2018-02-10 16:07:17 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								[section:mod_inverse Modular Multiplicative Inverse]
							 | 
						
					
						
							
								
									
										
										
										
											2018-01-28 14:47:14 -06:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								[section Introduction]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2018-02-10 16:07:17 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								The modular multiplicative inverse of a number /a/ is that number /x/ which satisfies /ax/ = 1 mod /p/.
							 | 
						
					
						
							
								
									
										
										
										
											2018-01-28 14:47:14 -06:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								A fast algorithm for computing modular multiplicative inverses based on the extended Euclidean algorithm exists and is provided by Boost.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								[endsect]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								[section Synopsis]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2018-02-10 16:07:17 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    #include <boost/integer/mod_inverse.hpp>
							 | 
						
					
						
							
								
									
										
										
										
											2018-01-28 14:47:14 -06:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    namespace boost { namespace integer {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2018-10-25 09:38:16 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    template<class Z>
							 | 
						
					
						
							
								
									
										
										
										
											2018-10-26 12:05:47 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    boost::optional<Z> mod_inverse(Z a, Z m);
							 | 
						
					
						
							
								
									
										
										
										
											2018-01-28 14:47:14 -06:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								[endsect]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								[section Usage]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2018-10-26 12:05:47 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								Multiplicative modular inverses exist if and only if /a/ and /m/ are coprime.
							 | 
						
					
						
							
								
									
										
										
										
											2018-01-28 14:47:14 -06:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								So for example
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2018-02-10 16:07:17 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    auto x = mod_inverse(2, 5);
							 | 
						
					
						
							
								
									
										
										
										
											2018-01-28 14:47:14 -06:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if (x)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        int should_be_three = x.value();
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							
								
									
										
										
										
											2018-02-10 16:07:17 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    auto y = mod_inverse(2, 4);
							 | 
						
					
						
							
								
									
										
										
										
											2018-01-28 14:47:14 -06:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if (!y)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        std::cout << "There is no inverse of 2 mod 4\n";
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								[endsect]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								[section References]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								Wagstaff, Samuel S., ['The Joy of Factoring], Vol. 68. American Mathematical Soc., 2013.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								[endsect]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								[endsect]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								[/
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								Copyright 2018 Nick Thompson.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								Distributed under the Boost Software License, Version 1.0.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								(See accompanying file LICENSE_1_0.txt or copy at
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								http://www.boost.org/LICENSE_1_0.txt).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								]
							 |