_ipaddr_t));
XMEMCPY(token + sizeof(uip_ipaddr_t), &ctx->peer_port, sizeof(word16));
#if defined(NO_SHA) && !defined(NO_SHA256)
ret = wc_Sha256Hash(token, sizeof(uip_ipaddr_t) + sizeof(word16), digest);
#else
ret = wc_ShaHash(token, sizeof(uip_ipaddr_t) + sizeof(word16), digest);
#endif
if (ret != 0)
return ret;
if (sz > UIP_COOKIE_DIGEST_SIZE)
sz = UIP_COOKIE_DIGEST_SIZE;
XMEMCPY(buf, digest, sz);
return sz;
}
#endif /* WOLFSSL_UIP */
#ifdef WOLFSSL_GNRC
#include <net/sock.h>
#include <net/sock/tcp.h>
#include <stdio.h>
/* GNRC TCP/IP port, using the native tcp/udp socket api.
* TCP and UDP are currently supported with the callbacks below.
*
*/
/* The GNRC tcp send callback
* return : bytes sent, or error
*/
int GNRC_SendTo(WOLFSSL* ssl, char* buf, int sz, void* _ctx)
{
sock_tls_t *ctx = (sock_tls_t *)_ctx;
int ret = 0;
(void)ssl;
if (!ctx)
return WOLFSSL_CBIO_ERR_GENERAL;
ret = sock_udp_send(&ctx->conn.udp, (unsigned char *)buf, sz, &ctx->peer_addr);
if (ret == 0)
return WOLFSSL_CBIO_ERR_WANT_WRITE;
return ret;
}
/* The GNRC TCP/IP receive callback
* return : nb bytes read, or error
*/
int GNRC_ReceiveFrom(WOLFSSL *ssl, char *buf, int sz, void *_ctx)
{
sock_udp_ep_t ep;
int ret;
word32 timeout = wolfSSL_dtls_get_current_timeout(ssl) * 1000000;
sock_tls_t *ctx = (sock_tls_t *)_ctx;
if (!ctx)
return WOLFSSL_CBIO_ERR_GENERAL;
(void)ssl;
if (wolfSSL_get_using_nonblock(ctx->ssl)) {
timeout = 0;
}
ret = sock_udp_recv(&ctx->conn.udp, buf, sz, timeout, &ep);
if (ret > 0) {
if (ctx->peer_addr.port == 0)
XMEMCPY(&ctx->peer_addr, &ep, sizeof(sock_udp_ep_t));
}
if (ret == -ETIMEDOUT) {
return WOLFSSL_CBIO_ERR_WANT_READ;
}
return ret;
}
/* GNRC DTLS Generate Cookie callback
* return : number of bytes copied into buf, or error
*/
#define GNRC_MAX_TOKEN_SIZE (32)
#if defined(NO_SHA) && !defined(NO_SHA256)
#define GNRC_COOKIE_DIGEST_SIZE WC_SHA256_DIGEST_SIZE
#elif !defined(NO_SHA)
#define GNRC_COOKIE_DIGEST_SIZE WC_SHA_DIGEST_SIZE
#else
#error Must enable either SHA-1 or SHA256 (or both) for GNRC.
#endif
int GNRC_GenerateCookie(WOLFSSL* ssl, byte *buf, int sz, void *_ctx)
{
sock_tls_t *ctx = (sock_tls_t *)_ctx;
if (!ctx)
return WOLFSSL_CBIO_ERR_GENERAL;
byte token[GNRC_MAX_TOKEN_SIZE];
byte digest[GNRC_COOKIE_DIGEST_SIZE];
int ret = 0;
size_t token_size = sizeof(sock_udp_ep_t);
(void)ssl;
if (token_size > GNRC_MAX_TOKEN_SIZE)
token_size = GNRC_MAX_TOKEN_SIZE;
XMEMSET(token, 0, GNRC_MAX_TOKEN_SIZE);
XMEMCPY(token, &ctx->peer_addr, token_size);
#if defined(NO_SHA) && !defined(NO_SHA256)
ret = wc_Sha256Hash(token, token_size, digest);
#else
ret = wc_ShaHash(token, token_size, digest);
#endif
if (ret != 0)
return ret;
if (sz > GNRC_COOKIE_DIGEST_SIZE)
sz = GNRC_COOKIE_DIGEST_SIZE;
XMEMCPY(buf, digest, sz);
return sz;
}
#endif /* WOLFSSL_GNRC */
#ifdef WOLFSSL_LWIP_NATIVE
int LwIPNativeSend(WOLFSSL* ssl, char* buf, int sz, void* ctx)
{
err_t ret;
WOLFSSL_LWIP_NATIVE_STATE* nlwip = (WOLFSSL_LWIP_NATIVE_STATE*)ctx;
ret = tcp_write(nlwip->pcb, buf, sz, TCP_WRITE_FLAG_COPY);
if (ret != ERR_OK) {
sz = WOLFSSL_FATAL_ERROR;
}
return sz;
}
int LwIPNativeReceive(WOLFSSL* ssl, char* buf, int sz, void* ctx)
{
struct pbuf *current, *head;
WOLFSSL_LWIP_NATIVE_STATE* nlwip;
int ret = 0;
if (ctx == NULL) {
return WOLFSSL_CBIO_ERR_GENERAL;
}
nlwip = (WOLFSSL_LWIP_NATIVE_STATE*)ctx;
current = nlwip->pbuf;
if (current == NULL || sz > current->tot_len) {
WOLFSSL_MSG("LwIP native pbuf list is null or not enough data, want read");
ret = WOLFSSL_CBIO_ERR_WANT_READ;
}
else {
int read = 0; /* total amount read */
head = nlwip->pbuf; /* save pointer to current head */
/* loop through buffers reading data */
while (current != NULL) {
int len; /* current amount to be read */
len = (current->len - nlwip->pulled < sz) ?
(current->len - nlwip->pulled) : sz;
if (read + len > sz) {
/* should never be hit but have sanity check before use */
return WOLFSSL_CBIO_ERR_GENERAL;
}
/* check if is a partial read from before */
XMEMCPY(&buf[read],
(const char *)&(((char *)(current->payload))[nlwip->pulled]),
len);
nlwip->pulled = nlwip->pulled + len;
if (nlwip->pulled >= current->len) {
WOLFSSL_MSG("Native LwIP read full pbuf");
nlwip->pbuf = current->next;
current = nlwip->pbuf;
nlwip->pulled = 0;
}
read = read + len;
ret = read;
/* read enough break out */
if (read >= sz) {
/* if more pbuf's are left in the chain then increment the
* ref count for next in chain and free all from beginning till
* next */
if (current != NULL) {
pbuf_ref(current);
}
/* ack and start free'ing from the current head of the chain */
pbuf_free(head);
break;
}
}
}
WOLFSSL_LEAVE("LwIPNativeReceive", ret);
return ret;
}
static err_t LwIPNativeReceiveCB(void* cb, struct tcp_pcb* pcb,
struct pbuf* pbuf, err_t err)
{
WOLFSSL_LWIP_NATIVE_STATE* nlwip;
if (cb == NULL || pcb == NULL) {
WOLFSSL_MSG("Expected callback was null, abort");
return ERR_ABRT;
}
nlwip = (WOLFSSL_LWIP_NATIVE_STATE*)cb;
if (pbuf == NULL && err == ERR_OK) {
return ERR_OK;
}
if (nlwip->pbuf == NULL) {
nlwip->pbuf = pbuf;
}
else {
if (nlwip->pbuf != pbuf) {
tcp_recved(nlwip->pcb, pbuf->tot_len);
pbuf_cat(nlwip->pbuf, pbuf); /* add chain to head */
}
}
if (nlwip->recv_fn) {
return nlwip->recv_fn(nlwip->arg, pcb, pbuf, err);
}
WOLFSSL_LEAVE("LwIPNativeReceiveCB", nlwip->pbuf->tot_len);
return ERR_OK;
}
static err_t LwIPNativeSentCB(void* cb, struct tcp_pcb* pcb, u16_t len)
{
WOLFSSL_LWIP_NATIVE_STATE* nlwip;
if (cb == NULL || pcb == NULL) {
WOLFSSL_MSG("Expected callback was null, abort");
return ERR_ABRT;
}
nlwip = (WOLFSSL_LWIP_NATIVE_STATE*)cb;
if (nlwip->sent_fn) {
return nlwip->sent_fn(nlwip->arg, pcb, len);
}
return ERR_OK;
}
int wolfSSL_SetIO_LwIP(WOLFSSL* ssl, void* pcb,
tcp_recv_fn recv_fn, tcp_sent_fn sent_fn, void *arg)
{
if (ssl == NULL || pcb == NULL)
return BAD_FUNC_ARG;
ssl->lwipCtx.pcb = (struct tcp_pcb *)pcb;
ssl->lwipCtx.recv_fn = recv_fn; /* recv user callback */
ssl->lwipCtx.sent_fn = sent_fn; /* sent user callback */
ssl->lwipCtx.arg = arg;
ssl->lwipCtx.pbuf = 0;
ssl->lwipCtx.pulled = 0;
ssl->lwipCtx.wait = 0;
/* wolfSSL_LwIP_recv/sent_cb invokes recv/sent user callback in them. */
tcp_recv(pcb, LwIPNativeReceiveCB);
tcp_sent(pcb, LwIPNativeSentCB);
tcp_arg (pcb, (void *)&ssl->lwipCtx);
wolfSSL_SetIOReadCtx(ssl, &ssl->lwipCtx);
wolfSSL_SetIOWriteCtx(ssl, &ssl->lwipCtx);
return ERR_OK;
}
#endif /* WOLFSSL_LWIP_NATIVE */
#ifdef WOLFSSL_ISOTP
static int isotp_send_single_frame(struct isotp_wolfssl_ctx *ctx, char *buf,
word16 length)
{
/* Length will be at most 7 bytes to get here. Packet is length and type
* for the first byte, then up to 7 bytes of data */
ctx->frame.data[0] = ((byte)length) | (ISOTP_FRAME_TYPE_SINGLE << 4);
XMEMCPY(&ctx->frame.data[1], buf, length);
ctx->frame.length = length + 1;
return ctx->send_fn(&ctx->frame, ctx->arg);
}
static int isotp_send_flow_control(struct isotp_wolfssl_ctx *ctx,
byte overflow)
{
int ret;
/* Overflow is set it if we have been asked to receive more data than the
* user allocated a buffer for */
if (overflow) {
ctx->frame.data[0] = ISOTP_FLOW_CONTROL_ABORT |
(ISOTP_FRAME_TYPE_CONTROL << 4);
} else {
ctx->frame.data[0] = ISOTP_FLOW_CONTROL_CTS |
(ISOTP_FRAME_TYPE_CONTROL << 4);
}
/* Set the number of frames between flow control to infinite */
ctx->frame.data[1] = ISOTP_FLOW_CONTROL_FRAMES;
/* User specified frame delay */
ctx->frame.data[2] = ctx->receive_delay;
ctx->frame.length = ISOTP_FLOW_CONTROL_PACKET_SIZE;
ret = ctx->send_fn(&ctx->frame, ctx->arg);
return ret;
}
static int isotp_receive_flow_control(struct isotp_wolfssl_ctx *ctx)
{
int ret;
enum isotp_frame_type type;
enum isotp_flow_control flow_control;
ret = ctx->recv_fn(&ctx->frame, ctx->arg, ISOTP_DEFAULT_TIMEOUT);
if (ret == 0) {
return WOLFSSL_CBIO_ERR_TIMEOUT;
} else if (ret < 0) {
WOLFSSL_MSG("ISO-TP error receiving flow control packet");
return WOLFSSL_CBIO_ERR_GENERAL;
}
/* Flow control is the frame type and flow response for the first byte,
* number of frames until the next flow control packet for the second
* byte, time between frames for the third byte */
type = ctx->frame.data[0] >> 4;
if (type != ISOTP_FRAME_TYPE_CONTROL) {
WOLFSSL_MSG("ISO-TP frames out of sequence");
return WOLFSSL_CBIO_ERR_GENERAL;
}
flow_control = ctx->frame.data[0] & 0xf;
ctx->flow_counter = 0;
ctx->flow_packets = ctx->frame.data[1];
ctx->frame_delay = ctx->frame.data[2];
return flow_control;
}
static int isotp_send_consecutive_frame(struct isotp_wolfssl_ctx *ctx)
{
/* Sequence is 0 - 15 and then starts again, the first frame has an
* implied sequence of '0' */
ctx->sequence += 1;
if (ctx->sequence > ISOTP_MAX_SEQUENCE_COUNTER) {
ctx->sequence = 0;
}
ctx->flow_counter++;
/* First byte it type and sequence number, up to 7 bytes of data */
ctx->frame.data[0] = ctx->sequence | (ISOTP_FRAME_TYPE_CONSECUTIVE << 4);
if (ctx->buf_length > ISOTP_MAX_CONSECUTIVE_FRAME_DATA_SIZE) {
XMEMCPY(&ctx->frame.data[1], ctx->buf_ptr,
ISOTP_MAX_CONSECUTIVE_FRAME_DATA_SIZE);
ctx->buf_ptr += ISOTP_MAX_CONSECUTIVE_FRAME_DATA_SIZE;
ctx->buf_length -= ISOTP_MAX_CONSECUTIVE_FRAME_DATA_SIZE;
ctx->frame.length = ISOTP_CAN_BUS_PAYLOAD_SIZE;
} else {
XMEMCPY(&ctx->frame.data[1], ctx->buf_ptr, ctx->buf_length);
ctx->frame.length = ctx->buf_length + 1;
ctx->buf_length = 0;
}
return ctx->send_fn(&ctx->frame, ctx->arg);
}
static int isotp_send_first_frame(struct isotp_wolfssl_ctx *ctx, char *buf,
word16 length)
{
int ret;
ctx->sequence = 0;
/* Set to 1 to trigger a flow control straight away, the flow control
* packet will set these properly */
ctx->flow_packets = ctx->flow_counter = 1;
/* First frame has 1 nibble for type, 3 nibbles for length followed by
* 6 bytes for data*/
ctx->frame.data[0] = (length >> 8) | (ISOTP_FRAME_TYPE_FIRST << 4);
ctx->frame.data[1] = length & 0xff;
XMEMCPY(&ctx->frame.data[2], buf, ISOTP_FIRST_FRAME_DATA_SIZE);
ctx->buf_ptr = buf + ISOTP_FIRST_FRAME_DATA_SIZE;
ctx->buf_length = length - ISOTP_FIRST_FRAME_DATA_SIZE;
ctx->frame.length = ISOTP_CAN_BUS_PAYLOAD_SIZE;
ret = ctx->send_fn(&ctx->frame, ctx->arg);
if (ret <= 0) {
WOLFSSL_MSG("ISO-TP error sending first frame");
return WOLFSSL_CBIO_ERR_GENERAL;
}
while(ctx->buf_length) {
/* The receiver can set how often to get a flow control packet. If it
* is time, then get the packet. Note that this will always happen
* after the first packet */
if ((ctx->flow_packets > 0) &&
(ctx->flow_counter == ctx->flow_packets)) {
ret = isotp_receive_flow_control(ctx);
}
/* Frame delay <= 0x7f is in ms, 0xfX is X * 100 us */
if (ctx->frame_delay) {
if (ctx->frame_delay <= ISOTP_MAX_MS_FRAME_DELAY) {
ctx->delay_fn(ctx->frame_delay * 1000);
} else {
ctx->delay_fn((ctx->frame_delay & 0xf) * 100);
}
}
switch (ret) {
/* Clear to send */
case ISOTP_FLOW_CONTROL_CTS:
if (isotp_send_consecutive_frame(ctx) < 0) {
WOLFSSL_MSG("ISO-TP error sending consecutive frame");
return WOLFSSL_CBIO_ERR_GENERAL;
}
break;
/* Receiver says "WAIT", so we wait for another flow control
* packet, or abort if we have waited too long */
case ISOTP_FLOW_CONTROL_WAIT:
ctx->wait_counter += 1;
if (ctx->wait_counter > ISOTP_DEFAULT_WAIT_COUNT) {
WOLFSSL_MSG("ISO-TP receiver told us to wait too many"
" times");
return WOLFSSL_CBIO_ERR_WANT_WRITE;
}
break;
/* Receiver is not ready to receive packet, so abort */
case ISOTP_FLOW_CONTROL_ABORT:
WOLFSSL_MSG("ISO-TP receiver aborted transmission");
return WOLFSSL_CBIO_ERR_WANT_WRITE;
default:
WOLFSSL_MSG("ISO-TP got unexpected flow control packet");
return WOLFSSL_CBIO_ERR_GENERAL;
}
}
return 0;
}
int ISOTP_Send(WOLFSSL* ssl, char* buf, int sz, void* ctx)
{
int ret;
struct isotp_wolfssl_ctx *isotp_ctx;
(void) ssl;
if (!ctx) {
WOLFSSL_MSG("ISO-TP requires wolfSSL_SetIO_ISOTP to be called first");
return WOLFSSL_CBIO_ERR_GENERAL;
}
isotp_ctx = (struct isotp_wolfssl_ctx*) ctx;
/* ISO-TP cannot send more than 4095 bytes, this limits the packet size
* and wolfSSL will try again with the remaining data */
if (sz > ISOTP_MAX_DATA_SIZE) {
sz = ISOTP_MAX_DATA_SIZE;
}
/* Can't send whilst we are receiving */
if (isotp_ctx->state != ISOTP_CONN_STATE_IDLE) {
return WOLFSSL_ERROR_WANT_WRITE;
}
isotp_ctx->state = ISOTP_CONN_STATE_SENDING;
/* Assuming normal addressing */
if (sz <= ISOTP_SINGLE_FRAME_DATA_SIZE) {
ret = isotp_send_single_frame(isotp_ctx, buf, (word16)sz);
} else {
ret = isotp_send_first_frame(isotp_ctx, buf, (word16)sz);
}
isotp_ctx->state = ISOTP_CONN_STATE_IDLE;
if (ret == 0) {
return sz;
}
return ret;
}
static int isotp_receive_single_frame(struct isotp_wolfssl_ctx *ctx)
{
byte data_size;
/* 1 nibble for data size which will be 1 - 7 in a regular 8 byte CAN
* packet */
data_size = (byte)ctx->frame.data[0] & 0xf;
if (ctx->receive_buffer_size < (int)data_size) {
WOLFSSL_MSG("ISO-TP buffer is too small to receive data");
return BUFFER_E;
}
XMEMCPY(ctx->receive_buffer, &ctx->frame.data[1], data_size);
return data_size;
}
static int isotp_receive_multi_frame(struct isotp_wolfssl_ctx *ctx)
{
int ret;
word16 data_size;
byte delay = 0;
/* Increase receive timeout for enforced ms delay */
if (ctx->receive_delay <= ISOTP_MAX_MS_FRAME_DELAY) {
delay = ctx->receive_delay;
}
/* Still processing first frame.
* Full data size is lower nibble of first byte for the most significant
* followed by the second byte for the rest. Last 6 bytes are data */
data_size = ((ctx->frame.data[0] & 0xf) << 8) + ctx->frame.data[1];
XMEMCPY(ctx->receive_buffer, &ctx->frame.data[2], ISOTP_FIRST_FRAME_DATA_SIZE);
/* Need to send a flow control packet to either cancel or continue
* transmission of data */
if (ctx->receive_buffer_size < data_size) {
isotp_send_flow_control(ctx, TRUE);
WOLFSSL_MSG("ISO-TP buffer is too small to receive data");
return BUFFER_E;
}
isotp_send_flow_control(ctx, FALSE);
ctx->buf_length = ISOTP_FIRST_FRAME_DATA_SIZE;
ctx->buf_ptr = ctx->receive_buffer + ISOTP_FIRST_FRAME_DATA_SIZE;
data_size -= ISOTP_FIRST_FRAME_DATA_SIZE;
ctx->sequence = 1;
while(data_size) {
enum isotp_frame_type type;
byte sequence;
byte frame_len;
ret = ctx->recv_fn(&ctx->frame, ctx->arg, ISOTP_DEFAULT_TIMEOUT +
(delay / 1000));
if (ret == 0) {
return WOLFSSL_CBIO_ERR_TIMEOUT;
}
type = ctx->frame.data[0] >> 4;
/* Consecutive frames have sequence number as lower nibble */
sequence = ctx->frame.data[0] & 0xf;
if (type != ISOTP_FRAME_TYPE_CONSECUTIVE) {
WOLFSSL_MSG("ISO-TP frames out of sequence");
return WOLFSSL_CBIO_ERR_GENERAL;
}
if (sequence != ctx->sequence) {
WOLFSSL_MSG("ISO-TP frames out of sequence");
return WOLFSSL_CBIO_ERR_GENERAL;
}
/* Last 7 bytes or whatever we got after the first byte is data */
frame_len = ctx->frame.length - 1;
XMEMCPY(ctx->buf_ptr, &ctx->frame.data[1], frame_len);
ctx->buf_ptr += frame_len;
ctx->buf_length += frame_len;
data_size -= frame_len;
/* Sequence is 0 - 15 (first 0 is implied for first packet */
ctx->sequence++;
if (ctx->sequence > ISOTP_MAX_SEQUENCE_COUNTER) {
ctx->sequence = 0;
}
}
return ctx->buf_length;
}
/* The wolfSSL receive callback, needs to buffer because we need to grab all
* incoming data, even if wolfSSL doesn't want it all yet */
int ISOTP_Receive(WOLFSSL* ssl, char* buf, int sz, void* ctx)
{
enum isotp_frame_type type;
int ret;
struct isotp_wolfssl_ctx *isotp_ctx;
(void) ssl;
if (!ctx) {
WOLFSSL_MSG("ISO-TP requires wolfSSL_SetIO_ISOTP to be called first");
return WOLFSSL_CBIO_ERR_TIMEOUT;
}
isotp_ctx = (struct isotp_wolfssl_ctx*)ctx;
/* Is buffer empty? If so, fill it */
if (!isotp_ctx->receive_buffer_len) {
/* Can't send whilst we are receiving */
if (isotp_ctx->state != ISOTP_CONN_STATE_IDLE) {
return WOLFSSL_ERROR_WANT_READ;
}
isotp_ctx->state = ISOTP_CONN_STATE_RECEIVING;
do {
ret = isotp_ctx->recv_fn(&isotp_ctx->frame, isotp_ctx->arg,
ISOTP_DEFAULT_TIMEOUT);
} while (ret == 0);
if (ret == 0) {
isotp_ctx->state = ISOTP_CONN_STATE_IDLE;
return WOLFSSL_CBIO_ERR_TIMEOUT;
} else if (ret < 0) {
isotp_ctx->state = ISOTP_CONN_STATE_IDLE;
WOLFSSL_MSG("ISO-TP receive error");
return WOLFSSL_CBIO_ERR_GENERAL;
}
type = (enum isotp_frame_type) isotp_ctx->frame.data[0] >> 4;
if (type == ISOTP_FRAME_TYPE_SINGLE) {
isotp_ctx->receive_buffer_len =
isotp_receive_single_frame(isotp_ctx);
} else if (type == ISOTP_FRAME_TYPE_FIRST) {
isotp_ctx->receive_buffer_len =
isotp_receive_multi_frame(isotp_ctx);
} else {
/* Should never get here */
isotp_ctx->state = ISOTP_CONN_STATE_IDLE;
WOLFSSL_MSG("ISO-TP frames out of sequence");
return WOLFSSL_CBIO_ERR_GENERAL;
}
if (isotp_ctx->receive_buffer_len <= 1) {
isotp_ctx->state = ISOTP_CONN_STATE_IDLE;
return isotp_ctx->receive_buffer_len;
} else {
isotp_ctx->receive_buffer_ptr = isotp_ctx->receive_buffer;
}
isotp_ctx->state = ISOTP_CONN_STATE_IDLE;
}
/* Return from the buffer */
if (isotp_ctx->receive_buffer_len >= sz) {
XMEMCPY(buf, isotp_ctx->receive_buffer_ptr, sz);
isotp_ctx->receive_buffer_ptr+= sz;
isotp_ctx->receive_buffer_len-= sz;
return sz;
} else {
XMEMCPY(buf, isotp_ctx->receive_buffer_ptr,
isotp_ctx->receive_buffer_len);
sz = isotp_ctx->receive_buffer_len;
isotp_ctx->receive_buffer_len = 0;
return sz;
}
}
int wolfSSL_SetIO_ISOTP(WOLFSSL *ssl, isotp_wolfssl_ctx *ctx,
can_recv_fn recv_fn, can_send_fn send_fn, can_delay_fn delay_fn,
word32 receive_delay, char *receive_buffer, int receive_buffer_size,
void *arg)
{
if (!ctx || !recv_fn || !send_fn || !delay_fn || !receive_buffer) {
WOLFSSL_MSG("ISO-TP has missing required parameter");
return WOLFSSL_CBIO_ERR_GENERAL;
}
ctx->recv_fn = recv_fn;
ctx->send_fn = send_fn;
ctx->arg = arg;
ctx->delay_fn = delay_fn;
ctx->frame_delay = 0;
ctx->receive_buffer = receive_buffer;
ctx->receive_buffer_size = receive_buffer_size;
ctx->receive_buffer_len = 0;
ctx->state = ISOTP_CONN_STATE_IDLE;
wolfSSL_SetIOReadCtx(ssl, ctx);
wolfSSL_SetIOWriteCtx(ssl, ctx);
/* Delay of 100 - 900us is 0xfX where X is value / 100. Delay of
* >= 1000 is divided by 1000. > 127ms is invalid */
if (receive_delay < 1000) {
ctx->receive_delay = 0xf0 + (receive_delay / 100);
} else if (receive_delay <= ISOTP_MAX_MS_FRAME_DELAY * 1000) {
ctx->receive_delay = receive_delay / 1000;
} else {
WOLFSSL_MSG("ISO-TP delay parameter out of bounds");
return WOLFSSL_CBIO_ERR_GENERAL;
}
return 0;
}
#endif /* WOLFSSL_ISOTP */
#endif /* WOLFCRYPT_ONLY */