moved from pending to boost/

[SVN r8412]
This commit is contained in:
Jeremy Siek
2000-12-09 15:27:57 +00:00
parent 9a36979e41
commit 282aa1ef3d
2 changed files with 1541 additions and 0 deletions

View File

@ -0,0 +1,599 @@
//
// (C) Copyright Jeremy Siek 2000. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
//
#ifndef BOOST_CONCEPT_ARCHETYPES_HPP
#define BOOST_CONCEPT_ARCHETYPES_HPP
#include <iterator>
#include <functional>
namespace boost {
//===========================================================================
// Basic Archetype Classes
namespace detail {
class dummy_constructor { };
}
static detail::dummy_constructor dummy_cons;
// A type that models no concept. The template parameter
// is only there so that null_archetype types can be created
// that have different type.
template <class T = int>
class null_archetype {
private:
null_archetype() { }
null_archetype(const null_archetype&) { }
null_archetype& operator=(const null_archetype&) { return *this; }
public:
null_archetype(detail::dummy_constructor) { }
template <class TT>
friend void dummy_friend(); // just to avoid warnings
};
// This is a helper class that provides a way to get a reference to
// an object.
template <class T>
class static_object {
public:
static T& get() {
detail::dummy_constructor d;
static T x(d);
return x;
}
};
template <>
class static_object<bool> {
public:
static bool& get() {
static bool b;
return b;
}
};
template <>
class static_object<int> {
public:
static int& get() {
static int b;
return b;
}
};
template <class Base = null_archetype<> >
class default_constructible_archetype : public Base {
public:
default_constructible_archetype() : Base(dummy_cons) { }
default_constructible_archetype(detail::dummy_constructor x) : Base(x) { }
};
template <class Base = null_archetype<> >
class assignable_archetype : public Base {
assignable_archetype() { }
assignable_archetype(const assignable_archetype&) { }
public:
assignable_archetype& operator=(const assignable_archetype&) {
return *this;
}
assignable_archetype(detail::dummy_constructor x) : Base(x) { }
};
template <class Base = null_archetype<> >
class copy_constructible_archetype : public Base {
public:
copy_constructible_archetype() : Base(dummy_cons) { }
copy_constructible_archetype(const copy_constructible_archetype&)
: Base(dummy_cons) { }
copy_constructible_archetype(detail::dummy_constructor x) : Base(x) { }
};
template <class Base = null_archetype<> >
class sgi_assignable_archetype : public Base {
public:
sgi_assignable_archetype(const sgi_assignable_archetype&)
: Base(dummy_cons) { }
sgi_assignable_archetype& operator=(const sgi_assignable_archetype&) {
return *this;
}
sgi_assignable_archetype(const detail::dummy_constructor& x) : Base(x) { }
};
struct default_archetype_base {
default_archetype_base(detail::dummy_constructor x) { }
};
// Careful, don't use same type for T and Base. That results in the
// conversion operator being invalid. Since T is often
// null_archetype, can't use null_archetype for Base.
template <class T, class Base = default_archetype_base>
class convertible_to_archetype : public Base {
private:
convertible_to_archetype() { }
convertible_to_archetype(const convertible_to_archetype& ) { }
convertible_to_archetype& operator=(const convertible_to_archetype&)
{ return *this; }
public:
convertible_to_archetype(detail::dummy_constructor x) : Base(x) { }
operator const T&() const { return static_object<T>::get(); }
};
template <class T, class Base = default_archetype_base>
class convertible_from_archetype : public Base {
private:
convertible_from_archetype() { }
convertible_from_archetype(const convertible_from_archetype& ) { }
convertible_from_archetype& operator=(const convertible_from_archetype&)
{ return *this; }
public:
convertible_from_archetype(detail::dummy_constructor x) : Base(x) { }
convertible_from_archetype(const T&) { }
convertible_from_archetype& operator=(const T&)
{ return *this; }
};
class boolean_archetype {
public:
boolean_archetype(const boolean_archetype&) { }
operator bool() const { return true; }
boolean_archetype(detail::dummy_constructor x) { }
private:
boolean_archetype() { }
boolean_archetype& operator=(const boolean_archetype&) { return *this; }
};
template <class Base = null_archetype<> >
class equality_comparable_archetype : public Base {
public:
equality_comparable_archetype(detail::dummy_constructor x) : Base(x) { }
};
template <class Base>
boolean_archetype
operator==(const equality_comparable_archetype<Base>&,
const equality_comparable_archetype<Base>&)
{ return boolean_archetype(dummy_cons); }
template <class Base>
boolean_archetype
operator!=(const equality_comparable_archetype<Base>&,
const equality_comparable_archetype<Base>&)
{ return boolean_archetype(dummy_cons); }
template <class Base = null_archetype<> >
class equality_comparable2_first_archetype : public Base {
public:
equality_comparable2_first_archetype(detail::dummy_constructor x)
: Base(x) { }
};
template <class Base = null_archetype<> >
class equality_comparable2_second_archetype : public Base {
public:
equality_comparable2_second_archetype(detail::dummy_constructor x)
: Base(x) { }
};
template <class Base1, class Base2>
boolean_archetype
operator==(const equality_comparable2_first_archetype<Base1>&,
const equality_comparable2_second_archetype<Base2>&)
{ return boolean_archetype(dummy_cons); }
template <class Base1, class Base2>
boolean_archetype
operator!=(const equality_comparable2_first_archetype<Base1>&,
const equality_comparable2_second_archetype<Base2>&)
{ return boolean_archetype(dummy_cons); }
template <class Base = null_archetype<> >
class less_than_comparable_archetype : public Base {
public:
less_than_comparable_archetype(detail::dummy_constructor x) : Base(x) { }
};
template <class Base>
boolean_archetype
operator<(const less_than_comparable_archetype<Base>&,
const less_than_comparable_archetype<Base>&)
{ return boolean_archetype(dummy_cons); }
template <class Base = null_archetype<> >
class comparable_archetype : public Base {
public:
comparable_archetype(detail::dummy_constructor x) : Base(x) { }
};
template <class Base>
boolean_archetype
operator<(const comparable_archetype<Base>&,
const comparable_archetype<Base>&)
{ return boolean_archetype(dummy_cons); }
template <class Base>
boolean_archetype
operator<=(const comparable_archetype<Base>&,
const comparable_archetype<Base>&)
{ return boolean_archetype(dummy_cons); }
template <class Base>
boolean_archetype
operator>(const comparable_archetype<Base>&,
const comparable_archetype<Base>&)
{ return boolean_archetype(dummy_cons); }
template <class Base>
boolean_archetype
operator>=(const comparable_archetype<Base>&,
const comparable_archetype<Base>&)
{ return boolean_archetype(dummy_cons); }
// The purpose of the optags is so that one can specify
// exactly which types the operator< is defined between.
// This is useful for allowing the operations:
//
// A a; B b;
// a < b
// b < a
//
// without also allowing the combinations:
//
// a < a
// b < b
//
struct optag1 { };
struct optag2 { };
struct optag3 { };
#define BOOST_DEFINE_BINARY_PREDICATE_ARCHETYPE(OP, NAME) \
template <class Base = null_archetype<>, class Tag = optag1 > \
class NAME##_first_archetype : public Base { \
public: \
NAME##_first_archetype(detail::dummy_constructor x) : Base(x) { } \
}; \
\
template <class Base = null_archetype<>, class Tag = optag1 > \
class NAME##_second_archetype : public Base { \
public: \
NAME##_second_archetype(detail::dummy_constructor x) : Base(x) { } \
}; \
\
template <class BaseFirst, class BaseSecond, class Tag> \
boolean_archetype \
operator OP (const NAME##_first_archetype<BaseFirst, Tag>&, \
const NAME##_second_archetype<BaseSecond, Tag>&) \
{ \
return boolean_archetype(dummy_cons); \
}
BOOST_DEFINE_BINARY_PREDICATE_ARCHETYPE(==, equal_op)
BOOST_DEFINE_BINARY_PREDICATE_ARCHETYPE(!=, not_equal_op)
BOOST_DEFINE_BINARY_PREDICATE_ARCHETYPE(<, less_than_op)
BOOST_DEFINE_BINARY_PREDICATE_ARCHETYPE(<=, less_equal_op)
BOOST_DEFINE_BINARY_PREDICATE_ARCHETYPE(>, greater_than_op)
BOOST_DEFINE_BINARY_PREDICATE_ARCHETYPE(>=, greater_equal_op)
#define BOOST_DEFINE_OPERATOR_ARCHETYPE(OP, NAME) \
template <class Base = null_archetype<> > \
class NAME##_archetype : public Base { \
public: \
NAME##_archetype(detail::dummy_constructor x) : Base(x) { } \
NAME##_archetype(const NAME##_archetype&) \
: Base(dummy_cons) { } \
NAME##_archetype& operator=(const NAME##_archetype&) { return *this; } \
}; \
template <class Base> \
NAME##_archetype<Base> \
operator OP (const NAME##_archetype<Base>&,\
const NAME##_archetype<Base>&) \
{ return NAME##_archetype<Base>(dummy_cons); }
BOOST_DEFINE_OPERATOR_ARCHETYPE(+, addable)
BOOST_DEFINE_OPERATOR_ARCHETYPE(-, subtractable)
BOOST_DEFINE_OPERATOR_ARCHETYPE(*, multipliable)
BOOST_DEFINE_OPERATOR_ARCHETYPE(/, dividable)
BOOST_DEFINE_OPERATOR_ARCHETYPE(%, modable)
// As is, these are useless because of the return type.
// Need to invent a better way...
#define BOOST_DEFINE_BINARY_OPERATOR_ARCHETYPE(OP, NAME) \
template <class Return, class Base = null_archetype<> > \
class NAME##_first_archetype : public Base { \
public: \
NAME##_first_archetype(detail::dummy_constructor x) : Base(x) { } \
}; \
\
template <class Return, class Base = null_archetype<> > \
class NAME##_second_archetype : public Base { \
public: \
NAME##_second_archetype(detail::dummy_constructor x) : Base(x) { } \
}; \
\
template <class Return, class BaseFirst, class BaseSecond> \
Return \
operator OP (const NAME##_first_archetype<Return, BaseFirst>&, \
const NAME##_second_archetype<Return, BaseSecond>&) \
{ \
return Return(dummy_cons); \
}
BOOST_DEFINE_BINARY_OPERATOR_ARCHETYPE(+, plus_op)
BOOST_DEFINE_BINARY_OPERATOR_ARCHETYPE(*, time_op)
BOOST_DEFINE_BINARY_OPERATOR_ARCHETYPE(/, divide_op)
BOOST_DEFINE_BINARY_OPERATOR_ARCHETYPE(-, subtract_op)
BOOST_DEFINE_BINARY_OPERATOR_ARCHETYPE(%, mod_op)
//===========================================================================
// Function Object Archetype Classes
template <class Return>
class generator_archetype {
public:
const Return& operator()() {
return static_object<Return>::get();
}
};
class void_generator_archetype {
public:
void operator()() { }
};
template <class Arg, class Return>
class unary_function_archetype {
private:
unary_function_archetype() { }
public:
unary_function_archetype(detail::dummy_constructor) { }
const Return& operator()(const Arg&) {
return static_object<Return>::get();
}
};
template <class Arg1, class Arg2, class Return>
class binary_function_archetype {
private:
binary_function_archetype() { }
public:
binary_function_archetype(detail::dummy_constructor) { }
const Return& operator()(const Arg1&, const Arg2&) {
return static_object<Return>::get();
}
};
template <class Arg>
class unary_predicate_archetype {
typedef boolean_archetype Return;
unary_predicate_archetype() { }
public:
unary_predicate_archetype(detail::dummy_constructor) { }
const Return& operator()(const Arg&) {
return static_object<Return>::get();
}
};
template <class Arg1, class Arg2, class Base = null_archetype<> >
class binary_predicate_archetype {
typedef boolean_archetype Return;
binary_predicate_archetype() { }
public:
binary_predicate_archetype(detail::dummy_constructor) { }
const Return& operator()(const Arg1&, const Arg2&) {
return static_object<Return>::get();
}
};
template <class Arg1, class Arg2>
class const_binary_predicate_archetype {
typedef boolean_archetype Return;
const_binary_predicate_archetype() { }
public:
const_binary_predicate_archetype(detail::dummy_constructor) { }
const Return& operator()(const Arg1&, const Arg2&) const {
return static_object<Return>::get();
}
};
//===========================================================================
// Iterator Archetype Classes
template <class T>
struct input_proxy {
operator const T&() { return static_object<T>::get(); }
};
template <class T>
class trivial_iterator_archetype
{
typedef trivial_iterator_archetype self;
public:
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
typedef T value_type;
typedef void reference;
typedef void pointer;
typedef void difference_type;
typedef void iterator_category;
#endif
trivial_iterator_archetype() { }
self& operator=(const self&) { return *this; }
bool operator==(const self&) const { return true; }
bool operator!=(const self&) const { return true; }
input_proxy<T> operator*() const { return input_proxy<T>(); }
};
} // namespace boost
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
namespace std {
template <class T>
struct iterator_traits< boost::trivial_iterator_archetype<T> >
{
typedef T value_type;
};
}
#endif
namespace boost {
template <class T>
struct input_output_proxy {
input_output_proxy<T>& operator=(const T&) { return *this; }
operator const T&() { return static_object<T>::get(); }
};
template <class T>
class mutable_trivial_iterator_archetype
{
typedef mutable_trivial_iterator_archetype self;
public:
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
typedef T value_type;
typedef void reference;
typedef void pointer;
typedef void difference_type;
typedef void iterator_category;
#endif
mutable_trivial_iterator_archetype() { }
self& operator=(const self&) { return *this; }
bool operator==(const self&) const { return true; }
bool operator!=(const self&) const { return true; }
input_output_proxy<T> operator*() const { return input_output_proxy<T>(); }
};
} // namespace boost
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
namespace std {
template <class T>
struct iterator_traits< boost::mutable_trivial_iterator_archetype<T> >
{
typedef T value_type;
};
}
#endif
namespace boost {
template <class T>
class input_iterator_archetype
{
public:
typedef input_iterator_archetype self;
public:
typedef std::input_iterator_tag iterator_category;
typedef T value_type;
typedef const T& reference;
typedef const T* pointer;
typedef std::ptrdiff_t difference_type;
input_iterator_archetype() { }
self& operator=(const self&) { return *this; }
bool operator==(const self&) const { return true; }
bool operator!=(const self&) const { return true; }
reference operator*() const { return static_object<T>::get(); }
self& operator++() { return *this; }
self operator++(int) { return *this; }
};
template <class T>
struct output_proxy {
output_proxy& operator=(const T&) { return *this; }
};
template <class T>
class output_iterator_archetype
{
public:
typedef output_iterator_archetype self;
public:
typedef std::output_iterator_tag iterator_category;
typedef output_proxy<T> value_type;
typedef output_proxy<T> reference;
typedef void pointer;
typedef void difference_type;
output_iterator_archetype() { }
self& operator=(const self&) { return *this; }
bool operator==(const self&) const { return true; }
bool operator!=(const self&) const { return true; }
reference operator*() const { return output_proxy<T>(); }
self& operator++() { return *this; }
self operator++(int) { return *this; }
};
template <class T>
class forward_iterator_archetype
{
public:
typedef forward_iterator_archetype self;
public:
typedef std::forward_iterator_tag iterator_category;
typedef T value_type;
typedef T& reference;
typedef T* pointer;
typedef std::ptrdiff_t difference_type;
forward_iterator_archetype() { }
self& operator=(const self&) { return *this; }
bool operator==(const self&) const { return true; }
bool operator!=(const self&) const { return true; }
reference operator*() const { return static_object<T>::get(); }
self& operator++() { return *this; }
self operator++(int) { return *this; }
};
template <class T>
class bidirectional_iterator_archetype
{
public:
typedef bidirectional_iterator_archetype self;
public:
typedef std::bidirectional_iterator_tag iterator_category;
typedef T value_type;
typedef T& reference;
typedef T* pointer;
typedef std::ptrdiff_t difference_type;
bidirectional_iterator_archetype() { }
self& operator=(const self&) { return *this; }
bool operator==(const self&) const { return true; }
bool operator!=(const self&) const { return true; }
reference operator*() const { return static_object<T>::get(); }
self& operator++() { return *this; }
self operator++(int) { return *this; }
self& operator--() { return *this; }
self operator--(int) { return *this; }
};
template <class T>
class random_access_iterator_archetype
{
public:
typedef random_access_iterator_archetype self;
public:
typedef std::random_access_iterator_tag iterator_category;
typedef T value_type;
typedef T& reference;
typedef T* pointer;
typedef std::ptrdiff_t difference_type;
random_access_iterator_archetype() { }
self& operator=(const self&) { return *this; }
bool operator==(const self&) const { return true; }
bool operator!=(const self&) const { return true; }
reference operator*() const { return static_object<T>::get(); }
self& operator++() { return *this; }
self operator++(int) { return *this; }
self& operator--() { return *this; }
self operator--(int) { return *this; }
reference operator[](difference_type n)
{ return static_object<T>::get(); }
self& operator+=(difference_type) { return *this; }
self& operator-=(difference_type) { return *this; }
difference_type operator-(const self&) const
{ return difference_type(); }
self operator+(difference_type) { return *this; }
self operator-(difference_type) { return *this; }
bool operator<(const self&) { return true; }
bool operator<=(const self&) { return true; }
bool operator>(const self&) { return true; }
bool operator>=(const self&) { return true; }
};
template <class T>
random_access_iterator_archetype<T>
operator+(typename random_access_iterator_archetype<T>::difference_type,
const random_access_iterator_archetype<T>& x)
{ return x; }
} // namespace boost
#endif // BOOST_CONCEPT_ARCHETYPES_H

View File

@ -0,0 +1,942 @@
//
// (C) Copyright Jeremy Siek 2000. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
//
#ifndef BOOST_CONCEPT_CHECKS_HPP
#define BOOST_CONCEPT_CHECKS_HPP
#include <iterator>
#include <utility>
#include <boost/config.hpp>
#include <boost/pending/limits.hpp>
#if (__GNUC__) || defined(__KCC) || defined(__ghs) || defined(__MWERKS__)
#define BOOST_FPTR &
#else
#define BOOST_FPTR
#endif
namespace boost {
template <class T> void ignore_unused_variable_warning(const T&) { }
template <class Concept>
void function_requires()
{
#if !defined(NDEBUG)
void (Concept::*x)() = BOOST_FPTR Concept::constraints;
ignore_unused_variable_warning(x);
#endif
}
// The BOOST_CLASS_REQUIRES macros use function pointers as
// template parameters, which VC++ does not support.
#if defined(BOOST_NO_FUNCTION_PTR_TEMPLATE_PARAMETERS)
#define BOOST_CLASS_REQUIRES(type_var, concept)
#define BOOST_CLASS_REQUIRES2(type_var1, type_var2, concept)
#define BOOST_CLASS_REQUIRES3(type_var1, type_var2, type_var3, concept)
#define BOOST_CLASS_REQUIRES4(type_var1, type_var2, type_var3, type_var4, concept)
#else
#define BOOST_CLASS_REQUIRES(type_var, concept) \
typedef void (concept <type_var>::* func##type_var##concept)(); \
template <func##type_var##concept _Tp1> \
struct concept_checking_##type_var##concept { }; \
typedef concept_checking_##type_var##concept< \
BOOST_FPTR concept <type_var>::constraints> \
concept_checking_typedef_##type_var##concept
#define BOOST_CLASS_REQUIRES2(type_var1, type_var2, concept) \
typedef void (concept <type_var1,type_var2>::* func##type_var1##type_var2##concept)(); \
template <func##type_var1##type_var2##concept _Tp1> \
struct concept_checking_##type_var1##type_var2##concept { }; \
typedef concept_checking_##type_var1##type_var2##concept< \
BOOST_FPTR concept <type_var1,type_var2>::constraints> \
concept_checking_typedef_##type_var1##type_var2##concept
#define BOOST_CLASS_REQUIRES3(type_var1, type_var2, type_var3, concept) \
typedef void (concept <type_var1,type_var2,type_var3>::* func##type_var1##type_var2##type_var3##concept)(); \
template <func##type_var1##type_var2##type_var3##concept _Tp1> \
struct concept_checking_##type_var1##type_var2##type_var3##concept { }; \
typedef concept_checking_##type_var1##type_var2##type_var3##concept< \
BOOST_FPTR concept <type_var1,type_var2,type_var3>::constraints> \
concept_checking_typedef_##type_var1##type_var2##type_var3##concept
#define BOOST_CLASS_REQUIRES4(type_var1, type_var2, type_var3, type_var4, concept) \
typedef void (concept <type_var1,type_var2,type_var3,type_var4>::* func##type_var1##type_var2##type_var3##type_var4##concept)(); \
template <func##type_var1##type_var2##type_var3##type_var4##concept _Tp1> \
struct concept_checking_##type_var1##type_var2##type_var3##type_var4##concept { }; \
typedef concept_checking_##type_var1##type_var2##type_var3##type_var4##concept< \
BOOST_FPTR concept <type_var1,type_var2,type_var3,type_var4>::constraints> \
concept_checking_typedef_##type_var1##type_var2##type_var3##type_var4##concept
#endif
#if !defined BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class T, class U>
struct require_same { };
template <class T>
struct require_same<T,T> { typedef T type; };
#else
// This version does not perform checking, but will not do any harm.
template <class T, class U>
struct require_same { typedef T type; };
#endif
template <class T>
struct IntegerConcept {
void constraints() {
#if !defined BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
errortype_must_be_an_integer_type();
#endif
}
};
#if !defined BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <> struct IntegerConcept<short> { void constraints() {} };
template <> struct IntegerConcept<unsigned short> { void constraints() {} };
template <> struct IntegerConcept<int> { void constraints() {} };
template <> struct IntegerConcept<unsigned int> { void constraints() {} };
template <> struct IntegerConcept<long> { void constraints() {} };
template <> struct IntegerConcept<unsigned long> { void constraints() {} };
// etc.
#endif
template <class T>
struct SignedIntegerConcept {
void constraints() {
#if !defined BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
errortype_must_be_a_signed_integer_type();
#endif
}
};
#if !defined BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <> struct SignedIntegerConcept<short> { void constraints() {} };
template <> struct SignedIntegerConcept<int> { void constraints() {} };
template <> struct SignedIntegerConcept<long> { void constraints() {} };
// etc.
#endif
template <class T>
struct UnsignedIntegerConcept {
void constraints() {
#if !defined BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
errortype_must_be_an_unsigned_integer_type();
#endif
}
};
#if !defined BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <> struct UnsignedIntegerConcept<unsigned short>
{ void constraints() {} };
template <> struct UnsignedIntegerConcept<unsigned int>
{ void constraints() {} };
template <> struct UnsignedIntegerConcept<unsigned long>
{ void constraints() {} };
// etc.
#endif
//===========================================================================
// Basic Concepts
template <class TT>
struct DefaultConstructibleConcept
{
void constraints() {
TT a; // require default constructor
ignore_unused_variable_warning(a);
}
};
template <class TT>
struct AssignableConcept
{
void constraints() {
#if !defined(_ITERATOR_) // back_insert_iterator broken for VC++ STL
a = a; // require assignment operator
#endif
const_constraints(a);
}
void const_constraints(const TT& b) {
#if !defined(_ITERATOR_) // back_insert_iterator broken for VC++ STL
a = b; // const required for argument to assignment
#endif
}
TT a;
};
template <class TT>
struct CopyConstructibleConcept
{
void constraints() {
TT a(b); // require copy constructor
TT* ptr = &a; // require address of operator
const_constraints(a);
ignore_unused_variable_warning(ptr);
}
void const_constraints(const TT& a) {
TT c(a); // require const copy constructor
const TT* ptr = &a; // require const address of operator
ignore_unused_variable_warning(c);
ignore_unused_variable_warning(ptr);
}
TT b;
};
// The SGI STL version of Assignable requires copy constructor and operator=
template <class TT>
struct SGIAssignableConcept
{
void constraints() {
TT b(a);
#if !defined(_ITERATOR_) // back_insert_iterator broken for VC++ STL
a = a; // require assignment operator
#endif
const_constraints(a);
}
void const_constraints(const TT& b) {
TT c(b);
#if !defined(_ITERATOR_) // back_insert_iterator broken for VC++ STL
a = b; // const required for argument to assignment
#endif
}
TT a;
};
template <class X, class Y>
struct ConvertibleConcept
{
void constraints() {
Y y = x;
ignore_unused_variable_warning(y);
}
X x;
};
// The C++ standard requirements for many concepts talk about return
// types that must be "convertible to bool". The problem with this
// requirement is that it leaves the door open for evil proxies that
// define things like operator|| with strange return types. Two
// possible solutions are:
// 1) require the return type to be exactly bool
// 2) stay with convertible to bool, and also
// specify stuff about all the logical operators.
// For now we just test for convertible to bool.
template <class TT>
void require_boolean_expr(const TT& t) {
bool x = t;
ignore_unused_variable_warning(x);
}
template <class TT>
struct EqualityComparableConcept
{
void constraints() {
require_boolean_expr(a == b);
require_boolean_expr(a != b);
}
TT a, b;
};
template <class TT>
struct LessThanComparableConcept
{
void constraints() {
require_boolean_expr(a < b);
}
TT a, b;
};
// This is equivalent to SGI STL's LessThanComparable.
template <class TT>
struct ComparableConcept
{
void constraints() {
require_boolean_expr(a < b);
require_boolean_expr(a > b);
require_boolean_expr(a <= b);
require_boolean_expr(a >= b);
}
TT a, b;
};
#define BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(OP,NAME) \
template <class First, class Second> \
struct NAME { \
void constraints() { (void)constraints_(); } \
bool constraints_() { \
return a OP b; \
} \
First a; \
Second b; \
}
#define BOOST_DEFINE_BINARY_OPERATOR_CONSTRAINT(OP,NAME) \
template <class Ret, class First, class Second> \
struct NAME { \
void constraints() { (void)constraints_(); } \
Ret constraints_() { \
return a OP b; \
} \
First a; \
Second b; \
}
BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(==, EqualOpConcept);
BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(!=, NotEqualOpConcept);
BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(<, LessThanOpConcept);
BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(<=, LessEqualOpConcept);
BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(>, GreaterThanOpConcept);
BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(>=, GreaterEqualOpConcept);
BOOST_DEFINE_BINARY_OPERATOR_CONSTRAINT(+, PlusOpConcept);
BOOST_DEFINE_BINARY_OPERATOR_CONSTRAINT(*, TimesOpConcept);
BOOST_DEFINE_BINARY_OPERATOR_CONSTRAINT(/, DivideOpConcept);
BOOST_DEFINE_BINARY_OPERATOR_CONSTRAINT(-, SubtractOpConcept);
BOOST_DEFINE_BINARY_OPERATOR_CONSTRAINT(%, ModOpConcept);
//===========================================================================
// Function Object Concepts
template <class Func, class Return>
struct GeneratorConcept
{
void constraints() {
const Return& r = f(); // require operator() member function
}
Func f;
};
#if !defined BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class Func>
struct GeneratorConcept<Func,void>
{
void constraints() {
f(); // require operator() member function
}
Func f;
};
#endif
template <class Func, class Return, class Arg>
struct UnaryFunctionConcept
{
void constraints() {
r = f(arg); // require operator()
}
Func f;
Arg arg;
Return r;
};
#if !defined BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class Func, class Arg>
struct UnaryFunctionConcept<Func, void, Arg> {
void constraints() {
f(arg); // require operator()
}
Func f;
};
#endif
template <class Func, class Return, class First, class Second>
struct BinaryFunctionConcept
{
void constraints() {
r = f(first, second); // require operator()
}
Func f;
First first;
Second second;
Return r;
};
#if !defined BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class Func, class First, class Second>
struct BinaryFunctionConcept<Func, void, First, Second>
{
void constraints() {
f(first, second); // require operator()
}
Func f;
First first;
Second second;
};
#endif
template <class Func, class Arg>
struct UnaryPredicateConcept
{
void constraints() {
require_boolean_expr(f(arg)); // require operator() returning bool
}
Func f;
Arg arg;
};
template <class Func, class First, class Second>
struct BinaryPredicateConcept
{
void constraints() {
require_boolean_expr(f(a, b)); // require operator() returning bool
}
Func f;
First a;
Second b;
};
// use this when functor is used inside a container class like std::set
template <class Func, class First, class Second>
struct Const_BinaryPredicateConcept {
void constraints() {
const_constraints(f);
}
void const_constraints(const Func& fun) {
function_requires<BinaryPredicateConcept<Func, First, Second> >();
// operator() must be a const member function
require_boolean_expr(fun(a, b));
}
Func f;
First a;
Second b;
};
//===========================================================================
// Iterator Concepts
template <class TT>
struct TrivialIteratorConcept
{
void constraints() {
function_requires< AssignableConcept<TT> >();
function_requires< DefaultConstructibleConcept<TT> >();
function_requires< EqualityComparableConcept<TT> >();
#ifndef BOOST_NO_STD_ITERATOR_TRAITS
typedef typename std::iterator_traits<TT>::value_type V;
#endif
(void)*i; // require dereference operator
}
TT i;
};
template <class TT>
struct Mutable_TrivialIteratorConcept
{
void constraints() {
function_requires< TrivialIteratorConcept<TT> >();
*i = *j; // require dereference and assignment
}
TT i, j;
};
template <class TT>
struct InputIteratorConcept
{
void constraints() {
function_requires< TrivialIteratorConcept<TT> >();
// require iterator_traits typedef's
#ifndef BOOST_NO_STD_ITERATOR_TRAITS
typedef typename std::iterator_traits<TT>::difference_type D;
function_requires< SignedIntegerConcept<D> >();
typedef typename std::iterator_traits<TT>::reference R;
typedef typename std::iterator_traits<TT>::pointer P;
typedef typename std::iterator_traits<TT>::iterator_category C;
function_requires< ConvertibleConcept<
typename std::iterator_traits<TT>::iterator_category,
std::input_iterator_tag> >();
#endif
++i; // require preincrement operator
i++; // require postincrement operator
}
TT i;
};
template <class TT, class ValueT>
struct OutputIteratorConcept
{
void constraints() {
function_requires< AssignableConcept<TT> >();
++i; // require preincrement operator
i++; // require postincrement operator
*i++ = t; // require postincrement and assignment
}
TT i, j;
ValueT t;
};
template <class TT>
struct ForwardIteratorConcept
{
void constraints() {
function_requires< InputIteratorConcept<TT> >();
#ifndef BOOST_NO_STD_ITERATOR_TRAITS
function_requires< ConvertibleConcept<
typename std::iterator_traits<TT>::iterator_category,
std::forward_iterator_tag> >();
typedef typename std::iterator_traits<TT>::reference reference;
reference r = *i;
ignore_unused_variable_warning(r);
#endif
}
TT i;
};
template <class TT>
struct Mutable_ForwardIteratorConcept
{
void constraints() {
function_requires< ForwardIteratorConcept<TT> >();
*i++ = *i; // require postincrement and assignment
}
TT i;
};
template <class TT>
struct BidirectionalIteratorConcept
{
void constraints() {
function_requires< ForwardIteratorConcept<TT> >();
#ifndef BOOST_NO_STD_ITERATOR_TRAITS
function_requires< ConvertibleConcept<
typename std::iterator_traits<TT>::iterator_category,
std::bidirectional_iterator_tag> >();
#endif
--i; // require predecrement operator
i--; // require postdecrement operator
}
TT i;
};
template <class TT>
struct Mutable_BidirectionalIteratorConcept
{
void constraints() {
function_requires< BidirectionalIteratorConcept<TT> >();
function_requires< Mutable_ForwardIteratorConcept<TT> >();
*i-- = *i; // require postdecrement and assignment
}
TT i;
};
template <class TT>
struct RandomAccessIteratorConcept
{
void constraints() {
function_requires< BidirectionalIteratorConcept<TT> >();
function_requires< ComparableConcept<TT> >();
#ifndef BOOST_NO_STD_ITERATOR_TRAITS
function_requires< ConvertibleConcept<
typename std::iterator_traits<TT>::iterator_category,
std::random_access_iterator_tag> >();
typedef typename std::iterator_traits<TT>::reference R;
#endif
i += n; // require assignment addition operator
i = i + n; i = n + i; // require addition with difference type
i -= n; // require assignment subtraction operator
i = i - n; // require subtraction with difference type
n = i - j; // require difference operator
(void)i[n]; // require element access operator
}
TT a, b;
TT i, j;
#ifndef BOOST_NO_STD_ITERATOR_TRAITS
typename std::iterator_traits<TT>::difference_type n;
#else
std::ptrdiff_t n;
#endif
};
template <class TT>
struct Mutable_RandomAccessIteratorConcept
{
void constraints() {
function_requires< RandomAccessIteratorConcept<TT> >();
function_requires< Mutable_BidirectionalIteratorConcept<TT> >();
i[n] = *i; // require element access and assignment
}
TT i;
#ifndef BOOST_NO_STD_ITERATOR_TRAITS
typename std::iterator_traits<TT>::difference_type n;
#else
std::ptrdiff_t n;
#endif
};
//===========================================================================
// Container Concepts
template <class Container>
struct ContainerConcept
{
typedef typename Container::value_type value_type;
typedef typename Container::difference_type difference_type;
typedef typename Container::size_type size_type;
typedef typename Container::const_reference const_reference;
typedef typename Container::const_pointer const_pointer;
typedef typename Container::const_iterator const_iterator;
void constraints() {
function_requires< InputIteratorConcept<const_iterator> >();
function_requires< AssignableConcept<Container> >();
const Container c;
i = c.begin();
i = c.end();
n = c.size();
n = c.max_size();
b = c.empty();
}
bool b;
const_iterator i;
size_type n;
};
template <class Container>
struct Mutable_ContainerConcept
{
typedef typename Container::value_type value_type;
typedef typename Container::reference reference;
typedef typename Container::iterator iterator;
typedef typename Container::pointer pointer;
void constraints() {
function_requires< ContainerConcept<Container> >();
function_requires< AssignableConcept<value_type> >();
function_requires< InputIteratorConcept<iterator> >();
i = c.begin();
i = c.end();
c.swap(c2);
}
iterator i;
Container c, c2;
};
template <class ForwardContainer>
struct ForwardContainerConcept
{
void constraints() {
function_requires< ContainerConcept<ForwardContainer> >();
typedef typename ForwardContainer::const_iterator const_iterator;
function_requires< ForwardIteratorConcept<const_iterator> >();
}
};
template <class ForwardContainer>
struct Mutable_ForwardContainerConcept
{
void constraints() {
function_requires< ForwardContainerConcept<ForwardContainer> >();
function_requires< Mutable_ContainerConcept<ForwardContainer> >();
typedef typename ForwardContainer::iterator iterator;
function_requires< Mutable_ForwardIteratorConcept<iterator> >();
}
};
template <class ReversibleContainer>
struct ReversibleContainerConcept
{
typedef typename ReversibleContainer::const_iterator const_iterator;
typedef typename ReversibleContainer::const_reverse_iterator
const_reverse_iterator;
void constraints() {
function_requires< ForwardContainerConcept<ReversibleContainer> >();
function_requires< BidirectionalIteratorConcept<const_iterator> >();
function_requires< BidirectionalIteratorConcept<const_reverse_iterator> >();
const ReversibleContainer c;
const_reverse_iterator i = c.rbegin();
i = c.rend();
}
};
template <class ReversibleContainer>
struct Mutable_ReversibleContainerConcept
{
typedef typename ReversibleContainer::iterator iterator;
typedef typename ReversibleContainer::reverse_iterator reverse_iterator;
void constraints() {
function_requires< ReversibleContainerConcept<ReversibleContainer> >();
function_requires< Mutable_ForwardContainerConcept<ReversibleContainer> >();
function_requires< Mutable_BidirectionalIteratorConcept<iterator> >();
function_requires< Mutable_BidirectionalIteratorConcept<reverse_iterator> >();
reverse_iterator i = c.rbegin();
i = c.rend();
}
ReversibleContainer c;
};
template <class RandomAccessContainer>
struct RandomAccessContainerConcept
{
typedef typename RandomAccessContainer::size_type size_type;
typedef typename RandomAccessContainer::const_reference const_reference;
typedef typename RandomAccessContainer::const_iterator const_iterator;
typedef typename RandomAccessContainer::const_reverse_iterator
const_reverse_iterator;
void constraints() {
function_requires< ReversibleContainerConcept<RandomAccessContainer> >();
function_requires< RandomAccessIteratorConcept<const_iterator> >();
function_requires< RandomAccessIteratorConcept<const_reverse_iterator> >();
const RandomAccessContainer c;
const_reference r = c[n];
ignore_unused_variable_warning(r);
}
size_type n;
};
template <class RandomAccessContainer>
struct Mutable_RandomAccessContainerConcept
{
typedef typename RandomAccessContainer::size_type size_type;
typedef typename RandomAccessContainer::reference reference;
typedef typename RandomAccessContainer::iterator iterator;
typedef typename RandomAccessContainer::reverse_iterator reverse_iterator;
void constraints() {
function_requires< RandomAccessContainerConcept<RandomAccessContainer> >();
function_requires< Mutable_ReversibleContainerConcept<RandomAccessContainer> >();
function_requires< Mutable_RandomAccessIteratorConcept<iterator> >();
function_requires< Mutable_RandomAccessIteratorConcept<reverse_iterator> >();
reference r = c[i];
ignore_unused_variable_warning(r);
}
size_type i;
RandomAccessContainer c;
};
// A Sequence is inherently mutable
template <class Sequence>
struct SequenceConcept
{
typedef typename Sequence::reference reference;
typedef typename Sequence::const_reference const_reference;
void constraints() {
// Matt Austern's book puts DefaultConstructible here, the C++
// standard places it in Container
// function_requires< DefaultConstructible<Sequence> >();
function_requires< Mutable_ForwardContainerConcept<Sequence> >();
function_requires< DefaultConstructibleConcept<Sequence> >();
Sequence
c(n),
c2(n, t),
c3(first, last);
c.insert(p, t);
c.insert(p, n, t);
c.insert(p, first, last);
c.erase(p);
c.erase(p, q);
reference r = c.front();
ignore_unused_variable_warning(c);
ignore_unused_variable_warning(c2);
ignore_unused_variable_warning(c3);
ignore_unused_variable_warning(r);
const_constraints(c);
}
void const_constraints(const Sequence& c) {
const_reference r = c.front();
ignore_unused_variable_warning(r);
}
typename Sequence::value_type t;
typename Sequence::size_type n;
typename Sequence::value_type* first, *last;
typename Sequence::iterator p, q;
};
template <class FrontInsertionSequence>
struct FrontInsertionSequenceConcept
{
void constraints() {
function_requires< SequenceConcept<FrontInsertionSequence> >();
c.push_front(t);
c.pop_front();
}
FrontInsertionSequence c;
typename FrontInsertionSequence::value_type t;
};
template <class BackInsertionSequence>
struct BackInsertionSequenceConcept
{
typedef typename BackInsertionSequence::reference reference;
typedef typename BackInsertionSequence::const_reference const_reference;
void constraints() {
function_requires< SequenceConcept<BackInsertionSequence> >();
c.push_back(t);
c.pop_back();
reference r = c.back();
ignore_unused_variable_warning(r);
}
void const_constraints(const BackInsertionSequence& c) {
const_reference r = c.back();
ignore_unused_variable_warning(r);
};
BackInsertionSequence c;
typename BackInsertionSequence::value_type t;
};
template <class AssociativeContainer>
struct AssociativeContainerConcept
{
void constraints() {
function_requires< ForwardContainerConcept<AssociativeContainer> >();
function_requires< DefaultConstructibleConcept<AssociativeContainer> >();
i = c.find(k);
r = c.equal_range(k);
c.erase(k);
c.erase(i);
c.erase(r.first, r.second);
const_constraints(c);
}
void const_constraints(const AssociativeContainer& c) {
ci = c.find(k);
n = c.count(k);
cr = c.equal_range(k);
}
typedef typename AssociativeContainer::iterator iterator;
typedef typename AssociativeContainer::const_iterator const_iterator;
AssociativeContainer c;
iterator i;
std::pair<iterator,iterator> r;
const_iterator ci;
std::pair<const_iterator,const_iterator> cr;
typename AssociativeContainer::key_type k;
typename AssociativeContainer::size_type n;
};
template <class UniqueAssociativeContainer>
struct UniqueAssociativeContainerConcept
{
void constraints() {
function_requires< AssociativeContainerConcept<UniqueAssociativeContainer> >();
UniqueAssociativeContainer c(first, last);
pos_flag = c.insert(t);
c.insert(first, last);
ignore_unused_variable_warning(c);
}
std::pair<typename UniqueAssociativeContainer::iterator, bool> pos_flag;
typename UniqueAssociativeContainer::value_type t;
typename UniqueAssociativeContainer::value_type* first, *last;
};
template <class MultipleAssociativeContainer>
struct MultipleAssociativeContainerConcept
{
void constraints() {
function_requires< AssociativeContainerConcept<MultipleAssociativeContainer> >();
MultipleAssociativeContainer c(first, last);
pos = c.insert(t);
c.insert(first, last);
ignore_unused_variable_warning(c);
ignore_unused_variable_warning(pos);
}
typename MultipleAssociativeContainer::iterator pos;
typename MultipleAssociativeContainer::value_type t;
typename MultipleAssociativeContainer::value_type* first, *last;
};
template <class SimpleAssociativeContainer>
struct SimpleAssociativeContainerConcept
{
void constraints() {
function_requires< AssociativeContainerConcept<SimpleAssociativeContainer> >();
typedef typename SimpleAssociativeContainer::key_type key_type;
typedef typename SimpleAssociativeContainer::value_type value_type;
typedef typename require_same<key_type, value_type>::type req;
}
};
template <class SimpleAssociativeContainer>
struct PairAssociativeContainerConcept
{
void constraints() {
function_requires< AssociativeContainerConcept<SimpleAssociativeContainer> >();
typedef typename SimpleAssociativeContainer::key_type key_type;
typedef typename SimpleAssociativeContainer::value_type value_type;
typedef typename SimpleAssociativeContainer::mapped_type mapped_type;
typedef std::pair<const key_type, mapped_type> required_value_type;
typedef typename require_same<value_type, required_value_type>::type req;
}
};
template <class SortedAssociativeContainer>
struct SortedAssociativeContainerConcept
{
void constraints() {
function_requires< AssociativeContainerConcept<SortedAssociativeContainer> >();
function_requires< ReversibleContainerConcept<SortedAssociativeContainer> >();
SortedAssociativeContainer
c(kc),
c2(first, last),
c3(first, last, kc);
p = c.upper_bound(k);
p = c.lower_bound(k);
r = c.equal_range(k);
c.insert(p, t);
ignore_unused_variable_warning(c);
ignore_unused_variable_warning(c2);
ignore_unused_variable_warning(c3);
}
void const_constraints(const SortedAssociativeContainer& c) {
kc = c.key_comp();
vc = c.value_comp();
cp = c.upper_bound(k);
cp = c.lower_bound(k);
cr = c.equal_range(k);
}
typename SortedAssociativeContainer::key_compare kc;
typename SortedAssociativeContainer::value_compare vc;
typename SortedAssociativeContainer::value_type t;
typename SortedAssociativeContainer::key_type k;
typedef typename SortedAssociativeContainer::iterator iterator;
typedef typename SortedAssociativeContainer::const_iterator const_iterator;
iterator p;
const_iterator cp;
std::pair<iterator,iterator> r;
std::pair<const_iterator,const_iterator> cr;
typename SortedAssociativeContainer::value_type* first, *last;
};
// HashedAssociativeContainer
} // namespace boost
#endif // BOOST_CONCEPT_CHECKS_HPP