Completed support for SPI ILI9488

Setup20 added for ESP8266 and Setup21 addwd for ESP32
This commit is contained in:
Bodmer
2018-07-07 22:41:53 +01:00
parent a76d0d60dc
commit 5b0d96d64d
8 changed files with 646 additions and 60 deletions

View File

@@ -8,40 +8,6 @@
// Configure ILI9488 display
writecommand(0x3A); // Pixel Interface Format (16 bit colour)
writedata(0x55);
writecommand(0xB0); // Interface Mode Control
writedata(0x00);
writecommand(0xB1); // Frame Rate Control
writedata(0xB0);
writedata(0x11);
writecommand(0xB4); // Display Inversion Control
writedata(0x02);
writecommand(0xB6); // Display Function Control
writedata(0x02);
writedata(0x02);
writedata(0x3B);
writecommand(0xB7); // Entry Mode Set
writedata(0xC6);
writecommand(0XC0); // Power Control 1
writedata(0x10);
writedata(0x10);
writecommand(0xC1); // Power Control 2
writedata(0x41);
writecommand(0xC5); // VCOM Control
writedata(0x00);
writedata(0x22);
writedata(0x80);
writedata(0x40);
writecommand(0xE0); // Positive Gamma Control
writedata(0x00);
writedata(0x03);
@@ -76,14 +42,50 @@
writedata(0x37);
writedata(0x0F);
writecommand(0XC0); // Power Control 1
writedata(0x17);
writedata(0x15);
writecommand(0xC1); // Power Control 2
writedata(0x41);
writecommand(0xC5); // VCOM Control
writedata(0x00);
writedata(0x12);
writedata(0x80);
writecommand(TFT_MADCTL); // Memory Access Control
writedata(0x48); // MX, BGR
writecommand(0x3A); // Pixel Interface Format
#if defined (ESP32_PARALLEL)
writedata(0x55); // 16 bit colour for parallel
#else
writedata(0x66); // 18 bit colour for SPI
#endif
writecommand(0xB0); // Interface Mode Control
writedata(0x00);
writecommand(0xB1); // Frame Rate Control
writedata(0xA0);
writecommand(0xB4); // Display Inversion Control
writedata(0x02);
writecommand(0xB6); // Display Function Control
writedata(0x02);
writedata(0x02);
writedata(0x3B);
writecommand(0xB7); // Entry Mode Set
writedata(0xC6);
writecommand(0xF7); // Adjust Control 3
writedata(0xA9);
writedata(0x51);
writedata(0x2C);
writedata(0x02);
writecommand(TFT_MADCTL); // Memory Access Control
writedata(0x48); // MX, BGR
writedata(0x82);
writecommand(TFT_SLPOUT); //Exit Sleep
delay(120);

View File

@@ -2881,11 +2881,15 @@ void TFT_eSPI::drawPixel(uint32_t x, uint32_t y, uint32_t color)
DC_D;
#if defined (ILI9488_DRIVER)
tft_Write_16(color);
#else
SPI1U1 = mask | (15 << SPILMOSI) | (15 << SPILMISO);
SPI1W0 = (color >> 8) | (color << 8);
SPI1CMD |= SPIBUSY;
while(SPI1CMD & SPIBUSY) {}
#endif
CS_H;
@@ -3086,7 +3090,7 @@ void TFT_eSPI::pushColor(uint16_t color, uint16_t len)
if(len) SPI.writePattern(&colorBin[0], 2, 1); len--;
while(len--) {WR_L; WR_H;}
#else
#ifdef ESP32_PARALLEL
#if defined (ESP32_PARALLEL)
while (len--) {tft_Write_16(color);}
#else
writeBlock(color, len);
@@ -3116,6 +3120,9 @@ void TFT_eSPI::pushColors(uint8_t *data, uint32_t len)
#else
#ifdef ESP32_PARALLEL
while (len--) {tft_Write_8(*data); data++;}
#elif defined (ILI9488_DRIVER)
uint16_t color;
while (len>1) {color = (*data++) | ((*data++)<<8); tft_Write_16(color); len-=2;}
#else
#if (SPI_FREQUENCY == 80000000)
while ( len >=64 ) {SPI.writePattern(data, 64, 1); data += 64; len -= 64; }
@@ -3142,8 +3149,8 @@ void TFT_eSPI::pushColors(uint16_t *data, uint32_t len, bool swap)
CS_L;
#if defined (ESP32)
#ifdef ESP32_PARALLEL
#if defined (ESP32) || defined (ILI9488_DRIVER)
#if defined (ESP32_PARALLEL) || defined (ILI9488_DRIVER)
if (swap) while ( len-- ) {tft_Write_16(*data); data++;}
else while ( len-- ) {tft_Write_16S(*data); data++;}
#else
@@ -3240,7 +3247,7 @@ void TFT_eSPI::pushColors(uint16_t *data, uint32_t len, bool swap)
// Bresenham's algorithm - thx wikipedia - speed enhanced by Bodmer to use
// an efficient FastH/V Line draw routine for line segments of 2 pixels or more
#if defined (RPI_ILI9486_DRIVER) || defined (ESP32) || defined (RPI_WRITE_STROBE) || defined (HX8357D_DRIVER)
#if defined (RPI_ILI9486_DRIVER) || defined (ESP32) || defined (RPI_WRITE_STROBE) || defined (HX8357D_DRIVER) || defined (ILI9488_DRIVER)
void TFT_eSPI::drawLine(int32_t x0, int32_t y0, int32_t x1, int32_t y1, uint32_t color)
{
@@ -4518,7 +4525,7 @@ void TFT_eSPI::setTextFont(uint8_t f)
// TFT_eSPI 98.06% 97.59% 94.24%
// Adafruit_GFX 19.62% 14.31% 7.94%
//
#if defined (ESP8266)
#if defined (ESP8266) && !defined (ILI9488_DRIVER)
void writeBlock(uint16_t color, uint32_t repeat)
{
uint16_t color16 = (color >> 8) | (color << 8);
@@ -4578,7 +4585,131 @@ void writeBlock(uint16_t color, uint32_t repeat)
SPI1U = SPIUMOSI | SPIUDUPLEX | SPIUSSE;
}
#else // Low level register based ESP32 code
#elif defined (ILI9488_DRIVER)
#ifdef ESP8266
void writeBlock(uint16_t color, uint32_t repeat)
{
uint32_t mask = ~(SPIMMOSI << SPILMOSI);
mask = SPI1U1 & mask;
SPI1U = SPIUMOSI | SPIUSSE;
// Split out the colours
uint8_t r = (color & 0xF800)>>8;
uint8_t g = (color & 0x07E0)>>3;
uint8_t b = (color & 0x001F)<<3;
// Concatenate 4 pixels into three 32 bit blocks
uint32_t r0 = r<<24 | b<<16 | g<<8 | r;
uint32_t r1 = g<<24 | r<<16 | b<<8 | g;
uint32_t r2 = b<<24 | g<<16 | r<<8 | b;
SPI1W0 = r0;
SPI1W1 = r1;
SPI1W2 = r2;
if (repeat > 4)
{
SPI1W3 = r0;
SPI1W4 = r1;
SPI1W5 = r2;
}
if (repeat > 8)
{
SPI1W6 = r0;
SPI1W7 = r1;
SPI1W8 = r2;
}
if (repeat > 12)
{
SPI1W9 = r0;
SPI1W10 = r1;
SPI1W11 = r2;
SPI1W12 = r0;
SPI1W13 = r1;
SPI1W14 = r2;
SPI1W15 = r0;
}
if (repeat > 20)
{
SPI1U1 = mask | (503 << SPILMOSI);
while(repeat>20)
{
while(SPI1CMD & SPIBUSY) {}
SPI1CMD |= SPIBUSY;
repeat -= 21;
}
while(SPI1CMD & SPIBUSY) {}
}
if (repeat)
{
repeat = (repeat * 24) - 1;
SPI1U1 = mask | (repeat << SPILMOSI);
SPI1CMD |= SPIBUSY;
while(SPI1CMD & SPIBUSY) {}
}
SPI1U = SPIUMOSI | SPIUDUPLEX | SPIUSSE;
}
#else // Now the code for ESP32 and ILI9488
#include "soc/spi_reg.h"
#define SPI_NUM 0x3
void writeBlock(uint16_t color, uint32_t repeat)
{
// Split out the colours
uint8_t r = (color & 0xF800)>>8;
uint8_t g = (color & 0x07E0)>>3;
uint8_t b = (color & 0x001F)<<3;
// Concatenate 4 pixels into three 32 bit blocks
uint32_t r0 = r<<24 | b<<16 | g<<8 | r;
uint32_t r1 = g<<24 | r<<16 | b<<8 | g;
uint32_t r2 = b<<24 | g<<16 | r<<8 | b;
if (repeat > 9)
{
SET_PERI_REG_BITS(SPI_MOSI_DLEN_REG(SPI_NUM), SPI_USR_MOSI_DBITLEN, 239, SPI_USR_MOSI_DBITLEN_S);
while(repeat>9)
{
while (READ_PERI_REG(SPI_CMD_REG(SPI_NUM))&SPI_USR);
WRITE_PERI_REG((SPI_W0_REG(SPI_NUM) + 0), r0);
WRITE_PERI_REG((SPI_W0_REG(SPI_NUM) + 4), r1);
WRITE_PERI_REG((SPI_W0_REG(SPI_NUM) + 8), r2);
WRITE_PERI_REG((SPI_W0_REG(SPI_NUM) + 12), r0);
WRITE_PERI_REG((SPI_W0_REG(SPI_NUM) + 16), r1);
WRITE_PERI_REG((SPI_W0_REG(SPI_NUM) + 20), r2);
WRITE_PERI_REG((SPI_W0_REG(SPI_NUM) + 24), r0);
WRITE_PERI_REG((SPI_W0_REG(SPI_NUM) + 28), r1);
SET_PERI_REG_MASK(SPI_CMD_REG(SPI_NUM), SPI_USR);
repeat -= 10;
}
while (READ_PERI_REG(SPI_CMD_REG(SPI_NUM))&SPI_USR);
}
if (repeat)
{
repeat = (repeat * 24) - 1;
SET_PERI_REG_BITS(SPI_MOSI_DLEN_REG(SPI_NUM), SPI_USR_MOSI_DBITLEN, repeat, SPI_USR_MOSI_DBITLEN_S);
WRITE_PERI_REG((SPI_W0_REG(SPI_NUM) + 0), r0);
WRITE_PERI_REG((SPI_W0_REG(SPI_NUM) + 4), r1);
WRITE_PERI_REG((SPI_W0_REG(SPI_NUM) + 8), r2);
WRITE_PERI_REG((SPI_W0_REG(SPI_NUM) + 12), r0);
WRITE_PERI_REG((SPI_W0_REG(SPI_NUM) + 16), r1);
WRITE_PERI_REG((SPI_W0_REG(SPI_NUM) + 20), r2);
WRITE_PERI_REG((SPI_W0_REG(SPI_NUM) + 24), r0);
WRITE_PERI_REG((SPI_W0_REG(SPI_NUM) + 28), r1);
SET_PERI_REG_MASK(SPI_CMD_REG(SPI_NUM), SPI_USR);
while (READ_PERI_REG(SPI_CMD_REG(SPI_NUM))&SPI_USR);
}
}
#endif
#else // Low level register based ESP32 code for 16 bit colour SPI TFTs
#include "soc/spi_reg.h"
#define SPI_NUM 0x3
@@ -4595,7 +4726,7 @@ void writeBlock(uint16_t color, uint32_t repeat)
while(repeat>15)
{
while (READ_PERI_REG(SPI_CMD_REG(SPI_NUM))&SPI_USR);
for (uint32_t i=0; i<16; i++) WRITE_PERI_REG((SPI_W0_REG(SPI_NUM) + (i << 2)), color32);
for (uint32_t i=0; i<8; i++) WRITE_PERI_REG((SPI_W0_REG(SPI_NUM) + (i << 2)), color32);
SET_PERI_REG_MASK(SPI_CMD_REG(SPI_NUM), SPI_USR);
repeat -= 16;
}
@@ -4606,7 +4737,7 @@ void writeBlock(uint16_t color, uint32_t repeat)
{
repeat = (repeat << 4) - 1;
SET_PERI_REG_BITS(SPI_MOSI_DLEN_REG(SPI_NUM), SPI_USR_MOSI_DBITLEN, repeat, SPI_USR_MOSI_DBITLEN_S);
for (uint32_t i=0; i<16; i++) WRITE_PERI_REG((SPI_W0_REG(SPI_NUM) + (i << 2)), color32);
for (uint32_t i=0; i<8; i++) WRITE_PERI_REG((SPI_W0_REG(SPI_NUM) + (i << 2)), color32);
SET_PERI_REG_MASK(SPI_CMD_REG(SPI_NUM), SPI_USR);
while (READ_PERI_REG(SPI_CMD_REG(SPI_NUM))&SPI_USR);
}

View File

@@ -244,22 +244,34 @@
//#define RD_H digitalWrite(TFT_WR, HIGH)
#endif
#elif defined (ILI9488_DRIVER) // 16 bit colour converted to 3 bytes for 24 bit RGB
#define tft_Write_8(C) SPI.transfer(C)
#define tft_Write_16(C) SPI.transfer(((C & 0xF800)>>8) | ((C & 0xF800)>>13)); \
SPI.transfer(((C & 0x07E0)>>3) | ((C & 0x07E0)>> 9)); \
SPI.transfer(((C & 0x001F)<<3) | ((C & 0x001F)>> 2))
#define tft_Write_32(C) SPI.write32(C)
#elif defined (ILI9488_DRIVER) // 16 bit colour converted to 3 bytes for 18 bit RGB
// Write 8 bits to TFT
#define tft_Write_8(C) SPI.transfer(C)
// Convert 16 bit colour to 18 bit and write in 3 bytes
#define tft_Write_16(C) SPI.transfer((C & 0xF800)>>8); \
SPI.transfer((C & 0x07E0)>>3); \
SPI.transfer((C & 0x001F)<<3)
// Convert swapped byte 16 bit colour to 18 bit and write in 3 bytes
#define tft_Write_16S(C) SPI.transfer(C & 0xF8); \
SPI.transfer((C & 0xE0)>>11 | (C & 0x07)<<5); \
SPI.transfer((C & 0x1F00)>>5)
// Write 32 bits to TFT
#define tft_Write_32(C) SPI.write32(C)
#elif defined (RPI_ILI9486_DRIVER)
#define tft_Write_8(C) SPI.transfer(0); SPI.transfer(C)
#define tft_Write_16(C) SPI.write16(C)
#define tft_Write_32(C) SPI.write32(C)
#define tft_Write_8(C) SPI.transfer(0); SPI.transfer(C)
#define tft_Write_16(C) SPI.write16(C)
#define tft_Write_32(C) SPI.write32(C)
#else
#define tft_Write_8(C) SPI.transfer(C)
#define tft_Write_16(C) SPI.write16(C)
#define tft_Write_32(C) SPI.write32(C)
#define tft_Write_8(C) SPI.transfer(C)
#define tft_Write_16(C) SPI.write16(C)
#define tft_Write_32(C) SPI.write32(C)
#endif

View File

@@ -40,6 +40,9 @@
//#include <User_Setups/Setup17_ePaper.h> // Setup file for any Waveshare ePaper display
//#include <User_Setups/Setup18_ST7789.h> // Setup file configured for HX8357D (untested)
//#include <User_Setups/Setup20_ILI9488.h> // Setup file for ESP8266 and ILI9488 SPI bus TFT
//#include <User_Setups/Setup21_ILI9488.h> // Setup file for ESP32 and ILI9488 SPI bus TFT
//#include <User_Setups/SetupX_Template.h>

View File

@@ -0,0 +1,219 @@
// USER DEFINED SETTINGS
// Set driver type, fonts to be loaded, pins used and SPI control method etc
//
// See the User_Setup_Select.h file if you wish to be able to define multiple
// setups and then easily select which setup file is used by the compiler.
//
// If this file is edited correctly then all the library example sketches should
// run without the need to make any more changes for a particular hardware setup!
// ##################################################################################
//
// Section 0. Call up the right driver file and any options for it
//
// ##################################################################################
// Only define one driver, the other ones must be commented out
//#define ILI9341_DRIVER
//#define ST7735_DRIVER
//#define ILI9163_DRIVER
//#define S6D02A1_DRIVER
//#define RPI_ILI9486_DRIVER // 20MHz maximum SPI
#define ILI9488_DRIVER
// For M5Stack ESP32 module with integrated display ONLY, remove // in line below
//#define M5STACK
// For ST7735 and ILI9163 ONLY, define the pixel width and height in portrait orientation
//#define TFT_WIDTH 128
//#define TFT_HEIGHT 160
//#define TFT_HEIGHT 128
// For ST7735 ONLY, define the type of display, originally this was based on the
// colour of the tab on the screen protector film but this is not always true, so try
// out the different options below if the screen does not display graphics correctly,
// e.g. colours wrong, mirror images, or tray pixels at the edges.
// Comment out ALL BUT ONE of these options for a ST7735 display driver, save this
// this User_Setup file, then rebuild and upload the sketch to the board again:
//#define ST7735_INITB
//#define ST7735_GREENTAB
//#define ST7735_GREENTAB2
//#define ST7735_GREENTAB3
//#define ST7735_GREENTAB128 // For 128 x 128 display
//#define ST7735_REDTAB
//#define ST7735_BLACKTAB
// ##################################################################################
//
// Section 1. Define the pins that are used to interface with the display here
//
// ##################################################################################
// We must use hardware SPI, a minimum of 3 GPIO pins is needed.
// Typical setup for ESP8266 NodeMCU ESP-12 is :
//
// Display SDO/MISO to NodeMCU pin D6 (or leave disconnected if not reading TFT)
// Display LED to NodeMCU pin VIN (or 5V, see below)
// Display SCK to NodeMCU pin D5
// Display SDI/MOSI to NodeMCU pin D7
// Display DC (RS/AO)to NodeMCU pin D3
// Display RESET to NodeMCU pin D4 (or RST, see below)
// Display CS to NodeMCU pin D8 (or GND, see below)
// Display GND to NodeMCU pin GND (0V)
// Display VCC to NodeMCU 5V or 3.3V
//
// The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up a control pin
//
// The DC (Data Command) pin may be labeled AO or RS (Register Select)
//
// With some displays such as the ILI9341 the TFT CS pin can be connected to GND if no more
// SPI devices (e.g. an SD Card) are connected, in this case comment out the #define TFT_CS
// line below so it is NOT defined. Other displays such at the ST7735 require the TFT CS pin
// to be toggled during setup, so in these cases the TFT_CS line must be defined and connected.
//
// The NodeMCU D0 pin can be used for RST
//
// See Section 2. below if DC or CS is connected to D0
//
// Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin
// If 5V is not available at a pin you can use 3.3V but backlight brightness
// will be lower.
// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP ######
// For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin designation
#define TFT_CS PIN_D8 // Chip select control pin D8
#define TFT_DC PIN_D3 // Data Command control pin
#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line)
//#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V
//#define TOUCH_CS PIN_D1 // Chip select pin (T_CS) of touch screen
//#define TFT_WR PIN_D2 // Write strobe for modified Raspberry Pi TFT only
// ###### FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES ######
// Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a performance impact
// but saves pins for other functions.
// Use NodeMCU SD0=MISO, SD1=MOSI, CLK=SCLK to connect to TFT in overlap mode
// In ESP8266 overlap mode the TFT chip select MUST connect to pin D3
//#define TFT_CS PIN_D3
//#define TFT_DC PIN_D5 // Data Command control pin
//#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line)
//#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V
// In ESP8266 overlap mode the following must be defined
//#define TFT_SPI_OVERLAP
// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP ######
// For ESP32 Dev board (only tested with ILI9341 display)
// The hardware SPI can be mapped to any pins
//#define TFT_MISO 19
//#define TFT_MOSI 23
//#define TFT_SCLK 18
//#define TFT_CS 15 // Chip select control pin
//#define TFT_DC 2 // Data Command control pin
//#define TFT_RST 4 // Reset pin (could connect to RST pin)
//#define TFT_RST -1 // Set TFT_RST to -1 if display RESET is connected to ESP32 board RST
//#define TOUCH_CS 21 // Chip select pin (T_CS) of touch screen
//#define TFT_WR 22 // Write strobe for modified Raspberry Pi TFT only
// For the M5Stack module use these #define lines
//#define TFT_MISO 19
//#define TFT_MOSI 23
//#define TFT_SCLK 18
//#define TFT_CS 14 // Chip select control pin
//#define TFT_DC 27 // Data Command control pin
//#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin)
//#define TFT_BL 32 // LED back-light
// ##################################################################################
//
// Section 2. Define the way the DC and/or CS lines are driven (ESP8266 only)
//
// ##################################################################################
// Normally the library uses direct register access for the DC and CS lines for speed
// If D0 (GPIO16) is used for CS or DC then a different slower method must be used
// Uncomment one line if D0 is used for DC or CS
// DC on D0 = 6% performance penalty at 40MHz SPI running graphics test
// CS on D0 = 2% performance penalty at 40MHz SPI running graphics test
// #define D0_USED_FOR_DC
// #define D0_USED_FOR_CS
// ##################################################################################
//
// Section 3. Define the fonts that are to be used here
//
// ##################################################################################
// Comment out the #defines below with // to stop that font being loaded
// The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not
// normally necessary. If all fonts are loaded the extra FLASH space required is
// about 17Kbytes. To save FLASH space only enable the fonts you need!
#define LOAD_GLCD // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH
#define LOAD_FONT2 // Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters
#define LOAD_FONT4 // Font 4. Medium 26 pixel high font, needs ~5848 bytes in FLASH, 96 characters
#define LOAD_FONT6 // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, only characters 1234567890:-.apm
#define LOAD_FONT7 // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in FLASH, only characters 1234567890:.
#define LOAD_FONT8 // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, only characters 1234567890:-.
//#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, so 3 digits fit a 160 pixel TFT
#define LOAD_GFXFF // FreeFonts. Include access to the 48 Adafruit_GFX free fonts FF1 to FF48 and custom fonts
// Comment out the #define below to stop the SPIFFS filing system and smooth font code being loaded
// this will save ~20kbytes of FLASH
#define SMOOTH_FONT
// ##################################################################################
//
// Section 4. Not used
//
// ##################################################################################
// ##################################################################################
//
// Section 5. Other options
//
// ##################################################################################
// Define the SPI clock frequency, this affects the graphics rendering speed. Too
// fast and the TFT driver will not keep up and display corruption appears.
// With an ILI9341 display 40MHz works OK, 80MHz sometimes fails
// With a ST7735 display more than 27MHz may not work (spurious pixels and lines)
// With an ILI9163 display 27 MHz works OK.
// The RPi typically only works at 20MHz maximum.
// #define SPI_FREQUENCY 1000000
// #define SPI_FREQUENCY 5000000
// #define SPI_FREQUENCY 10000000
// #define SPI_FREQUENCY 20000000
#define SPI_FREQUENCY 27000000 // Actually sets it to 26.67MHz = 80/3
// #define SPI_FREQUENCY 40000000 // Maximum to use SPIFFS
// #define SPI_FREQUENCY 80000000
// The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here:
#define SPI_TOUCH_FREQUENCY 2500000
// Comment out the following #define if "SPI Transactions" do not need to be
// supported. When commented out the code size will be smaller and sketches will
// run slightly faster, so leave it commented out unless you need it!
// Transaction support is needed to work with SD library but not needed with TFT_SdFat
// Transaction support is required if other SPI devices are connected.
// Transactions are automatically enabled by the library for an ESP32 (to use HAL mutex)
// so changing it here has no effect
// #define SUPPORT_TRANSACTIONS

View File

@@ -0,0 +1,219 @@
// USER DEFINED SETTINGS
// Set driver type, fonts to be loaded, pins used and SPI control method etc
//
// See the User_Setup_Select.h file if you wish to be able to define multiple
// setups and then easily select which setup file is used by the compiler.
//
// If this file is edited correctly then all the library example sketches should
// run without the need to make any more changes for a particular hardware setup!
// ##################################################################################
//
// Section 0. Call up the right driver file and any options for it
//
// ##################################################################################
// Only define one driver, the other ones must be commented out
//#define ILI9341_DRIVER
//#define ST7735_DRIVER
//#define ILI9163_DRIVER
//#define S6D02A1_DRIVER
//#define RPI_ILI9486_DRIVER // 20MHz maximum SPI
#define ILI9488_DRIVER
// For M5Stack ESP32 module with integrated display ONLY, remove // in line below
//#define M5STACK
// For ST7735 and ILI9163 ONLY, define the pixel width and height in portrait orientation
//#define TFT_WIDTH 128
//#define TFT_HEIGHT 160
//#define TFT_HEIGHT 128
// For ST7735 ONLY, define the type of display, originally this was based on the
// colour of the tab on the screen protector film but this is not always true, so try
// out the different options below if the screen does not display graphics correctly,
// e.g. colours wrong, mirror images, or tray pixels at the edges.
// Comment out ALL BUT ONE of these options for a ST7735 display driver, save this
// this User_Setup file, then rebuild and upload the sketch to the board again:
//#define ST7735_INITB
//#define ST7735_GREENTAB
//#define ST7735_GREENTAB2
//#define ST7735_GREENTAB3
//#define ST7735_GREENTAB128 // For 128 x 128 display
//#define ST7735_REDTAB
//#define ST7735_BLACKTAB
// ##################################################################################
//
// Section 1. Define the pins that are used to interface with the display here
//
// ##################################################################################
// We must use hardware SPI, a minimum of 3 GPIO pins is needed.
// Typical setup for ESP8266 NodeMCU ESP-12 is :
//
// Display SDO/MISO to NodeMCU pin D6 (or leave disconnected if not reading TFT)
// Display LED to NodeMCU pin VIN (or 5V, see below)
// Display SCK to NodeMCU pin D5
// Display SDI/MOSI to NodeMCU pin D7
// Display DC (RS/AO)to NodeMCU pin D3
// Display RESET to NodeMCU pin D4 (or RST, see below)
// Display CS to NodeMCU pin D8 (or GND, see below)
// Display GND to NodeMCU pin GND (0V)
// Display VCC to NodeMCU 5V or 3.3V
//
// The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up a control pin
//
// The DC (Data Command) pin may be labeled AO or RS (Register Select)
//
// With some displays such as the ILI9341 the TFT CS pin can be connected to GND if no more
// SPI devices (e.g. an SD Card) are connected, in this case comment out the #define TFT_CS
// line below so it is NOT defined. Other displays such at the ST7735 require the TFT CS pin
// to be toggled during setup, so in these cases the TFT_CS line must be defined and connected.
//
// The NodeMCU D0 pin can be used for RST
//
// See Section 2. below if DC or CS is connected to D0
//
// Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin
// If 5V is not available at a pin you can use 3.3V but backlight brightness
// will be lower.
// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP ######
// For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin designation
//#define TFT_CS PIN_D8 // Chip select control pin D8
//#define TFT_DC PIN_D3 // Data Command control pin
//#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line)
//#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V
//#define TOUCH_CS PIN_D1 // Chip select pin (T_CS) of touch screen
//#define TFT_WR PIN_D2 // Write strobe for modified Raspberry Pi TFT only
// ###### FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES ######
// Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a performance impact
// but saves pins for other functions.
// Use NodeMCU SD0=MISO, SD1=MOSI, CLK=SCLK to connect to TFT in overlap mode
// In ESP8266 overlap mode the TFT chip select MUST connect to pin D3
//#define TFT_CS PIN_D3
//#define TFT_DC PIN_D5 // Data Command control pin
//#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line)
//#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V
// In ESP8266 overlap mode the following must be defined
//#define TFT_SPI_OVERLAP
// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP ######
// For ESP32 Dev board (only tested with ILI9341 display)
// The hardware SPI can be mapped to any pins
#define TFT_MISO 19
#define TFT_MOSI 23
#define TFT_SCLK 18
#define TFT_CS 15 // Chip select control pin
#define TFT_DC 2 // Data Command control pin
#define TFT_RST 4 // Reset pin (could connect to RST pin)
//#define TFT_RST -1 // Set TFT_RST to -1 if display RESET is connected to ESP32 board RST
//#define TOUCH_CS 21 // Chip select pin (T_CS) of touch screen
//#define TFT_WR 22 // Write strobe for modified Raspberry Pi TFT only
// For the M5Stack module use these #define lines
//#define TFT_MISO 19
//#define TFT_MOSI 23
//#define TFT_SCLK 18
//#define TFT_CS 14 // Chip select control pin
//#define TFT_DC 27 // Data Command control pin
//#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin)
//#define TFT_BL 32 // LED back-light
// ##################################################################################
//
// Section 2. Define the way the DC and/or CS lines are driven (ESP8266 only)
//
// ##################################################################################
// Normally the library uses direct register access for the DC and CS lines for speed
// If D0 (GPIO16) is used for CS or DC then a different slower method must be used
// Uncomment one line if D0 is used for DC or CS
// DC on D0 = 6% performance penalty at 40MHz SPI running graphics test
// CS on D0 = 2% performance penalty at 40MHz SPI running graphics test
// #define D0_USED_FOR_DC
// #define D0_USED_FOR_CS
// ##################################################################################
//
// Section 3. Define the fonts that are to be used here
//
// ##################################################################################
// Comment out the #defines below with // to stop that font being loaded
// The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not
// normally necessary. If all fonts are loaded the extra FLASH space required is
// about 17Kbytes. To save FLASH space only enable the fonts you need!
#define LOAD_GLCD // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH
#define LOAD_FONT2 // Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters
#define LOAD_FONT4 // Font 4. Medium 26 pixel high font, needs ~5848 bytes in FLASH, 96 characters
#define LOAD_FONT6 // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, only characters 1234567890:-.apm
#define LOAD_FONT7 // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in FLASH, only characters 1234567890:.
#define LOAD_FONT8 // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, only characters 1234567890:-.
//#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, so 3 digits fit a 160 pixel TFT
#define LOAD_GFXFF // FreeFonts. Include access to the 48 Adafruit_GFX free fonts FF1 to FF48 and custom fonts
// Comment out the #define below to stop the SPIFFS filing system and smooth font code being loaded
// this will save ~20kbytes of FLASH
#define SMOOTH_FONT
// ##################################################################################
//
// Section 4. Not used
//
// ##################################################################################
// ##################################################################################
//
// Section 5. Other options
//
// ##################################################################################
// Define the SPI clock frequency, this affects the graphics rendering speed. Too
// fast and the TFT driver will not keep up and display corruption appears.
// With an ILI9341 display 40MHz works OK, 80MHz sometimes fails
// With a ST7735 display more than 27MHz may not work (spurious pixels and lines)
// With an ILI9163 display 27 MHz works OK.
// The RPi typically only works at 20MHz maximum.
// #define SPI_FREQUENCY 1000000
// #define SPI_FREQUENCY 5000000
// #define SPI_FREQUENCY 10000000
// #define SPI_FREQUENCY 20000000
#define SPI_FREQUENCY 27000000 // Actually sets it to 26.67MHz = 80/3
// #define SPI_FREQUENCY 40000000 // Maximum to use SPIFFS
// #define SPI_FREQUENCY 80000000
// The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here:
#define SPI_TOUCH_FREQUENCY 2500000
// Comment out the following #define if "SPI Transactions" do not need to be
// supported. When commented out the code size will be smaller and sketches will
// run slightly faster, so leave it commented out unless you need it!
// Transaction support is needed to work with SD library but not needed with TFT_SdFat
// Transaction support is required if other SPI devices are connected.
// Transactions are automatically enabled by the library for an ESP32 (to use HAL mutex)
// so changing it here has no effect
// #define SUPPORT_TRANSACTIONS

View File

@@ -1,6 +1,6 @@
{
"name": "TFT_eSPI",
"version": "0.20.16",
"version": "0.20.17",
"keywords": "tft, ePaper, display, ESP8266, NodeMCU, ESP32, M5Stack, ILI9341, ST7735, ILI9163, S6D02A1, ILI9486, ST7789",
"description": "A TFT and ePaper SPI graphics library for ESP8266 and ESP32",
"repository":

View File

@@ -1,5 +1,5 @@
name=TFT_eSPI
version=0.20.16
version=0.20.17
author=Bodmer
maintainer=Bodmer
sentence=A fast TFT library for ESP8266 processors and the Arduino IDE