adds Functional/Forward

[SVN r61597]
This commit is contained in:
Tobias Schwinger
2010-04-26 23:21:31 +00:00
parent 57ba196417
commit 3cec009503
10 changed files with 2446 additions and 0 deletions

19
forward/doc/Jamfile Normal file
View File

@@ -0,0 +1,19 @@
# (C) Copyright Tobias Schwinger
#
# Use modification and distribution are subject to the boost Software License,
# Version 1.0. (See http:/\/www.boost.org/LICENSE_1_0.txt).
using quickbook ;
xml forward : forward.qbk ;
boostbook standalone : forward
:
<xsl:param>boost.root=../../../../..
<xsl:param>boost.libraries=../../../../libraries.htm
<xsl:param>chunk.section.depth=0
<xsl:param>chunk.first.sections=0
<xsl:param>generate.section.toc.level=2
<xsl:param>toc.max.depth=1
;

316
forward/doc/forward.qbk Normal file
View File

@@ -0,0 +1,316 @@
[library Boost.Functional/Forward
[quickbook 1.3]
[version 1.0]
[authors [Schwinger, Tobias]]
[copyright 2007 2008 Tobias Schwinger]
[license
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
[@http://www.boost.org/LICENSE_1_0.txt])
]
[purpose Function object adapters for generic argument forwarding.]
[category higher-order]
[category generic]
[last-revision $Date: 2008/11/01 19:58:50 $]
]
[def __unspecified__ /unspecified/]
[def __boost_ref__ [@http://www.boost.org/doc/html/ref.html Boost.Ref]]
[def __boost_result_of__ [@http://www.boost.org/libs/utility/utility.htm#result_of Boost.ResultOf]]
[def __boost__result_of__ [@http://www.boost.org/libs/utility/utility.htm#result_of `boost::result_of`]]
[def __the_forwarding_problem__ [@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1385.htm The Forwarding Problem]]
[def __boost_fusion__ [@http://www.boost.org/libs/fusion/doc/html/index.html Boost.Fusion]]
[section Brief Description]
`boost::forward_adapter` provides a reusable adapter template for function
objects. It forwards RValues as references to const, while leaving LValues
as-is.
struct g // function object that only accept LValues
{
template< typename T0, typename T1, typename T2 >
void operator()(T0 & t0, T1 & t1, T2 & t2) const;
typedef void result_type;
};
// Adapted version also accepts RValues and forwards
// them as references to const, LValues as-is
typedef boost::forward_adapter<g> f;
Another adapter, `boost::lighweight_forward_adapter` allows forwarding with
some help from the user accepting and unwrapping reference wrappers (see
__boost_ref__) for reference arguments, const qualifying all other arguments.
The target functions must be compatible with __boost_result_of__, and so are
the adapters.
[endsect]
[section Background]
Let's suppose we have some function `f` that we can call like this:
f(123,a_variable);
Now we want to write another, generic function `g` that can be called the
same way and returns some object that calls `f` with the same arguments.
f(123,a_variable) == g(f,123,a_variable).call_f()
[heading Why would we want to do it, anyway?]
Maybe we want to run `f` several times. Or maybe we want to run it within
another thread. Maybe we just want to encapsulate the call expression for now,
and then use it with other code that allows to compose more complex expressions
in order to decompose it with C++ templates and have the compiler generate some
machinery that eventually calls `f` at runtime (in other words; apply a
technique that is commonly referred to as Expression Templates).
[heading Now, how do we do it?]
The bad news is: It's impossible.
That is so because there is a slight difference between a variable and an
expression that evaluates to its value: Given
int y;
int const z = 0;
and
template< typename T > void func1(T & x);
we can call
func1(y); // x is a reference to a non-const object
func1(z); // x is a reference to a const object
where
func1(1); // fails to compile.
This way we can safely have `func1` store its reference argument and the
compiler keeps us from storing a reference to an object with temporary lifetime.
It is important to realize that non-constness and whether an object binds to a
non-const reference parameter are two different properties. The latter is the
distinction between LValues and RValues. The names stem from the left hand side
and the right hand side of assignment expressions, thus LValues are typically
the ones you can assign to, and RValues the temporary results from the right
hand side expression.
y = 1+2; // a is LValue, 1+2 is the expression producing the RValue,
// 1+2 = a; // usually makes no sense.
func1(y); // works, because y is an LValue
// func1(1+2); // fails to compile, because we only got an RValue.
If we add const qualification on the parameter, our function also accepts
RValues:
template< typename T > void func2(T const & x);
// [...] function scope:
func2(1); // x is a reference to a const temporary, object,
func2(y); // x is a reference to a const object, while y is not const, and
func2(z); // x is a reference to a const object, just like z.
In all cases, the argument `x` in `func2` is a const-qualified LValue.
We can use function overloading to identify non-const LValues:
template< typename T > void func3(T const & x); // #1
template< typename T > void func3(T & x); // #2
// [...] function scope:
func3(1); // x is a reference to a const, temporary object in #1,
func3(y); // x is a reference to a non-const object in #2, and
func3(z); // x is a reference to a const object in #1.
Note that all arguments `x` in the overloaded function `func3` are LValues.
In fact, there is no way to transport RValues into a function as-is in C++98.
Also note that we can't distinguish between what used to be a const qualified
LValue and an RValue.
That's as close as we can get to a generic forwarding function `g` as
described above by the means of C++ 98. See __the_forwarding_problem__ for a
very detailed discussion including solutions that require language changes.
Now, for actually implementing it, we need 2^N overloads for N parameters
(each with and without const qualifier) for each number of arguments
(that is 2^(Nmax+1) - 2^Nmin). Right, that means the compile-time complexity
is O(2^N), however the factor is low so it works quite well for a reasonable
number (< 10) of arguments.
[endsect]
[section:reference Reference]
[section forward_adapter]
[heading Description]
Function object adapter template whose instances are callable with LValue and
RValue arguments. RValue arguments are forwarded as reference-to-const typed
LValues.
An arity can be given as second, numeric non-type template argument to restrict
forwarding to a specific arity.
If a third, numeric non-type template argument is present, the second and third
template argument are treated as minimum and maximum arity, respectively.
Specifying an arity can be helpful to improve the readability of diagnostic
messages and compile time performance.
__boost_result_of__ can be used to determine the result types of specific call
expressions.
[heading Header]
#include <boost/functional/forward_adapter.hpp>
[heading Synopsis]
namespace boost
{
template< class Function,
int Arity_Or_MinArity = __unspecified__, int MaxArity = __unspecified__ >
class forward_adapter;
}
[variablelist Notation
[[`F`] [a possibly const qualified function object type or reference type thereof]]
[[`f`] [an object convertible to `F`]]
[[`FA`] [the type `forward_adapter<F>`]]
[[`fa`] [an instance object of `FA`, initialized with `f`]]
[[`a0`...`aN`] [arguments to `fa`]]
]
The result type of a target function invocation must be
__boost__result_of__<F*(TA0 [const]&...TAN [const]&])>::type
where `TA0`...`TAN` denote the argument types of `a0`...`aN`.
[heading Expression Semantics]
[table
[[Expression] [Semantics]]
[[`FA(f)`] [creates an adapter, initializes the target function with `f`.]]
[[`FA()`] [creates an adapter, attempts to use `F`'s default constructor.]]
[[`fa(a0`...`aN)`] [calls `f` with with arguments `a0`...`aN`.]]
]
[heading Limits]
The macro BOOST_FUNCTIONAL_FORWARD_ADAPTER_MAX_ARITY can be defined to set the
maximum call arity. It defaults to 6.
[heading Complexity]
Preprocessing time: O(2^N), where N is the arity limit.
Compile time: O(2^N), where N depends on the arity range.
Run time: O(0) if the compiler inlines, O(1) otherwise.
[endsect]
[section lightweight_forward_adapter]
[heading Description]
Function object adapter template whose instances are callable with LValue and
RValue arguments. All arguments are forwarded as reference-to-const typed
LValues, except for reference wrappers which are unwrapped and may yield
non-const LValues.
An arity can be given as second, numeric non-type template argument to restrict
forwarding to a specific arity.
If a third, numeric non-type template argument is present, the second and third
template argument are treated as minimum and maximum arity, respectively.
Specifying an arity can be helpful to improve the readability of diagnostic
messages and compile time performance.
__boost_result_of__ can be used to determine the result types of specific call
expressions.
[heading Header]
#include <boost/functional/lightweight_forward_adapter.hpp>
[heading Synopsis]
namespace boost
{
template< class Function,
int Arity_Or_MinArity = __unspecified__, int MaxArity = __unspecified__ >
struct lightweight_forward_adapter;
}
[variablelist Notation
[[`F`] [a possibly const qualified function object type or reference type thereof]]
[[`f`] [an object convertible to `F`]]
[[`FA`] [the type `lightweight_forward_adapter<F>`]]
[[`fa`] [an instance of `FA`, initialized with `f`]]
[[`a0`...`aN`] [arguments to `fa`]]
]
The result type of a target function invocation must be
__boost__result_of__<F*(TA0 [const]&...TAN [const]&])>::type
where `TA0`...`TAN` denote the argument types of `a0`...`aN`.
[heading Expression Semantics]
[table
[[Expression] [Semantics]]
[[`FA(f)`] [creates an adapter, initializes the target function with `f`.]]
[[`FA()`] [creates an adapter, attempts to use `F`'s default constructor.]]
[[`fa(a0`...`aN)`] [calls `f` with with const arguments `a0`...`aN`. If `aI` is a
reference wrapper it is unwrapped.]]
]
[heading Limits]
The macro BOOST_FUNCTIONAL_LIGHTWEIGHT_FORWARD_ADAPTER_MAX_ARITY can be defined
to set the maximum call arity. It defaults to 10.
[heading Complexity]
Preprocessing time: O(N), where N is the arity limit.
Compile time: O(N), where N is the effective arity of a call.
Run time: O(0) if the compiler inlines, O(1) otherwise.
[endsect]
[endsect]
[section Acknowledgements]
As these utilities are factored out of the __boost_fusion__ functional module,
I want to thank Dan Marsden and Joel de Guzman for letting me participate in the
development of that great library in the first place.
Further, I want to credit the authors of the references below, for their
in-depth investigation of the problem and the solution implemented here.
Last but not least I want to thank Vesa Karnoven and Paul Mensonides for the
Boost Preprocessor library. Without it, I would have ended up with an external
code generator for this one.
[endsect]
[section References]
# [@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1385.htm The Forwarding Problem],
Peter Dimov, Howard E. Hinnant, David Abrahams, 2002
# [@http://www.boost.org/libs/utility/utility.htm#result_of Boost.ResultOf],
Douglas Gregor, 2004
# [@http://www.boost.org/doc/html/ref.html Boost.Ref],
Jaakko Jarvi, Peter Dimov, Douglas Gregor, David Abrahams, 1999-2002
[endsect]

View File

@@ -0,0 +1,528 @@
/*=============================================================================
Copyright (c) 2004 Joel de Guzman
http://spirit.sourceforge.net/
Use, modification and distribution is subject to the Boost Software
License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
=============================================================================*/
/*=============================================================================
Body defaults
=============================================================================*/
body
{
margin: 1em;
font-family: sans-serif;
}
/*=============================================================================
Paragraphs
=============================================================================*/
p
{
text-align: left;
font-size: 10pt;
line-height: 1.15;
}
/*=============================================================================
Program listings
=============================================================================*/
/* Code on paragraphs */
p tt.computeroutput
{
font-size: 9pt;
}
pre.synopsis
{
font-size: 90%;
margin: 1pc 4% 0pc 4%;
padding: 0.5pc 0.5pc 0.5pc 0.5pc;
}
.programlisting,
.screen
{
font-size: 9pt;
display: block;
margin: 1pc 4% 0pc 4%;
padding: 0.5pc 0.5pc 0.5pc 0.5pc;
}
/* Program listings in tables don't get borders */
td .programlisting,
td .screen
{
margin: 0pc 0pc 0pc 0pc;
padding: 0pc 0pc 0pc 0pc;
}
/*=============================================================================
Headings
=============================================================================*/
h1, h2, h3, h4, h5, h6
{
text-align: left;
margin: 1em 0em 0.5em 0em;
font-weight: bold;
}
h1 { font: 140% }
h2 { font: bold 140% }
h3 { font: bold 130% }
h4 { font: bold 120% }
h5 { font: italic 110% }
h6 { font: italic 100% }
/* Top page titles */
title,
h1.title,
h2.title
h3.title,
h4.title,
h5.title,
h6.title,
.refentrytitle
{
font-weight: bold;
margin-bottom: 1pc;
}
h1.title { font-size: 140% }
h2.title { font-size: 140% }
h3.title { font-size: 130% }
h4.title { font-size: 120% }
h5.title { font-size: 110% }
h6.title { font-size: 100% }
.section h1
{
margin: 0em 0em 0.5em 0em;
font-size: 140%;
}
.section h2 { font-size: 140% }
.section h3 { font-size: 130% }
.section h4 { font-size: 120% }
.section h5 { font-size: 110% }
.section h6 { font-size: 100% }
/* Code on titles */
h1 tt.computeroutput { font-size: 140% }
h2 tt.computeroutput { font-size: 140% }
h3 tt.computeroutput { font-size: 130% }
h4 tt.computeroutput { font-size: 120% }
h5 tt.computeroutput { font-size: 110% }
h6 tt.computeroutput { font-size: 100% }
/*=============================================================================
Author
=============================================================================*/
h3.author
{
font-size: 100%
}
/*=============================================================================
Lists
=============================================================================*/
li
{
font-size: 10pt;
line-height: 1.3;
}
/* Unordered lists */
ul
{
text-align: left;
}
/* Ordered lists */
ol
{
text-align: left;
}
/*=============================================================================
Links
=============================================================================*/
a
{
text-decoration: none; /* no underline */
}
a:hover
{
text-decoration: underline;
}
/*=============================================================================
Spirit style navigation
=============================================================================*/
.spirit-nav
{
text-align: right;
}
.spirit-nav a
{
color: white;
padding-left: 0.5em;
}
.spirit-nav img
{
border-width: 0px;
}
/*=============================================================================
Table of contents
=============================================================================*/
.toc
{
margin: 1pc 4% 0pc 4%;
padding: 0.1pc 1pc 0.1pc 1pc;
font-size: 80%;
line-height: 1.15;
}
.boost-toc
{
float: right;
padding: 0.5pc;
}
/*=============================================================================
Tables
=============================================================================*/
.table-title,
div.table p.title
{
margin-left: 4%;
padding-right: 0.5em;
padding-left: 0.5em;
}
.informaltable table,
.table table
{
width: 92%;
margin-left: 4%;
margin-right: 4%;
}
div.informaltable table,
div.table table
{
padding: 4px;
}
/* Table Cells */
div.informaltable table tr td,
div.table table tr td
{
padding: 0.5em;
text-align: left;
font-size: 9pt;
}
div.informaltable table tr th,
div.table table tr th
{
padding: 0.5em 0.5em 0.5em 0.5em;
border: 1pt solid white;
font-size: 80%;
}
/*=============================================================================
Blurbs
=============================================================================*/
div.note,
div.tip,
div.important,
div.caution,
div.warning,
div.sidebar
{
font-size: 9pt; /* A little bit smaller than the main text */
line-height: 1.2;
display: block;
margin: 1pc 4% 0pc 4%;
padding: 0.5pc 0.5pc 0.0pc 0.5pc;
}
div.sidebar img
{
padding: 1pt;
}
/*=============================================================================
Callouts
=============================================================================*/
.line_callout_bug img
{
float: left;
position:relative;
left: 4px;
top: -12px;
clear: left;
margin-left:-22px;
}
.callout_bug img
{
}
/*=============================================================================
Variable Lists
=============================================================================*/
/* Make the terms in definition lists bold */
div.variablelist dl dt,
span.term
{
font-weight: bold;
font-size: 10pt;
}
div.variablelist table tbody tr td
{
text-align: left;
vertical-align: top;
padding: 0em 2em 0em 0em;
font-size: 10pt;
margin: 0em 0em 0.5em 0em;
line-height: 1;
}
div.variablelist dl dt
{
margin-bottom: 0.2em;
}
div.variablelist dl dd
{
margin: 0em 0em 0.5em 2em;
font-size: 10pt;
}
div.variablelist table tbody tr td p,
div.variablelist dl dd p
{
margin: 0em 0em 0.5em 0em;
line-height: 1;
}
/*=============================================================================
Misc
=============================================================================*/
/* Title of books and articles in bibliographies */
span.title
{
font-style: italic;
}
span.underline
{
text-decoration: underline;
}
span.strikethrough
{
text-decoration: line-through;
}
/* Copyright, Legal Notice */
div div.legalnotice p
{
text-align: left
}
/*=============================================================================
Colors
=============================================================================*/
@media screen
{
/* Links */
a
{
color: #005a9c;
}
a:visited
{
color: #9c5a9c;
}
h1 a, h2 a, h3 a, h4 a, h5 a, h6 a,
h1 a:hover, h2 a:hover, h3 a:hover, h4 a:hover, h5 a:hover, h6 a:hover,
h1 a:visited, h2 a:visited, h3 a:visited, h4 a:visited, h5 a:visited, h6 a:visited
{
text-decoration: none; /* no underline */
color: #000000;
}
/* Syntax Highlighting */
.keyword { color: #0000AA; }
.identifier { color: #000000; }
.special { color: #707070; }
.preprocessor { color: #402080; }
.char { color: teal; }
.comment { color: #800000; }
.string { color: teal; }
.number { color: teal; }
.white_bkd { background-color: #FFFFFF; }
.dk_grey_bkd { background-color: #999999; }
/* Copyright, Legal Notice */
.copyright
{
color: #666666;
font-size: small;
}
div div.legalnotice p
{
color: #666666;
}
/* Program listing */
pre.synopsis
{
border: 1px solid #DCDCDC;
}
.programlisting,
.screen
{
border: 1px solid #DCDCDC;
}
td .programlisting,
td .screen
{
border: 0px solid #DCDCDC;
}
/* Blurbs */
div.note,
div.tip,
div.important,
div.caution,
div.warning,
div.sidebar
{
border: 1px solid #DCDCDC;
}
/* Table of contents */
.toc
{
border: 1px solid #DCDCDC;
}
/* Tables */
div.informaltable table tr td,
div.table table tr td
{
border: 1px solid #DCDCDC;
}
div.informaltable table tr th,
div.table table tr th
{
background-color: #F0F0F0;
border: 1px solid #DCDCDC;
}
/* Misc */
span.highlight
{
color: #00A000;
}
}
@media print
{
/* Links */
a
{
color: black;
}
a:visited
{
color: black;
}
.spirit-nav
{
display: none;
}
/* Program listing */
pre.synopsis
{
border: 1px solid gray;
}
.programlisting,
.screen
{
border: 1px solid gray;
}
td .programlisting,
td .screen
{
border: 0px solid #DCDCDC;
}
/* Table of contents */
.toc
{
border: 1px solid gray;
}
.informaltable table,
.table table
{
border: 1px solid gray;
border-collapse: collapse;
}
/* Tables */
div.informaltable table tr td,
div.table table tr td
{
border: 1px solid gray;
}
div.informaltable table tr th,
div.table table tr th
{
border: 1px solid gray;
}
/* Misc */
span.highlight
{
font-weight: bold;
}
}

564
forward/doc/html/index.html Normal file
View File

@@ -0,0 +1,564 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Chapter<EFBFBD>1.<2E>Boost.Functional/Forward 1.0</title>
<link rel="stylesheet" href="boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.68.1">
<link rel="start" href="index.html" title="Chapter<65>1.<2E>Boost.Functional/Forward 1.0">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav"></div>
<div class="chapter" lang="en">
<div class="titlepage"><div>
<div><h2 class="title">
<a name="boost_functional_forward"></a>Chapter<EFBFBD>1.<2E>Boost.Functional/Forward 1.0</h2></div>
<div><div class="author"><h3 class="author">
<span class="firstname">Tobias</span> <span class="surname">Schwinger</span>
</h3></div></div>
<div><p class="copyright">Copyright <20> 2007, 2008 Tobias Schwinger</p></div>
<div><div class="legalnotice">
<a name="id934161"></a><p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></div>
</div></div>
<div class="toc">
<p><b>Table of Contents</b></p>
<dl>
<dt><span class="section"><a href="index.html#boost_functional_forward.brief_description">Brief Description</a></span></dt>
<dt><span class="section"><a href="index.html#boost_functional_forward.background">Background</a></span></dt>
<dt><span class="section"><a href="index.html#boost_functional_forward.reference"> Reference</a></span></dt>
<dt><span class="section"><a href="index.html#boost_functional_forward.acknowledgements">Acknowledgements</a></span></dt>
<dt><span class="section"><a href="index.html#boost_functional_forward.references">References</a></span></dt>
</dl>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="boost_functional_forward.brief_description"></a><a href="index.html#boost_functional_forward.brief_description" title="Brief Description">Brief Description</a></h2></div></div></div>
<p>
<code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">forward_adapter</span></code> provides a reusable adapter
template for function objects. It forwards RValues as references to const,
while leaving LValues as-is.
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">g</span> <span class="comment">// function object that only accept LValues
</span><span class="special">{</span>
<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">T0</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">T2</span> <span class="special">&gt;</span>
<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">T0</span> <span class="special">&amp;</span> <span class="identifier">t0</span><span class="special">,</span> <span class="identifier">T1</span> <span class="special">&amp;</span> <span class="identifier">t1</span><span class="special">,</span> <span class="identifier">T2</span> <span class="special">&amp;</span> <span class="identifier">t2</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="keyword">void</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="special">};</span>
<span class="comment">// Adapted version also accepts RValues and forwards
</span><span class="comment">// them as references to const, LValues as-is
</span><span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">forward_adapter</span><span class="special">&lt;</span><span class="identifier">g</span><span class="special">&gt;</span> <span class="identifier">f</span><span class="special">;</span>
</pre>
<p>
Another adapter, <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">lighweight_forward_adapter</span></code> allows forwarding
with some help from the user accepting and unwrapping reference wrappers (see
<a href="http://www.boost.org/doc/html/ref.html" target="_top">Boost.Ref</a>) for
reference arguments, const qualifying all other arguments.
</p>
<p>
The target functions must be compatible with <a href="http://www.boost.org/libs/utility/utility.htm#result_of" target="_top">Boost.ResultOf</a>,
and so are the adapters.
</p>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="boost_functional_forward.background"></a><a href="index.html#boost_functional_forward.background" title="Background">Background</a></h2></div></div></div>
<p>
Let's suppose we have some function <code class="computeroutput"><span class="identifier">f</span></code>
that we can call like this:
</p>
<pre class="programlisting"><span class="identifier">f</span><span class="special">(</span><span class="number">123</span><span class="special">,</span><span class="identifier">a_variable</span><span class="special">);</span>
</pre>
<p>
Now we want to write another, generic function <code class="computeroutput"><span class="identifier">g</span></code>
that can be called the same way and returns some object that calls <code class="computeroutput"><span class="identifier">f</span></code> with the same arguments.
</p>
<pre class="programlisting"><span class="identifier">f</span><span class="special">(</span><span class="number">123</span><span class="special">,</span><span class="identifier">a_variable</span><span class="special">)</span> <span class="special">==</span> <span class="identifier">g</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span><span class="number">123</span><span class="special">,</span><span class="identifier">a_variable</span><span class="special">).</span><span class="identifier">call_f</span><span class="special">()</span>
</pre>
<a name="boost_functional_forward.background.why_would_we_want_to_do_it__anyway_"></a><h3>
<a name="id934701"></a>
<a href="index.html#boost_functional_forward.background.why_would_we_want_to_do_it__anyway_">Why
would we want to do it, anyway?</a>
</h3>
<p>
Maybe we want to run <code class="computeroutput"><span class="identifier">f</span></code> several
times. Or maybe we want to run it within another thread. Maybe we just want
to encapsulate the call expression for now, and then use it with other code
that allows to compose more complex expressions in order to decompose it with
C++ templates and have the compiler generate some machinery that eventually
calls <code class="computeroutput"><span class="identifier">f</span></code> at runtime (in other
words; apply a technique that is commonly referred to as Expression Templates).
</p>
<a name="boost_functional_forward.background.now__how_do_we_do_it_"></a><h3>
<a name="id934755"></a>
<a href="index.html#boost_functional_forward.background.now__how_do_we_do_it_">Now,
how do we do it?</a>
</h3>
<p>
The bad news is: It's impossible.
</p>
<p>
That is so because there is a slight difference between a variable and an expression
that evaluates to its value: Given
</p>
<pre class="programlisting"><span class="keyword">int</span> <span class="identifier">y</span><span class="special">;</span>
<span class="keyword">int</span> <span class="keyword">const</span> <span class="identifier">z</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span>
</pre>
<p>
and
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">T</span> <span class="special">&gt;</span> <span class="keyword">void</span> <span class="identifier">func1</span><span class="special">(</span><span class="identifier">T</span> <span class="special">&amp;</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
we can call
</p>
<pre class="programlisting"><span class="identifier">func1</span><span class="special">(</span><span class="identifier">y</span><span class="special">);</span> <span class="comment">// x is a reference to a non-const object
</span><span class="identifier">func1</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span> <span class="comment">// x is a reference to a const object
</span></pre>
<p>
where
</p>
<pre class="programlisting"><span class="identifier">func1</span><span class="special">(</span><span class="number">1</span><span class="special">);</span> <span class="comment">// fails to compile.
</span></pre>
<p>
This way we can safely have <code class="computeroutput"><span class="identifier">func1</span></code>
store its reference argument and the compiler keeps us from storing a reference
to an object with temporary lifetime.
</p>
<p>
It is important to realize that non-constness and whether an object binds to
a non-const reference parameter are two different properties. The latter is
the distinction between LValues and RValues. The names stem from the left hand
side and the right hand side of assignment expressions, thus LValues are typically
the ones you can assign to, and RValues the temporary results from the right
hand side expression.
</p>
<pre class="programlisting"><span class="identifier">y</span> <span class="special">=</span> <span class="number">1</span><span class="special">+</span><span class="number">2</span><span class="special">;</span> <span class="comment">// a is LValue, 1+2 is the expression producing the RValue,
</span><span class="comment">// 1+2 = a; // usually makes no sense.
</span>
<span class="identifier">func1</span><span class="special">(</span><span class="identifier">y</span><span class="special">);</span> <span class="comment">// works, because y is an LValue
</span><span class="comment">// func1(1+2); // fails to compile, because we only got an RValue.
</span></pre>
<p>
If we add const qualification on the parameter, our function also accepts RValues:
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">T</span> <span class="special">&gt;</span> <span class="keyword">void</span> <span class="identifier">func2</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [...] function scope:
</span><span class="identifier">func2</span><span class="special">(</span><span class="number">1</span><span class="special">);</span> <span class="comment">// x is a reference to a const temporary, object,
</span><span class="identifier">func2</span><span class="special">(</span><span class="identifier">y</span><span class="special">);</span> <span class="comment">// x is a reference to a const object, while y is not const, and
</span><span class="identifier">func2</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span> <span class="comment">// x is a reference to a const object, just like z.
</span></pre>
<p>
In all cases, the argument <code class="computeroutput"><span class="identifier">x</span></code>
in <code class="computeroutput"><span class="identifier">func2</span></code> is a const-qualified
LValue. We can use function overloading to identify non-const LValues:
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">T</span> <span class="special">&gt;</span> <span class="keyword">void</span> <span class="identifier">func3</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">x</span><span class="special">);</span> <span class="comment">// #1
</span><span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">T</span> <span class="special">&gt;</span> <span class="keyword">void</span> <span class="identifier">func3</span><span class="special">(</span><span class="identifier">T</span> <span class="special">&amp;</span> <span class="identifier">x</span><span class="special">);</span> <span class="comment">// #2
</span>
<span class="comment">// [...] function scope:
</span><span class="identifier">func3</span><span class="special">(</span><span class="number">1</span><span class="special">);</span> <span class="comment">// x is a reference to a const, temporary object in #1,
</span><span class="identifier">func3</span><span class="special">(</span><span class="identifier">y</span><span class="special">);</span> <span class="comment">// x is a reference to a non-const object in #2, and
</span><span class="identifier">func3</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span> <span class="comment">// x is a reference to a const object in #1.
</span></pre>
<p>
Note that all arguments <code class="computeroutput"><span class="identifier">x</span></code> in
the overloaded function <code class="computeroutput"><span class="identifier">func3</span></code>
are LValues. In fact, there is no way to transport RValues into a function
as-is in C++98. Also note that we can't distinguish between what used to be
a const qualified LValue and an RValue.
</p>
<p>
That's as close as we can get to a generic forwarding function <code class="computeroutput"><span class="identifier">g</span></code> as described above by the means of C++
98. See <a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1385.htm" target="_top">The
Forwarding Problem</a> for a very detailed discussion including solutions
that require language changes.
</p>
<p>
Now, for actually implementing it, we need 2^N overloads for N parameters (each
with and without const qualifier) for each number of arguments (that is 2^(Nmax+1)
- 2^Nmin). Right, that means the compile-time complexity is O(2^N), however
the factor is low so it works quite well for a reasonable number (&lt; 10)
of arguments.
</p>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="boost_functional_forward.reference"></a><a href="index.html#boost_functional_forward.reference" title=" Reference"> Reference</a></h2></div></div></div>
<div class="toc"><dl>
<dt><span class="section"><a href="index.html#boost_functional_forward.reference.forward_adapter">forward_adapter</a></span></dt>
<dt><span class="section"><a href="index.html#boost_functional_forward.reference.lightweight_forward_adapter">lightweight_forward_adapter</a></span></dt>
</dl></div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_functional_forward.reference.forward_adapter"></a><a href="index.html#boost_functional_forward.reference.forward_adapter" title="forward_adapter">forward_adapter</a></h3></div></div></div>
<a name="boost_functional_forward.reference.forward_adapter.description"></a><h4>
<a name="id935594"></a>
<a href="index.html#boost_functional_forward.reference.forward_adapter.description">Description</a>
</h4>
<p>
Function object adapter template whose instances are callable with LValue
and RValue arguments. RValue arguments are forwarded as reference-to-const
typed LValues.
</p>
<p>
An arity can be given as second, numeric non-type template argument to restrict
forwarding to a specific arity. If a third, numeric non-type template argument
is present, the second and third template argument are treated as minimum
and maximum arity, respectively. Specifying an arity can be helpful to improve
the readability of diagnostic messages and compile time performance.
</p>
<p>
<a href="http://www.boost.org/libs/utility/utility.htm#result_of" target="_top">Boost.ResultOf</a>
can be used to determine the result types of specific call expressions.
</p>
<a name="boost_functional_forward.reference.forward_adapter.header"></a><h4>
<a name="id935646"></a>
<a href="index.html#boost_functional_forward.reference.forward_adapter.header">Header</a>
</h4>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">functional</span><span class="special">/</span><span class="identifier">forward_adapter</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
</pre>
<a name="boost_functional_forward.reference.forward_adapter.synopsis"></a><h4>
<a name="id935721"></a>
<a href="index.html#boost_functional_forward.reference.forward_adapter.synopsis">Synopsis</a>
</h4>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span>
<span class="special">{</span>
<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">class</span> <span class="identifier">Function</span><span class="special">,</span>
<span class="keyword">int</span> <span class="identifier">Arity_Or_MinArity</span> <span class="special">=</span> <span class="emphasis"><em>unspecified</em></span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">MaxArity</span> <span class="special">=</span> <span class="emphasis"><em>unspecified</em></span> <span class="special">&gt;</span>
<span class="keyword">class</span> <span class="identifier">forward_adapter</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<div class="variablelist">
<p class="title"><b>Notation</b></p>
<dl>
<dt><span class="term"><code class="computeroutput"><span class="identifier">F</span></code></span></dt>
<dd><p>
a possibly const qualified function object type or reference type thereof
</p></dd>
<dt><span class="term"><code class="computeroutput"><span class="identifier">f</span></code></span></dt>
<dd><p>
an object convertible to <code class="computeroutput"><span class="identifier">F</span></code>
</p></dd>
<dt><span class="term"><code class="computeroutput"><span class="identifier">FA</span></code></span></dt>
<dd><p>
the type <code class="computeroutput"><span class="identifier">forward_adapter</span><span class="special">&lt;</span><span class="identifier">F</span><span class="special">&gt;</span></code>
</p></dd>
<dt><span class="term"><code class="computeroutput"><span class="identifier">fa</span></code></span></dt>
<dd><p>
an instance object of <code class="computeroutput"><span class="identifier">FA</span></code>,
initialized with <code class="computeroutput"><span class="identifier">f</span></code>
</p></dd>
<dt><span class="term"><code class="computeroutput"><span class="identifier">a0</span></code>...<code class="computeroutput"><span class="identifier">aN</span></code></span></dt>
<dd><p>
arguments to <code class="computeroutput"><span class="identifier">fa</span></code>
</p></dd>
</dl>
</div>
<p>
The result type of a target function invocation must be
</p>
<pre class="programlisting"><a href="http://www.boost.org/libs/utility/utility.htm#result_of" target="_top"><code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span></code></a><span class="special">&lt;</span><span class="identifier">F</span><span class="special">*(</span><span class="identifier">TA0</span> <span class="special">[</span><span class="keyword">const</span><span class="special">]&amp;...</span><span class="identifier">TAN</span> <span class="special">[</span><span class="keyword">const</span><span class="special">]&amp;])&gt;::</span><span class="identifier">type</span>
</pre>
<p>
where <code class="computeroutput"><span class="identifier">TA0</span></code>...<code class="computeroutput"><span class="identifier">TAN</span></code> denote the argument types of <code class="computeroutput"><span class="identifier">a0</span></code>...<code class="computeroutput"><span class="identifier">aN</span></code>.
</p>
<a name="boost_functional_forward.reference.forward_adapter.expression_semantics"></a><h4>
<a name="id936177"></a>
<a href="index.html#boost_functional_forward.reference.forward_adapter.expression_semantics">Expression
Semantics</a>
</h4>
<div class="informaltable"><table class="table">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Expression
</p>
</th>
<th>
<p>
Semantics
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">FA</span><span class="special">(</span><span class="identifier">f</span><span class="special">)</span></code>
</p>
</td>
<td>
<p>
creates an adapter, initializes the target function with <code class="computeroutput"><span class="identifier">f</span></code>.
</p>
</td>
</tr>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">FA</span><span class="special">()</span></code>
</p>
</td>
<td>
<p>
creates an adapter, attempts to use <code class="computeroutput"><span class="identifier">F</span></code>'s
default constructor.
</p>
</td>
</tr>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">fa</span><span class="special">(</span><span class="identifier">a0</span></code>...<code class="computeroutput"><span class="identifier">aN</span><span class="special">)</span></code>
</p>
</td>
<td>
<p>
calls <code class="computeroutput"><span class="identifier">f</span></code> with with
arguments <code class="computeroutput"><span class="identifier">a0</span></code>...<code class="computeroutput"><span class="identifier">aN</span></code>.
</p>
</td>
</tr>
</tbody>
</table></div>
<a name="boost_functional_forward.reference.forward_adapter.limits"></a><h4>
<a name="id936405"></a>
<a href="index.html#boost_functional_forward.reference.forward_adapter.limits">Limits</a>
</h4>
<p>
The macro BOOST_FUNCTIONAL_FORWARD_ADAPTER_MAX_ARITY can be defined to set
the maximum call arity. It defaults to 6.
</p>
<a name="boost_functional_forward.reference.forward_adapter.complexity"></a><h4>
<a name="id936434"></a>
<a href="index.html#boost_functional_forward.reference.forward_adapter.complexity">Complexity</a>
</h4>
<p>
Preprocessing time: O(2^N), where N is the arity limit. Compile time: O(2^N),
where N depends on the arity range. Run time: O(0) if the compiler inlines,
O(1) otherwise.
</p>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_functional_forward.reference.lightweight_forward_adapter"></a><a href="index.html#boost_functional_forward.reference.lightweight_forward_adapter" title="lightweight_forward_adapter">lightweight_forward_adapter</a></h3></div></div></div>
<a name="boost_functional_forward.reference.lightweight_forward_adapter.description"></a><h4>
<a name="id936485"></a>
<a href="index.html#boost_functional_forward.reference.lightweight_forward_adapter.description">Description</a>
</h4>
<p>
Function object adapter template whose instances are callable with LValue
and RValue arguments. All arguments are forwarded as reference-to-const typed
LValues, except for reference wrappers which are unwrapped and may yield
non-const LValues.
</p>
<p>
An arity can be given as second, numeric non-type template argument to restrict
forwarding to a specific arity. If a third, numeric non-type template argument
is present, the second and third template argument are treated as minimum
and maximum arity, respectively. Specifying an arity can be helpful to improve
the readability of diagnostic messages and compile time performance.
</p>
<p>
<a href="http://www.boost.org/libs/utility/utility.htm#result_of" target="_top">Boost.ResultOf</a>
can be used to determine the result types of specific call expressions.
</p>
<a name="boost_functional_forward.reference.lightweight_forward_adapter.header"></a><h4>
<a name="id936540"></a>
<a href="index.html#boost_functional_forward.reference.lightweight_forward_adapter.header">Header</a>
</h4>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">functional</span><span class="special">/</span><span class="identifier">lightweight_forward_adapter</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
</pre>
<a name="boost_functional_forward.reference.lightweight_forward_adapter.synopsis"></a><h4>
<a name="id936616"></a>
<a href="index.html#boost_functional_forward.reference.lightweight_forward_adapter.synopsis">Synopsis</a>
</h4>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span>
<span class="special">{</span>
<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">class</span> <span class="identifier">Function</span><span class="special">,</span>
<span class="keyword">int</span> <span class="identifier">Arity_Or_MinArity</span> <span class="special">=</span> <span class="emphasis"><em>unspecified</em></span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">MaxArity</span> <span class="special">=</span> <span class="emphasis"><em>unspecified</em></span> <span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">lightweight_forward_adapter</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<div class="variablelist">
<p class="title"><b>Notation</b></p>
<dl>
<dt><span class="term"><code class="computeroutput"><span class="identifier">F</span></code></span></dt>
<dd><p>
a possibly const qualified function object type or reference type thereof
</p></dd>
<dt><span class="term"><code class="computeroutput"><span class="identifier">f</span></code></span></dt>
<dd><p>
an object convertible to <code class="computeroutput"><span class="identifier">F</span></code>
</p></dd>
<dt><span class="term"><code class="computeroutput"><span class="identifier">FA</span></code></span></dt>
<dd><p>
the type <code class="computeroutput"><span class="identifier">lightweight_forward_adapter</span><span class="special">&lt;</span><span class="identifier">F</span><span class="special">&gt;</span></code>
</p></dd>
<dt><span class="term"><code class="computeroutput"><span class="identifier">fa</span></code></span></dt>
<dd><p>
an instance of <code class="computeroutput"><span class="identifier">FA</span></code>, initialized
with <code class="computeroutput"><span class="identifier">f</span></code>
</p></dd>
<dt><span class="term"><code class="computeroutput"><span class="identifier">a0</span></code>...<code class="computeroutput"><span class="identifier">aN</span></code></span></dt>
<dd><p>
arguments to <code class="computeroutput"><span class="identifier">fa</span></code>
</p></dd>
</dl>
</div>
<p>
The result type of a target function invocation must be
</p>
<pre class="programlisting"><a href="http://www.boost.org/libs/utility/utility.htm#result_of" target="_top"><code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span></code></a><span class="special">&lt;</span><span class="identifier">F</span><span class="special">*(</span><span class="identifier">TA0</span> <span class="special">[</span><span class="keyword">const</span><span class="special">]&amp;...</span><span class="identifier">TAN</span> <span class="special">[</span><span class="keyword">const</span><span class="special">]&amp;])&gt;::</span><span class="identifier">type</span>
</pre>
<p>
where <code class="computeroutput"><span class="identifier">TA0</span></code>...<code class="computeroutput"><span class="identifier">TAN</span></code> denote the argument types of <code class="computeroutput"><span class="identifier">a0</span></code>...<code class="computeroutput"><span class="identifier">aN</span></code>.
</p>
<a name="boost_functional_forward.reference.lightweight_forward_adapter.expression_semantics"></a><h4>
<a name="id937073"></a>
<a href="index.html#boost_functional_forward.reference.lightweight_forward_adapter.expression_semantics">Expression
Semantics</a>
</h4>
<div class="informaltable"><table class="table">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Expression
</p>
</th>
<th>
<p>
Semantics
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">FA</span><span class="special">(</span><span class="identifier">f</span><span class="special">)</span></code>
</p>
</td>
<td>
<p>
creates an adapter, initializes the target function with <code class="computeroutput"><span class="identifier">f</span></code>.
</p>
</td>
</tr>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">FA</span><span class="special">()</span></code>
</p>
</td>
<td>
<p>
creates an adapter, attempts to use <code class="computeroutput"><span class="identifier">F</span></code>'s
default constructor.
</p>
</td>
</tr>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">fa</span><span class="special">(</span><span class="identifier">a0</span></code>...<code class="computeroutput"><span class="identifier">aN</span><span class="special">)</span></code>
</p>
</td>
<td>
<p>
calls <code class="computeroutput"><span class="identifier">f</span></code> with with
const arguments <code class="computeroutput"><span class="identifier">a0</span></code>...<code class="computeroutput"><span class="identifier">aN</span></code>. If <code class="computeroutput"><span class="identifier">aI</span></code>
is a reference wrapper it is unwrapped.
</p>
</td>
</tr>
</tbody>
</table></div>
<a name="boost_functional_forward.reference.lightweight_forward_adapter.limits"></a><h4>
<a name="id937311"></a>
<a href="index.html#boost_functional_forward.reference.lightweight_forward_adapter.limits">Limits</a>
</h4>
<p>
The macro BOOST_FUNCTIONAL_LIGHTWEIGHT_FORWARD_ADAPTER_MAX_ARITY can be defined
to set the maximum call arity. It defaults to 10.
</p>
<a name="boost_functional_forward.reference.lightweight_forward_adapter.complexity"></a><h4>
<a name="id937342"></a>
<a href="index.html#boost_functional_forward.reference.lightweight_forward_adapter.complexity">Complexity</a>
</h4>
<p>
Preprocessing time: O(N), where N is the arity limit. Compile time: O(N),
where N is the effective arity of a call. Run time: O(0) if the compiler
inlines, O(1) otherwise.
</p>
</div>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="boost_functional_forward.acknowledgements"></a><a href="index.html#boost_functional_forward.acknowledgements" title="Acknowledgements">Acknowledgements</a></h2></div></div></div>
<p>
As these utilities are factored out of the <a href="http://www.boost.org/libs/fusion/doc/html/index.html" target="_top">Boost.Fusion</a>
functional module, I want to thank Dan Marsden and Joel de Guzman for letting
me participate in the development of that great library in the first place.
</p>
<p>
Further, I want to credit the authors of the references below, for their in-depth
investigation of the problem and the solution implemented here.
</p>
<p>
Last but not least I want to thank Vesa Karnoven and Paul Mensonides for the
Boost Preprocessor library. Without it, I would have ended up with an external
code generator for this one.
</p>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="boost_functional_forward.references"></a><a href="index.html#boost_functional_forward.references" title="References">References</a></h2></div></div></div>
<div class="orderedlist"><ol type="1">
<li>
<a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1385.htm" target="_top">The
Forwarding Problem</a>, Peter Dimov, Howard E. Hinnant, David Abrahams,
2002
</li>
<li>
<a href="http://www.boost.org/libs/utility/utility.htm#result_of" target="_top">Boost.ResultOf</a>,
Douglas Gregor, 2004
</li>
<li>
<a href="http://www.boost.org/doc/html/ref.html" target="_top">Boost.Ref</a>, Jaakko
Jarvi, Peter Dimov, Douglas Gregor, David Abrahams, 1999-2002
</li>
</ol></div>
</div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"><p><small>Last revised: November 01, 2008 at 19:58:50 GMT</small></p></td>
<td align="right"><div class="copyright-footer"></div></td>
</tr></table>
<hr>
<div class="spirit-nav"></div>
</body>
</html>

15
forward/index.html Normal file
View File

@@ -0,0 +1,15 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="refresh" content="0; URL=doc/html/index.html">
</head>
<body>
Automatic redirection failed, click this
<a href="doc/html/index.html">link</a> &nbsp;<hr>
<p><EFBFBD> Copyright Tobias Schwinger, 2009</p>
<p>Distributed under the Boost Software License, Version 1.0. (See
accompanying file <a href="../../../LICENSE_1_0.txt">
LICENSE_1_0.txt</a> or copy at
<a href="http://www.boost.org/LICENSE_1_0.txt">www.boost.org/LICENSE_1_0.txt</a>)</p>
</body>
</html>

17
forward/test/Jamfile Normal file
View File

@@ -0,0 +1,17 @@
# (C) Copyright Tobias Schwinger
#
# Use modification and distribution are subject to the boost Software License,
# Version 1.0. (See http:/\/www.boost.org/LICENSE_1_0.txt).
import testing ;
project forward-tests
;
test-suite functional/forward
:
[ run forward_adapter.cpp ]
[ run lightweight_forward_adapter.cpp ]
;

View File

@@ -0,0 +1,128 @@
/*=============================================================================
Copyright (c) 2007 Tobias Schwinger
Use modification and distribution are subject to the Boost Software
License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
==============================================================================*/
#include <boost/config.hpp>
#ifdef BOOST_MSVC
# pragma warning(disable: 4244) // no conversion warnings, please
#endif
#include <boost/detail/lightweight_test.hpp>
#include <boost/functional/forward_adapter.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/blank.hpp>
#include <boost/noncopyable.hpp>
#include <memory>
template <class Base = boost::blank>
class test_func : public Base
{
int val;
public:
test_func(int v) : val(v) { }
template<class B>
test_func(test_func<B> const & that)
: val(that.val)
{ }
template<class B> friend class test_func;
int operator()(int & l, int const & r) const
{
return l=r+val;
}
long operator()(int & l, int const & r)
{
return -(l=r+val);
}
template <typename Sig>
struct result
{
typedef void type;
};
// ensure result_of argument types are what's expected
// note: this is *not* how client code should look like
template <class Self>
struct result< Self const(int&,int const&) > { typedef int type; };
template <class Self>
struct result< Self(int&,int const&) > { typedef long type; };
template <class Self>
struct result< Self(int&,int&) > { typedef char type; };
};
enum { int_, long_, char_ };
int type_of(int) { return int_; }
int type_of(long) { return long_; }
int type_of(char) { return char_; }
int main()
{
{
using boost::is_same;
using boost::result_of;
typedef boost::forward_adapter< test_func<> > f;
// lvalue,rvalue
BOOST_TEST(( is_same<
result_of< f(int&, int) >::type, long >::value ));
BOOST_TEST(( is_same<
result_of< f const (int&, int) >::type, int >::value ));
// lvalue,const lvalue
BOOST_TEST(( is_same<
result_of< f(int&, int const &) >::type, long >::value ));
BOOST_TEST(( is_same<
result_of< f const (int&, int const &) >::type, int >::value ));
// lvalue,lvalue
BOOST_TEST(( is_same<
result_of< f(int&, int&) >::type, char >::value ));
BOOST_TEST(( is_same<
result_of< f const (int&, int&) >::type, char >::value ));
}
{
using boost::noncopyable;
using boost::forward_adapter;
int x = 0;
test_func<noncopyable> f(7);
forward_adapter< test_func<> > func(f);
forward_adapter< test_func<noncopyable> & > func_ref(f);
forward_adapter< test_func<noncopyable> & > const func_ref_c(f);
forward_adapter< test_func<> const > func_c(f);
forward_adapter< test_func<> > const func_c2(f);
forward_adapter< test_func<noncopyable> const & > func_c_ref(f);
BOOST_TEST( type_of( func(x,1) ) == long_ );
BOOST_TEST( type_of( func_ref(x,1) ) == long_ );
BOOST_TEST( type_of( func_ref_c(x,1) ) == long_ );
BOOST_TEST( type_of( func_c(x,1) ) == int_ );
BOOST_TEST( type_of( func_c2(x,1) ) == int_ );
BOOST_TEST( type_of( func_c_ref(x,1) ) == int_ );
BOOST_TEST( type_of( func(x,x) ) == char_ );
BOOST_TEST( func(x,1) == -8 );
BOOST_TEST( func_ref(x,1) == -8 );
BOOST_TEST( func_ref_c(x,1) == -8 );
BOOST_TEST( func_c(x,1) == 8 );
BOOST_TEST( func_c2(x,1) == 8 );
BOOST_TEST( func_c_ref(x,1) == 8 );
}
return boost::report_errors();
}

View File

@@ -0,0 +1,128 @@
/*=============================================================================
Copyright (c) 2007 Tobias Schwinger
Use modification and distribution are subject to the Boost Software
License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
==============================================================================*/
#include <boost/config.hpp>
#ifdef BOOST_MSVC
# pragma warning(disable: 4244) // no conversion warnings, please
#endif
#include <boost/detail/lightweight_test.hpp>
#include <boost/functional/lightweight_forward_adapter.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/blank.hpp>
#include <boost/noncopyable.hpp>
#include <memory>
template <class Base = boost::blank>
class test_func : public Base
{
int val;
public:
test_func(int v) : val(v) { }
template<class B>
test_func(test_func<B> const & that)
: val(that.val)
{ }
template<class B> friend class test_func;
int operator()(int & l, int const & r) const
{
return l=r+val;
}
long operator()(int & l, int const & r)
{
return -(l=r+val);
}
template <typename Sig>
struct result
{
typedef void type;
};
// ensure result_of argument types are what's expected
// note: this is *not* how client code should look like
template <class Self>
struct result< Self const(int&,int const&) > { typedef int type; };
template <class Self>
struct result< Self(int&,int const&) > { typedef long type; };
template <class Self>
struct result< Self(int&,int&) > { typedef char type; };
};
enum { int_, long_, char_ };
int type_of(int) { return int_; }
int type_of(long) { return long_; }
int type_of(char) { return char_; }
int main()
{
{
using boost::is_same;
using boost::result_of;
typedef boost::lightweight_forward_adapter< test_func<> > f;
typedef boost::reference_wrapper<int> ref;
typedef boost::reference_wrapper<int const> cref;
// lvalue,rvalue
BOOST_TEST(( is_same<
result_of< f(ref, int) >::type, long >::value ));
BOOST_TEST(( is_same<
result_of< f const (ref, int) >::type, int >::value ));
// lvalue,const lvalue
BOOST_TEST(( is_same<
result_of< f(ref, cref) >::type, long >::value ));
BOOST_TEST(( is_same<
result_of< f const (ref, cref) >::type, int >::value ));
// lvalue,lvalue
BOOST_TEST(( is_same<
result_of< f(ref, ref) >::type, char >::value ));
BOOST_TEST(( is_same<
result_of< f const (ref, ref) >::type, char >::value ));
}
{
using boost::noncopyable;
using boost::lightweight_forward_adapter;
int v = 0; boost::reference_wrapper<int> x(v);
test_func<noncopyable> f(7);
lightweight_forward_adapter< test_func<> > func(f);
lightweight_forward_adapter< test_func<noncopyable> & > func_ref(f);
lightweight_forward_adapter< test_func<noncopyable> & > const func_ref_c(f);
lightweight_forward_adapter< test_func<> const > func_c(f);
lightweight_forward_adapter< test_func<> > const func_c2(f);
lightweight_forward_adapter< test_func<noncopyable> const & > func_c_ref(f);
BOOST_TEST( type_of( func(x,1) ) == long_ );
BOOST_TEST( type_of( func_ref(x,1) ) == long_ );
BOOST_TEST( type_of( func_ref_c(x,1) ) == long_ );
BOOST_TEST( type_of( func_c(x,1) ) == int_ );
BOOST_TEST( type_of( func_c2(x,1) ) == int_ );
BOOST_TEST( type_of( func_c_ref(x,1) ) == int_ );
BOOST_TEST( type_of( func(x,x) ) == char_ );
BOOST_TEST( func(x,1) == -8 );
BOOST_TEST( func_ref(x,1) == -8 );
BOOST_TEST( func_ref_c(x,1) == -8 );
BOOST_TEST( func_c(x,1) == 8 );
BOOST_TEST( func_c2(x,1) == 8 );
BOOST_TEST( func_c_ref(x,1) == 8 );
}
return boost::report_errors();
}

View File

@@ -0,0 +1,472 @@
/*=============================================================================
Copyright (c) 2007-2008 Tobias Schwinger
Use modification and distribution are subject to the Boost Software
License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
==============================================================================*/
#ifndef BOOST_FUNCTIONAL_FORWARD_ADAPTER_HPP_INCLUDED
# ifndef BOOST_PP_IS_ITERATING
# include <boost/config.hpp>
# include <boost/detail/workaround.hpp>
# include <boost/preprocessor/iteration/iterate.hpp>
# include <boost/preprocessor/repetition/enum_params.hpp>
# include <boost/preprocessor/repetition/enum_binary_params.hpp>
# include <boost/preprocessor/facilities/intercept.hpp>
# include <boost/preprocessor/arithmetic/dec.hpp>
# include <boost/utility/result_of.hpp>
# ifndef BOOST_FUNCTIONAL_FORWARD_ADAPTER_MAX_ARITY
# define BOOST_FUNCTIONAL_FORWARD_ADAPTER_MAX_ARITY 6
# elif BOOST_FUNCTIONAL_FORWARD_ADAPTER_MAX_ARITY < 3
# undef BOOST_FUNCTIONAL_FORWARD_ADAPTER_MAX_ARITY
# define BOOST_FUNCTIONAL_FORWARD_ADAPTER_MAX_ARITY 3
# endif
namespace boost
{
template< typename Function, int Arity_Or_MinArity = -1, int MaxArity = -1 >
class forward_adapter;
//----- ---- --- -- - - - -
namespace detail
{
template< class MostDerived, typename Function, typename FunctionConst,
int Arity, int MinArity >
struct forward_adapter_impl;
struct forward_adapter_result
{
template< typename Sig > struct apply;
// Utility metafunction for qualification adjustment on arguments
template< typename T > struct q { typedef T const t; };
template< typename T > struct q<T const> { typedef T const t; };
template< typename T > struct q<T &> { typedef T t; };
// Utility metafunction to choose target function qualification
template< typename T > struct c
{ typedef typename T::target_function_t t; };
template< typename T > struct c<T& >
{ typedef typename T::target_function_t t; };
template< typename T > struct c<T const >
{ typedef typename T::target_function_const_t t; };
template< typename T > struct c<T const&>
{ typedef typename T::target_function_const_t t; };
};
}
# define BOOST_TMP_MACRO(f,fn,fc) \
boost::detail::forward_adapter_impl< \
forward_adapter<f,Arity_Or_MinArity,MaxArity>, fn, fc, \
(MaxArity!=-1? MaxArity :Arity_Or_MinArity!=-1? Arity_Or_MinArity \
:BOOST_FUNCTIONAL_FORWARD_ADAPTER_MAX_ARITY), \
(Arity_Or_MinArity!=-1? Arity_Or_MinArity : 0) >
template< typename Function, int Arity_Or_MinArity, int MaxArity >
class forward_adapter
: public BOOST_TMP_MACRO(Function,Function,Function const)
, private Function
{
public:
forward_adapter(Function const& f = Function())
: Function(f)
{ }
typedef Function target_function_t;
typedef Function const target_function_const_t;
Function & target_function() { return *this; }
Function const & target_function() const { return *this; }
template< typename Sig > struct result
: detail::forward_adapter_result::template apply<Sig>
{ };
using BOOST_TMP_MACRO(Function,Function, Function const)::operator();
};
template< typename Function, int Arity_Or_MinArity, int MaxArity >
class forward_adapter< Function const, Arity_Or_MinArity, MaxArity >
: public BOOST_TMP_MACRO(Function const, Function const, Function const)
, private Function
{
public:
forward_adapter(Function const& f = Function())
: Function(f)
{ }
typedef Function const target_function_t;
typedef Function const target_function_const_t;
Function const & target_function() const { return *this; }
template< typename Sig > struct result
: detail::forward_adapter_result::template apply<Sig>
{ };
using BOOST_TMP_MACRO(Function const,Function const, Function const)
::operator();
};
template< typename Function, int Arity_Or_MinArity, int MaxArity >
class forward_adapter< Function &, Arity_Or_MinArity, MaxArity >
: public BOOST_TMP_MACRO(Function&, Function, Function)
{
Function& ref_function;
public:
forward_adapter(Function& f)
: ref_function(f)
{ }
typedef Function target_function_t;
typedef Function target_function_const_t;
Function & target_function() const { return this->ref_function; }
template< typename Sig > struct result
: detail::forward_adapter_result::template apply<Sig>
{ };
using BOOST_TMP_MACRO(Function&, Function, Function)::operator();
};
#undef BOOST_TMP_MACRO
namespace detail
{
template< class Self >
struct forward_adapter_result::apply< Self() >
: boost::result_of< typename c<Self>::t() >
{ };
template< class MD, class F, class FC >
struct forward_adapter_impl<MD,F,FC,0,0>
{
inline typename boost::result_of< FC() >::type
operator()() const
{
return static_cast<MD const*>(this)->target_function()();
}
inline typename boost::result_of< F() >::type
operator()()
{
return static_cast<MD*>(this)->target_function()();
}
// closing brace gets generated by preprocessing code, below
# define BOOST_TMP_MACRO(tpl_params,arg_types,params,args) \
template< tpl_params > \
inline typename boost::result_of< FC(arg_types) >::type \
operator()(params) const \
{ \
return static_cast<MD const*>(this)->target_function()(args); \
} \
template< tpl_params > \
inline typename boost::result_of< F(arg_types)>::type \
operator()(params) \
{ \
return static_cast<MD*>(this)->target_function()(args); \
}
# // This is the total number of iterations we need
# define count ((1 << BOOST_FUNCTIONAL_FORWARD_ADAPTER_MAX_ARITY+1)-2)
# // Chain file iteration to virtually one loop
# if BOOST_FUNCTIONAL_FORWARD_ADAPTER_MAX_ARITY <= 7
# define limit1 count
# define limit2 0
# define limit3 0
# else
# if BOOST_FUNCTIONAL_FORWARD_ADAPTER_MAX_ARITY <= 15
# define limit1 (count >> 8)
# define limit2 255
# define limit3 0
# else
# define limit1 (count >> 16)
# define limit2 255
# define limit3 255
# endif
# endif
# define N 0
# define BOOST_PP_FILENAME_1 <boost/functional/forward_adapter.hpp>
# define BOOST_PP_ITERATION_LIMITS (0,limit1)
# include BOOST_PP_ITERATE()
# undef N
# undef limit3
# undef limit2
# undef limit1
# undef count
# undef BOOST_TMP_MACRO
};
} // namespace detail
template<class F, int A0, int A1>
struct result_of<boost::forward_adapter<F,A0,A1> const ()>
: boost::detail::forward_adapter_result::template apply<
boost::forward_adapter<F,A0,A1> const () >
{ };
template<class F, int A0, int A1>
struct result_of<boost::forward_adapter<F,A0,A1>()>
: boost::detail::forward_adapter_result::template apply<
boost::forward_adapter<F,A0,A1>() >
{ };
template<class F, int A0, int A1>
struct result_of<boost::forward_adapter<F,A0,A1> const& ()>
: boost::detail::forward_adapter_result::template apply<
boost::forward_adapter<F,A0,A1> const () >
{ };
template<class F, int A0, int A1>
struct result_of<boost::forward_adapter<F,A0,A1>& ()>
: boost::detail::forward_adapter_result::template apply<
boost::forward_adapter<F,A0,A1>() >
{ };
}
# define BOOST_FUNCTIONAL_FORWARD_ADAPTER_HPP_INCLUDED
# elif BOOST_PP_ITERATION_DEPTH() == 1 && limit2
# define BOOST_PP_FILENAME_2 <boost/functional/forward_adapter.hpp>
# define BOOST_PP_ITERATION_LIMITS (0,limit2)
# include BOOST_PP_ITERATE()
# elif BOOST_PP_ITERATION_DEPTH() == 2 && limit3
# define BOOST_PP_FILENAME_3 <boost/functional/forward_adapter.hpp>
# define BOOST_PP_ITERATION_LIMITS (0,limit3)
# include BOOST_PP_ITERATE()
# else
# // I is the loop counter
# if limit2 && limit3
# define I (BOOST_PP_ITERATION_1 << 16 | BOOST_PP_ITERATION_2 << 8 | \
BOOST_PP_ITERATION_3)
# elif limit2
# define I (BOOST_PP_ITERATION_1 << 8 | BOOST_PP_ITERATION_2)
# else
# define I BOOST_PP_ITERATION_1
# endif
# if I < count
# // Done for this arity? Increment N
# if (I+2 >> N+1)
# if N == 0
# undef N
# define N 1
# elif N == 1
# undef N
# define N 2
# elif N == 2
# undef N
# define N 3
# elif N == 3
# undef N
# define N 4
# elif N == 4
# undef N
# define N 5
# elif N == 5
# undef N
# define N 6
# elif N == 6
# undef N
# define N 7
# elif N == 7
# undef N
# define N 8
# elif N == 8
# undef N
# define N 9
# elif N == 9
# undef N
# define N 10
# elif N == 10
# undef N
# define N 11
# elif N == 11
# undef N
# define N 12
# elif N == 12
# undef N
# define N 13
# elif N == 13
# undef N
# define N 14
# elif N == 14
# undef N
# define N 15
# elif N == 15
# undef N
# define N 16
# endif
};
template< class Self, BOOST_PP_ENUM_PARAMS(N,typename T) >
struct forward_adapter_result::apply< Self(BOOST_PP_ENUM_PARAMS(N,T)) >
: boost::result_of<
typename c<Self>::t(BOOST_PP_ENUM_BINARY_PARAMS(N,
typename q<T,>::t& BOOST_PP_INTERCEPT)) >
{ };
template< class MD, class F, class FC >
struct forward_adapter_impl<MD,F,FC,BOOST_PP_DEC(N),N>
{
template< BOOST_PP_ENUM_PARAMS(N,typename T) >
inline typename boost::result_of< F(
BOOST_PP_ENUM_BINARY_PARAMS(N,T,& BOOST_PP_INTERCEPT)) >::type
operator()(BOOST_PP_ENUM_BINARY_PARAMS(N,T,& BOOST_PP_INTERCEPT));
};
template< class MD, class F, class FC, int MinArity >
struct forward_adapter_impl<MD,F,FC,N,MinArity>
: forward_adapter_impl<MD,F,FC,BOOST_PP_DEC(N),MinArity>
{
using forward_adapter_impl<MD,F,FC,BOOST_PP_DEC(N),MinArity>::operator();
# endif
# // Zero based count for each arity would be I-(1<<N)+2, but we don't
# // need it, unless we need a nicer order.
# // Macros for the parameter's type modifiers.
# if I & 0x000001
# define PT0 T0 &
# else
# define PT0 T0 const &
# endif
# if I & 0x000002
# define PT1 T1 &
# else
# define PT1 T1 const &
# endif
# if I & 0x000004
# define PT2 T2 &
# else
# define PT2 T2 const &
# endif
# if I & 0x000008
# define PT3 T3 &
# else
# define PT3 T3 const &
# endif
# if I & 0x000010
# define PT4 T4 &
# else
# define PT4 T4 const &
# endif
# if I & 0x000020
# define PT5 T5 &
# else
# define PT5 T5 const &
# endif
# if I & 0x000040
# define PT6 T6 &
# else
# define PT6 T6 const &
# endif
# if I & 0x000080
# define PT7 T7 &
# else
# define PT7 T7 const &
# endif
# if I & 0x000100
# define PT8 T8 &
# else
# define PT8 T8 const &
# endif
# if I & 0x000200
# define PT9 T9 &
# else
# define PT9 T9 const &
# endif
# if I & 0x000400
# define PT10 T10 &
# else
# define PT10 T10 const &
# endif
# if I & 0x000800
# define PT11 T11 &
# else
# define PT11 T11 const &
# endif
# if I & 0x001000
# define PT12 T12 &
# else
# define PT12 T12 const &
# endif
# if I & 0x002000
# define PT13 T13 &
# else
# define PT13 T13 const &
# endif
# if I & 0x004000
# define PT14 T14 &
# else
# define PT14 T14 const &
# endif
# if I & 0x008000
# define PT15 T15 &
# else
# define PT15 T15 const &
# endif
# if BOOST_WORKAROUND(BOOST_MSVC,BOOST_TESTED_AT(1400))
template< BOOST_PP_ENUM_PARAMS(N,typename T) >
inline typename boost::result_of< FC(BOOST_PP_ENUM_PARAMS(N,PT))
>::type
operator()(BOOST_PP_ENUM_BINARY_PARAMS(N,PT,a)) const
{
return static_cast<MD const* const>(this)
->target_function()(BOOST_PP_ENUM_PARAMS(N,a));
}
template< BOOST_PP_ENUM_PARAMS(N,typename T) >
inline typename boost::result_of< F(BOOST_PP_ENUM_PARAMS(N,PT))
>::type
operator()(BOOST_PP_ENUM_BINARY_PARAMS(N,PT,a))
{
return static_cast<MD* const>(this)
->target_function()(BOOST_PP_ENUM_PARAMS(N,a));
}
# else
BOOST_TMP_MACRO(BOOST_PP_ENUM_PARAMS(N,typename T),
BOOST_PP_ENUM_PARAMS(N,PT), BOOST_PP_ENUM_BINARY_PARAMS(N,PT,a),
BOOST_PP_ENUM_PARAMS(N,a) )
// ...generates uglier code but is faster - it caches ENUM_*
# endif
# undef PT0
# undef PT1
# undef PT2
# undef PT3
# undef PT4
# undef PT5
# undef PT6
# undef PT7
# undef PT8
# undef PT9
# undef PT10
# undef PT11
# undef PT12
# undef PT13
# undef PT14
# undef PT15
# endif // I < count
# undef I
# endif // defined(BOOST_PP_IS_ITERATING)
#endif // include guard

View File

@@ -0,0 +1,259 @@
/*=============================================================================
Copyright (c) 2007 Tobias Schwinger
Use modification and distribution are subject to the Boost Software
License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
==============================================================================*/
#ifndef BOOST_FUNCTIONAL_LIGHTWEIGHT_FORWARD_ADAPTER_HPP_INCLUDED
# ifndef BOOST_PP_IS_ITERATING
# include <boost/config.hpp>
# include <boost/detail/workaround.hpp>
# include <boost/preprocessor/cat.hpp>
# include <boost/preprocessor/iteration/iterate.hpp>
# include <boost/preprocessor/repetition/enum.hpp>
# include <boost/preprocessor/repetition/enum_params.hpp>
# include <boost/preprocessor/repetition/enum_binary_params.hpp>
# include <boost/preprocessor/facilities/intercept.hpp>
# include <boost/utility/result_of.hpp>
# include <boost/ref.hpp>
# ifndef BOOST_FUNCTIONAL_LIGHTWEIGHT_FORWARD_ADAPTER_MAX_ARITY
# define BOOST_FUNCTIONAL_LIGHTWEIGHT_FORWARD_ADAPTER_MAX_ARITY 10
# elif BOOST_FUNCTIONAL_FORDWARD_ADAPTER_MAX_ARITY < 3
# undef BOOST_FUNCTIONAL_LIGHTWEIGHT_FORWARD_ADAPTER_MAX_ARITY
# define BOOST_FUNCTIONAL_LIGHTWEIGHT_FORWARD_ADAPTER_MAX_ARITY 3
# endif
namespace boost
{
template< typename Function, int Arity_Or_MinArity = -1, int MaxArity = -1 >
class lightweight_forward_adapter;
//----- ---- --- -- - - - -
namespace detail
{
template< class MostDerived, typename Function, typename FunctionConst,
int Arity, int MinArity >
struct lightweight_forward_adapter_impl;
struct lightweight_forward_adapter_result
{
template< typename Sig > struct apply;
// Utility metafunction for argument transform
template< typename T > struct x { typedef T const& t; };
template< typename T > struct x< boost::reference_wrapper<T> >
{ typedef T& t; };
template< typename T > struct x<T&> : x<T> { };
template< typename T > struct x<T const&> : x<T> { };
template< typename T > struct x<T const> : x<T> { };
// Utility metafunction to choose target function qualification
template< typename T > struct c
{ typedef typename T::target_function_t t; };
template< typename T > struct c<T& >
{ typedef typename T::target_function_t t; };
template< typename T > struct c<T const >
{ typedef typename T::target_function_const_t t; };
template< typename T > struct c<T const&>
{ typedef typename T::target_function_const_t t; };
};
}
# define BOOST_TMP_MACRO(f,fn,fc) \
boost::detail::lightweight_forward_adapter_impl< \
lightweight_forward_adapter<f,Arity_Or_MinArity,MaxArity>, fn, fc, \
(MaxArity!=-1? MaxArity :Arity_Or_MinArity!=-1? Arity_Or_MinArity \
:BOOST_FUNCTIONAL_LIGHTWEIGHT_FORWARD_ADAPTER_MAX_ARITY), \
(Arity_Or_MinArity!=-1? Arity_Or_MinArity : 0) >
template< typename Function, int Arity_Or_MinArity, int MaxArity >
class lightweight_forward_adapter
: public BOOST_TMP_MACRO(Function,Function,Function const)
, private Function
{
public:
lightweight_forward_adapter(Function const& f = Function())
: Function(f)
{ }
typedef Function target_function_t;
typedef Function const target_function_const_t;
Function & target_function() { return *this; }
Function const & target_function() const { return *this; }
template< typename Sig > struct result
: detail::lightweight_forward_adapter_result::template apply<Sig>
{ };
using BOOST_TMP_MACRO(Function,Function, Function const)::operator();
};
template< typename Function, int Arity_Or_MinArity, int MaxArity >
class lightweight_forward_adapter< Function const, Arity_Or_MinArity,
MaxArity >
: public BOOST_TMP_MACRO(Function const, Function const, Function const)
, private Function
{
public:
lightweight_forward_adapter(Function const& f = Function())
: Function(f)
{ }
typedef Function const target_function_t;
typedef Function const target_function_const_t;
Function const & target_function() const { return *this; }
template< typename Sig > struct result
: detail::lightweight_forward_adapter_result::template apply<Sig>
{ };
using BOOST_TMP_MACRO(Function const,Function const, Function const)
::operator();
};
template< typename Function, int Arity_Or_MinArity, int MaxArity >
class lightweight_forward_adapter< Function &, Arity_Or_MinArity, MaxArity >
: public BOOST_TMP_MACRO(Function&, Function, Function)
{
Function& ref_function;
public:
lightweight_forward_adapter(Function& f)
: ref_function(f)
{ }
typedef Function target_function_t;
typedef Function target_function_const_t;
Function & target_function() const { return this->ref_function; }
template< typename Sig > struct result
: detail::lightweight_forward_adapter_result::template apply<Sig>
{ };
using BOOST_TMP_MACRO(Function&, Function, Function)::operator();
};
#undef BOOST_TMP_MACRO
namespace detail
{
template< class Self >
struct lightweight_forward_adapter_result::apply< Self() >
: boost::result_of< typename c<Self>::t() >
{ };
template< class MD, class F, class FC >
struct lightweight_forward_adapter_impl<MD,F,FC,0,0>
: lightweight_forward_adapter_result
{
inline typename boost::result_of< FC() >::type
operator()() const
{
return static_cast<MD const*>(this)->target_function()();
}
inline typename boost::result_of< F() >::type
operator()()
{
return static_cast<MD*>(this)->target_function()();
}
};
# define BOOST_PP_FILENAME_1 \
<boost/functional/lightweight_forward_adapter.hpp>
# define BOOST_PP_ITERATION_LIMITS \
(1,BOOST_FUNCTIONAL_LIGHTWEIGHT_FORWARD_ADAPTER_MAX_ARITY)
# include BOOST_PP_ITERATE()
} // namespace detail
template<class F, int A0, int A1>
struct result_of<boost::lightweight_forward_adapter<F,A0,A1> const ()>
: boost::detail::lightweight_forward_adapter_result::template apply<
boost::lightweight_forward_adapter<F,A0,A1> const () >
{ };
template<class F, int A0, int A1>
struct result_of<boost::lightweight_forward_adapter<F,A0,A1>()>
: boost::detail::lightweight_forward_adapter_result::template apply<
boost::lightweight_forward_adapter<F,A0,A1>() >
{ };
template<class F, int A0, int A1>
struct result_of<boost::lightweight_forward_adapter<F,A0,A1> const& ()>
: boost::detail::lightweight_forward_adapter_result::template apply<
boost::lightweight_forward_adapter<F,A0,A1> const () >
{ };
template<class F, int A0, int A1>
struct result_of<boost::lightweight_forward_adapter<F,A0,A1>& ()>
: boost::detail::lightweight_forward_adapter_result::template apply<
boost::lightweight_forward_adapter<F,A0,A1>() >
{ };
}
# define BOOST_FUNCTIONAL_LIGHTWEIGHT_FORWARD_ADAPTER_HPP_INCLUDED
# else // defined(BOOST_PP_IS_ITERATING)
# define N BOOST_PP_ITERATION()
template< class Self, BOOST_PP_ENUM_PARAMS(N,typename T) >
struct lightweight_forward_adapter_result::apply<
Self (BOOST_PP_ENUM_PARAMS(N,T)) >
: boost::result_of<
typename c<Self>::t (BOOST_PP_ENUM_BINARY_PARAMS(N,
typename x<T,>::t BOOST_PP_INTERCEPT)) >
{ };
template< class MD, class F, class FC >
struct lightweight_forward_adapter_impl<MD,F,FC,BOOST_PP_DEC(N),N>
: lightweight_forward_adapter_result
{
template< BOOST_PP_ENUM_PARAMS(N,typename T) >
inline typename boost::result_of< F(BOOST_PP_ENUM_BINARY_PARAMS(N,
T,const& BOOST_PP_INTERCEPT)) >::type
operator()(BOOST_PP_ENUM_BINARY_PARAMS(N,T,& BOOST_PP_INTERCEPT));
};
template< class MD, class F, class FC, int MinArity >
struct lightweight_forward_adapter_impl<MD,F,FC,N,MinArity>
: lightweight_forward_adapter_impl<MD,F,FC,BOOST_PP_DEC(N),MinArity>
{
using lightweight_forward_adapter_impl<MD,F,FC,BOOST_PP_DEC(N),
MinArity>::operator();
# define M(z,i,d) \
static_cast<typename d::template x<T##i>::t>(a##i)
template< BOOST_PP_ENUM_PARAMS(N,typename T) >
inline typename lightweight_forward_adapter_result::template apply<
MD const (BOOST_PP_ENUM_BINARY_PARAMS(N,
T,const& BOOST_PP_INTERCEPT)) >::type
operator()(BOOST_PP_ENUM_BINARY_PARAMS(N,T,const& a)) const
{
typedef lightweight_forward_adapter_result _;
return static_cast<MD const*>(this)->target_function()(
BOOST_PP_ENUM(N,M,_));
}
template< BOOST_PP_ENUM_PARAMS(N,typename T) >
inline typename lightweight_forward_adapter_result::template apply<
MD (BOOST_PP_ENUM_BINARY_PARAMS(N,
T,const& BOOST_PP_INTERCEPT)) >::type
operator()(BOOST_PP_ENUM_BINARY_PARAMS(N,T,const& a))
{
typedef lightweight_forward_adapter_result _;
return static_cast<MD*>(this)->target_function()(
BOOST_PP_ENUM(N,M,_));
}
# undef M
};
# undef N
# endif // defined(BOOST_PP_IS_ITERATING)
#endif // include guard