Files
wolfssl/wolfcrypt/src/kdf.c

1474 lines
44 KiB
C

/* kdf.c
*
* Copyright (C) 2006-2025 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#include <wolfssl/wolfcrypt/libwolfssl_sources.h>
#ifndef NO_KDF
#if FIPS_VERSION3_GE(5,0,0)
/* set NO_WRAPPERS before headers, use direct internal f()s not wrappers */
#define FIPS_NO_WRAPPERS
#ifdef USE_WINDOWS_API
#pragma code_seg(".fipsA$h")
#pragma const_seg(".fipsB$h")
#endif
#endif
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
#include <wolfssl/wolfcrypt/hmac.h>
#include <wolfssl/wolfcrypt/kdf.h>
#ifdef WC_SRTP_KDF
#include <wolfssl/wolfcrypt/aes.h>
#endif
#if FIPS_VERSION3_GE(6,0,0)
const unsigned int wolfCrypt_FIPS_kdf_ro_sanity[2] =
{ 0x1a2b3c4d, 0x00000009 };
int wolfCrypt_FIPS_KDF_sanity(void)
{
return 0;
}
#endif
#if defined(WOLFSSL_HAVE_PRF) && !defined(NO_HMAC)
#ifdef WOLFSSL_SHA512
#define P_HASH_MAX_SIZE WC_SHA512_DIGEST_SIZE
#elif defined(WOLFSSL_SHA384)
#define P_HASH_MAX_SIZE WC_SHA384_DIGEST_SIZE
#else
#define P_HASH_MAX_SIZE WC_SHA256_DIGEST_SIZE
#endif
/* Pseudo Random Function for MD5, SHA-1, SHA-256, SHA-384, or SHA-512 */
int wc_PRF(byte* result, word32 resLen, const byte* secret,
word32 secLen, const byte* seed, word32 seedLen, int hash,
void* heap, int devId)
{
word32 len = P_HASH_MAX_SIZE;
word32 times;
word32 lastLen;
word32 lastTime;
int ret = 0;
#ifdef WOLFSSL_SMALL_STACK
byte* current;
Hmac* hmac;
#else
byte current[P_HASH_MAX_SIZE]; /* max size */
Hmac hmac[1];
#endif
switch (hash) {
#ifndef NO_MD5
case md5_mac:
hash = WC_MD5;
len = WC_MD5_DIGEST_SIZE;
break;
#endif
#ifndef NO_SHA256
case sha256_mac:
hash = WC_SHA256;
len = WC_SHA256_DIGEST_SIZE;
break;
#endif
#ifdef WOLFSSL_SHA384
case sha384_mac:
hash = WC_SHA384;
len = WC_SHA384_DIGEST_SIZE;
break;
#endif
#ifdef WOLFSSL_SHA512
case sha512_mac:
hash = WC_SHA512;
len = WC_SHA512_DIGEST_SIZE;
break;
#endif
#ifdef WOLFSSL_SM3
case sm3_mac:
hash = WC_SM3;
len = WC_SM3_DIGEST_SIZE;
break;
#endif
#ifndef NO_SHA
case sha_mac:
hash = WC_SHA;
len = WC_SHA_DIGEST_SIZE;
break;
#endif
default:
return HASH_TYPE_E;
}
times = resLen / len;
lastLen = resLen % len;
if (lastLen)
times += 1;
/* times == 0 if resLen == 0, but times == 0 abides clang static analyzer
while resLen == 0 doesn't */
if (times == 0)
return BAD_FUNC_ARG;
lastTime = times - 1;
#ifdef WOLFSSL_SMALL_STACK
current = (byte*)XMALLOC(P_HASH_MAX_SIZE, heap, DYNAMIC_TYPE_DIGEST);
hmac = (Hmac*)XMALLOC(sizeof(Hmac), heap, DYNAMIC_TYPE_HMAC);
if (current == NULL || hmac == NULL) {
XFREE(current, heap, DYNAMIC_TYPE_DIGEST);
XFREE(hmac, heap, DYNAMIC_TYPE_HMAC);
return MEMORY_E;
}
#endif
#ifdef WOLFSSL_CHECK_MEM_ZERO
XMEMSET(current, 0xff, P_HASH_MAX_SIZE);
wc_MemZero_Add("wc_PRF current", current, P_HASH_MAX_SIZE);
wc_MemZero_Add("wc_PRF hmac", hmac, sizeof(Hmac));
#endif
ret = wc_HmacInit(hmac, heap, devId);
if (ret == 0) {
ret = wc_HmacSetKey(hmac, hash, secret, secLen);
if (ret == 0)
ret = wc_HmacUpdate(hmac, seed, seedLen); /* A0 = seed */
if (ret == 0)
ret = wc_HmacFinal(hmac, current); /* A1 */
if (ret == 0) {
word32 i;
word32 idx = 0;
for (i = 0; i < times; i++) {
ret = wc_HmacUpdate(hmac, current, len);
if (ret != 0)
break;
ret = wc_HmacUpdate(hmac, seed, seedLen);
if (ret != 0)
break;
if ((i != lastTime) || !lastLen) {
ret = wc_HmacFinal(hmac, &result[idx]);
if (ret != 0)
break;
idx += len;
ret = wc_HmacUpdate(hmac, current, len);
if (ret != 0)
break;
ret = wc_HmacFinal(hmac, current);
if (ret != 0)
break;
}
else {
ret = wc_HmacFinal(hmac, current);
if (ret != 0)
break;
XMEMCPY(&result[idx], current,
min(lastLen, P_HASH_MAX_SIZE));
}
}
}
wc_HmacFree(hmac);
}
ForceZero(current, P_HASH_MAX_SIZE);
ForceZero(hmac, sizeof(Hmac));
#if defined(WOLFSSL_CHECK_MEM_ZERO)
wc_MemZero_Check(current, P_HASH_MAX_SIZE);
wc_MemZero_Check(hmac, sizeof(Hmac));
#endif
#ifdef WOLFSSL_SMALL_STACK
XFREE(current, heap, DYNAMIC_TYPE_DIGEST);
XFREE(hmac, heap, DYNAMIC_TYPE_HMAC);
#endif
return ret;
}
#undef P_HASH_MAX_SIZE
/* compute PRF (pseudo random function) using SHA1 and MD5 for TLSv1 */
int wc_PRF_TLSv1(byte* digest, word32 digLen, const byte* secret,
word32 secLen, const byte* label, word32 labLen,
const byte* seed, word32 seedLen, void* heap, int devId)
{
int ret = 0;
word32 half = (secLen + 1) / 2;
const byte* md5_half;
const byte* sha_half;
byte* md5_result;
#ifdef WOLFSSL_SMALL_STACK
byte* sha_result;
byte* labelSeed;
#else
byte sha_result[MAX_PRF_DIG]; /* digLen is real size */
byte labelSeed[MAX_PRF_LABSEED];
#endif
if (half > MAX_PRF_HALF ||
labLen + seedLen > MAX_PRF_LABSEED ||
digLen > MAX_PRF_DIG)
{
return BUFFER_E;
}
#ifdef WOLFSSL_SMALL_STACK
sha_result = (byte*)XMALLOC(MAX_PRF_DIG, heap, DYNAMIC_TYPE_DIGEST);
labelSeed = (byte*)XMALLOC(MAX_PRF_LABSEED, heap, DYNAMIC_TYPE_DIGEST);
if (sha_result == NULL || labelSeed == NULL) {
XFREE(sha_result, heap, DYNAMIC_TYPE_DIGEST);
XFREE(labelSeed, heap, DYNAMIC_TYPE_DIGEST);
return MEMORY_E;
}
#endif
md5_half = secret;
sha_half = secret + half - secLen % 2;
md5_result = digest;
XMEMCPY(labelSeed, label, labLen);
XMEMCPY(labelSeed + labLen, seed, seedLen);
if ((ret = wc_PRF(md5_result, digLen, md5_half, half, labelSeed,
labLen + seedLen, md5_mac, heap, devId)) == 0) {
if ((ret = wc_PRF(sha_result, digLen, sha_half, half, labelSeed,
labLen + seedLen, sha_mac, heap, devId)) == 0) {
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("wc_PRF_TLSv1 sha_result", sha_result, digLen);
#endif
/* calculate XOR for TLSv1 PRF */
/* md5 result is placed directly in digest */
xorbuf(digest, sha_result, digLen);
ForceZero(sha_result, digLen);
}
}
#if defined(WOLFSSL_CHECK_MEM_ZERO)
wc_MemZero_Check(sha_result, MAX_PRF_DIG);
#endif
#ifdef WOLFSSL_SMALL_STACK
XFREE(sha_result, heap, DYNAMIC_TYPE_DIGEST);
XFREE(labelSeed, heap, DYNAMIC_TYPE_DIGEST);
#endif
return ret;
}
/* Wrapper for TLS 1.2 and TLSv1 cases to calculate PRF */
/* In TLS 1.2 case call straight thru to wc_PRF */
int wc_PRF_TLS(byte* digest, word32 digLen, const byte* secret, word32 secLen,
const byte* label, word32 labLen, const byte* seed, word32 seedLen,
int useAtLeastSha256, int hash_type, void* heap, int devId)
{
int ret = 0;
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG(" secret");
WOLFSSL_BUFFER(secret, secLen);
WOLFSSL_MSG(" label");
WOLFSSL_BUFFER(label, labLen);
WOLFSSL_MSG(" seed");
WOLFSSL_BUFFER(seed, seedLen);
#endif
if (useAtLeastSha256) {
#ifdef WOLFSSL_SMALL_STACK
byte* labelSeed;
#else
byte labelSeed[MAX_PRF_LABSEED];
#endif
if (labLen + seedLen > MAX_PRF_LABSEED) {
return BUFFER_E;
}
#ifdef WOLFSSL_SMALL_STACK
labelSeed = (byte*)XMALLOC(MAX_PRF_LABSEED, heap, DYNAMIC_TYPE_DIGEST);
if (labelSeed == NULL) {
return MEMORY_E;
}
#endif
XMEMCPY(labelSeed, label, labLen);
XMEMCPY(labelSeed + labLen, seed, seedLen);
/* If a cipher suite wants an algorithm better than sha256, it
* should use better. */
if (hash_type < sha256_mac || hash_type == blake2b_mac) {
hash_type = sha256_mac;
}
/* compute PRF for MD5, SHA-1, SHA-256, or SHA-384 for TLSv1.2 PRF */
ret = wc_PRF(digest, digLen, secret, secLen, labelSeed,
labLen + seedLen, hash_type, heap, devId);
#ifdef WOLFSSL_SMALL_STACK
XFREE(labelSeed, heap, DYNAMIC_TYPE_DIGEST);
#endif
}
else {
#ifndef NO_OLD_TLS
/* compute TLSv1 PRF (pseudo random function using HMAC) */
ret = wc_PRF_TLSv1(digest, digLen, secret, secLen, label, labLen, seed,
seedLen, heap, devId);
#else
ret = BAD_FUNC_ARG;
#endif
}
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG(" digest");
WOLFSSL_BUFFER(digest, digLen);
WOLFSSL_MSG_EX("hash_type %d", hash_type);
#endif
return ret;
}
#endif /* WOLFSSL_HAVE_PRF && !NO_HMAC */
#if defined(HAVE_HKDF) && !defined(NO_HMAC)
/* Extract data using HMAC, salt and input.
* RFC 5869 - HMAC-based Extract-and-Expand Key Derivation Function (HKDF)
*/
int wc_Tls13_HKDF_Extract_ex(byte* prk, const byte* salt, word32 saltLen,
byte* ikm, word32 ikmLen, int digest, void* heap, int devId)
{
int ret;
word32 len = 0;
switch (digest) {
#ifndef NO_SHA256
case WC_SHA256:
len = WC_SHA256_DIGEST_SIZE;
break;
#endif
#ifdef WOLFSSL_SHA384
case WC_SHA384:
len = WC_SHA384_DIGEST_SIZE;
break;
#endif
#ifdef WOLFSSL_TLS13_SHA512
case WC_SHA512:
len = WC_SHA512_DIGEST_SIZE;
break;
#endif
#ifdef WOLFSSL_SM3
case WC_SM3:
len = WC_SM3_DIGEST_SIZE;
break;
#endif
default:
return BAD_FUNC_ARG;
}
/* When length is 0 then use zeroed data of digest length. */
if (ikmLen == 0) {
ikmLen = len;
XMEMSET(ikm, 0, len);
}
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG(" Salt");
WOLFSSL_BUFFER(salt, saltLen);
WOLFSSL_MSG(" IKM");
WOLFSSL_BUFFER(ikm, ikmLen);
#endif
#if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || \
(defined(FIPS_VERSION_GE) && FIPS_VERSION_GE(5,3)))
ret = wc_HKDF_Extract_ex(digest, salt, saltLen, ikm, ikmLen, prk, heap,
devId);
#else
ret = wc_HKDF_Extract(digest, salt, saltLen, ikm, ikmLen, prk);
(void)heap;
(void)devId;
#endif
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG(" PRK");
WOLFSSL_BUFFER(prk, len);
#endif
return ret;
}
int wc_Tls13_HKDF_Extract(byte* prk, const byte* salt, word32 saltLen,
byte* ikm, word32 ikmLen, int digest)
{
return wc_Tls13_HKDF_Extract_ex(prk, salt, saltLen, ikm, ikmLen, digest,
NULL, INVALID_DEVID);
}
/* Expand data using HMAC, salt and label and info.
* TLS v1.3 defines this function. */
int wc_Tls13_HKDF_Expand_Label_ex(byte* okm, word32 okmLen,
const byte* prk, word32 prkLen,
const byte* protocol, word32 protocolLen,
const byte* label, word32 labelLen,
const byte* info, word32 infoLen,
int digest, void* heap, int devId)
{
int ret = 0;
word32 idx = 0;
#ifdef WOLFSSL_SMALL_STACK
byte* data;
#else
byte data[MAX_TLS13_HKDF_LABEL_SZ];
#endif
/* okmLen (2) + protocol|label len (1) + info len(1) + protocollen +
* labellen + infolen */
idx = 4 + protocolLen + labelLen + infoLen;
if (idx > MAX_TLS13_HKDF_LABEL_SZ) {
return BUFFER_E;
}
#ifdef WOLFSSL_SMALL_STACK
data = (byte*)XMALLOC(idx, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (data == NULL) {
return MEMORY_E;
}
#endif
idx = 0;
/* Output length. */
data[idx++] = (byte)(okmLen >> 8);
data[idx++] = (byte)okmLen;
/* Length of protocol | label. */
data[idx++] = (byte)(protocolLen + labelLen);
if (protocolLen > 0) {
/* Protocol */
XMEMCPY(&data[idx], protocol, protocolLen);
idx += protocolLen;
}
if (labelLen > 0) {
/* Label */
XMEMCPY(&data[idx], label, labelLen);
idx += labelLen;
}
/* Length of hash of messages */
data[idx++] = (byte)infoLen;
if (infoLen > 0) {
/* Hash of messages */
XMEMCPY(&data[idx], info, infoLen);
idx += infoLen;
}
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("wc_Tls13_HKDF_Expand_Label data", data, idx);
#endif
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG(" PRK");
WOLFSSL_BUFFER(prk, prkLen);
WOLFSSL_MSG(" Info");
WOLFSSL_BUFFER(data, idx);
WOLFSSL_MSG_EX(" Digest %d", digest);
#endif
#if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || \
(defined(FIPS_VERSION_GE) && FIPS_VERSION_GE(5,3)))
ret = wc_HKDF_Expand_ex(digest, prk, prkLen, data, idx, okm, okmLen,
heap, devId);
#else
ret = wc_HKDF_Expand(digest, prk, prkLen, data, idx, okm, okmLen);
(void)heap;
(void)devId;
#endif
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG(" OKM");
WOLFSSL_BUFFER(okm, okmLen);
#endif
ForceZero(data, idx);
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(data, idx);
#endif
#ifdef WOLFSSL_SMALL_STACK
XFREE(data, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
int wc_Tls13_HKDF_Expand_Label(byte* okm, word32 okmLen,
const byte* prk, word32 prkLen,
const byte* protocol, word32 protocolLen,
const byte* label, word32 labelLen,
const byte* info, word32 infoLen,
int digest)
{
return wc_Tls13_HKDF_Expand_Label_ex(okm, okmLen, prk, prkLen, protocol,
protocolLen, label, labelLen, info, infoLen, digest,
NULL, INVALID_DEVID);
}
#if defined(WOLFSSL_TICKET_NONCE_MALLOC) && \
(!defined(HAVE_FIPS) || (defined(FIPS_VERSION_GE) && FIPS_VERSION_GE(5,3)))
/* Expand data using HMAC, salt and label and info.
* TLS v1.3 defines this function. */
int wc_Tls13_HKDF_Expand_Label_Alloc(byte* okm, word32 okmLen,
const byte* prk, word32 prkLen, const byte* protocol,
word32 protocolLen, const byte* label, word32 labelLen,
const byte* info, word32 infoLen, int digest, void* heap)
{
int ret = 0;
word32 idx = 0;
size_t len;
byte *data;
(void)heap;
/* okmLen (2) + protocol|label len (1) + info len(1) + protocollen +
* labellen + infolen */
len = 4U + protocolLen + labelLen + infoLen;
data = (byte*)XMALLOC(len, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (data == NULL)
return BUFFER_E;
/* Output length. */
data[idx++] = (byte)(okmLen >> 8);
data[idx++] = (byte)okmLen;
/* Length of protocol | label. */
data[idx++] = (byte)(protocolLen + labelLen);
/* Protocol */
XMEMCPY(&data[idx], protocol, protocolLen);
idx += protocolLen;
/* Label */
XMEMCPY(&data[idx], label, labelLen);
idx += labelLen;
/* Length of hash of messages */
data[idx++] = (byte)infoLen;
/* Hash of messages */
XMEMCPY(&data[idx], info, infoLen);
idx += infoLen;
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("wc_Tls13_HKDF_Expand_Label data", data, idx);
#endif
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG(" PRK");
WOLFSSL_BUFFER(prk, prkLen);
WOLFSSL_MSG(" Info");
WOLFSSL_BUFFER(data, idx);
WOLFSSL_MSG_EX(" Digest %d", digest);
#endif
ret = wc_HKDF_Expand(digest, prk, prkLen, data, idx, okm, okmLen);
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG(" OKM");
WOLFSSL_BUFFER(okm, okmLen);
#endif
ForceZero(data, idx);
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(data, len);
#endif
XFREE(data, heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
#endif
/* defined(WOLFSSL_TICKET_NONCE_MALLOC) && (!defined(HAVE_FIPS) ||
* FIPS_VERSION_GE(5,3)) */
#endif /* HAVE_HKDF && !NO_HMAC */
#ifdef WOLFSSL_WOLFSSH
/* hash union */
typedef union {
#ifndef NO_MD5
wc_Md5 md5;
#endif
#ifndef NO_SHA
wc_Sha sha;
#endif
#ifdef WOLFSSL_SHA224
wc_Sha224 sha224;
#endif
#ifndef NO_SHA256
wc_Sha256 sha256;
#endif
#ifdef WOLFSSL_SHA384
wc_Sha384 sha384;
#endif
#ifdef WOLFSSL_SHA512
wc_Sha512 sha512;
#endif
#ifdef WOLFSSL_SHA3
wc_Sha3 sha3;
#endif
} _hash;
static
int _HashInit(byte hashId, _hash* hash)
{
int ret = WC_NO_ERR_TRACE(BAD_FUNC_ARG);
switch (hashId) {
#ifndef NO_SHA
case WC_SHA:
ret = wc_InitSha(&hash->sha);
break;
#endif /* !NO_SHA */
#ifndef NO_SHA256
case WC_SHA256:
ret = wc_InitSha256(&hash->sha256);
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
ret = wc_InitSha384(&hash->sha384);
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
ret = wc_InitSha512(&hash->sha512);
break;
#endif /* WOLFSSL_SHA512 */
default:
ret = BAD_FUNC_ARG;
break;
}
return ret;
}
static
int _HashUpdate(byte hashId, _hash* hash,
const byte* data, word32 dataSz)
{
int ret = WC_NO_ERR_TRACE(BAD_FUNC_ARG);
switch (hashId) {
#ifndef NO_SHA
case WC_SHA:
ret = wc_ShaUpdate(&hash->sha, data, dataSz);
break;
#endif /* !NO_SHA */
#ifndef NO_SHA256
case WC_SHA256:
ret = wc_Sha256Update(&hash->sha256, data, dataSz);
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
ret = wc_Sha384Update(&hash->sha384, data, dataSz);
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
ret = wc_Sha512Update(&hash->sha512, data, dataSz);
break;
#endif /* WOLFSSL_SHA512 */
default:
ret = BAD_FUNC_ARG;
break;
}
return ret;
}
static
int _HashFinal(byte hashId, _hash* hash, byte* digest)
{
int ret = WC_NO_ERR_TRACE(BAD_FUNC_ARG);
switch (hashId) {
#ifndef NO_SHA
case WC_SHA:
ret = wc_ShaFinal(&hash->sha, digest);
break;
#endif /* !NO_SHA */
#ifndef NO_SHA256
case WC_SHA256:
ret = wc_Sha256Final(&hash->sha256, digest);
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
ret = wc_Sha384Final(&hash->sha384, digest);
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
ret = wc_Sha512Final(&hash->sha512, digest);
break;
#endif /* WOLFSSL_SHA512 */
default:
ret = BAD_FUNC_ARG;
break;
}
return ret;
}
static
void _HashFree(byte hashId, _hash* hash)
{
switch (hashId) {
#ifndef NO_SHA
case WC_SHA:
wc_ShaFree(&hash->sha);
break;
#endif /* !NO_SHA */
#ifndef NO_SHA256
case WC_SHA256:
wc_Sha256Free(&hash->sha256);
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
wc_Sha384Free(&hash->sha384);
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
wc_Sha512Free(&hash->sha512);
break;
#endif /* WOLFSSL_SHA512 */
}
}
#define LENGTH_SZ 4
int wc_SSH_KDF(byte hashId, byte keyId, byte* key, word32 keySz,
const byte* k, word32 kSz, const byte* h, word32 hSz,
const byte* sessionId, word32 sessionIdSz)
{
word32 blocks, remainder;
_hash hash;
enum wc_HashType enmhashId = (enum wc_HashType)hashId;
byte kPad = 0;
byte pad = 0;
byte kSzFlat[LENGTH_SZ];
word32 digestSz;
int ret;
if (key == NULL || keySz == 0 ||
k == NULL || kSz == 0 ||
h == NULL || hSz == 0 ||
sessionId == NULL || sessionIdSz == 0) {
return BAD_FUNC_ARG;
}
ret = wc_HmacSizeByType((int)enmhashId);
if (ret <= 0) {
return BAD_FUNC_ARG;
}
digestSz = (word32)ret;
if (k[0] & 0x80) kPad = 1;
c32toa(kSz + kPad, kSzFlat);
blocks = keySz / digestSz;
remainder = keySz % digestSz;
ret = _HashInit(enmhashId, &hash);
if (ret == 0)
ret = _HashUpdate(enmhashId, &hash, kSzFlat, LENGTH_SZ);
if (ret == 0 && kPad)
ret = _HashUpdate(enmhashId, &hash, &pad, 1);
if (ret == 0)
ret = _HashUpdate(enmhashId, &hash, k, kSz);
if (ret == 0)
ret = _HashUpdate(enmhashId, &hash, h, hSz);
if (ret == 0)
ret = _HashUpdate(enmhashId, &hash, &keyId, sizeof(keyId));
if (ret == 0)
ret = _HashUpdate(enmhashId, &hash, sessionId, sessionIdSz);
if (ret == 0) {
if (blocks == 0) {
if (remainder > 0) {
byte lastBlock[WC_MAX_DIGEST_SIZE];
ret = _HashFinal(enmhashId, &hash, lastBlock);
if (ret == 0)
XMEMCPY(key, lastBlock, remainder);
}
}
else {
word32 runningKeySz, curBlock;
runningKeySz = digestSz;
ret = _HashFinal(enmhashId, &hash, key);
for (curBlock = 1; curBlock < blocks; curBlock++) {
ret = _HashInit(enmhashId, &hash);
if (ret != 0) break;
ret = _HashUpdate(enmhashId, &hash, kSzFlat, LENGTH_SZ);
if (ret != 0) break;
if (kPad)
ret = _HashUpdate(enmhashId, &hash, &pad, 1);
if (ret != 0) break;
ret = _HashUpdate(enmhashId, &hash, k, kSz);
if (ret != 0) break;
ret = _HashUpdate(enmhashId, &hash, h, hSz);
if (ret != 0) break;
ret = _HashUpdate(enmhashId, &hash, key, runningKeySz);
if (ret != 0) break;
ret = _HashFinal(enmhashId, &hash, key + runningKeySz);
if (ret != 0) break;
runningKeySz += digestSz;
}
if (remainder > 0) {
byte lastBlock[WC_MAX_DIGEST_SIZE];
if (ret == 0)
ret = _HashInit(enmhashId, &hash);
if (ret == 0)
ret = _HashUpdate(enmhashId, &hash, kSzFlat, LENGTH_SZ);
if (ret == 0 && kPad)
ret = _HashUpdate(enmhashId, &hash, &pad, 1);
if (ret == 0)
ret = _HashUpdate(enmhashId, &hash, k, kSz);
if (ret == 0)
ret = _HashUpdate(enmhashId, &hash, h, hSz);
if (ret == 0)
ret = _HashUpdate(enmhashId, &hash, key, runningKeySz);
if (ret == 0)
ret = _HashFinal(enmhashId, &hash, lastBlock);
if (ret == 0)
XMEMCPY(key + runningKeySz, lastBlock, remainder);
}
}
}
_HashFree(enmhashId, &hash);
return ret;
}
#endif /* WOLFSSL_WOLFSSH */
#ifdef WC_SRTP_KDF
/* Calculate first block to encrypt.
*
* @param [in] salt Random value to XOR in.
* @param [in] saltSz Size of random value in bytes.
* @param [in] kdrIdx Key derivation rate. kdr = 0 when -1, otherwise
* kdr = 2^kdrIdx.
* @param [in] index Index value to XOR in.
* @param [in] indexSz Size of index value in bytes.
* @param [out] block First block to encrypt.
*/
static void wc_srtp_kdf_first_block(const byte* salt, word32 saltSz, int kdrIdx,
const byte* index, int indexSz, unsigned char* block)
{
int i;
/* XOR salt into zeroized buffer. */
for (i = 0; i < WC_SRTP_MAX_SALT - (int)saltSz; i++) {
block[i] = 0;
}
XMEMCPY(block + WC_SRTP_MAX_SALT - saltSz, salt, saltSz);
block[WC_SRTP_MAX_SALT] = 0;
/* block[15] is counter. */
/* When kdrIdx is -1, don't XOR in index. */
if (kdrIdx >= 0) {
/* Get the number of bits to shift index by. */
word32 bits = kdrIdx & 0x7;
/* Reduce index size by number of bytes to remove. */
indexSz -= kdrIdx >> 3;
if ((kdrIdx & 0x7) == 0) {
/* Just XOR in as no bit shifting. */
for (i = 0; i < indexSz; i++) {
block[i + WC_SRTP_MAX_SALT - indexSz] ^= index[i];
}
}
else {
/* XOR in as bit shifted index. */
block[WC_SRTP_MAX_SALT - indexSz] ^= (byte)(index[0] >> bits);
for (i = 1; i < indexSz; i++) {
block[i + WC_SRTP_MAX_SALT - indexSz] ^=
(byte)((index[i-1] << (8 - bits)) |
(index[i+0] >> bits ));
}
}
}
}
/* Derive a key given the first block.
*
* @param [in, out] block First block to encrypt. Need label XORed in.
* @param [in] indexSz Size of index in bytes to calculate where label is
* XORed into.
* @param [in] label Label byte that differs for each key.
* @param [out] key Derived key.
* @param [in] keySz Size of key to derive in bytes.
* @param [in] aes AES object to encrypt with.
* @return 0 on success.
*/
static int wc_srtp_kdf_derive_key(byte* block, int indexSz, byte label,
byte* key, word32 keySz, Aes* aes)
{
int i;
int ret = 0;
/* Calculate the number of full blocks needed for derived key. */
int blocks = (int)(keySz / WC_AES_BLOCK_SIZE);
/* XOR in label. */
block[WC_SRTP_MAX_SALT - indexSz - 1] ^= label;
for (i = 0; (ret == 0) && (i < blocks); i++) {
/* Set counter. */
block[15] = (byte)i;
/* Encrypt block into key buffer. */
ret = wc_AesEcbEncrypt(aes, key, block, WC_AES_BLOCK_SIZE);
/* Reposition for more derived key. */
key += WC_AES_BLOCK_SIZE;
/* Reduce the count of key bytes required. */
keySz -= WC_AES_BLOCK_SIZE;
}
/* Do any partial blocks. */
if ((ret == 0) && (keySz > 0)) {
byte enc[WC_AES_BLOCK_SIZE];
/* Set counter. */
block[15] = (byte)i;
/* Encrypt block into temporary. */
ret = wc_AesEcbEncrypt(aes, enc, block, WC_AES_BLOCK_SIZE);
if (ret == 0) {
/* Copy into key required amount. */
XMEMCPY(key, enc, keySz);
}
}
/* XOR out label. */
block[WC_SRTP_MAX_SALT - indexSz - 1] ^= label;
return ret;
}
/* Derive keys using SRTP KDF algorithm.
*
* SP 800-135 (RFC 3711).
*
* @param [in] key Key to use with encryption.
* @param [in] keySz Size of key in bytes.
* @param [in] salt Random non-secret value.
* @param [in] saltSz Size of random in bytes.
* @param [in] kdrIdx Key derivation rate. kdr = 0 when -1, otherwise
* kdr = 2^kdrIdx.
* @param [in] index Index value to XOR in.
* @param [out] key1 First key. Label value of 0x00.
* @param [in] key1Sz Size of first key in bytes.
* @param [out] key2 Second key. Label value of 0x01.
* @param [in] key2Sz Size of second key in bytes.
* @param [out] key3 Third key. Label value of 0x02.
* @param [in] key3Sz Size of third key in bytes.
* @return BAD_FUNC_ARG when key or salt is NULL.
* @return BAD_FUNC_ARG when key length is not 16, 24 or 32.
* @return BAD_FUNC_ARG when saltSz is larger than 14.
* @return BAD_FUNC_ARG when kdrIdx is less than -1 or larger than 24.
* @return MEMORY_E on dynamic memory allocation failure.
* @return 0 on success.
*/
int wc_SRTP_KDF(const byte* key, word32 keySz, const byte* salt, word32 saltSz,
int kdrIdx, const byte* index, byte* key1, word32 key1Sz, byte* key2,
word32 key2Sz, byte* key3, word32 key3Sz)
{
int ret = 0;
byte block[WC_AES_BLOCK_SIZE];
#ifdef WOLFSSL_SMALL_STACK
Aes* aes = NULL;
#else
Aes aes[1];
#endif
int aes_inited = 0;
/* Validate parameters. */
if ((key == NULL) || (keySz > AES_256_KEY_SIZE) || (salt == NULL) ||
(saltSz > WC_SRTP_MAX_SALT) || (kdrIdx < -1) || (kdrIdx > 24)) {
ret = BAD_FUNC_ARG;
}
#ifdef WOLFSSL_SMALL_STACK
if (ret == 0) {
aes = (Aes*)XMALLOC(sizeof(Aes), NULL, DYNAMIC_TYPE_CIPHER);
if (aes == NULL) {
ret = MEMORY_E;
}
}
#endif
/* Setup AES object. */
if (ret == 0) {
ret = wc_AesInit(aes, NULL, INVALID_DEVID);
}
if (ret == 0) {
aes_inited = 1;
ret = wc_AesSetKey(aes, key, keySz, NULL, AES_ENCRYPTION);
}
/* Calculate first block that can be used in each derivation. */
if (ret == 0) {
wc_srtp_kdf_first_block(salt, saltSz, kdrIdx, index, WC_SRTP_INDEX_LEN,
block);
}
/* Calculate first key if required. */
if ((ret == 0) && (key1 != NULL)) {
ret = wc_srtp_kdf_derive_key(block, WC_SRTP_INDEX_LEN,
WC_SRTP_LABEL_ENCRYPTION, key1, key1Sz, aes);
}
/* Calculate second key if required. */
if ((ret == 0) && (key2 != NULL)) {
ret = wc_srtp_kdf_derive_key(block, WC_SRTP_INDEX_LEN,
WC_SRTP_LABEL_MSG_AUTH, key2, key2Sz, aes);
}
/* Calculate third key if required. */
if ((ret == 0) && (key3 != NULL)) {
ret = wc_srtp_kdf_derive_key(block, WC_SRTP_INDEX_LEN,
WC_SRTP_LABEL_SALT, key3, key3Sz, aes);
}
if (aes_inited)
wc_AesFree(aes);
#ifdef WOLFSSL_SMALL_STACK
XFREE(aes, NULL, DYNAMIC_TYPE_CIPHER);
#endif
return ret;
}
/* Derive keys using SRTCP KDF algorithm.
*
* SP 800-135 (RFC 3711).
*
* @param [in] key Key to use with encryption.
* @param [in] keySz Size of key in bytes.
* @param [in] salt Random non-secret value.
* @param [in] saltSz Size of random in bytes.
* @param [in] kdrIdx Key derivation rate index. kdr = 0 when -1, otherwise
* kdr = 2^kdrIdx. See wc_SRTP_KDF_kdr_to_idx()
* @param [in] index Index value to XOR in.
* @param [out] key1 First key. Label value of 0x03.
* @param [in] key1Sz Size of first key in bytes.
* @param [out] key2 Second key. Label value of 0x04.
* @param [in] key2Sz Size of second key in bytes.
* @param [out] key3 Third key. Label value of 0x05.
* @param [in] key3Sz Size of third key in bytes.
* @return BAD_FUNC_ARG when key or salt is NULL.
* @return BAD_FUNC_ARG when key length is not 16, 24 or 32.
* @return BAD_FUNC_ARG when saltSz is larger than 14.
* @return BAD_FUNC_ARG when kdrIdx is less than -1 or larger than 24.
* @return MEMORY_E on dynamic memory allocation failure.
* @return 0 on success.
*/
int wc_SRTCP_KDF_ex(const byte* key, word32 keySz, const byte* salt, word32 saltSz,
int kdrIdx, const byte* index, byte* key1, word32 key1Sz, byte* key2,
word32 key2Sz, byte* key3, word32 key3Sz, int idxLenIndicator)
{
int ret = 0;
byte block[WC_AES_BLOCK_SIZE];
#ifdef WOLFSSL_SMALL_STACK
Aes* aes = NULL;
#else
Aes aes[1];
#endif
int aes_inited = 0;
int idxLen;
if (idxLenIndicator == WC_SRTCP_32BIT_IDX) {
idxLen = WC_SRTCP_INDEX_LEN;
} else if (idxLenIndicator == WC_SRTCP_48BIT_IDX) {
idxLen = WC_SRTP_INDEX_LEN;
} else {
return BAD_FUNC_ARG; /* bad or invalid idxLenIndicator */
}
/* Validate parameters. */
if ((key == NULL) || (keySz > AES_256_KEY_SIZE) || (salt == NULL) ||
(saltSz > WC_SRTP_MAX_SALT) || (kdrIdx < -1) || (kdrIdx > 24)) {
ret = BAD_FUNC_ARG;
}
#ifdef WOLFSSL_SMALL_STACK
if (ret == 0) {
aes = (Aes*)XMALLOC(sizeof(Aes), NULL, DYNAMIC_TYPE_CIPHER);
if (aes == NULL) {
ret = MEMORY_E;
}
}
#endif
/* Setup AES object. */
if (ret == 0) {
ret = wc_AesInit(aes, NULL, INVALID_DEVID);
}
if (ret == 0) {
aes_inited = 1;
ret = wc_AesSetKey(aes, key, keySz, NULL, AES_ENCRYPTION);
}
/* Calculate first block that can be used in each derivation. */
if (ret == 0) {
wc_srtp_kdf_first_block(salt, saltSz, kdrIdx, index, idxLen, block);
}
/* Calculate first key if required. */
if ((ret == 0) && (key1 != NULL)) {
ret = wc_srtp_kdf_derive_key(block, idxLen,
WC_SRTCP_LABEL_ENCRYPTION, key1, key1Sz, aes);
}
/* Calculate second key if required. */
if ((ret == 0) && (key2 != NULL)) {
ret = wc_srtp_kdf_derive_key(block, idxLen,
WC_SRTCP_LABEL_MSG_AUTH, key2, key2Sz, aes);
}
/* Calculate third key if required. */
if ((ret == 0) && (key3 != NULL)) {
ret = wc_srtp_kdf_derive_key(block, idxLen,
WC_SRTCP_LABEL_SALT, key3, key3Sz, aes);
}
if (aes_inited)
wc_AesFree(aes);
#ifdef WOLFSSL_SMALL_STACK
XFREE(aes, NULL, DYNAMIC_TYPE_CIPHER);
#endif
return ret;
}
int wc_SRTCP_KDF(const byte* key, word32 keySz, const byte* salt, word32 saltSz,
int kdrIdx, const byte* index, byte* key1, word32 key1Sz, byte* key2,
word32 key2Sz, byte* key3, word32 key3Sz)
{
/* The default 32-bit IDX expected by many implementations */
return wc_SRTCP_KDF_ex(key, keySz, salt, saltSz, kdrIdx, index,
key1, key1Sz, key2, key2Sz, key3, key3Sz,
WC_SRTCP_32BIT_IDX);
}
/* Derive key with label using SRTP KDF algorithm.
*
* SP 800-135 (RFC 3711).
*
* @param [in] key Key to use with encryption.
* @param [in] keySz Size of key in bytes.
* @param [in] salt Random non-secret value.
* @param [in] saltSz Size of random in bytes.
* @param [in] kdrIdx Key derivation rate index. kdr = 0 when -1, otherwise
* kdr = 2^kdrIdx. See wc_SRTP_KDF_kdr_to_idx()
* @param [in] index Index value to XOR in.
* @param [in] label Label to use when deriving key.
* @param [out] outKey Derived key.
* @param [in] outKeySz Size of derived key in bytes.
* @return BAD_FUNC_ARG when key, salt or outKey is NULL.
* @return BAD_FUNC_ARG when key length is not 16, 24 or 32.
* @return BAD_FUNC_ARG when saltSz is larger than 14.
* @return BAD_FUNC_ARG when kdrIdx is less than -1 or larger than 24.
* @return MEMORY_E on dynamic memory allocation failure.
* @return 0 on success.
*/
int wc_SRTP_KDF_label(const byte* key, word32 keySz, const byte* salt,
word32 saltSz, int kdrIdx, const byte* index, byte label, byte* outKey,
word32 outKeySz)
{
int ret = 0;
byte block[WC_AES_BLOCK_SIZE];
#ifdef WOLFSSL_SMALL_STACK
Aes* aes = NULL;
#else
Aes aes[1];
#endif
int aes_inited = 0;
/* Validate parameters. */
if ((key == NULL) || (keySz > AES_256_KEY_SIZE) || (salt == NULL) ||
(saltSz > WC_SRTP_MAX_SALT) || (kdrIdx < -1) || (kdrIdx > 24) ||
(outKey == NULL)) {
ret = BAD_FUNC_ARG;
}
#ifdef WOLFSSL_SMALL_STACK
if (ret == 0) {
aes = (Aes*)XMALLOC(sizeof(Aes), NULL, DYNAMIC_TYPE_CIPHER);
if (aes == NULL) {
ret = MEMORY_E;
}
}
#endif
/* Setup AES object. */
if (ret == 0) {
ret = wc_AesInit(aes, NULL, INVALID_DEVID);
}
if (ret == 0) {
aes_inited = 1;
ret = wc_AesSetKey(aes, key, keySz, NULL, AES_ENCRYPTION);
}
/* Calculate first block that can be used in each derivation. */
if (ret == 0) {
wc_srtp_kdf_first_block(salt, saltSz, kdrIdx, index, WC_SRTP_INDEX_LEN,
block);
}
if (ret == 0) {
/* Calculate key. */
ret = wc_srtp_kdf_derive_key(block, WC_SRTP_INDEX_LEN, label, outKey,
outKeySz, aes);
}
if (aes_inited)
wc_AesFree(aes);
#ifdef WOLFSSL_SMALL_STACK
XFREE(aes, NULL, DYNAMIC_TYPE_CIPHER);
#endif
return ret;
}
/* Derive key with label using SRTCP KDF algorithm.
*
* SP 800-135 (RFC 3711).
*
* @param [in] key Key to use with encryption.
* @param [in] keySz Size of key in bytes.
* @param [in] salt Random non-secret value.
* @param [in] saltSz Size of random in bytes.
* @param [in] kdrIdx Key derivation rate index. kdr = 0 when -1, otherwise
* kdr = 2^kdrIdx. See wc_SRTP_KDF_kdr_to_idx()
* @param [in] index Index value to XOR in.
* @param [in] label Label to use when deriving key.
* @param [out] outKey Derived key.
* @param [in] outKeySz Size of derived key in bytes.
* @return BAD_FUNC_ARG when key, salt or outKey is NULL.
* @return BAD_FUNC_ARG when key length is not 16, 24 or 32.
* @return BAD_FUNC_ARG when saltSz is larger than 14.
* @return BAD_FUNC_ARG when kdrIdx is less than -1 or larger than 24.
* @return MEMORY_E on dynamic memory allocation failure.
* @return 0 on success.
*/
int wc_SRTCP_KDF_label(const byte* key, word32 keySz, const byte* salt,
word32 saltSz, int kdrIdx, const byte* index, byte label, byte* outKey,
word32 outKeySz)
{
int ret = 0;
byte block[WC_AES_BLOCK_SIZE];
#ifdef WOLFSSL_SMALL_STACK
Aes* aes = NULL;
#else
Aes aes[1];
#endif
int aes_inited = 0;
/* Validate parameters. */
if ((key == NULL) || (keySz > AES_256_KEY_SIZE) || (salt == NULL) ||
(saltSz > WC_SRTP_MAX_SALT) || (kdrIdx < -1) || (kdrIdx > 24) ||
(outKey == NULL)) {
ret = BAD_FUNC_ARG;
}
#ifdef WOLFSSL_SMALL_STACK
if (ret == 0) {
aes = (Aes*)XMALLOC(sizeof(Aes), NULL, DYNAMIC_TYPE_CIPHER);
if (aes == NULL) {
ret = MEMORY_E;
}
}
#endif
/* Setup AES object. */
if (ret == 0) {
ret = wc_AesInit(aes, NULL, INVALID_DEVID);
}
if (ret == 0) {
aes_inited = 1;
ret = wc_AesSetKey(aes, key, keySz, NULL, AES_ENCRYPTION);
}
/* Calculate first block that can be used in each derivation. */
if (ret == 0) {
wc_srtp_kdf_first_block(salt, saltSz, kdrIdx, index, WC_SRTCP_INDEX_LEN,
block);
}
if (ret == 0) {
/* Calculate key. */
ret = wc_srtp_kdf_derive_key(block, WC_SRTCP_INDEX_LEN, label, outKey,
outKeySz, aes);
}
if (aes_inited)
wc_AesFree(aes);
#ifdef WOLFSSL_SMALL_STACK
XFREE(aes, NULL, DYNAMIC_TYPE_CIPHER);
#endif
return ret;
}
/* Converts a kdr value to an index to use in SRTP/SRTCP KDF API.
*
* @param [in] kdr Key derivation rate to convert.
* @return Key derivation rate as an index.
*/
int wc_SRTP_KDF_kdr_to_idx(word32 kdr)
{
int idx = -1;
/* Keep shifting value down and incrementing index until top bit is gone. */
while (kdr != 0) {
kdr >>= 1;
idx++;
}
/* Index of top bit set. */
return idx;
}
#endif /* WC_SRTP_KDF */
#ifdef WC_KDF_NIST_SP_800_56C
static int wc_KDA_KDF_iteration(const byte* z, word32 zSz, word32 counter,
const byte* fixedInfo, word32 fixedInfoSz, enum wc_HashType hashType,
byte* output)
{
byte counterBuf[4];
wc_HashAlg hash;
int ret;
ret = wc_HashInit(&hash, hashType);
if (ret != 0)
return ret;
c32toa(counter, counterBuf);
ret = wc_HashUpdate(&hash, hashType, counterBuf, 4);
if (ret == 0) {
ret = wc_HashUpdate(&hash, hashType, z, zSz);
}
if (ret == 0 && fixedInfoSz > 0) {
ret = wc_HashUpdate(&hash, hashType, fixedInfo, fixedInfoSz);
}
if (ret == 0) {
ret = wc_HashFinal(&hash, hashType, output);
}
wc_HashFree(&hash, hashType);
return ret;
}
/**
* \brief Performs the single-step key derivation function (KDF) as specified in
* SP800-56C option 1.
*
* \param [in] z The input keying material.
* \param [in] zSz The size of the input keying material.
* \param [in] fixedInfo The fixed information to be included in the KDF.
* \param [in] fixedInfoSz The size of the fixed information.
* \param [in] derivedSecretSz The desired size of the derived secret.
* \param [in] hashType The hash algorithm to be used in the KDF.
* \param [out] output The buffer to store the derived secret.
* \param [in] outputSz The size of the output buffer.
*
* \return 0 if the KDF operation is successful.
* \return BAD_FUNC_ARG if the input parameters are invalid.
* \return negative error code if the KDF operation fails.
*/
int wc_KDA_KDF_onestep(const byte* z, word32 zSz, const byte* fixedInfo,
word32 fixedInfoSz, word32 derivedSecretSz, enum wc_HashType hashType,
byte* output, word32 outputSz)
{
byte hashTempBuf[WC_MAX_DIGEST_SIZE];
word32 counter, outIdx;
int hashOutSz;
int ret;
if (output == NULL || outputSz < derivedSecretSz)
return BAD_FUNC_ARG;
if (z == NULL || zSz == 0 || (fixedInfoSz > 0 && fixedInfo == NULL))
return BAD_FUNC_ARG;
if (derivedSecretSz == 0)
return BAD_FUNC_ARG;
hashOutSz = wc_HashGetDigestSize(hashType);
if (hashOutSz == WC_NO_ERR_TRACE(HASH_TYPE_E))
return BAD_FUNC_ARG;
/* According to SP800_56C, table 1, the max input size (max_H_inputBits)
* depends on the HASH algo. The smaller value in the table is (2**64-1)/8.
* This is larger than the possible length using word32 integers. */
counter = 1;
outIdx = 0;
ret = 0;
/* According to SP800_56C the number of iterations shall not be greater than
* 2**32-1. This is not possible using word32 integers.*/
while (outIdx + hashOutSz <= derivedSecretSz) {
ret = wc_KDA_KDF_iteration(z, zSz, counter, fixedInfo, fixedInfoSz,
hashType, output + outIdx);
if (ret != 0)
break;
counter++;
outIdx += hashOutSz;
}
if (ret == 0 && outIdx < derivedSecretSz) {
ret = wc_KDA_KDF_iteration(z, zSz, counter, fixedInfo, fixedInfoSz,
hashType, hashTempBuf);
if (ret == 0) {
XMEMCPY(output + outIdx, hashTempBuf, derivedSecretSz - outIdx);
}
ForceZero(hashTempBuf, hashOutSz);
}
if (ret != 0) {
ForceZero(output, derivedSecretSz);
}
return ret;
}
#endif /* WC_KDF_NIST_SP_800_56C */
#endif /* NO_KDF */