Inexplicably, SVN renamed these files but failed to remove them under the original names.

git-svn-id: http://svn.boost.org/svn/boost/sandbox/endian@72094 b8fc166d-592f-0410-95f2-cb63ce0dd405
This commit is contained in:
bemandawes
2011-05-22 19:50:31 +00:00
parent 2d4dd6c5dd
commit a7aca3ad9b
2 changed files with 0 additions and 633 deletions

View File

@@ -1,431 +0,0 @@
// Boost endian.hpp header file -------------------------------------------------------//
// (C) Copyright Darin Adler 2000
// (C) Copyright Beman Dawes 2006, 2009
// Distributed under the Boost Software License, Version 1.0.
// See http://www.boost.org/LICENSE_1_0.txt
// See library home page at http://www.boost.org/libs/endian
//--------------------------------------------------------------------------------------//
// Original design developed by Darin Adler based on classes developed by Mark
// Borgerding. Four original class templates were combined into a single endian
// class template by Beman Dawes, who also added the unrolled_byte_loops sign
// partial specialization to correctly extend the sign when cover integer size
// differs from endian representation size.
// TODO: When a compiler supporting constexpr becomes available, try possible uses.
#ifndef BOOST_ENDIAN_HPP
#define BOOST_ENDIAN_HPP
#ifdef BOOST_ENDIAN_LOG
# include <iostream>
#endif
#if defined(__BORLANDC__) || defined( __CODEGEARC__)
# pragma pack(push, 1)
#endif
#include <boost/config.hpp>
#include <boost/detail/endian.hpp>
#define BOOST_MINIMAL_INTEGER_COVER_OPERATORS
#define BOOST_NO_IO_COVER_OPERATORS
#include <boost/integer/cover_operators.hpp>
#undef BOOST_NO_IO_COVER_OPERATORS
#undef BOOST_MINIMAL_INTEGER_COVER_OPERATORS
#include <boost/type_traits/is_signed.hpp>
#include <boost/cstdint.hpp>
#include <boost/static_assert.hpp>
#include <boost/detail/scoped_enum_emulation.hpp>
#include <iosfwd>
#include <climits>
# if CHAR_BIT != 8
# error Platforms with CHAR_BIT != 8 are not supported
# endif
# ifdef BOOST_NO_DEFAULTED_FUNCTIONS
# define BOOST_ENDIAN_DEFAULT_CONSTRUCT {} // C++03
# else
# define BOOST_ENDIAN_DEFAULT_CONSTRUCT = default; // C++0x
# endif
# if defined(BOOST_NO_DEFAULTED_FUNCTIONS) && defined(BOOST_ENDIAN_FORCE_PODNESS)
# define BOOST_ENDIAN_NO_CTORS
# endif
namespace boost
{
namespace detail
{
// Unrolled loops for loading and storing streams of bytes.
template <typename T, std::size_t n_bytes,
bool sign=boost::is_signed<T>::value >
struct unrolled_byte_loops
{
typedef unrolled_byte_loops<T, n_bytes - 1, sign> next;
static T load_big(const unsigned char* bytes)
{ return *(bytes - 1) | (next::load_big(bytes - 1) << 8); }
static T load_little(const unsigned char* bytes)
{ return *bytes | (next::load_little(bytes + 1) << 8); }
static void store_big(char* bytes, T value)
{
*(bytes - 1) = static_cast<char>(value);
next::store_big(bytes - 1, value >> 8);
}
static void store_little(char* bytes, T value)
{
*bytes = static_cast<char>(value);
next::store_little(bytes + 1, value >> 8);
}
};
template <typename T>
struct unrolled_byte_loops<T, 1, false>
{
static T load_big(const unsigned char* bytes)
{ return *(bytes - 1); }
static T load_little(const unsigned char* bytes)
{ return *bytes; }
static void store_big(char* bytes, T value)
{ *(bytes - 1) = static_cast<char>(value); }
static void store_little(char* bytes, T value)
{ *bytes = static_cast<char>(value); }
};
template <typename T>
struct unrolled_byte_loops<T, 1, true>
{
static T load_big(const unsigned char* bytes)
{ return *reinterpret_cast<const signed char*>(bytes - 1); }
static T load_little(const unsigned char* bytes)
{ return *reinterpret_cast<const signed char*>(bytes); }
static void store_big(char* bytes, T value)
{ *(bytes - 1) = static_cast<char>(value); }
static void store_little(char* bytes, T value)
{ *bytes = static_cast<char>(value); }
};
template <typename T, std::size_t n_bytes>
inline
T load_big_endian(const void* bytes)
{
return unrolled_byte_loops<T, n_bytes>::load_big
(static_cast<const unsigned char*>(bytes) + n_bytes);
}
template <typename T, std::size_t n_bytes>
inline
T load_little_endian(const void* bytes)
{
return unrolled_byte_loops<T, n_bytes>::load_little
(static_cast<const unsigned char*>(bytes));
}
template <typename T, std::size_t n_bytes>
inline
void store_big_endian(void* bytes, T value)
{
unrolled_byte_loops<T, n_bytes>::store_big
(static_cast<char*>(bytes) + n_bytes, value);
}
template <typename T, std::size_t n_bytes>
inline
void store_little_endian(void* bytes, T value)
{
unrolled_byte_loops<T, n_bytes>::store_little
(static_cast<char*>(bytes), value);
}
} // namespace detail
namespace integer
{
# ifdef BOOST_ENDIAN_LOG
bool endian_log(true);
# endif
// endian class template and specializations ---------------------------------------//
BOOST_SCOPED_ENUM_START(endianness) { big, little, native }; BOOST_SCOPED_ENUM_END
BOOST_SCOPED_ENUM_START(alignment) { unaligned, aligned }; BOOST_SCOPED_ENUM_END
template <BOOST_SCOPED_ENUM(endianness) E, typename T, std::size_t n_bits,
BOOST_SCOPED_ENUM(alignment) A = alignment::unaligned>
class endian;
// Specializations that represent unaligned bytes.
// Taking an integer type as a parameter provides a nice way to pass both
// the size and signedness of the desired integer and get the appropriate
// corresponding integer type for the interface.
// unaligned big endian specialization
template <typename T, std::size_t n_bits>
class endian< endianness::big, T, n_bits, alignment::unaligned >
: cover_operators< endian< endianness::big, T, n_bits >, T >
{
BOOST_STATIC_ASSERT( (n_bits/8)*8 == n_bits );
public:
typedef T value_type;
# ifndef BOOST_ENDIAN_NO_CTORS
endian() BOOST_ENDIAN_DEFAULT_CONSTRUCT
explicit endian(T val)
{
# ifdef BOOST_ENDIAN_LOG
if ( endian_log )
std::clog << "big, unaligned, " << n_bits << "-bits, construct(" << val << ")\n";
# endif
detail::store_big_endian<T, n_bits/8>(m_value, val);
}
# endif
endian & operator=(T val) { detail::store_big_endian<T, n_bits/8>(m_value, val); return *this; }
operator T() const
{
# ifdef BOOST_ENDIAN_LOG
if ( endian_log )
std::clog << "big, unaligned, " << n_bits << "-bits, convert(" << detail::load_big_endian<T, n_bits/8>(m_value) << ")\n";
# endif
return detail::load_big_endian<T, n_bits/8>(m_value);
}
const char* data() const { return m_value; }
private:
char m_value[n_bits/8];
};
// unaligned little endian specialization
template <typename T, std::size_t n_bits>
class endian< endianness::little, T, n_bits, alignment::unaligned >
: cover_operators< endian< endianness::little, T, n_bits >, T >
{
BOOST_STATIC_ASSERT( (n_bits/8)*8 == n_bits );
public:
typedef T value_type;
# ifndef BOOST_ENDIAN_NO_CTORS
endian() BOOST_ENDIAN_DEFAULT_CONSTRUCT
explicit endian(T val)
{
# ifdef BOOST_ENDIAN_LOG
if ( endian_log )
std::clog << "little, unaligned, " << n_bits << "-bits, construct(" << val << ")\n";
# endif
detail::store_little_endian<T, n_bits/8>(m_value, val);
}
# endif
endian & operator=(T val) { detail::store_little_endian<T, n_bits/8>(m_value, val); return *this; }
operator T() const
{
# ifdef BOOST_ENDIAN_LOG
if ( endian_log )
std::clog << "little, unaligned, " << n_bits << "-bits, convert(" << detail::load_little_endian<T, n_bits/8>(m_value) << ")\n";
# endif
return detail::load_little_endian<T, n_bits/8>(m_value);
}
const char* data() const { return m_value; }
private:
char m_value[n_bits/8];
};
// unaligned native endian specialization
template <typename T, std::size_t n_bits>
class endian< endianness::native, T, n_bits, alignment::unaligned >
: cover_operators< endian< endianness::native, T, n_bits >, T >
{
BOOST_STATIC_ASSERT( (n_bits/8)*8 == n_bits );
public:
typedef T value_type;
# ifndef BOOST_ENDIAN_NO_CTORS
endian() BOOST_ENDIAN_DEFAULT_CONSTRUCT
# ifdef BOOST_BIG_ENDIAN
explicit endian(T val) { detail::store_big_endian<T, n_bits/8>(m_value, val); }
# else
explicit endian(T val) { detail::store_little_endian<T, n_bits/8>(m_value, val); }
# endif
# endif
# ifdef BOOST_BIG_ENDIAN
endian & operator=(T val) { detail::store_big_endian<T, n_bits/8>(m_value, val); return *this; }
operator T() const { return detail::load_big_endian<T, n_bits/8>(m_value); }
# else
endian & operator=(T val) { detail::store_little_endian<T, n_bits/8>(m_value, val); return *this; }
operator T() const { return detail::load_little_endian<T, n_bits/8>(m_value); }
# endif
const char* data() const { return m_value; }
private:
char m_value[n_bits/8];
};
// Specializations that mimic built-in integer types.
// These typically have the same alignment as the underlying types.
// aligned big endian specialization
template <typename T, std::size_t n_bits>
class endian< endianness::big, T, n_bits, alignment::aligned >
: cover_operators< endian< endianness::big, T, n_bits, alignment::aligned >, T >
{
BOOST_STATIC_ASSERT( (n_bits/8)*8 == n_bits );
BOOST_STATIC_ASSERT( sizeof(T) == n_bits/8 );
public:
typedef T value_type;
# ifndef BOOST_ENDIAN_NO_CTORS
endian() BOOST_ENDIAN_DEFAULT_CONSTRUCT
# ifdef BOOST_BIG_ENDIAN
endian(T val) : m_value(val) { }
# else
explicit endian(T val) { detail::store_big_endian<T, sizeof(T)>(&m_value, val); }
# endif
# endif
# ifdef BOOST_BIG_ENDIAN
endian & operator=(T val) { m_value = val); return *this; }
operator T() const { return m_value; }
# else
endian & operator=(T val) { detail::store_big_endian<T, sizeof(T)>(&m_value, val); return *this; }
operator T() const { return detail::load_big_endian<T, sizeof(T)>(&m_value); }
# endif
const char* data() const { return reinterpret_cast<const char *>(&m_value); }
private:
T m_value;
};
// aligned little endian specialization
template <typename T, std::size_t n_bits>
class endian< endianness::little, T, n_bits, alignment::aligned >
: cover_operators< endian< endianness::little, T, n_bits, alignment::aligned >, T >
{
BOOST_STATIC_ASSERT( (n_bits/8)*8 == n_bits );
BOOST_STATIC_ASSERT( sizeof(T) == n_bits/8 );
public:
typedef T value_type;
# ifndef BOOST_ENDIAN_NO_CTORS
endian() BOOST_ENDIAN_DEFAULT_CONSTRUCT
# ifdef BOOST_LITTLE_ENDIAN
endian(T val) : m_value(val) { }
# else
explicit endian(T val) { detail::store_little_endian<T, sizeof(T)>(&m_value, val); }
# endif
# endif
# ifdef BOOST_LITTLE_ENDIAN
endian & operator=(T val) { m_value = val; return *this; }
operator T() const { return m_value; }
#else
endian & operator=(T val) { detail::store_little_endian<T, sizeof(T)>(&m_value, val); return *this; }
operator T() const { return detail::load_little_endian<T, sizeof(T)>(&m_value); }
#endif
const char* data() const { return reinterpret_cast<const char *>(&m_value); }
private:
T m_value;
};
// naming convention typedefs ------------------------------------------------------//
// unaligned big endian signed integer types
typedef endian< endianness::big, int_least8_t, 8 > big8_t;
typedef endian< endianness::big, int_least16_t, 16 > big16_t;
typedef endian< endianness::big, int_least32_t, 24 > big24_t;
typedef endian< endianness::big, int_least32_t, 32 > big32_t;
typedef endian< endianness::big, int_least64_t, 40 > big40_t;
typedef endian< endianness::big, int_least64_t, 48 > big48_t;
typedef endian< endianness::big, int_least64_t, 56 > big56_t;
typedef endian< endianness::big, int_least64_t, 64 > big64_t;
// unaligned big endian unsigned integer types
typedef endian< endianness::big, uint_least8_t, 8 > ubig8_t;
typedef endian< endianness::big, uint_least16_t, 16 > ubig16_t;
typedef endian< endianness::big, uint_least32_t, 24 > ubig24_t;
typedef endian< endianness::big, uint_least32_t, 32 > ubig32_t;
typedef endian< endianness::big, uint_least64_t, 40 > ubig40_t;
typedef endian< endianness::big, uint_least64_t, 48 > ubig48_t;
typedef endian< endianness::big, uint_least64_t, 56 > ubig56_t;
typedef endian< endianness::big, uint_least64_t, 64 > ubig64_t;
// unaligned little endian signed integer types
typedef endian< endianness::little, int_least8_t, 8 > little8_t;
typedef endian< endianness::little, int_least16_t, 16 > little16_t;
typedef endian< endianness::little, int_least32_t, 24 > little24_t;
typedef endian< endianness::little, int_least32_t, 32 > little32_t;
typedef endian< endianness::little, int_least64_t, 40 > little40_t;
typedef endian< endianness::little, int_least64_t, 48 > little48_t;
typedef endian< endianness::little, int_least64_t, 56 > little56_t;
typedef endian< endianness::little, int_least64_t, 64 > little64_t;
// unaligned little endian unsigned integer types
typedef endian< endianness::little, uint_least8_t, 8 > ulittle8_t;
typedef endian< endianness::little, uint_least16_t, 16 > ulittle16_t;
typedef endian< endianness::little, uint_least32_t, 24 > ulittle24_t;
typedef endian< endianness::little, uint_least32_t, 32 > ulittle32_t;
typedef endian< endianness::little, uint_least64_t, 40 > ulittle40_t;
typedef endian< endianness::little, uint_least64_t, 48 > ulittle48_t;
typedef endian< endianness::little, uint_least64_t, 56 > ulittle56_t;
typedef endian< endianness::little, uint_least64_t, 64 > ulittle64_t;
// unaligned native endian signed integer types
typedef endian< endianness::native, int_least8_t, 8 > native8_t;
typedef endian< endianness::native, int_least16_t, 16 > native16_t;
typedef endian< endianness::native, int_least32_t, 24 > native24_t;
typedef endian< endianness::native, int_least32_t, 32 > native32_t;
typedef endian< endianness::native, int_least64_t, 40 > native40_t;
typedef endian< endianness::native, int_least64_t, 48 > native48_t;
typedef endian< endianness::native, int_least64_t, 56 > native56_t;
typedef endian< endianness::native, int_least64_t, 64 > native64_t;
// unaligned native endian unsigned integer types
typedef endian< endianness::native, uint_least8_t, 8 > unative8_t;
typedef endian< endianness::native, uint_least16_t, 16 > unative16_t;
typedef endian< endianness::native, uint_least32_t, 24 > unative24_t;
typedef endian< endianness::native, uint_least32_t, 32 > unative32_t;
typedef endian< endianness::native, uint_least64_t, 40 > unative40_t;
typedef endian< endianness::native, uint_least64_t, 48 > unative48_t;
typedef endian< endianness::native, uint_least64_t, 56 > unative56_t;
typedef endian< endianness::native, uint_least64_t, 64 > unative64_t;
#define BOOST_HAS_INT16_T
#define BOOST_HAS_INT32_T
#define BOOST_HAS_INT64_T
// These types only present if platform has exact size integers:
// aligned big endian signed integer types
// aligned big endian unsigned integer types
// aligned little endian signed integer types
// aligned little endian unsigned integer types
// aligned native endian typedefs are not provided because
// <cstdint> types are superior for this use case
# if defined(BOOST_HAS_INT16_T)
typedef endian< endianness::big, int16_t, 16, alignment::aligned > aligned_big16_t;
typedef endian< endianness::big, uint16_t, 16, alignment::aligned > aligned_ubig16_t;
typedef endian< endianness::little, int16_t, 16, alignment::aligned > aligned_little16_t;
typedef endian< endianness::little, uint16_t, 16, alignment::aligned > aligned_ulittle16_t;
# endif
# if defined(BOOST_HAS_INT32_T)
typedef endian< endianness::big, int32_t, 32, alignment::aligned > aligned_big32_t;
typedef endian< endianness::big, uint32_t, 32, alignment::aligned > aligned_ubig32_t;
typedef endian< endianness::little, int32_t, 32, alignment::aligned > aligned_little32_t;
typedef endian< endianness::little, uint32_t, 32, alignment::aligned > aligned_ulittle32_t;
# endif
# if defined(BOOST_HAS_INT64_T)
typedef endian< endianness::big, int64_t, 64, alignment::aligned > aligned_big64_t;
typedef endian< endianness::big, uint64_t, 64, alignment::aligned > aligned_ubig64_t;
typedef endian< endianness::little, int64_t, 64, alignment::aligned > aligned_little64_t;
typedef endian< endianness::little, uint64_t, 64, alignment::aligned > aligned_ulittle64_t;
# endif
} // namespace integer
} // namespace boost
#if defined(__BORLANDC__) || defined( __CODEGEARC__)
# pragma pack(pop)
#endif
#endif // BOOST_ENDIAN_HPP

View File

@@ -1,202 +0,0 @@
// boost/endian/conversion.hpp -------------------------------------------------------//
// Copyright Beman Dawes 2010, 2011
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
#ifndef BOOST_ENDIAN_CONVERSION_HPP
#define BOOST_ENDIAN_CONVERSION_HPP
#include <boost/detail/endian.hpp>
#include <boost/cstdint.hpp>
//------------------------------------- synopsis ---------------------------------------//
namespace boost
{
namespace endian
{
// unconditional modifying (i.e. in-place) endianness reversal
inline void flip(int16_t& x);
inline void flip(int32_t& x);
inline void flip(int64_t& x);
inline void flip(uint16_t& x);
inline void flip(uint32_t& x);
inline void flip(uint64_t& x);
// unconditional non-modifying endianness reversing copy
inline void flip(int16_t source, int16_t& target);
inline void flip(int32_t source, int32_t& target);
inline void flip(int64_t source, int64_t& target);
inline void flip(uint16_t source, uint16_t& target);
inline void flip(uint32_t source, uint32_t& target);
inline void flip(uint64_t source, uint64_t& target);
// conditional modifying (i.e. in-place) endianness reversal;
// no effect if native endianness and specified endianness are the same
template <class T> inline void to_big(T& x); // if different, convert native to big
template <class T> inline void to_little(T& x); // if different, convert native to little
template <class T> inline void from_big(T& x); // if different, convert big to native
template <class T> inline void from_little(T& x); // if different, convert little to native
// non-modifying copy, conditionally reversing endianness;
// copy the first argument to the second argument, converting to or from the
// specified endianness if different than native endianness
template <class T> inline void to_big(T native, T& big);
template <class T> inline void to_little(T native, T& little);
template <class T> inline void from_big(T big, T& native);
template <class T> inline void from_little(T little, T& native);
//----------------------------------- implementation -----------------------------------//
inline void flip(int16_t& x)
{
char* rep = reinterpret_cast<char*>(&x);
char tmp;
tmp = *rep;
*rep = *(rep+1);
*(rep+1) = tmp;
}
inline void flip(int32_t& x)
{
char* rep = reinterpret_cast<char*>(&x);
char tmp;
tmp = *rep;
*rep = *(rep+3);
*(rep+3) = tmp;
tmp = *(rep+1);
*(rep+1) = *(rep+2);
*(rep+2) = tmp;
}
inline void flip(int64_t& x)
{
char* rep = reinterpret_cast<char*>(&x);
char tmp;
tmp = *rep;
*rep = *(rep+7);
*(rep+7) = tmp;
tmp = *(rep+1);
*(rep+1) = *(rep+6);
*(rep+6) = tmp;
tmp = *(rep+2);
*(rep+2) = *(rep+5);
*(rep+5) = tmp;
tmp = *(rep+3);
*(rep+3) = *(rep+4);
*(rep+4) = tmp;
}
inline void flip(uint16_t& x)
{
char* rep = reinterpret_cast<char*>(&x);
char tmp;
tmp = *rep;
*rep = *(rep+1);
*(rep+1) = tmp;
}
inline void flip(uint32_t& x)
{
char* rep = reinterpret_cast<char*>(&x);
char tmp;
tmp = *rep;
*rep = *(rep+3);
*(rep+3) = tmp;
tmp = *(rep+1);
*(rep+1) = *(rep+2);
*(rep+2) = tmp;
}
inline void flip(uint64_t& x)
{
char* rep = reinterpret_cast<char*>(&x);
char tmp;
tmp = *rep;
*rep = *(rep+7);
*(rep+7) = tmp;
tmp = *(rep+1);
*(rep+1) = *(rep+6);
*(rep+6) = tmp;
tmp = *(rep+2);
*(rep+2) = *(rep+5);
*(rep+5) = tmp;
tmp = *(rep+3);
*(rep+3) = *(rep+4);
*(rep+4) = tmp;
}
inline void flip(int16_t source, int16_t& target)
{
const char* s (reinterpret_cast<const char*>(&source));
char * t (reinterpret_cast<char*>(&target) + sizeof(target) - 1);
*t = *s;
*++t = *++s;
}
inline void flip(int32_t source, int32_t& target)
{
const char* s (reinterpret_cast<const char*>(&source));
char * t (reinterpret_cast<char*>(&target) + sizeof(target) - 1);
*t = *s;
*++t = *++s;
*++t = *++s;
*++t = *++s;
}
inline void flip(int64_t source, int64_t& target)
{
const char* s (reinterpret_cast<const char*>(&source));
char * t (reinterpret_cast<char*>(&target) + sizeof(target) - 1);
*t = *s;
*++t = *++s;
*++t = *++s;
*++t = *++s;
*++t = *++s;
*++t = *++s;
*++t = *++s;
*++t = *++s;
}
inline void flip(uint16_t source, uint16_t& target)
{
const char* s (reinterpret_cast<const char*>(&source));
char * t (reinterpret_cast<char*>(&target) + sizeof(target) - 1);
*t = *s;
*++t = *++s;
}
inline void flip(uint32_t source, uint32_t& target)
{
const char* s (reinterpret_cast<const char*>(&source));
char * t (reinterpret_cast<char*>(&target) + sizeof(target) - 1);
*t = *s;
*++t = *++s;
*++t = *++s;
*++t = *++s;
}
inline void flip(uint64_t source, uint64_t& target)
{
const char* s (reinterpret_cast<const char*>(&source));
char * t (reinterpret_cast<char*>(&target) + sizeof(target) - 1);
*t = *s;
*++t = *++s;
*++t = *++s;
*++t = *++s;
*++t = *++s;
*++t = *++s;
*++t = *++s;
*++t = *++s;
}
} // namespace endian
} // namespace boost
#endif // BOOST_ENDIAN_CONVERSION_HPP