This commit was generated by cvs2svn to compensate for changes in r4,

which included commits to RCS files with non-trunk default branches.


[SVN r7621]
This commit is contained in:
Beman Dawes
2000-07-07 16:04:40 +00:00
commit c9fe13ddca
3 changed files with 888 additions and 0 deletions

96
.gitattributes vendored Normal file
View File

@ -0,0 +1,96 @@
* text=auto !eol svneol=native#text/plain
*.gitattributes text svneol=native#text/plain
# Scriptish formats
*.bat text svneol=native#text/plain
*.bsh text svneol=native#text/x-beanshell
*.cgi text svneol=native#text/plain
*.cmd text svneol=native#text/plain
*.js text svneol=native#text/javascript
*.php text svneol=native#text/x-php
*.pl text svneol=native#text/x-perl
*.pm text svneol=native#text/x-perl
*.py text svneol=native#text/x-python
*.sh eol=lf svneol=LF#text/x-sh
configure eol=lf svneol=LF#text/x-sh
# Image formats
*.bmp binary svneol=unset#image/bmp
*.gif binary svneol=unset#image/gif
*.ico binary svneol=unset#image/ico
*.jpeg binary svneol=unset#image/jpeg
*.jpg binary svneol=unset#image/jpeg
*.png binary svneol=unset#image/png
*.tif binary svneol=unset#image/tiff
*.tiff binary svneol=unset#image/tiff
*.svg text svneol=native#image/svg%2Bxml
# Data formats
*.pdf binary svneol=unset#application/pdf
*.avi binary svneol=unset#video/avi
*.doc binary svneol=unset#application/msword
*.dsp text svneol=crlf#text/plain
*.dsw text svneol=crlf#text/plain
*.eps binary svneol=unset#application/postscript
*.gz binary svneol=unset#application/gzip
*.mov binary svneol=unset#video/quicktime
*.mp3 binary svneol=unset#audio/mpeg
*.ppt binary svneol=unset#application/vnd.ms-powerpoint
*.ps binary svneol=unset#application/postscript
*.psd binary svneol=unset#application/photoshop
*.rdf binary svneol=unset#text/rdf
*.rss text svneol=unset#text/xml
*.rtf binary svneol=unset#text/rtf
*.sln text svneol=native#text/plain
*.swf binary svneol=unset#application/x-shockwave-flash
*.tgz binary svneol=unset#application/gzip
*.vcproj text svneol=native#text/xml
*.vcxproj text svneol=native#text/xml
*.vsprops text svneol=native#text/xml
*.wav binary svneol=unset#audio/wav
*.xls binary svneol=unset#application/vnd.ms-excel
*.zip binary svneol=unset#application/zip
# Text formats
.htaccess text svneol=native#text/plain
*.bbk text svneol=native#text/xml
*.cmake text svneol=native#text/plain
*.css text svneol=native#text/css
*.dtd text svneol=native#text/xml
*.htm text svneol=native#text/html
*.html text svneol=native#text/html
*.ini text svneol=native#text/plain
*.log text svneol=native#text/plain
*.mak text svneol=native#text/plain
*.qbk text svneol=native#text/plain
*.rst text svneol=native#text/plain
*.sql text svneol=native#text/x-sql
*.txt text svneol=native#text/plain
*.xhtml text svneol=native#text/xhtml%2Bxml
*.xml text svneol=native#text/xml
*.xsd text svneol=native#text/xml
*.xsl text svneol=native#text/xml
*.xslt text svneol=native#text/xml
*.xul text svneol=native#text/xul
*.yml text svneol=native#text/plain
boost-no-inspect text svneol=native#text/plain
CHANGES text svneol=native#text/plain
COPYING text svneol=native#text/plain
INSTALL text svneol=native#text/plain
Jamfile text svneol=native#text/plain
Jamroot text svneol=native#text/plain
Jamfile.v2 text svneol=native#text/plain
Jamrules text svneol=native#text/plain
Makefile* text svneol=native#text/plain
README text svneol=native#text/plain
TODO text svneol=native#text/plain
# Code formats
*.c text svneol=native#text/plain
*.cpp text svneol=native#text/plain
*.h text svneol=native#text/plain
*.hpp text svneol=native#text/plain
*.ipp text svneol=native#text/plain
*.tpp text svneol=native#text/plain
*.jam text svneol=native#text/plain
*.java text svneol=native#text/plain

257
function_test.cpp Normal file
View File

@ -0,0 +1,257 @@
// ------------------------------------------------------------------------------
// Tests for the Boost functional.hpp header file
//
// Note that functional.hpp relies on partial specialisation to be
// effective. If your compiler lacks this feature, very few of the
// tests would compile, and so have been excluded from the test.
// ------------------------------------------------------------------------------
// Copyright (c) 2000
// Cadenza New Zealand Ltd
//
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without
// fee, provided that the above copyright notice appears in all copies
// and that both the copyright notice and this permission notice
// appear in supporting documentation. Cadenza New Zealand Ltd makes
// no representations about the suitability of this software for any
// purpose. It is provided "as is" without express or implied
// warranty.
// ------------------------------------------------------------------------------
// $Id$
// ------------------------------------------------------------------------------
// $Log$
// Revision 1.1.1.1 2000/07/07 16:04:18 beman
// 1.16.1 initial CVS checkin
//
// Revision 1.3 2000/06/26 09:44:01 mark
// Updated following feedback from Jens Maurer.
//
// Revision 1.2 2000/05/17 08:31:45 mark
// Added extra tests now that function traits work correctly.
// For compilers with no support for partial specialisation,
// excluded tests that won't work.
//
// Revision 1.1 2000/05/07 09:14:41 mark
// Initial revision
// ------------------------------------------------------------------------------
// To demonstrate what the boosted function object adapters do for
// you, try compiling with USE_STD defined. This will endeavour to
// use the standard function object adapters, but is likely to result
// in numerous errors due to the fact that you cannot have references
// to references.
#ifdef USE_STD
#include <functional>
#define boost std
#else
#include <boost/functional.hpp>
#endif
#include <algorithm>
#include <iostream>
#include <iterator>
#include <string>
#include <vector>
class Person
{
public:
Person() {}
Person(const char *n) : name(n) {}
const std::string &get_name() const { return name; }
void print(std::ostream &os) const { os << name << " "; }
void set_name(const std::string &n) { name = n; std::cout << name << " "; }
std::string clear_name() { std::string ret = name; name = ""; return ret; }
void do_something(int) const {}
bool is_fred() const { return name == "Fred"; }
private:
std::string name;
};
namespace
{
bool is_equal(const std::string &s1, const std::string &s2)
{
return s1 == s2;
}
bool is_betty(const std::string &s)
{
return s == "Betty";
}
void do_set_name(Person *p, const std::string &name)
{
p->set_name(name);
}
void do_set_name_ref(Person &p, const std::string &name)
{
p.set_name(name);
}
}
int main()
{
std::vector<Person> v1;
v1.push_back("Fred");
v1.push_back("Wilma");
v1.push_back("Barney");
v1.push_back("Betty");
const std::vector<Person> cv1(v1.begin(), v1.end());
std::vector<std::string> v2;
v2.push_back("Fred");
v2.push_back("Wilma");
v2.push_back("Barney");
v2.push_back("Betty");
Person person;
Person &r = person;
Person fred("Fred");
Person wilma("Wilma");
Person barney("Barney");
Person betty("Betty");
std::vector<Person*> v3;
v3.push_back(&fred);
v3.push_back(&wilma);
v3.push_back(&barney);
v3.push_back(&betty);
const std::vector<Person*> cv3(v3.begin(), v3.end());
std::vector<const Person*> v3c(v3.begin(), v3.end());
std::ostream &os = std::cout;
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
// unary_traits, unary_negate
std::transform(v2.begin(), v2.end(),
std::ostream_iterator<bool>(std::cout, " "),
boost::not1(is_betty));
std::cout << '\n';
std::transform(v1.begin(), v1.end(),
std::ostream_iterator<bool>(std::cout, " "),
boost::not1(boost::mem_fun_ref(&Person::is_fred)));
// binary_traits, binary_negate
std::cout << '\n';
std::transform(v2.begin(), v2.end(),
std::ostream_iterator<bool>(std::cout, " "),
boost::bind1st(boost::not2(is_equal), "Betty"));
std::cout << '\n';
std::transform(v2.begin(), v2.end(),
std::ostream_iterator<bool>(std::cout, " "),
boost::bind2nd(boost::not2(is_equal), "Betty"));
// pointer_to_unary_function
std::cout << '\n';
std::transform(v2.begin(), v2.end(),
std::ostream_iterator<bool>(std::cout, " "),
boost::not1(boost::ptr_fun(is_betty)));
// binary_traits, bind1st, bind2nd
std::cout << '\n';
std::transform(v2.begin(), v2.end(),
std::ostream_iterator<bool>(std::cout, " "),
boost::bind1st(is_equal, "Betty"));
std::cout << '\n';
std::transform(v2.begin(), v2.end(),
std::ostream_iterator<bool>(std::cout, " "),
boost::bind2nd(is_equal, "Betty"));
// pointer_to_binary_function, bind1st
std::cout << '\n';
std::for_each(v2.begin(), v2.end(), boost::bind1st(boost::ptr_fun(do_set_name), &person));
std::cout << '\n';
std::for_each(v2.begin(), v2.end(), boost::bind1st(boost::ptr_fun(do_set_name_ref), person));
std::cout << '\n';
std::for_each(v2.begin(), v2.end(), boost::bind1st(boost::ptr_fun(do_set_name_ref), r));
// binary_traits
std::cout << '\n';
std::for_each(v2.begin(), v2.end(), boost::bind1st(do_set_name, &person));
std::cout << '\n';
std::for_each(v2.begin(), v2.end(), boost::bind1st(do_set_name_ref, person));
std::cout << '\n';
std::for_each(v2.begin(), v2.end(), boost::bind1st(do_set_name_ref, r));
#endif
// const_mem_fun_t
std::cout << '\n';
std::transform(v3.begin(), v3.end(),
std::ostream_iterator<std::string>(std::cout, " "),
boost::mem_fun(&Person::get_name));
std::cout << '\n';
std::transform(cv3.begin(), cv3.end(),
std::ostream_iterator<std::string>(std::cout, " "),
boost::mem_fun(&Person::get_name));
std::cout << '\n';
std::transform(v3c.begin(), v3c.end(),
std::ostream_iterator<std::string>(std::cout, " "),
boost::mem_fun(&Person::get_name));
// const_mem_fun_ref_t
std::cout << '\n';
std::transform(v1.begin(), v1.end(),
std::ostream_iterator<std::string>(std::cout, " "),
boost::mem_fun_ref(&Person::get_name));
std::cout << '\n';
std::transform(cv1.begin(), cv1.end(),
std::ostream_iterator<std::string>(std::cout, " "),
boost::mem_fun_ref(&Person::get_name));
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
// const_mem_fun1_t, bind2nd
std::cout << '\n';
std::for_each(v3.begin(), v3.end(), boost::bind2nd(boost::mem_fun(&Person::print), std::cout));
std::cout << '\n';
std::for_each(v3.begin(), v3.end(), boost::bind2nd(boost::mem_fun(&Person::print), os));
// const_mem_fun1_ref_t, bind2nd
std::cout << '\n';
std::for_each(v1.begin(), v1.end(), boost::bind2nd(boost::mem_fun_ref(&Person::print), std::cout));
std::cout << '\n';
std::for_each(v1.begin(), v1.end(), boost::bind2nd(boost::mem_fun_ref(&Person::print), os));
// mem_fun1_t, bind1st
std::cout << '\n';
std::for_each(v2.begin(), v2.end(), boost::bind1st(boost::mem_fun(&Person::set_name), &person));
// mem_fun1_ref_t, bind1st
std::cout << '\n';
std::for_each(v2.begin(), v2.end(), boost::bind1st(boost::mem_fun_ref(&Person::set_name), person));
std::cout << '\n';
std::for_each(v2.begin(), v2.end(), boost::bind1st(boost::mem_fun_ref(&Person::set_name), r));
#endif
// mem_fun_t
std::cout << '\n';
std::transform(v3.begin(), v3.end(), std::ostream_iterator<std::string>(std::cout, " "),
boost::mem_fun(&Person::clear_name));
// mem_fun_ref_t
std::cout << '\n';
std::transform(v1.begin(), v1.end(), std::ostream_iterator<std::string>(std::cout, " "),
boost::mem_fun_ref(&Person::clear_name));
std::cout << '\n';
return 0;
}

View File

@ -0,0 +1,535 @@
// ------------------------------------------------------------------------------
// Boost functional.hpp header file
// ------------------------------------------------------------------------------
// Copyright (c) 2000
// Cadenza New Zealand Ltd
//
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without
// fee, provided that the above copyright notice appears in all copies
// and that both the copyright notice and this permission notice
// appear in supporting documentation. Cadenza New Zealand Ltd makes
// no representations about the suitability of this software for any
// purpose. It is provided "as is" without express or implied
// warranty.
// ------------------------------------------------------------------------------
// $Id$
// ------------------------------------------------------------------------------
// $Log$
// Revision 1.1.1.1 2000/07/07 16:03:47 beman
// 1.16.1 initial CVS checkin
//
// Revision 1.3 2000/06/26 09:44:54 mark
// Updated following feedback from Jens Maurer.
//
// Revision 1.2 2000/05/17 08:36:30 mark
// Fixed problems with function object traits thanks to ideas
// from John Maddock.
//
// Revision 1.1 2000/05/07 08:26:51 mark
// Initial revision
// ------------------------------------------------------------------------------
#ifndef BOOST_FUNCTIONAL_HPP
#define BOOST_FUNCTIONAL_HPP
#include <boost/config.hpp>
#include <boost/call_traits.hpp>
#include <functional>
namespace boost
{
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
// --------------------------------------------------------------------------
// The following traits classes allow us to avoid the need for ptr_fun
// because the types of arguments and the result of a function can be
// deduced.
//
// In addition to the standard types defined in unary_function and
// binary_function, we add
//
// - function_type, the type of the function or function object itself.
//
// - param_type, the type that should be used for passing the function or
// function object as an argument.
// --------------------------------------------------------------------------
namespace detail
{
template <class Operation>
struct unary_traits_imp;
template <class Operation>
struct unary_traits_imp<Operation*>
{
typedef Operation function_type;
typedef const function_type & param_type;
typedef typename Operation::result_type result_type;
typedef typename Operation::argument_type argument_type;
};
template <class R, class A>
struct unary_traits_imp<R(*)(A)>
{
typedef R (*function_type)(A);
typedef R (*param_type)(A);
typedef R result_type;
typedef A argument_type;
};
template <class Operation>
struct binary_traits_imp;
template <class Operation>
struct binary_traits_imp<Operation*>
{
typedef Operation function_type;
typedef const function_type & param_type;
typedef typename Operation::result_type result_type;
typedef typename Operation::first_argument_type first_argument_type;
typedef typename Operation::second_argument_type second_argument_type;
};
template <class R, class A1, class A2>
struct binary_traits_imp<R(*)(A1,A2)>
{
typedef R (*function_type)(A1,A2);
typedef R (*param_type)(A1,A2);
typedef R result_type;
typedef A1 first_argument_type;
typedef A2 second_argument_type;
};
} // namespace detail
template <class Operation>
struct unary_traits
{
typedef typename detail::unary_traits_imp<Operation*>::function_type function_type;
typedef typename detail::unary_traits_imp<Operation*>::param_type param_type;
typedef typename detail::unary_traits_imp<Operation*>::result_type result_type;
typedef typename detail::unary_traits_imp<Operation*>::argument_type argument_type;
};
template <class R, class A>
struct unary_traits<R(*)(A)>
{
typedef R (*function_type)(A);
typedef R (*param_type)(A);
typedef R result_type;
typedef A argument_type;
};
template <class Operation>
struct binary_traits
{
typedef typename detail::binary_traits_imp<Operation*>::function_type function_type;
typedef typename detail::binary_traits_imp<Operation*>::param_type param_type;
typedef typename detail::binary_traits_imp<Operation*>::result_type result_type;
typedef typename detail::binary_traits_imp<Operation*>::first_argument_type first_argument_type;
typedef typename detail::binary_traits_imp<Operation*>::second_argument_type second_argument_type;
};
template <class R, class A1, class A2>
struct binary_traits<R(*)(A1,A2)>
{
typedef R (*function_type)(A1,A2);
typedef R (*param_type)(A1,A2);
typedef R result_type;
typedef A1 first_argument_type;
typedef A2 second_argument_type;
};
#else
// --------------------------------------------------------------------------
// If we have no partial specialisation available, decay to a situation
// that is no worse than in the Standard, i.e., ptr_fun will be required.
// --------------------------------------------------------------------------
template <class Operation>
struct unary_traits
{
typedef Operation function_type;
typedef const Operation& param_type;
typedef typename Operation::result_type result_type;
typedef typename Operation::argument_type argument_type;
};
template <class Operation>
struct binary_traits
{
typedef Operation function_type;
typedef const Operation & param_type;
typedef typename Operation::result_type result_type;
typedef typename Operation::first_argument_type first_argument_type;
typedef typename Operation::second_argument_type second_argument_type;
};
#endif
// --------------------------------------------------------------------------
// unary_negate, not1
// --------------------------------------------------------------------------
template <class Predicate>
class unary_negate
: public std::unary_function<typename unary_traits<Predicate>::argument_type,bool>
{
public:
explicit unary_negate(typename unary_traits<Predicate>::param_type x)
:
pred(x)
{}
bool operator()(typename call_traits<typename unary_traits<Predicate>::argument_type>::param_type x) const
{
return !pred(x);
}
private:
typename unary_traits<Predicate>::function_type pred;
};
template <class Predicate>
unary_negate<Predicate> not1(const Predicate &pred)
{
// The cast is to placate Borland C++Builder in certain circumstances.
// I don't think it should be necessary.
return unary_negate<Predicate>((typename unary_traits<Predicate>::param_type)pred);
}
// --------------------------------------------------------------------------
// binary_negate, not2
// --------------------------------------------------------------------------
template <class Predicate>
class binary_negate
: public std::binary_function<typename binary_traits<Predicate>::first_argument_type,
typename binary_traits<Predicate>::second_argument_type,
bool>
{
public:
explicit binary_negate(typename binary_traits<Predicate>::param_type x)
:
pred(x)
{}
bool operator()(typename call_traits<typename binary_traits<Predicate>::first_argument_type>::param_type x,
typename call_traits<typename binary_traits<Predicate>::second_argument_type>::param_type y) const
{
return !pred(x,y);
}
private:
typename binary_traits<Predicate>::function_type pred;
};
template <class Predicate>
binary_negate<Predicate> not2(const Predicate &pred)
{
// The cast is to placate Borland C++Builder in certain circumstances.
// I don't think it should be necessary.
return binary_negate<Predicate>((typename binary_traits<Predicate>::param_type)pred);
}
// --------------------------------------------------------------------------
// binder1st, bind1st
// --------------------------------------------------------------------------
template <class Operation>
class binder1st
: public std::unary_function<typename binary_traits<Operation>::second_argument_type,
typename binary_traits<Operation>::result_type>
{
public:
binder1st(typename binary_traits<Operation>::param_type x,
typename call_traits<typename binary_traits<Operation>::first_argument_type>::param_type y)
:
op(x), value(y)
{}
typename binary_traits<Operation>::result_type
operator()(typename call_traits<typename binary_traits<Operation>::second_argument_type>::param_type x) const
{
return op(value, x);
}
protected:
typename binary_traits<Operation>::function_type op;
typename binary_traits<Operation>::first_argument_type value;
};
template <class Operation>
inline binder1st<Operation> bind1st(const Operation &op,
typename call_traits<
typename binary_traits<Operation>::first_argument_type
>::param_type x)
{
// The cast is to placate Borland C++Builder in certain circumstances.
// I don't think it should be necessary.
return binder1st<Operation>((typename binary_traits<Operation>::param_type)op, x);
}
// --------------------------------------------------------------------------
// binder2nd, bind2nd
// --------------------------------------------------------------------------
template <class Operation>
class binder2nd
: public std::unary_function<typename binary_traits<Operation>::first_argument_type,
typename binary_traits<Operation>::result_type>
{
public:
binder2nd(typename binary_traits<Operation>::param_type x,
typename call_traits<typename binary_traits<Operation>::second_argument_type>::param_type y)
:
op(x), value(y)
{}
typename binary_traits<Operation>::result_type
operator()(typename call_traits<typename binary_traits<Operation>::first_argument_type>::param_type x) const
{
return op(x, value);
}
protected:
typename binary_traits<Operation>::function_type op;
typename binary_traits<Operation>::second_argument_type value;
};
template <class Operation>
inline binder2nd<Operation> bind2nd(const Operation &op,
typename call_traits<
typename binary_traits<Operation>::second_argument_type
>::param_type x)
{
// The cast is to placate Borland C++Builder in certain circumstances.
// I don't think it should be necessary.
return binder2nd<Operation>((typename binary_traits<Operation>::param_type)op, x);
}
// --------------------------------------------------------------------------
// mem_fun, etc
// --------------------------------------------------------------------------
template <class S, class T>
class mem_fun_t : public std::unary_function<T*, S>
{
public:
explicit mem_fun_t(S (T::*p)())
:
ptr(p)
{}
S operator()(T* p) const
{
return (p->*ptr)();
}
private:
S (T::*ptr)();
};
template <class S, class T, class A>
class mem_fun1_t : public std::binary_function<T*, A, S>
{
public:
explicit mem_fun1_t(S (T::*p)(A))
:
ptr(p)
{}
S operator()(T* p, typename call_traits<A>::param_type x) const
{
return (p->*ptr)(x);
}
private:
S (T::*ptr)(A);
};
template <class S, class T>
class const_mem_fun_t : public std::unary_function<const T*, S>
{
public:
explicit const_mem_fun_t(S (T::*p)() const)
:
ptr(p)
{}
S operator()(const T* p) const
{
return (p->*ptr)();
}
private:
S (T::*ptr)() const;
};
template <class S, class T, class A>
class const_mem_fun1_t : public std::binary_function<const T*, A, S>
{
public:
explicit const_mem_fun1_t(S (T::*p)(A) const)
:
ptr(p)
{}
S operator()(const T* p, typename call_traits<A>::param_type x) const
{
return (p->*ptr)(x);
}
private:
S (T::*ptr)(A) const;
};
template<class S, class T>
inline mem_fun_t<S,T> mem_fun(S (T::*f)())
{
return mem_fun_t<S,T>(f);
}
template<class S, class T, class A>
inline mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A))
{
return mem_fun1_t<S,T,A>(f);
}
template<class S, class T>
inline const_mem_fun_t<S,T> mem_fun(S (T::*f)() const)
{
return const_mem_fun_t<S,T>(f);
}
template<class S, class T, class A>
inline const_mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A) const)
{
return const_mem_fun1_t<S,T,A>(f);
}
// --------------------------------------------------------------------------
// mem_fun_ref, etc
// --------------------------------------------------------------------------
template <class S, class T>
class mem_fun_ref_t : public std::unary_function<T&, S>
{
public:
explicit mem_fun_ref_t(S (T::*p)())
:
ptr(p)
{}
S operator()(T& p) const
{
return (p.*ptr)();
}
private:
S (T::*ptr)();
};
template <class S, class T, class A>
class mem_fun1_ref_t : public std::binary_function<T&, A, S>
{
public:
explicit mem_fun1_ref_t(S (T::*p)(A))
:
ptr(p)
{}
S operator()(T& p, typename call_traits<A>::param_type x) const
{
return (p.*ptr)(x);
}
private:
S (T::*ptr)(A);
};
template <class S, class T>
class const_mem_fun_ref_t : public std::unary_function<const T&, S>
{
public:
explicit const_mem_fun_ref_t(S (T::*p)() const)
:
ptr(p)
{}
S operator()(const T &p) const
{
return (p.*ptr)();
}
private:
S (T::*ptr)() const;
};
template <class S, class T, class A>
class const_mem_fun1_ref_t : public std::binary_function<const T&, A, S>
{
public:
explicit const_mem_fun1_ref_t(S (T::*p)(A) const)
:
ptr(p)
{}
S operator()(const T& p, typename call_traits<A>::param_type x) const
{
return (p.*ptr)(x);
}
private:
S (T::*ptr)(A) const;
};
template<class S, class T>
inline mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)())
{
return mem_fun_ref_t<S,T>(f);
}
template<class S, class T, class A>
inline mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A))
{
return mem_fun1_ref_t<S,T,A>(f);
}
template<class S, class T>
inline const_mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)() const)
{
return const_mem_fun_ref_t<S,T>(f);
}
template<class S, class T, class A>
inline const_mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A) const)
{
return const_mem_fun1_ref_t<S,T,A>(f);
}
// --------------------------------------------------------------------------
// ptr_fun
// --------------------------------------------------------------------------
template <class Arg, class Result>
class pointer_to_unary_function : public std::unary_function<Arg,Result>
{
public:
explicit pointer_to_unary_function(Result (*f)(Arg))
:
func(f)
{}
Result operator()(typename call_traits<Arg>::param_type x) const
{
return func(x);
}
private:
Result (*func)(Arg);
};
template <class Arg, class Result>
inline pointer_to_unary_function<Arg,Result> ptr_fun(Result (*f)(Arg))
{
return pointer_to_unary_function<Arg,Result>(f);
}
template <class Arg1, class Arg2, class Result>
class pointer_to_binary_function : public std::binary_function<Arg1,Arg2,Result>
{
public:
explicit pointer_to_binary_function(Result (*f)(Arg1, Arg2))
:
func(f)
{}
Result operator()(typename call_traits<Arg1>::param_type x, typename call_traits<Arg2>::param_type y) const
{
return func(x,y);
}
private:
Result (*func)(Arg1, Arg2);
};
template <class Arg1, class Arg2, class Result>
inline pointer_to_binary_function<Arg1,Arg2,Result> ptr_fun(Result (*f)(Arg1, Arg2))
{
return pointer_to_binary_function<Arg1,Arg2,Result>(f);
}
} // namespace boost
#endif