Compare commits

..

1 Commits

Author SHA1 Message Date
abffbb8300 This commit was manufactured by cvs2svn to create branch
'python-v2-dev'.

[SVN r14785]
2002-08-12 13:35:54 +00:00
219 changed files with 2180 additions and 40236 deletions

View File

@ -1,71 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>Bidirectional Traversal Concept</title>
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">Bidirectional Traversal Concept</h1>
<div class="document" id="bidirectional-traversal-concept">
<p>A class or built-in type <tt class="literal"><span class="pre">X</span></tt> models the <em>Bidirectional Traversal</em>
concept if, in addition to <tt class="literal"><span class="pre">X</span></tt> meeting the requirements of Forward
Traversal Iterator, the following expressions are valid and respect
the stated semantics.</p>
<table border="1" class="table">
<colgroup>
<col width="38%" />
<col width="37%" />
<col width="25%" />
</colgroup>
<thead valign="bottom">
<tr><th colspan="3">Bidirectional Traversal Iterator Requirements (in addition to Forward Traversal
Iterator)</th>
</tr>
<tr><th>Expression</th>
<th>Return Type</th>
<th>Assertion/Semantics /
Pre-/Post-condition</th>
</tr>
</thead>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">--r</span></tt></td>
<td><tt class="literal"><span class="pre">X&amp;</span></tt></td>
<td>pre: there exists
<tt class="literal"><span class="pre">s</span></tt> such that <tt class="literal"><span class="pre">r</span>
<span class="pre">==</span> <span class="pre">++s</span></tt>. post:
<tt class="literal"><span class="pre">s</span></tt> is
dereferenceable.
<tt class="literal"><span class="pre">--(++r)</span> <span class="pre">==</span> <span class="pre">r</span></tt>.
<tt class="literal"><span class="pre">--r</span> <span class="pre">==</span> <span class="pre">--s</span></tt>
implies <tt class="literal"><span class="pre">r</span> <span class="pre">==</span>
<span class="pre">s</span></tt>. <tt class="literal"><span class="pre">&amp;r</span> <span class="pre">==</span> <span class="pre">&amp;--r</span></tt>.</td>
</tr>
<tr><td><tt class="literal"><span class="pre">r--</span></tt></td>
<td>convertible to <tt class="literal"><span class="pre">const</span> <span class="pre">X&amp;</span></tt></td>
<td><pre class="first last literal-block">
{
X tmp = r;
--r;
return tmp;
}
</pre>
</td>
</tr>
<tr><td><tt class="literal"><span class="pre">iterator_traversal&lt;X&gt;::type</span></tt></td>
<td>Convertible to
<tt class="literal"><span class="pre">bidirectional_traversal_tag</span></tt></td>
<td>&nbsp;</td>
</tr>
</tbody>
</table>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="BidirectionalTraversal.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

View File

@ -1,37 +0,0 @@
Bidirectional Traversal Concept
...............................
A class or built-in type ``X`` models the *Bidirectional Traversal*
concept if, in addition to ``X`` meeting the requirements of Forward
Traversal Iterator, the following expressions are valid and respect
the stated semantics.
+--------------------------------------------------------------------------------------+
|Bidirectional Traversal Iterator Requirements (in addition to Forward Traversal |
|Iterator) |
+--------------------------------+-------------------------------+---------------------+
|Expression |Return Type |Assertion/Semantics /|
| | |Pre-/Post-condition |
+================================+===============================+=====================+
|``--r`` |``X&`` |pre: there exists |
| | |``s`` such that ``r |
| | |== ++s``. post: |
| | |``s`` is |
| | |dereferenceable. |
| | |``--(++r) == r``. |
| | |``--r == --s`` |
| | |implies ``r == |
| | |s``. ``&r == &--r``. |
+--------------------------------+-------------------------------+---------------------+
|``r--`` |convertible to ``const X&`` |:: |
| | | |
| | | { |
| | | X tmp = r; |
| | | --r; |
| | | return tmp; |
| | | } |
+--------------------------------+-------------------------------+---------------------+
|``iterator_traversal<X>::type`` |Convertible to | |
| |``bidirectional_traversal_tag``| |
| | | |
+--------------------------------+-------------------------------+---------------------+

View File

@ -1,62 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>Forward Traversal Concept</title>
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">Forward Traversal Concept</h1>
<div class="document" id="forward-traversal-concept">
<p>A class or built-in type <tt class="literal"><span class="pre">X</span></tt> models the <em>Forward Traversal</em>
concept if, in addition to <tt class="literal"><span class="pre">X</span></tt> meeting the requirements of Default
Constructible and Single Pass Iterator, the following expressions are
valid and respect the stated semantics.</p>
<table border="1" class="table">
<colgroup>
<col width="38%" />
<col width="34%" />
<col width="27%" />
</colgroup>
<thead valign="bottom">
<tr><th colspan="3">Forward Traversal Iterator Requirements (in addition to Default Constructible and Single Pass Iterator)</th>
</tr>
<tr><th>Expression</th>
<th>Return Type</th>
<th>Assertion/Note</th>
</tr>
</thead>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">X</span> <span class="pre">u;</span></tt></td>
<td><tt class="literal"><span class="pre">X&amp;</span></tt></td>
<td>note: <tt class="literal"><span class="pre">u</span></tt> may have a
singular value.</td>
</tr>
<tr><td><tt class="literal"><span class="pre">++r</span></tt></td>
<td><tt class="literal"><span class="pre">X&amp;</span></tt></td>
<td><tt class="literal"><span class="pre">r</span> <span class="pre">==</span> <span class="pre">s</span></tt> and <tt class="literal"><span class="pre">r</span></tt> is
dereferenceable implies
<tt class="literal"><span class="pre">++r</span> <span class="pre">==</span> <span class="pre">++s.</span></tt></td>
</tr>
<tr><td><tt class="literal"><span class="pre">iterator_traits&lt;X&gt;::difference_type</span></tt></td>
<td>A signed integral type representing
the distance between iterators</td>
<td>&nbsp;</td>
</tr>
<tr><td><tt class="literal"><span class="pre">iterator_traversal&lt;X&gt;::type</span></tt></td>
<td>Convertible to
<tt class="literal"><span class="pre">forward_traversal_tag</span></tt></td>
<td>&nbsp;</td>
</tr>
</tbody>
</table>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="ForwardTraversal.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

View File

@ -1,27 +0,0 @@
Forward Traversal Concept
.........................
A class or built-in type ``X`` models the *Forward Traversal*
concept if, in addition to ``X`` meeting the requirements of Default
Constructible and Single Pass Iterator, the following expressions are
valid and respect the stated semantics.
+--------------------------------------------------------------------------------------------------------+
|Forward Traversal Iterator Requirements (in addition to Default Constructible and Single Pass Iterator) |
+---------------------------------------+-----------------------------------+----------------------------+
|Expression |Return Type |Assertion/Note |
+=======================================+===================================+============================+
|``X u;`` |``X&`` |note: ``u`` may have a |
| | |singular value. |
+---------------------------------------+-----------------------------------+----------------------------+
|``++r`` |``X&`` |``r == s`` and ``r`` is |
| | |dereferenceable implies |
| | |``++r == ++s.`` |
+---------------------------------------+-----------------------------------+----------------------------+
|``iterator_traits<X>::difference_type``|A signed integral type representing| |
| |the distance between iterators | |
| | | |
+---------------------------------------+-----------------------------------+----------------------------+
|``iterator_traversal<X>::type`` |Convertible to | |
| |``forward_traversal_tag`` | |
+---------------------------------------+-----------------------------------+----------------------------+

View File

@ -1,15 +0,0 @@
# Copyright David Abrahams 2004. Distributed under the Boost
# Software License, Version 1.0. (See accompanying
# file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
ECHO = /bin/echo
all:
@${ECHO} "<boost-root>/libs/iterator/doc/GNUmakefile should be replaced by"
@${ECHO}
@${ECHO} " http://www.boost-consulting.com/writing/GNUmakefile,"
@${ECHO}
@${ECHO} "before proceeding. That file is not included in the Boost"
@${ECHO} "distribution because it is licensed under the GPL, which violates"
@${ECHO} "Boost license requirements."

View File

@ -1,61 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>Incrementable Iterator Concept</title>
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">Incrementable Iterator Concept</h1>
<div class="document" id="incrementable-iterator-concept">
<p>A class or built-in type <tt class="literal"><span class="pre">X</span></tt> models the <em>Incrementable Iterator</em>
concept if, in addition to <tt class="literal"><span class="pre">X</span></tt> being Assignable and Copy
Constructible, the following expressions are valid and respect the
stated semantics.</p>
<table border="1" class="table">
<colgroup>
<col width="39%" />
<col width="37%" />
<col width="24%" />
</colgroup>
<thead valign="bottom">
<tr><th colspan="3">Incrementable Iterator Requirements (in addition to Assignable, Copy Constructible)</th>
</tr>
<tr><th>Expression</th>
<th>Return Type</th>
<th>Assertion/Semantics</th>
</tr>
</thead>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">++r</span></tt></td>
<td><tt class="literal"><span class="pre">X&amp;</span></tt></td>
<td><tt class="literal"><span class="pre">&amp;r</span> <span class="pre">==</span> <span class="pre">&amp;++r</span></tt></td>
</tr>
<tr><td><tt class="literal"><span class="pre">r++</span></tt></td>
<td><tt class="literal"><span class="pre">X</span></tt></td>
<td><pre class="first last literal-block">
{
X tmp = r;
++r;
return tmp;
}
</pre>
</td>
</tr>
<tr><td><tt class="literal"><span class="pre">iterator_traversal&lt;X&gt;::type</span></tt></td>
<td>Convertible to
<tt class="literal"><span class="pre">incrementable_traversal_tag</span></tt></td>
<td>&nbsp;</td>
</tr>
</tbody>
</table>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="IncrementableIterator.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

View File

@ -1,28 +0,0 @@
Incrementable Iterator Concept
..............................
A class or built-in type ``X`` models the *Incrementable Iterator*
concept if, in addition to ``X`` being Assignable and Copy
Constructible, the following expressions are valid and respect the
stated semantics.
+-------------------------------------------------------------------------------------+
|Incrementable Iterator Requirements (in addition to Assignable, Copy Constructible) |
| |
+--------------------------------+-------------------------------+--------------------+
|Expression |Return Type |Assertion/Semantics |
+================================+===============================+====================+
|``++r`` |``X&`` |``&r == &++r`` |
+--------------------------------+-------------------------------+--------------------+
|``r++`` |``X`` |:: |
| | | |
| | | { |
| | | X tmp = r; |
| | | ++r; |
| | | return tmp; |
| | | } |
+--------------------------------+-------------------------------+--------------------+
|``iterator_traversal<X>::type`` |Convertible to | |
| |``incrementable_traversal_tag``| |
+--------------------------------+-------------------------------+--------------------+

View File

@ -1,57 +0,0 @@
Interoperable Iterator Concept
..............................
A class or built-in type ``X`` that models Single Pass Iterator is
*interoperable with* a class or built-in type ``Y`` that also models
Single Pass Iterator if the following expressions are valid and
respect the stated semantics. In the tables below, ``x`` is an object
of type ``X``, ``y`` is an object of type ``Y``, ``Distance`` is
``iterator_traits<Y>::difference_type``, and ``n`` represents a
constant object of type ``Distance``.
+-----------+-----------------------+---------------------------------------------------+
|Expression |Return Type |Assertion/Precondition/Postcondition |
+===========+=======================+===================================================+
|``y = x`` |``Y`` |post: ``y == x`` |
+-----------+-----------------------+---------------------------------------------------+
|``Y(x)`` |``Y`` |post: ``Y(x) == x`` |
+-----------+-----------------------+---------------------------------------------------+
|``x == y`` |convertible to ``bool``|``==`` is an equivalence relation over its domain. |
+-----------+-----------------------+---------------------------------------------------+
|``y == x`` |convertible to ``bool``|``==`` is an equivalence relation over its domain. |
+-----------+-----------------------+---------------------------------------------------+
|``x != y`` |convertible to ``bool``|``bool(a==b) != bool(a!=b)`` over its domain. |
+-----------+-----------------------+---------------------------------------------------+
|``y != x`` |convertible to ``bool``|``bool(a==b) != bool(a!=b)`` over its domain. |
+-----------+-----------------------+---------------------------------------------------+
If ``X`` and ``Y`` both model Random Access Traversal Iterator then
the following additional requirements must be met.
+-----------+-----------------------+---------------------+--------------------------------------+
|Expression |Return Type |Operational Semantics|Assertion/ Precondition |
+===========+=======================+=====================+======================================+
|``x < y`` |convertible to ``bool``|``y - x > 0`` |``<`` is a total ordering relation |
+-----------+-----------------------+---------------------+--------------------------------------+
|``y < x`` |convertible to ``bool``|``x - y > 0`` |``<`` is a total ordering relation |
+-----------+-----------------------+---------------------+--------------------------------------+
|``x > y`` |convertible to ``bool``|``y < x`` |``>`` is a total ordering relation |
+-----------+-----------------------+---------------------+--------------------------------------+
|``y > x`` |convertible to ``bool``|``x < y`` |``>`` is a total ordering relation |
+-----------+-----------------------+---------------------+--------------------------------------+
|``x >= y`` |convertible to ``bool``|``!(x < y)`` | |
+-----------+-----------------------+---------------------+--------------------------------------+
|``y >= x`` |convertible to ``bool``|``!(y < x)`` | |
+-----------+-----------------------+---------------------+--------------------------------------+
|``x <= y`` |convertible to ``bool``|``!(x > y)`` | |
+-----------+-----------------------+---------------------+--------------------------------------+
|``y <= x`` |convertible to ``bool``|``!(y > x)`` | |
+-----------+-----------------------+---------------------+--------------------------------------+
|``y - x`` |``Distance`` |``distance(Y(x),y)`` |pre: there exists a value ``n`` of |
| | | |``Distance`` such that ``x + n == y``.|
| | | |``y == x + (y - x)``. |
+-----------+-----------------------+---------------------+--------------------------------------+
|``x - y`` |``Distance`` |``distance(y,Y(x))`` |pre: there exists a value ``n`` of |
| | | |``Distance`` such that ``y + n == x``.|
| | | |``x == y + (x - y)``. |
+-----------+-----------------------+---------------------+--------------------------------------+

View File

@ -1,51 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>Lvalue Iterator Concept</title>
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">Lvalue Iterator Concept</h1>
<div class="document" id="lvalue-iterator-concept">
<p>The <em>Lvalue Iterator</em> concept adds the requirement that the return
type of <tt class="literal"><span class="pre">operator*</span></tt> type be a reference to the value type of the
iterator.</p>
<table border="1" class="table">
<colgroup>
<col width="22%" />
<col width="19%" />
<col width="59%" />
</colgroup>
<thead valign="bottom">
<tr><th colspan="3">Lvalue Iterator Requirements</th>
</tr>
<tr><th>Expression</th>
<th>Return Type</th>
<th>Note/Assertion</th>
</tr>
</thead>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">*a</span></tt></td>
<td><tt class="literal"><span class="pre">T&amp;</span></tt></td>
<td><tt class="literal"><span class="pre">T</span></tt> is <em>cv</em>
<tt class="literal"><span class="pre">iterator_traits&lt;X&gt;::value_type</span></tt>
where <em>cv</em> is an optional
cv-qualification.
pre: <tt class="literal"><span class="pre">a</span></tt> is
dereferenceable. If <tt class="literal"><span class="pre">a</span>
<span class="pre">==</span> <span class="pre">b</span></tt> then <tt class="literal"><span class="pre">*a</span></tt> is
equivalent to <tt class="literal"><span class="pre">*b</span></tt>.</td>
</tr>
</tbody>
</table>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="LvalueIterator.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

View File

@ -1,21 +0,0 @@
Lvalue Iterator Concept
.......................
The *Lvalue Iterator* concept adds the requirement that the return
type of ``operator*`` type be a reference to the value type of the
iterator.
+-------------------------------------------------------------+
| Lvalue Iterator Requirements |
+-------------+-----------+-----------------------------------+
|Expression |Return Type|Note/Assertion |
+=============+===========+===================================+
|``*a`` | ``T&`` |``T`` is *cv* |
| | |``iterator_traits<X>::value_type`` |
| | |where *cv* is an optional |
| | |cv-qualification. |
| | |pre: ``a`` is |
| | |dereferenceable. If ``a |
| | |== b`` then ``*a`` is |
| | |equivalent to ``*b``. |
+-------------+-----------+-----------------------------------+

View File

@ -1,129 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>Random Access Traversal Concept</title>
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">Random Access Traversal Concept</h1>
<div class="document" id="random-access-traversal-concept">
<p>A class or built-in type <tt class="literal"><span class="pre">X</span></tt> models the <em>Random Access Traversal</em>
concept if the following expressions are valid and respect the stated
semantics. In the table below, <tt class="literal"><span class="pre">Distance</span></tt> is
<tt class="literal"><span class="pre">iterator_traits&lt;X&gt;::difference_type</span></tt> and <tt class="literal"><span class="pre">n</span></tt> represents a
constant object of type <tt class="literal"><span class="pre">Distance</span></tt>.</p>
<table border="1" class="table">
<colgroup>
<col width="28%" />
<col width="30%" />
<col width="23%" />
<col width="20%" />
</colgroup>
<thead valign="bottom">
<tr><th colspan="4">Random Access Traversal Iterator Requirements (in addition to Bidirectional Traversal)</th>
</tr>
<tr><th>Expression</th>
<th>Return Type</th>
<th>Operational Semantics</th>
<th>Assertion/
Precondition</th>
</tr>
</thead>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">r</span> <span class="pre">+=</span> <span class="pre">n</span></tt></td>
<td><tt class="literal"><span class="pre">X&amp;</span></tt></td>
<td><pre class="first last literal-block">
{
Distance m = n;
if (m &gt;= 0)
while (m--)
++r;
else
while (m++)
--r;
return r;
}
</pre>
</td>
<td>&nbsp;</td>
</tr>
<tr><td><tt class="literal"><span class="pre">a</span> <span class="pre">+</span> <span class="pre">n</span></tt>, <tt class="literal"><span class="pre">n</span> <span class="pre">+</span> <span class="pre">a</span></tt></td>
<td><tt class="literal"><span class="pre">X</span></tt></td>
<td><tt class="literal"><span class="pre">{</span> <span class="pre">X</span> <span class="pre">tmp</span> <span class="pre">=</span> <span class="pre">a;</span> <span class="pre">return</span> <span class="pre">tmp</span>
<span class="pre">+=</span> <span class="pre">n;</span> <span class="pre">}</span></tt></td>
<td>&nbsp;</td>
</tr>
<tr><td><tt class="literal"><span class="pre">r</span> <span class="pre">-=</span> <span class="pre">n</span></tt></td>
<td><tt class="literal"><span class="pre">X&amp;</span></tt></td>
<td><tt class="literal"><span class="pre">return</span> <span class="pre">r</span> <span class="pre">+=</span> <span class="pre">-n</span></tt></td>
<td>&nbsp;</td>
</tr>
<tr><td><tt class="literal"><span class="pre">a</span> <span class="pre">-</span> <span class="pre">n</span></tt></td>
<td><tt class="literal"><span class="pre">X</span></tt></td>
<td><tt class="literal"><span class="pre">{</span> <span class="pre">X</span> <span class="pre">tmp</span> <span class="pre">=</span> <span class="pre">a;</span> <span class="pre">return</span> <span class="pre">tmp</span>
<span class="pre">-=</span> <span class="pre">n;</span> <span class="pre">}</span></tt></td>
<td>&nbsp;</td>
</tr>
<tr><td><tt class="literal"><span class="pre">b</span> <span class="pre">-</span> <span class="pre">a</span></tt></td>
<td><tt class="literal"><span class="pre">Distance</span></tt></td>
<td><tt class="literal"><span class="pre">a</span> <span class="pre">&lt;</span> <span class="pre">b</span> <span class="pre">?</span>&nbsp; <span class="pre">distance(a,b)</span>
<span class="pre">:</span> <span class="pre">-distance(b,a)</span></tt></td>
<td>pre: there exists a
value <tt class="literal"><span class="pre">n</span></tt> of
<tt class="literal"><span class="pre">Distance</span></tt> such that
<tt class="literal"><span class="pre">a</span> <span class="pre">+</span> <span class="pre">n</span> <span class="pre">==</span> <span class="pre">b</span></tt>. <tt class="literal"><span class="pre">b</span>
<span class="pre">==</span> <span class="pre">a</span> <span class="pre">+</span> <span class="pre">(b</span> <span class="pre">-</span> <span class="pre">a)</span></tt>.</td>
</tr>
<tr><td><tt class="literal"><span class="pre">a[n]</span></tt></td>
<td>convertible to T</td>
<td><tt class="literal"><span class="pre">*(a</span> <span class="pre">+</span> <span class="pre">n)</span></tt></td>
<td>pre: a is a <em>Readable
Iterator</em></td>
</tr>
<tr><td><tt class="literal"><span class="pre">a[n]</span> <span class="pre">=</span> <span class="pre">v</span></tt></td>
<td>convertible to T</td>
<td><tt class="literal"><span class="pre">*(a</span> <span class="pre">+</span> <span class="pre">n)</span> <span class="pre">=</span> <span class="pre">v</span></tt></td>
<td>pre: a is a <em>Writable
iterator</em></td>
</tr>
<tr><td><tt class="literal"><span class="pre">a</span> <span class="pre">&lt;</span> <span class="pre">b</span></tt></td>
<td>convertible to <tt class="literal"><span class="pre">bool</span></tt></td>
<td><tt class="literal"><span class="pre">b</span> <span class="pre">-</span> <span class="pre">a</span> <span class="pre">&gt;</span> <span class="pre">0</span></tt></td>
<td><tt class="literal"><span class="pre">&lt;</span></tt> is a total
ordering relation</td>
</tr>
<tr><td><tt class="literal"><span class="pre">a</span> <span class="pre">&gt;</span> <span class="pre">b</span></tt></td>
<td>convertible to <tt class="literal"><span class="pre">bool</span></tt></td>
<td><tt class="literal"><span class="pre">b</span> <span class="pre">&lt;</span> <span class="pre">a</span></tt></td>
<td><tt class="literal"><span class="pre">&gt;</span></tt> is a total
ordering relation</td>
</tr>
<tr><td><tt class="literal"><span class="pre">a</span> <span class="pre">&gt;=</span> <span class="pre">b</span></tt></td>
<td>convertible to <tt class="literal"><span class="pre">bool</span></tt></td>
<td><tt class="literal"><span class="pre">!(a</span> <span class="pre">&lt;</span> <span class="pre">b)</span></tt></td>
<td>&nbsp;</td>
</tr>
<tr><td><tt class="literal"><span class="pre">a</span> <span class="pre">&lt;=</span> <span class="pre">b</span></tt></td>
<td>convertible to <tt class="literal"><span class="pre">bool</span></tt></td>
<td><tt class="literal"><span class="pre">!(a</span> <span class="pre">&gt;</span> <span class="pre">b)</span></tt></td>
<td>&nbsp;</td>
</tr>
<tr><td><tt class="literal"><span class="pre">iterator_traversal&lt;X&gt;::type</span></tt></td>
<td>Convertible to
<tt class="literal"><span class="pre">random_access_traversal_tag</span></tt></td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
</tbody>
</table>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="RandomAccessTraversal.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

View File

@ -1,63 +0,0 @@
Random Access Traversal Concept
...............................
A class or built-in type ``X`` models the *Random Access Traversal*
concept if the following expressions are valid and respect the stated
semantics. In the table below, ``Distance`` is
``iterator_traits<X>::difference_type`` and ``n`` represents a
constant object of type ``Distance``.
+------------------------------------------------------------------------------------------------------------------+
|Random Access Traversal Iterator Requirements (in addition to Bidirectional Traversal) |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|Expression |Return Type |Operational Semantics |Assertion/ |
| | | |Precondition |
+===============================+=================================+=========================+======================+
|``r += n`` |``X&`` |:: | |
| | | | |
| | | { | |
| | | Distance m = n; | |
| | | if (m >= 0) | |
| | | while (m--) | |
| | | ++r; | |
| | | else | |
| | | while (m++) | |
| | | --r; | |
| | | return r; | |
| | | } | |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``a + n``, ``n + a`` |``X`` |``{ X tmp = a; return tmp| |
| | |+= n; }`` | |
| | | | |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``r -= n`` |``X&`` |``return r += -n`` | |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``a - n`` |``X`` |``{ X tmp = a; return tmp| |
| | |-= n; }`` | |
| | | | |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``b - a`` |``Distance`` |``a < b ? distance(a,b) |pre: there exists a |
| | |: -distance(b,a)`` |value ``n`` of |
| | | |``Distance`` such that|
| | | |``a + n == b``. ``b |
| | | |== a + (b - a)``. |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``a[n]`` |convertible to T |``*(a + n)`` |pre: a is a *Readable |
| | | |Iterator* |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``a[n] = v`` |convertible to T |``*(a + n) = v`` |pre: a is a *Writable |
| | | |iterator* |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``a < b`` |convertible to ``bool`` |``b - a > 0`` |``<`` is a total |
| | | |ordering relation |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``a > b`` |convertible to ``bool`` |``b < a`` |``>`` is a total |
| | | |ordering relation |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``a >= b`` |convertible to ``bool`` |``!(a < b)`` | |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``a <= b`` |convertible to ``bool`` |``!(a > b)`` | |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``iterator_traversal<X>::type``|Convertible to | | |
| |``random_access_traversal_tag`` | | |
+-------------------------------+---------------------------------+-------------------------+----------------------+

View File

@ -1,59 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>Readable Iterator Concept</title>
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">Readable Iterator Concept</h1>
<div class="document" id="readable-iterator-concept">
<p>A class or built-in type <tt class="literal"><span class="pre">X</span></tt> models the <em>Readable Iterator</em> concept
for value type <tt class="literal"><span class="pre">T</span></tt> if, in addition to <tt class="literal"><span class="pre">X</span></tt> being Assignable and
Copy Constructible, the following expressions are valid and respect
the stated semantics. <tt class="literal"><span class="pre">U</span></tt> is the type of any specified member of
type <tt class="literal"><span class="pre">T</span></tt>.</p>
<table border="1" class="table">
<colgroup>
<col width="28%" />
<col width="20%" />
<col width="52%" />
</colgroup>
<thead valign="bottom">
<tr><th colspan="3">Readable Iterator Requirements (in addition to Assignable and Copy Constructible)</th>
</tr>
<tr><th>Expression</th>
<th>Return Type</th>
<th>Note/Precondition</th>
</tr>
</thead>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">iterator_traits&lt;X&gt;::value_type</span></tt></td>
<td><tt class="literal"><span class="pre">T</span></tt></td>
<td>Any non-reference,
non-cv-qualified type</td>
</tr>
<tr><td><tt class="literal"><span class="pre">*a</span></tt></td>
<td>Convertible to <tt class="literal"><span class="pre">T</span></tt></td>
<td><dl class="first last">
<dt>pre: <tt class="literal"><span class="pre">a</span></tt> is dereferenceable. If <tt class="literal"><span class="pre">a</span> <span class="pre">==</span> <span class="pre">b</span></tt> then <tt class="literal"><span class="pre">*a</span></tt></dt>
<dd>is equivalent to <tt class="literal"><span class="pre">*b</span></tt>.</dd>
</dl>
</td>
</tr>
<tr><td><tt class="literal"><span class="pre">a-&gt;m</span></tt></td>
<td><tt class="literal"><span class="pre">U&amp;</span></tt></td>
<td>pre: <tt class="literal"><span class="pre">pre:</span> <span class="pre">(*a).m</span></tt> is well-defined. Equivalent to <tt class="literal"><span class="pre">(*a).m</span></tt>.</td>
</tr>
</tbody>
</table>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="ReadableIterator.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

View File

@ -1,23 +0,0 @@
Readable Iterator Concept
.........................
A class or built-in type ``X`` models the *Readable Iterator* concept
for value type ``T`` if, in addition to ``X`` being Assignable and
Copy Constructible, the following expressions are valid and respect
the stated semantics. ``U`` is the type of any specified member of
type ``T``.
+-----------------------------------------------------------------------------------------------------------------------------+
|Readable Iterator Requirements (in addition to Assignable and Copy Constructible) |
+-----------------------------------+------------------------+----------------------------------------------------------------+
|Expression |Return Type |Note/Precondition |
+===================================+========================+================================================================+
|``iterator_traits<X>::value_type`` |``T`` |Any non-reference, |
| | |non-cv-qualified type |
+-----------------------------------+------------------------+----------------------------------------------------------------+
|``*a`` | Convertible to ``T`` |pre: ``a`` is dereferenceable. If ``a == b`` then ``*a`` |
| | | is equivalent to ``*b``. |
+-----------------------------------+------------------------+----------------------------------------------------------------+
|``a->m`` |``U&`` |pre: ``pre: (*a).m`` is well-defined. Equivalent to ``(*a).m``. |
+-----------------------------------+------------------------+----------------------------------------------------------------+

View File

@ -1,63 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>Single Pass Iterator Concept</title>
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">Single Pass Iterator Concept</h1>
<div class="document" id="single-pass-iterator-concept">
<p>A class or built-in type <tt class="literal"><span class="pre">X</span></tt> models the <em>Single Pass Iterator</em>
concept if the following expressions are valid and respect the stated
semantics.</p>
<table border="1" class="table">
<colgroup>
<col width="36%" />
<col width="33%" />
<col width="31%" />
</colgroup>
<thead valign="bottom">
<tr><th colspan="3">Single Pass Iterator Requirements (in addition to Incrementable Iterator and Equality
Comparable)</th>
</tr>
<tr><th>Expression</th>
<th>Return Type</th>
<th>Assertion/Semantics /
Pre-/Post-condition</th>
</tr>
</thead>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">++r</span></tt></td>
<td><tt class="literal"><span class="pre">X&amp;</span></tt></td>
<td>pre: <tt class="literal"><span class="pre">r</span></tt> is
dereferenceable; post:
<tt class="literal"><span class="pre">r</span></tt> is dereferenceable or
<tt class="literal"><span class="pre">r</span></tt> is past-the-end</td>
</tr>
<tr><td><tt class="literal"><span class="pre">a</span> <span class="pre">==</span> <span class="pre">b</span></tt></td>
<td>convertible to <tt class="literal"><span class="pre">bool</span></tt></td>
<td><tt class="literal"><span class="pre">==</span></tt> is an equivalence
relation over its domain</td>
</tr>
<tr><td><tt class="literal"><span class="pre">a</span> <span class="pre">!=</span> <span class="pre">b</span></tt></td>
<td>convertible to <tt class="literal"><span class="pre">bool</span></tt></td>
<td><tt class="literal"><span class="pre">!(a</span> <span class="pre">==</span> <span class="pre">b)</span></tt></td>
</tr>
<tr><td><tt class="literal"><span class="pre">iterator_traversal&lt;X&gt;::type</span></tt></td>
<td>Convertible to
<tt class="literal"><span class="pre">single_pass_traversal_tag</span></tt></td>
<td>&nbsp;</td>
</tr>
</tbody>
</table>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="SinglePassIterator.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

View File

@ -1,28 +0,0 @@
Single Pass Iterator Concept
............................
A class or built-in type ``X`` models the *Single Pass Iterator*
concept if the following expressions are valid and respect the stated
semantics.
+------------------------------------------------------------------------------------------+
|Single Pass Iterator Requirements (in addition to Incrementable Iterator and Equality |
|Comparable) |
+--------------------------------+-----------------------------+---------------------------+
|Expression |Return Type |Assertion/Semantics / |
| | |Pre-/Post-condition |
+================================+=============================+===========================+
|``++r`` |``X&`` |pre: ``r`` is |
| | |dereferenceable; post: |
| | |``r`` is dereferenceable or|
| | |``r`` is past-the-end |
+--------------------------------+-----------------------------+---------------------------+
|``a == b`` |convertible to ``bool`` |``==`` is an equivalence |
| | |relation over its domain |
+--------------------------------+-----------------------------+---------------------------+
|``a != b`` |convertible to ``bool`` |``!(a == b)`` |
+--------------------------------+-----------------------------+---------------------------+
|``iterator_traversal<X>::type`` |Convertible to | |
| |``single_pass_traversal_tag``| |
+--------------------------------+-----------------------------+---------------------------+

View File

@ -1,49 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>Swappable Iterator Concept</title>
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">Swappable Iterator Concept</h1>
<div class="document" id="swappable-iterator-concept">
<p>A class or built-in type <tt class="literal"><span class="pre">X</span></tt> models the <em>Swappable Iterator</em> concept
if, in addition to <tt class="literal"><span class="pre">X</span></tt> being Copy Constructible, the following
expressions are valid and respect the stated semantics.</p>
<table border="1" class="table">
<colgroup>
<col width="37%" />
<col width="19%" />
<col width="43%" />
</colgroup>
<thead valign="bottom">
<tr><th colspan="3">Swappable Iterator Requirements (in addition to Copy Constructible)</th>
</tr>
<tr><th>Expression</th>
<th>Return Type</th>
<th>Postcondition</th>
</tr>
</thead>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">iter_swap(a,</span> <span class="pre">b)</span></tt></td>
<td><tt class="literal"><span class="pre">void</span></tt></td>
<td>the pointed to values are
exchanged</td>
</tr>
</tbody>
</table>
<dl>
<dt>[<em>Note:</em> An iterator that is a model of the <em>Readable</em> and <em>Writable Iterator</em> concepts</dt>
<dd>is also a model of <em>Swappable Iterator</em>. <em>--end note</em>]</dd>
</dl>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="SwappableIterator.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

View File

@ -1,19 +0,0 @@
Swappable Iterator Concept
..........................
A class or built-in type ``X`` models the *Swappable Iterator* concept
if, in addition to ``X`` being Copy Constructible, the following
expressions are valid and respect the stated semantics.
+---------------------------------------------------------------------+
|Swappable Iterator Requirements (in addition to Copy Constructible) |
+-------------------------+-------------+-----------------------------+
|Expression |Return Type |Postcondition |
+=========================+=============+=============================+
|``iter_swap(a, b)`` |``void`` |the pointed to values are |
| | |exchanged |
+-------------------------+-------------+-----------------------------+
[*Note:* An iterator that is a model of the *Readable* and *Writable Iterator* concepts
is also a model of *Swappable Iterator*. *--end note*]

View File

@ -1,47 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>Writable Iterator Concept</title>
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">Writable Iterator Concept</h1>
<div class="document" id="writable-iterator-concept">
<p>A class or built-in type <tt class="literal"><span class="pre">X</span></tt> models the <em>Writable Iterator</em> concept
if, in addition to <tt class="literal"><span class="pre">X</span></tt> being Copy Constructible, the following
expressions are valid and respect the stated semantics. Writable
Iterators have an associated <em>set of value types</em>.</p>
<table border="1" class="table">
<colgroup>
<col width="37%" />
<col width="21%" />
<col width="42%" />
</colgroup>
<thead valign="bottom">
<tr><th colspan="3">Writable Iterator Requirements (in addition to Copy Constructible)</th>
</tr>
<tr><th>Expression</th>
<th>Return Type</th>
<th>Precondition</th>
</tr>
</thead>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">*a</span> <span class="pre">=</span> <span class="pre">o</span></tt></td>
<td>&nbsp;</td>
<td>pre: The type of <tt class="literal"><span class="pre">o</span></tt>
is in the set of
value types of <tt class="literal"><span class="pre">X</span></tt></td>
</tr>
</tbody>
</table>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="WritableIterator.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

View File

@ -1,17 +0,0 @@
Writable Iterator Concept
.........................
A class or built-in type ``X`` models the *Writable Iterator* concept
if, in addition to ``X`` being Copy Constructible, the following
expressions are valid and respect the stated semantics. Writable
Iterators have an associated *set of value types*.
+---------------------------------------------------------------------+
|Writable Iterator Requirements (in addition to Copy Constructible) |
+-------------------------+--------------+----------------------------+
|Expression |Return Type |Precondition |
+=========================+==============+============================+
|``*a = o`` | | pre: The type of ``o`` |
| | | is in the set of |
| | | value types of ``X`` |
+-------------------------+--------------+----------------------------+

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 41 KiB

View File

@ -1,285 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>Counting Iterator</title>
<meta name="author" content="David Abrahams, Jeremy Siek, Thomas Witt" />
<meta name="organization" content="Boost Consulting, Indiana University Open Systems Lab, University of Hanover Institute for Transport Railway Operation and Construction" />
<meta name="date" content="2004-11-01" />
<meta name="copyright" content="Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003." />
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">Counting Iterator</h1>
<table class="docinfo" frame="void" rules="none">
<col class="docinfo-name" />
<col class="docinfo-content" />
<tbody valign="top">
<tr><th class="docinfo-name">Author:</th>
<td>David Abrahams, Jeremy Siek, Thomas Witt</td></tr>
<tr><th class="docinfo-name">Contact:</th>
<td><a class="first reference" href="mailto:dave&#64;boost-consulting.com">dave&#64;boost-consulting.com</a>, <a class="reference" href="mailto:jsiek&#64;osl.iu.edu">jsiek&#64;osl.iu.edu</a>, <a class="last reference" href="mailto:witt&#64;ive.uni-hannover.de">witt&#64;ive.uni-hannover.de</a></td></tr>
<tr><th class="docinfo-name">Organization:</th>
<td><a class="first reference" href="http://www.boost-consulting.com">Boost Consulting</a>, Indiana University <a class="reference" href="http://www.osl.iu.edu">Open Systems
Lab</a>, University of Hanover <a class="last reference" href="http://www.ive.uni-hannover.de">Institute for Transport
Railway Operation and Construction</a></td></tr>
<tr><th class="docinfo-name">Date:</th>
<td>2004-11-01</td></tr>
<tr><th class="docinfo-name">Copyright:</th>
<td>Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003.</td></tr>
</tbody>
</table>
<div class="document" id="counting-iterator">
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">abstract:</th><td class="field-body"><p class="first">How would you fill up a vector with the numbers zero
through one hundred using <tt class="literal"><span class="pre">std::copy()</span></tt>? The only iterator
operation missing from builtin integer types is an
<tt class="literal"><span class="pre">operator*()</span></tt> that returns the current value of the integer.
The counting iterator adaptor adds this crucial piece of
functionality to whatever type it wraps. One can use the
counting iterator adaptor not only with integer types, but with
any incrementable type.</p>
<p class="last"><tt class="literal"><span class="pre">counting_iterator</span></tt> adapts an object by adding an <tt class="literal"><span class="pre">operator*</span></tt> that
returns the current value of the object. All other iterator operations
are forwarded to the adapted object.</p>
</td>
</tr>
</tbody>
</table>
<div class="contents topic" id="table-of-contents">
<p class="topic-title first"><a name="table-of-contents">Table of Contents</a></p>
<ul class="simple">
<li><a class="reference" href="#counting-iterator-synopsis" id="id2" name="id2"><tt class="literal"><span class="pre">counting_iterator</span></tt> synopsis</a></li>
<li><a class="reference" href="#counting-iterator-requirements" id="id3" name="id3"><tt class="literal"><span class="pre">counting_iterator</span></tt> requirements</a></li>
<li><a class="reference" href="#counting-iterator-models" id="id4" name="id4"><tt class="literal"><span class="pre">counting_iterator</span></tt> models</a></li>
<li><a class="reference" href="#counting-iterator-operations" id="id5" name="id5"><tt class="literal"><span class="pre">counting_iterator</span></tt> operations</a></li>
<li><a class="reference" href="#example" id="id6" name="id6">Example</a></li>
</ul>
</div>
<div class="section" id="counting-iterator-synopsis">
<h1><a class="toc-backref" href="#id2" name="counting-iterator-synopsis"><tt class="literal"><span class="pre">counting_iterator</span></tt> synopsis</a></h1>
<pre class="literal-block">
template &lt;
class Incrementable
, class CategoryOrTraversal = use_default
, class Difference = use_default
&gt;
class counting_iterator
{
public:
typedef Incrementable value_type;
typedef const Incrementable&amp; reference;
typedef const Incrementable* pointer;
typedef /* see below */ difference_type;
typedef /* see below */ iterator_category;
counting_iterator();
counting_iterator(counting_iterator const&amp; rhs);
explicit counting_iterator(Incrementable x);
Incrementable const&amp; base() const;
reference operator*() const;
counting_iterator&amp; operator++();
counting_iterator&amp; operator--();
private:
Incrementable m_inc; // exposition
};
</pre>
<p>If the <tt class="literal"><span class="pre">Difference</span></tt> argument is <tt class="literal"><span class="pre">use_default</span></tt> then
<tt class="literal"><span class="pre">difference_type</span></tt> is an unspecified signed integral
type. Otherwise <tt class="literal"><span class="pre">difference_type</span></tt> is <tt class="literal"><span class="pre">Difference</span></tt>.</p>
<p><tt class="literal"><span class="pre">iterator_category</span></tt> is determined according to the following
algorithm:</p>
<pre class="literal-block">
if (CategoryOrTraversal is not use_default)
return CategoryOrTraversal
else if (numeric_limits&lt;Incrementable&gt;::is_specialized)
return <a class="reference" href="iterator_facade.html#iterator-category"><em>iterator-category</em></a>(
random_access_traversal_tag, Incrementable, const Incrementable&amp;)
else
return <a class="reference" href="iterator_facade.html#iterator-category"><em>iterator-category</em></a>(
iterator_traversal&lt;Incrementable&gt;::type,
Incrementable, const Incrementable&amp;)
</pre>
<dl>
<dt>[<em>Note:</em> implementers are encouraged to provide an implementation of</dt>
<dd><tt class="literal"><span class="pre">operator-</span></tt> and a <tt class="literal"><span class="pre">difference_type</span></tt> that avoids overflows in
the cases where <tt class="literal"><span class="pre">std::numeric_limits&lt;Incrementable&gt;::is_specialized</span></tt>
is true.]</dd>
</dl>
</div>
<div class="section" id="counting-iterator-requirements">
<h1><a class="toc-backref" href="#id3" name="counting-iterator-requirements"><tt class="literal"><span class="pre">counting_iterator</span></tt> requirements</a></h1>
<p>The <tt class="literal"><span class="pre">Incrementable</span></tt> argument shall be Copy Constructible and Assignable.</p>
<p>If <tt class="literal"><span class="pre">iterator_category</span></tt> is convertible to <tt class="literal"><span class="pre">forward_iterator_tag</span></tt>
or <tt class="literal"><span class="pre">forward_traversal_tag</span></tt>, the following must be well-formed:</p>
<pre class="literal-block">
Incrementable i, j;
++i; // pre-increment
i == j; // operator equal
</pre>
<p>If <tt class="literal"><span class="pre">iterator_category</span></tt> is convertible to
<tt class="literal"><span class="pre">bidirectional_iterator_tag</span></tt> or <tt class="literal"><span class="pre">bidirectional_traversal_tag</span></tt>,
the following expression must also be well-formed:</p>
<pre class="literal-block">
--i
</pre>
<p>If <tt class="literal"><span class="pre">iterator_category</span></tt> is convertible to
<tt class="literal"><span class="pre">random_access_iterator_tag</span></tt> or <tt class="literal"><span class="pre">random_access_traversal_tag</span></tt>,
the following must must also be valid:</p>
<pre class="literal-block">
counting_iterator::difference_type n;
i += n;
n = i - j;
i &lt; j;
</pre>
</div>
<div class="section" id="counting-iterator-models">
<h1><a class="toc-backref" href="#id4" name="counting-iterator-models"><tt class="literal"><span class="pre">counting_iterator</span></tt> models</a></h1>
<p>Specializations of <tt class="literal"><span class="pre">counting_iterator</span></tt> model Readable Lvalue
Iterator. In addition, they model the concepts corresponding to the
iterator tags to which their <tt class="literal"><span class="pre">iterator_category</span></tt> is convertible.
Also, if <tt class="literal"><span class="pre">CategoryOrTraversal</span></tt> is not <tt class="literal"><span class="pre">use_default</span></tt> then
<tt class="literal"><span class="pre">counting_iterator</span></tt> models the concept corresponding to the iterator
tag <tt class="literal"><span class="pre">CategoryOrTraversal</span></tt>. Otherwise, if
<tt class="literal"><span class="pre">numeric_limits&lt;Incrementable&gt;::is_specialized</span></tt>, then
<tt class="literal"><span class="pre">counting_iterator</span></tt> models Random Access Traversal Iterator.
Otherwise, <tt class="literal"><span class="pre">counting_iterator</span></tt> models the same iterator traversal
concepts modeled by <tt class="literal"><span class="pre">Incrementable</span></tt>.</p>
<p><tt class="literal"><span class="pre">counting_iterator&lt;X,C1,D1&gt;</span></tt> is interoperable with
<tt class="literal"><span class="pre">counting_iterator&lt;Y,C2,D2&gt;</span></tt> if and only if <tt class="literal"><span class="pre">X</span></tt> is
interoperable with <tt class="literal"><span class="pre">Y</span></tt>.</p>
</div>
<div class="section" id="counting-iterator-operations">
<h1><a class="toc-backref" href="#id5" name="counting-iterator-operations"><tt class="literal"><span class="pre">counting_iterator</span></tt> operations</a></h1>
<p>In addition to the operations required by the concepts modeled by
<tt class="literal"><span class="pre">counting_iterator</span></tt>, <tt class="literal"><span class="pre">counting_iterator</span></tt> provides the following
operations.</p>
<p><tt class="literal"><span class="pre">counting_iterator();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Requires:</th><td class="field-body"><tt class="literal"><span class="pre">Incrementable</span></tt> is Default Constructible.</td>
</tr>
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Default construct the member <tt class="literal"><span class="pre">m_inc</span></tt>.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">counting_iterator(counting_iterator</span> <span class="pre">const&amp;</span> <span class="pre">rhs);</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Construct member <tt class="literal"><span class="pre">m_inc</span></tt> from <tt class="literal"><span class="pre">rhs.m_inc</span></tt>.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">explicit</span> <span class="pre">counting_iterator(Incrementable</span> <span class="pre">x);</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Construct member <tt class="literal"><span class="pre">m_inc</span></tt> from <tt class="literal"><span class="pre">x</span></tt>.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">reference</span> <span class="pre">operator*()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">m_inc</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">counting_iterator&amp;</span> <span class="pre">operator++();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><tt class="literal"><span class="pre">++m_inc</span></tt></td>
</tr>
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*this</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">counting_iterator&amp;</span> <span class="pre">operator--();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><tt class="literal"><span class="pre">--m_inc</span></tt></td>
</tr>
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*this</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Incrementable</span> <span class="pre">const&amp;</span> <span class="pre">base()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">m_inc</span></tt></td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template &lt;class Incrementable&gt;
counting_iterator&lt;Incrementable&gt; make_counting_iterator(Incrementable x);
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">An instance of <tt class="literal"><span class="pre">counting_iterator&lt;Incrementable&gt;</span></tt>
with <tt class="literal"><span class="pre">current</span></tt> constructed from <tt class="literal"><span class="pre">x</span></tt>.</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="example">
<h1><a class="toc-backref" href="#id6" name="example">Example</a></h1>
<p>This example fills an array with numbers and a second array with
pointers into the first array, using <tt class="literal"><span class="pre">counting_iterator</span></tt> for both
tasks. Finally <tt class="literal"><span class="pre">indirect_iterator</span></tt> is used to print out the numbers
into the first array via indirection through the second array.</p>
<pre class="literal-block">
int N = 7;
std::vector&lt;int&gt; numbers;
typedef std::vector&lt;int&gt;::iterator n_iter;
std::copy(boost::counting_iterator&lt;int&gt;(0),
boost::counting_iterator&lt;int&gt;(N),
std::back_inserter(numbers));
std::vector&lt;std::vector&lt;int&gt;::iterator&gt; pointers;
std::copy(boost::make_counting_iterator(numbers.begin()),
boost::make_counting_iterator(numbers.end()),
std::back_inserter(pointers));
std::cout &lt;&lt; &quot;indirectly printing out the numbers from 0 to &quot;
&lt;&lt; N &lt;&lt; std::endl;
std::copy(boost::make_indirect_iterator(pointers.begin()),
boost::make_indirect_iterator(pointers.end()),
std::ostream_iterator&lt;int&gt;(std::cout, &quot; &quot;));
std::cout &lt;&lt; std::endl;
</pre>
<p>The output is:</p>
<pre class="literal-block">
indirectly printing out the numbers from 0 to 7
0 1 2 3 4 5 6
</pre>
<p>The source code for this example can be found <a class="reference" href="../example/counting_iterator_example.cpp">here</a>.</p>
</div>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="counting_iterator.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

Binary file not shown.

View File

@ -1,39 +0,0 @@
+++++++++++++++++++
Counting Iterator
+++++++++++++++++++
:Author: David Abrahams, Jeremy Siek, Thomas Witt
:Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@ive.uni-hannover.de
:organization: `Boost Consulting`_, Indiana University `Open Systems
Lab`_, University of Hanover `Institute for Transport
Railway Operation and Construction`_
:date: $Date$
:copyright: Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003.
.. _`Boost Consulting`: http://www.boost-consulting.com
.. _`Open Systems Lab`: http://www.osl.iu.edu
.. _`Institute for Transport Railway Operation and Construction`: http://www.ive.uni-hannover.de
:abstract: How would you fill up a vector with the numbers zero
through one hundred using ``std::copy()``? The only iterator
operation missing from builtin integer types is an
``operator*()`` that returns the current value of the integer.
The counting iterator adaptor adds this crucial piece of
functionality to whatever type it wraps. One can use the
counting iterator adaptor not only with integer types, but with
any incrementable type.
.. include:: counting_iterator_abstract.rst
.. contents:: Table of Contents
``counting_iterator`` synopsis
..............................
.. include:: counting_iterator_ref.rst
.. include:: make_counting_iterator.rst
.. include:: counting_iterator_eg.rst
.. _iterator-category: iterator_facade.html#iterator-category
.. |iterator-category| replace:: *iterator-category*

View File

@ -1,4 +0,0 @@
``counting_iterator`` adapts an object by adding an ``operator*`` that
returns the current value of the object. All other iterator operations
are forwarded to the adapted object.

View File

@ -1,40 +0,0 @@
Example
.......
This example fills an array with numbers and a second array with
pointers into the first array, using ``counting_iterator`` for both
tasks. Finally ``indirect_iterator`` is used to print out the numbers
into the first array via indirection through the second array.
::
int N = 7;
std::vector<int> numbers;
typedef std::vector<int>::iterator n_iter;
std::copy(boost::counting_iterator<int>(0),
boost::counting_iterator<int>(N),
std::back_inserter(numbers));
std::vector<std::vector<int>::iterator> pointers;
std::copy(boost::make_counting_iterator(numbers.begin()),
boost::make_counting_iterator(numbers.end()),
std::back_inserter(pointers));
std::cout << "indirectly printing out the numbers from 0 to "
<< N << std::endl;
std::copy(boost::make_indirect_iterator(pointers.begin()),
boost::make_indirect_iterator(pointers.end()),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
The output is::
indirectly printing out the numbers from 0 to 7
0 1 2 3 4 5 6
The source code for this example can be found `here`__.
__ ../example/counting_iterator_example.cpp

View File

@ -1,145 +0,0 @@
::
template <
class Incrementable
, class CategoryOrTraversal = use_default
, class Difference = use_default
>
class counting_iterator
{
public:
typedef Incrementable value_type;
typedef const Incrementable& reference;
typedef const Incrementable* pointer;
typedef /* see below */ difference_type;
typedef /* see below */ iterator_category;
counting_iterator();
counting_iterator(counting_iterator const& rhs);
explicit counting_iterator(Incrementable x);
Incrementable const& base() const;
reference operator*() const;
counting_iterator& operator++();
counting_iterator& operator--();
private:
Incrementable m_inc; // exposition
};
If the ``Difference`` argument is ``use_default`` then
``difference_type`` is an unspecified signed integral
type. Otherwise ``difference_type`` is ``Difference``.
``iterator_category`` is determined according to the following
algorithm:
.. parsed-literal::
if (CategoryOrTraversal is not use_default)
return CategoryOrTraversal
else if (numeric_limits<Incrementable>::is_specialized)
return |iterator-category|_\ (
random_access_traversal_tag, Incrementable, const Incrementable&)
else
return |iterator-category|_\ (
iterator_traversal<Incrementable>::type,
Incrementable, const Incrementable&)
[*Note:* implementers are encouraged to provide an implementation of
``operator-`` and a ``difference_type`` that avoids overflows in
the cases where ``std::numeric_limits<Incrementable>::is_specialized``
is true.]
``counting_iterator`` requirements
..................................
The ``Incrementable`` argument shall be Copy Constructible and Assignable.
If ``iterator_category`` is convertible to ``forward_iterator_tag``
or ``forward_traversal_tag``, the following must be well-formed::
Incrementable i, j;
++i; // pre-increment
i == j; // operator equal
If ``iterator_category`` is convertible to
``bidirectional_iterator_tag`` or ``bidirectional_traversal_tag``,
the following expression must also be well-formed::
--i
If ``iterator_category`` is convertible to
``random_access_iterator_tag`` or ``random_access_traversal_tag``,
the following must must also be valid::
counting_iterator::difference_type n;
i += n;
n = i - j;
i < j;
``counting_iterator`` models
............................
Specializations of ``counting_iterator`` model Readable Lvalue
Iterator. In addition, they model the concepts corresponding to the
iterator tags to which their ``iterator_category`` is convertible.
Also, if ``CategoryOrTraversal`` is not ``use_default`` then
``counting_iterator`` models the concept corresponding to the iterator
tag ``CategoryOrTraversal``. Otherwise, if
``numeric_limits<Incrementable>::is_specialized``, then
``counting_iterator`` models Random Access Traversal Iterator.
Otherwise, ``counting_iterator`` models the same iterator traversal
concepts modeled by ``Incrementable``.
``counting_iterator<X,C1,D1>`` is interoperable with
``counting_iterator<Y,C2,D2>`` if and only if ``X`` is
interoperable with ``Y``.
``counting_iterator`` operations
................................
In addition to the operations required by the concepts modeled by
``counting_iterator``, ``counting_iterator`` provides the following
operations.
``counting_iterator();``
:Requires: ``Incrementable`` is Default Constructible.
:Effects: Default construct the member ``m_inc``.
``counting_iterator(counting_iterator const& rhs);``
:Effects: Construct member ``m_inc`` from ``rhs.m_inc``.
``explicit counting_iterator(Incrementable x);``
:Effects: Construct member ``m_inc`` from ``x``.
``reference operator*() const;``
:Returns: ``m_inc``
``counting_iterator& operator++();``
:Effects: ``++m_inc``
:Returns: ``*this``
``counting_iterator& operator--();``
:Effects: ``--m_inc``
:Returns: ``*this``
``Incrementable const& base() const;``
:Returns: ``m_inc``

View File

@ -1,224 +0,0 @@
/*
:Author: David Goodger
:Contact: goodger@users.sourceforge.net
:date: $Date$
:version: $Revision$
:copyright: This stylesheet has been placed in the public domain.
Default cascading style sheet for the HTML output of Docutils.
*/
.first {
margin-top: 0 }
.last {
margin-bottom: 0 }
a.toc-backref {
text-decoration: none ;
color: black }
dd {
margin-bottom: 0.5em }
div.abstract {
margin: 2em 5em }
div.abstract p.topic-title {
font-weight: bold ;
text-align: center }
div.attention, div.caution, div.danger, div.error, div.hint,
div.important, div.note, div.tip, div.warning, div.admonition {
margin: 2em ;
border: medium outset ;
padding: 1em }
div.attention p.admonition-title, div.caution p.admonition-title,
div.danger p.admonition-title, div.error p.admonition-title,
div.warning p.admonition-title {
color: red ;
font-weight: bold ;
font-family: sans-serif }
div.hint p.admonition-title, div.important p.admonition-title,
div.note p.admonition-title, div.tip p.admonition-title,
div.admonition p.admonition-title {
font-weight: bold ;
font-family: sans-serif }
div.dedication {
margin: 2em 5em ;
text-align: center ;
font-style: italic }
div.dedication p.topic-title {
font-weight: bold ;
font-style: normal }
div.figure {
margin-left: 2em }
div.footer, div.header {
font-size: smaller }
div.sidebar {
margin-left: 1em ;
border: medium outset ;
padding: 0em 1em ;
background-color: #ffffee ;
width: 40% ;
float: right ;
clear: right }
div.sidebar p.rubric {
font-family: sans-serif ;
font-size: medium }
div.system-messages {
margin: 5em }
div.system-messages h1 {
color: red }
div.system-message {
border: medium outset ;
padding: 1em }
div.system-message p.system-message-title {
color: red ;
font-weight: bold }
div.topic {
margin: 2em }
h1.title {
text-align: center }
h2.subtitle {
text-align: center }
hr {
width: 75% }
ol.simple, ul.simple {
margin-bottom: 1em }
ol.arabic {
list-style: decimal }
ol.loweralpha {
list-style: lower-alpha }
ol.upperalpha {
list-style: upper-alpha }
ol.lowerroman {
list-style: lower-roman }
ol.upperroman {
list-style: upper-roman }
p.attribution {
text-align: right ;
margin-left: 50% }
p.caption {
font-style: italic }
p.credits {
font-style: italic ;
font-size: smaller }
p.label {
white-space: nowrap }
p.rubric {
font-weight: bold ;
font-size: larger ;
color: maroon ;
text-align: center }
p.sidebar-title {
font-family: sans-serif ;
font-weight: bold ;
font-size: larger }
p.sidebar-subtitle {
font-family: sans-serif ;
font-weight: bold }
p.topic-title {
font-weight: bold }
pre.address {
margin-bottom: 0 ;
margin-top: 0 ;
font-family: serif ;
font-size: 100% }
pre.line-block {
font-family: serif ;
font-size: 100% }
pre.literal-block, pre.doctest-block {
margin-left: 2em ;
margin-right: 2em ;
background-color: #eeeeee }
span.classifier {
font-family: sans-serif ;
font-style: oblique }
span.classifier-delimiter {
font-family: sans-serif ;
font-weight: bold }
span.interpreted {
font-family: sans-serif }
span.option {
white-space: nowrap }
span.option-argument {
font-style: italic }
span.pre {
white-space: pre }
span.problematic {
color: red }
table {
margin-top: 0.5em ;
margin-bottom: 0.5em }
table.citation {
border-left: solid thin gray ;
padding-left: 0.5ex }
table.docinfo {
margin: 2em 4em }
table.footnote {
border-left: solid thin black ;
padding-left: 0.5ex }
td, th {
padding-left: 0.5em ;
padding-right: 0.5em ;
vertical-align: top }
th.docinfo-name, th.field-name {
font-weight: bold ;
text-align: left ;
white-space: nowrap }
h1 tt, h2 tt, h3 tt, h4 tt, h5 tt, h6 tt {
font-size: 100% }
tt {
background-color: #eeeeee }
ul.auto-toc {
list-style-type: none }

View File

@ -1,54 +0,0 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% docutils.sty: A style for docutils latex output %%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% o author: Alexander Schmolck (a.schmolck@gmx.net)
%% o created: 2002-07-07 10:50:31+00:40
%% o last modified: $Date: 2004/01/29 05:55:26 $
%% o keywords:
%% o license:
%XXX titlesec
%% XXX geometry
\usepackage{graphicx}
\usepackage{latexsym} % extra symbols
\usepackage{url} % !!!: pay attention when using in other commands!!!
\usepackage{verbatim} % normal verbatim has lenght-limit
\usepackage{enumerate} % easy style choice with e.g: ``\begin{enumerate}[Ex i.]``
\usepackage{hyperref} %href, htarget and hlink XXX: pdfauthor, pdfcreator etc.
\usepackage{xr} %XXX do we need this?
% need this to have ``fboxes`` in ``enviroments``, as well as ``verbatim``s
\usepackage{fancybox}
\usepackage{mdwtab} % better tables and arrays (fixes spacing and adds
% vertical align and multirows (m))
\usepackage{ltxtable} % long and autoscaling tables (use X for autoscaled
% columns)
\newcommand{\transition}{\vspace{2em}\par\hrule{}\par\vspace{2em}}
\newcommand{\classifier}[1]{(\textit{#1})}
\newenvironment{topic}[1]%
{\begin{Sbox}%
\begin{minipage}{.8\textwidth}%
\protect{\large{\textbf{#1}}}\par\vspace{.5em}}%
{\end{minipage}\end{Sbox}\fbox{\TheSbox}\par\vspace{.5em}}
%XXX shadow box for warnings?
\newenvironment{admonition}[1]%
{\begin{center}%
\begin{Sbox}%
\begin{minipage}{.9\textwidth}%
\protect{\textsc{#1}}\par\vspace{.2em}}%
{\end{minipage}\end{Sbox}\fbox{\TheSbox}\par\vspace{.5em}\end{center}}
\newenvironment{doctest}%
{\VerbatimEnvironment
\begin{Verbatim}}%
{\end{Verbatim}}
% {%
% \begin{Sbox}%
% \begin{minipage}{.8\textwidth}%
% \protect{\large{\textsc{#1}}\par\vspace{.5em}}}%
% {\end{minipage}\end{Sbox}\fbox{\TheSbox}\par\vspace{.5em}}
%{\end{minipage}\end{Sbox}\fbox{\TheSbox}}
%% just a piece of example code
% \newcommand{\vitem}%
% {\SaveVerb[{\item[\UseVerb{\MyTemp}]}]{\MyTemp}}

View File

@ -1,228 +0,0 @@
Index: facade-and-adaptor.rst
===================================================================
RCS file: /cvsroot/boost/boost/libs/iterator/doc/facade-and-adaptor.rst,v
retrieving revision 1.9
retrieving revision 1.14
diff -b -d -u -r1.9 -r1.14
--- facade-and-adaptor.rst 22 Sep 2003 19:55:00 -0000 1.9
+++ facade-and-adaptor.rst 18 Jan 2004 15:51:06 -0000 1.14
@@ -3,17 +3,25 @@ None
+++++++++++++++++++++++++++++
:Author: David Abrahams, Jeremy Siek, Thomas Witt
-:Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@acm.org
+:Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@styleadvisor.com
:organization: `Boost Consulting`_, Indiana University `Open Systems
- Lab`_, University of Hanover `Institute for Transport
- Railway Operation and Construction`_
-:date: $Date: 2004/01/18 19:56:39 $
-:Number: N1530=03-0113
+ Lab`_, `Zephyr Associates, Inc.`_
+:date: $Date: 2004/01/18 19:56:39 $
+
+:Number: This is a revised version of N1530_\ =03-0113, which was
+ accepted for Technical Report 1 by the C++ standard
+ committee's library working group.
+
+.. Version 1.9 of this ReStructuredText document corresponds to
+ n1530_, the paper accepted by the LWG.
+
+.. _n1530: http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1530.html
+
:copyright: Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003. All rights reserved
.. _`Boost Consulting`: http://www.boost-consulting.com
.. _`Open Systems Lab`: http://www.osl.iu.edu
-.. _`Institute for Transport Railway Operation and Construction`: http://www.ive.uni-hannover.de
+.. _`Zephyr Associates, Inc.`: http://www.styleadvisor.com
:abstract: We propose a set of class templates that help programmers
build standard-conforming iterators, both from scratch and
@@ -124,15 +132,15 @@ None
=================
This proposal is formulated in terms of the new ``iterator concepts``
-as proposed in `n1477`_, since user-defined and especially adapted
+as proposed in n1550_, since user-defined and especially adapted
iterators suffer from the well known categorization problems that are
inherent to the current iterator categories.
-.. _`n1477`: http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/papers/2003/n1477.html
+.. _n1550: http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/papers/2003/n1550.html
-This proposal does not strictly depend on proposal `n1477`_, as there
+This proposal does not strictly depend on proposal n1550_, as there
is a direct mapping between new and old categories. This proposal
-could be reformulated using this mapping if `n1477`_ was not accepted.
+could be reformulated using this mapping if n1550_ was not accepted.
Interoperability
================
@@ -141,24 +149,24 @@ None
current standard. There are currently two defect reports that are
concerned with interoperability issues.
-Issue `179`_ concerns the fact that mutable container iterator types
+Issue 179_ concerns the fact that mutable container iterator types
are only required to be convertible to the corresponding constant
iterator types, but objects of these types are not required to
interoperate in comparison or subtraction expressions. This situation
is tedious in practice and out of line with the way built in types
work. This proposal implements the proposed resolution to issue
-`179`_, as most standard library implementations do nowadays. In other
+179_, as most standard library implementations do nowadays. In other
words, if an iterator type A has an implicit or user defined
conversion to an iterator type B, the iterator types are interoperable
and the usual set of operators are available.
-Issue `280`_ concerns the current lack of interoperability between
+Issue 280_ concerns the current lack of interoperability between
reverse iterator types. The proposed new reverse_iterator template
fixes the issues raised in 280. It provides the desired
interoperability without introducing unwanted overloads.
-.. _`179`: http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-defects.html#179
-.. _`280`: http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-active.html#280
+.. _179: http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-defects.html#179
+.. _280: http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-active.html#280
Iterator Facade
@@ -195,7 +203,7 @@ None
* ``filter_iterator``, which provides a view of an iterator range in
which some elements of the underlying range are skipped.
-.. _counting_iterator:
+.. _counting:
* ``counting_iterator``, which adapts any incrementable type
(e.g. integers, iterators) so that incrementing/decrementing the
@@ -226,15 +234,13 @@ Issue 9.1 et al
::
struct use_default;
- const unsigned use_default_access = -1;
struct iterator_core_access { /* implementation detail */ };
template <
class Derived
, class Value
- , unsigned AccessCategory
- , class TraversalCategory
+ , class CategoryOrTraversal
, class Reference = Value&
, class Difference = ptrdiff_t
>
@@ -244,8 +250,7 @@ Issue 9.1 et al.
class Derived
, class Base
, class Value = use_default
- , unsigned Access = use_default_access
- , class Traversal = use_default
+ , class CategoryOrTraversal = use_default
, class Reference = use_default
, class Difference = use_default
>
@@ -254,10 +259,9 @@ Issue 9.1 et al.
template <
class Iterator
, class Value = use_default
- , unsigned Access = use_default_access
- , class Traversal = use_default
+ , class CategoryOrTraversal = use_default
, class Reference = use_default
, class Difference = use_default
>
class indirect_iterator;
Issue 9.44y
+ template <class Dereferenceable>
+ struct pointee;
+
+ template <class Dereferenceable>
+ struct indirect_reference;
+
template <class Iterator>
class reverse_iterator;
@@ -277,8 +287,7 @@ Issue 9.1 et al.
template <
class Incrementable
- , unsigned Access = use_default_access
- , class Traversal = use_default
+ , class CategoryOrTraversal = use_default
, class Difference = use_default
>
class counting_iterator
@@ -312,17 +321,35 @@ Issue 9.8
Specialized adaptors [lib.iterator.special.adaptors]
====================================================
-.. The requirements for all of these need to be written *much* more
- formally -DWA
-
-[*Note:* The ``enable_if_convertible<X,Y>::type`` expression used in
+The ``enable_if_convertible<X,Y>::type`` expression used in
this section is for exposition purposes. The converting constructors
for specialized adaptors should be only be in an overload set provided
that an object of type ``X`` is implicitly convertible to an object of
-type ``Y``. The ``enable_if_convertible`` approach uses SFINAE to
+type ``Y``.
+The signatures involving ``enable_if_convertible`` should behave
+*as-if* ``enable_if_convertible`` were defined to be::
+
+ template <bool> enable_if_convertible_impl
+ {};
+
+ template <> enable_if_convertible_impl<true>
+ { struct type; };
+
+ template<typename From, typename To>
+ struct enable_if_convertible
+ : enable_if_convertible_impl<is_convertible<From,To>::value>
+ {};
+
+If an expression other than the default argument is used to supply
+the value of a function parameter whose type is written in terms
+of ``enable_if_convertible``, the program is ill-formed, no
+diagnostic required.
+
+[*Note:* The ``enable_if_convertible`` approach uses SFINAE to
take the constructor out of the overload set when the types are not
-implicitly convertible.]
+implicitly convertible.
+]
Indirect iterator
@@ -330,6 +357,16 @@ Issue 9.44y
.. include:: indirect_iterator_abstract.rst
+Class template ``pointee``
+....................................
+
+.. include:: pointee_ref.rst
+
+Class template ``indirect_reference``
+.....................................
+
+.. include:: indirect_reference_ref.rst
+
Class template ``indirect_iterator``
....................................
@@ -393,8 +430,7 @@
-..
- LocalWords: Abrahams Siek Witt istream ostream iter MTL strided interoperate
+.. LocalWords: Abrahams Siek Witt istream ostream iter MTL strided interoperate
LocalWords: CRTP metafunctions inlining lvalue JGS incrementable BGL LEDA cv
LocalWords: GraphBase struct ptrdiff UnaryFunction const int typename bool pp
LocalWords: lhs rhs SFINAE markup iff tmp OtherDerived OtherIterator DWA foo

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@ -1,434 +0,0 @@
+++++++++++++++++++++++++++++
Iterator Facade and Adaptor
+++++++++++++++++++++++++++++
:Author: David Abrahams, Jeremy Siek, Thomas Witt
:Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@styleadvisor.com
:organization: `Boost Consulting`_, Indiana University `Open Systems
Lab`_, `Zephyr Associates, Inc.`_
:date: $Date$
:Number: This is a revised version of N1530_\ =03-0113, which was
accepted for Technical Report 1 by the C++ standard
committee's library working group.
.. Version 1.9 of this ReStructuredText document corresponds to
n1530_, the paper accepted by the LWG.
.. _n1530: http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1530.html
:copyright: Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003.
.. _`Boost Consulting`: http://www.boost-consulting.com
.. _`Open Systems Lab`: http://www.osl.iu.edu
.. _`Zephyr Associates, Inc.`: http://www.styleadvisor.com
:abstract: We propose a set of class templates that help programmers
build standard-conforming iterators, both from scratch and
by adapting other iterators.
.. contents:: Table of Contents
============
Motivation
============
Iterators play an important role in modern C++ programming. The
iterator is the central abstraction of the algorithms of the Standard
Library, allowing algorithms to be re-used in in a wide variety of
contexts. The C++ Standard Library contains a wide variety of useful
iterators. Every one of the standard containers comes with constant
and mutable iterators [#mutable]_, and also reverse versions of those
same iterators which traverse the container in the opposite direction.
The Standard also supplies ``istream_iterator`` and
``ostream_iterator`` for reading from and writing to streams,
``insert_iterator``, ``front_insert_iterator`` and
``back_insert_iterator`` for inserting elements into containers, and
``raw_storage_iterator`` for initializing raw memory [7].
Despite the many iterators supplied by the Standard Library, obvious
and useful iterators are missing, and creating new iterator types is
still a common task for C++ programmers. The literature documents
several of these, for example line_iterator [3] and Constant_iterator
[9]. The iterator abstraction is so powerful that we expect
programmers will always need to invent new iterator types.
Although it is easy to create iterators that *almost* conform to the
standard, the iterator requirements contain subtleties which can make
creating an iterator which *actually* conforms quite difficult.
Further, the iterator interface is rich, containing many operators
that are technically redundant and tedious to implement. To automate
the repetitive work of constructing iterators, we propose
``iterator_facade``, an iterator base class template which provides
the rich interface of standard iterators and delegates its
implementation to member functions of the derived class. In addition
to reducing the amount of code necessary to create an iterator, the
``iterator_facade`` also provides compile-time error detection.
Iterator implementation mistakes that often go unnoticed are turned
into compile-time errors because the derived class implementation must
match the expectations of the ``iterator_facade``.
A common pattern of iterator construction is the adaptation of one
iterator to form a new one. The functionality of an iterator is
composed of four orthogonal aspects: traversal, indirection, equality
comparison and distance measurement. Adapting an old iterator to
create a new one often saves work because one can reuse one aspect of
functionality while redefining the other. For example, the Standard
provides ``reverse_iterator``, which adapts any Bidirectional Iterator
by inverting its direction of traversal. As with plain iterators,
iterator adaptors defined outside the Standard have become commonplace
in the literature:
* Checked iter[13] adds bounds-checking to an existing iterator.
* The iterators of the View Template Library[14], which adapts
containers, are themselves adaptors over the underlying iterators.
* Smart iterators [5] adapt an iterator's dereferencing behavior by
applying a function object to the object being referenced and
returning the result.
* Custom iterators [4], in which a variety of adaptor types are enumerated.
* Compound iterators [1], which access a slice out of a container of containers.
* Several iterator adaptors from the MTL [12]. The MTL contains a
strided iterator, where each call to ``operator++()`` moves the
iterator ahead by some constant factor, and a scaled iterator, which
multiplies the dereferenced value by some constant.
.. [#concept] We use the term concept to mean a set of requirements
that a type must satisfy to be used with a particular template
parameter.
.. [#mutable] The term mutable iterator refers to iterators over objects that
can be changed by assigning to the dereferenced iterator, while
constant iterator refers to iterators over objects that cannot be
modified.
To fulfill the need for constructing adaptors, we propose the
``iterator_adaptor`` class template. Instantiations of
``iterator_adaptor`` serve as a base classes for new iterators,
providing the default behavior of forwarding all operations to the
underlying iterator. The user can selectively replace these features
in the derived iterator class. This proposal also includes a number
of more specialized adaptors, such as the ``transform_iterator`` that
applies some user-specified function during the dereference of the
iterator.
========================
Impact on the Standard
========================
This proposal is purely an addition to the C++ standard library.
However, note that this proposal relies on the proposal for New
Iterator Concepts.
========
Design
========
Iterator Concepts
=================
This proposal is formulated in terms of the new ``iterator concepts``
as proposed in n1550_, since user-defined and especially adapted
iterators suffer from the well known categorization problems that are
inherent to the current iterator categories.
.. _n1550: http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/papers/2003/n1550.html
This proposal does not strictly depend on proposal n1550_, as there
is a direct mapping between new and old categories. This proposal
could be reformulated using this mapping if n1550_ was not accepted.
Interoperability
================
The question of iterator interoperability is poorly addressed in the
current standard. There are currently two defect reports that are
concerned with interoperability issues.
Issue 179_ concerns the fact that mutable container iterator types
are only required to be convertible to the corresponding constant
iterator types, but objects of these types are not required to
interoperate in comparison or subtraction expressions. This situation
is tedious in practice and out of line with the way built in types
work. This proposal implements the proposed resolution to issue
179_, as most standard library implementations do nowadays. In other
words, if an iterator type A has an implicit or user defined
conversion to an iterator type B, the iterator types are interoperable
and the usual set of operators are available.
Issue 280_ concerns the current lack of interoperability between
reverse iterator types. The proposed new reverse_iterator template
fixes the issues raised in 280. It provides the desired
interoperability without introducing unwanted overloads.
.. _179: http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-defects.html#179
.. _280: http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-active.html#280
Iterator Facade
===============
.. include:: iterator_facade_body.rst
Iterator Adaptor
================
.. include:: iterator_adaptor_body.rst
Specialized Adaptors
====================
This proposal also contains several examples of specialized adaptors
which were easily implemented using ``iterator_adaptor``:
* ``indirect_iterator``, which iterates over iterators, pointers,
or smart pointers and applies an extra level of dereferencing.
* A new ``reverse_iterator``, which inverts the direction of a Base
iterator's motion, while allowing adapted constant and mutable
iterators to interact in the expected ways (unlike those in most
implementations of C++98).
* ``transform_iterator``, which applies a user-defined function object
to the underlying values when dereferenced.
* ``filter_iterator``, which provides a view of an iterator range in
which some elements of the underlying range are skipped.
.. _counting:
* ``counting_iterator``, which adapts any incrementable type
(e.g. integers, iterators) so that incrementing/decrementing the
adapted iterator and dereferencing it produces successive values of
the Base type.
* ``function_output_iterator``, which makes it easier to create custom
output iterators.
Based on examples in the Boost library, users have generated many new
adaptors, among them a permutation adaptor which applies some
permutation to a random access iterator, and a strided adaptor, which
adapts a random access iterator by multiplying its unit of motion by a
constant factor. In addition, the Boost Graph Library (BGL) uses
iterator adaptors to adapt other graph libraries, such as LEDA [10]
and Stanford GraphBase [8], to the BGL interface (which requires C++
Standard compliant iterators).
===============
Proposed Text
===============
Header ``<iterator_helper>`` synopsis [lib.iterator.helper.synopsis]
=======================================================================
::
struct use_default;
struct iterator_core_access { /* implementation detail */ };
template <
class Derived
, class Value
, class CategoryOrTraversal
, class Reference = Value&
, class Difference = ptrdiff_t
>
class iterator_facade;
template <
class Derived
, class Base
, class Value = use_default
, class CategoryOrTraversal = use_default
, class Reference = use_default
, class Difference = use_default
>
class iterator_adaptor;
template <
class Iterator
, class Value = use_default
, class CategoryOrTraversal = use_default
, class Reference = use_default
, class Difference = use_default
>
class indirect_iterator;
template <class Dereferenceable>
struct pointee;
template <class Dereferenceable>
struct indirect_reference;
template <class Iterator>
class reverse_iterator;
template <
class UnaryFunction
, class Iterator
, class Reference = use_default
, class Value = use_default
>
class transform_iterator;
template <class Predicate, class Iterator>
class filter_iterator;
template <
class Incrementable
, class CategoryOrTraversal = use_default
, class Difference = use_default
>
class counting_iterator;
template <class UnaryFunction>
class function_output_iterator;
Iterator facade [lib.iterator.facade]
=====================================
.. include:: iterator_facade_abstract.rst
Class template ``iterator_facade``
----------------------------------
.. include:: iterator_facade_ref.rst
Iterator adaptor [lib.iterator.adaptor]
=======================================
.. include:: iterator_adaptor_abstract.rst
Class template ``iterator_adaptor``
-----------------------------------
.. include:: iterator_adaptor_ref.rst
Specialized adaptors [lib.iterator.special.adaptors]
====================================================
The ``enable_if_convertible<X,Y>::type`` expression used in
this section is for exposition purposes. The converting constructors
for specialized adaptors should be only be in an overload set provided
that an object of type ``X`` is implicitly convertible to an object of
type ``Y``.
The signatures involving ``enable_if_convertible`` should behave
*as-if* ``enable_if_convertible`` were defined to be::
template <bool> enable_if_convertible_impl
{};
template <> enable_if_convertible_impl<true>
{ struct type; };
template<typename From, typename To>
struct enable_if_convertible
: enable_if_convertible_impl<is_convertible<From,To>::value>
{};
If an expression other than the default argument is used to supply
the value of a function parameter whose type is written in terms
of ``enable_if_convertible``, the program is ill-formed, no
diagnostic required.
[*Note:* The ``enable_if_convertible`` approach uses SFINAE to
take the constructor out of the overload set when the types are not
implicitly convertible.
]
Indirect iterator
-----------------
.. include:: indirect_iterator_abstract.rst
Class template ``pointee``
....................................
.. include:: pointee_ref.rst
Class template ``indirect_reference``
.....................................
.. include:: indirect_reference_ref.rst
Class template ``indirect_iterator``
....................................
.. include:: indirect_iterator_ref.rst
Reverse iterator
----------------
.. include:: reverse_iterator_abstract.rst
Class template ``reverse_iterator``
...................................
.. include:: reverse_iterator_ref.rst
Transform iterator
------------------
.. include:: transform_iterator_abstract.rst
Class template ``transform_iterator``
.....................................
.. include:: transform_iterator_ref.rst
Filter iterator
---------------
.. include:: filter_iterator_abstract.rst
Class template ``filter_iterator``
..................................
.. include:: filter_iterator_ref.rst
Counting iterator
-----------------
.. include:: counting_iterator_abstract.rst
Class template ``counting_iterator``
....................................
.. include:: counting_iterator_ref.rst
Function output iterator
------------------------
.. include:: func_output_iter_abstract.rst
Class template ``function_output_iterator``
...........................................
.. include:: func_output_iter_ref.rst
.. LocalWords: Abrahams Siek Witt istream ostream iter MTL strided interoperate
LocalWords: CRTP metafunctions inlining lvalue JGS incrementable BGL LEDA cv
LocalWords: GraphBase struct ptrdiff UnaryFunction const int typename bool pp
LocalWords: lhs rhs SFINAE markup iff tmp OtherDerived OtherIterator DWA foo
LocalWords: dereferenceable subobject AdaptableUnaryFunction impl pre ifdef'd
LocalWords: OtherIncrementable Coplien

View File

@ -1,53 +0,0 @@
.. |iterator-category| replace:: *iterator-category*
.. _iterator-category:
.. parsed-literal::
*iterator-category*\ (C,R,V) :=
if (C is convertible to std::input_iterator_tag
|| C is convertible to std::output_iterator_tag
)
return C
else if (C is not convertible to incrementable_traversal_tag)
*the program is ill-formed*
else return a type X satisfying the following two constraints:
1. X is convertible to X1, and not to any more-derived
type, where X1 is defined by:
if (R is a reference type
&& C is convertible to forward_traversal_tag)
{
if (C is convertible to random_access_traversal_tag)
X1 = random_access_iterator_tag
else if (C is convertible to bidirectional_traversal_tag)
X1 = bidirectional_iterator_tag
else
X1 = forward_iterator_tag
}
else
{
if (C is convertible to single_pass_traversal_tag
&& R is convertible to V)
X1 = input_iterator_tag
else
X1 = C
}
2. |category-to-traversal|_\ (X) is convertible to the most
derived traversal tag type to which X is also
convertible, and not to any more-derived traversal tag
type.
.. |category-to-traversal| replace:: *category-to-traversal*
.. _`category-to-traversal`: new-iter-concepts.html#category-to-traversal
[Note: the intention is to allow ``iterator_category`` to be one of
the five original category tags when convertibility to one of the
traversal tags would add no information]
.. Copyright David Abrahams 2004. Use, modification and distribution is
.. subject to the Boost Software License, Version 1.0. (See accompanying
.. file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

View File

@ -1,390 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>Filter Iterator</title>
<meta name="author" content="David Abrahams, Jeremy Siek, Thomas Witt" />
<meta name="organization" content="Boost Consulting, Indiana University Open Systems Lab, University of Hanover Institute for Transport Railway Operation and Construction" />
<meta name="date" content="2004-11-01" />
<meta name="copyright" content="Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003." />
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">Filter Iterator</h1>
<table class="docinfo" frame="void" rules="none">
<col class="docinfo-name" />
<col class="docinfo-content" />
<tbody valign="top">
<tr><th class="docinfo-name">Author:</th>
<td>David Abrahams, Jeremy Siek, Thomas Witt</td></tr>
<tr><th class="docinfo-name">Contact:</th>
<td><a class="first reference" href="mailto:dave&#64;boost-consulting.com">dave&#64;boost-consulting.com</a>, <a class="reference" href="mailto:jsiek&#64;osl.iu.edu">jsiek&#64;osl.iu.edu</a>, <a class="last reference" href="mailto:witt&#64;ive.uni-hannover.de">witt&#64;ive.uni-hannover.de</a></td></tr>
<tr><th class="docinfo-name">Organization:</th>
<td><a class="first reference" href="http://www.boost-consulting.com">Boost Consulting</a>, Indiana University <a class="reference" href="http://www.osl.iu.edu">Open Systems
Lab</a>, University of Hanover <a class="last reference" href="http://www.ive.uni-hannover.de">Institute for Transport
Railway Operation and Construction</a></td></tr>
<tr><th class="docinfo-name">Date:</th>
<td>2004-11-01</td></tr>
<tr><th class="docinfo-name">Copyright:</th>
<td>Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003.</td></tr>
</tbody>
</table>
<div class="document" id="filter-iterator">
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">abstract:</th><td class="field-body">The filter iterator adaptor creates a view of an iterator range in
which some elements of the range are skipped. A predicate function
object controls which elements are skipped. When the predicate is
applied to an element, if it returns <tt class="literal"><span class="pre">true</span></tt> then the element is
retained and if it returns <tt class="literal"><span class="pre">false</span></tt> then the element is skipped
over. When skipping over elements, it is necessary for the filter
adaptor to know when to stop so as to avoid going past the end of the
underlying range. A filter iterator is therefore constructed with pair
of iterators indicating the range of elements in the unfiltered
sequence to be traversed.</td>
</tr>
</tbody>
</table>
<div class="contents topic" id="table-of-contents">
<p class="topic-title first"><a name="table-of-contents">Table of Contents</a></p>
<ul class="simple">
<li><a class="reference" href="#filter-iterator-synopsis" id="id2" name="id2"><tt class="literal"><span class="pre">filter_iterator</span></tt> synopsis</a></li>
<li><a class="reference" href="#filter-iterator-requirements" id="id3" name="id3"><tt class="literal"><span class="pre">filter_iterator</span></tt> requirements</a></li>
<li><a class="reference" href="#filter-iterator-models" id="id4" name="id4"><tt class="literal"><span class="pre">filter_iterator</span></tt> models</a></li>
<li><a class="reference" href="#filter-iterator-operations" id="id5" name="id5"><tt class="literal"><span class="pre">filter_iterator</span></tt> operations</a></li>
<li><a class="reference" href="#example" id="id6" name="id6">Example</a></li>
</ul>
</div>
<div class="section" id="filter-iterator-synopsis">
<h1><a class="toc-backref" href="#id2" name="filter-iterator-synopsis"><tt class="literal"><span class="pre">filter_iterator</span></tt> synopsis</a></h1>
<!-- Copyright David Abrahams, Jeremy Siek, and Thomas Witt -->
<!-- 2004. Use, modification and distribution is subject to the Boost -->
<!-- Software License, Version 1.0. (See accompanying file -->
<!-- LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -->
<pre class="literal-block">
template &lt;class Predicate, class Iterator&gt;
class filter_iterator
{
public:
typedef iterator_traits&lt;Iterator&gt;::value_type value_type;
typedef iterator_traits&lt;Iterator&gt;::reference reference;
typedef iterator_traits&lt;Iterator&gt;::pointer pointer;
typedef iterator_traits&lt;Iterator&gt;::difference_type difference_type;
typedef /* see below */ iterator_category;
filter_iterator();
filter_iterator(Predicate f, Iterator x, Iterator end = Iterator());
filter_iterator(Iterator x, Iterator end = Iterator());
template&lt;class OtherIterator&gt;
filter_iterator(
filter_iterator&lt;Predicate, OtherIterator&gt; const&amp; t
, typename enable_if_convertible&lt;OtherIterator, Iterator&gt;::type* = 0 // exposition
);
Predicate predicate() const;
Iterator end() const;
Iterator const&amp; base() const;
reference operator*() const;
filter_iterator&amp; operator++();
private:
Predicate m_pred; // exposition only
Iterator m_iter; // exposition only
Iterator m_end; // exposition only
};
</pre>
<p>If <tt class="literal"><span class="pre">Iterator</span></tt> models Readable Lvalue Iterator and Forward Traversal
Iterator then <tt class="literal"><span class="pre">iterator_category</span></tt> is convertible to
<tt class="literal"><span class="pre">std::forward_iterator_tag</span></tt>. Otherwise <tt class="literal"><span class="pre">iterator_category</span></tt> is
convertible to <tt class="literal"><span class="pre">std::input_iterator_tag</span></tt>.</p>
</div>
<div class="section" id="filter-iterator-requirements">
<h1><a class="toc-backref" href="#id3" name="filter-iterator-requirements"><tt class="literal"><span class="pre">filter_iterator</span></tt> requirements</a></h1>
<p>The <tt class="literal"><span class="pre">Iterator</span></tt> argument shall meet the requirements of Readable
Iterator and Single Pass Iterator or it shall meet the requirements of
Input Iterator.</p>
<p>The <tt class="literal"><span class="pre">Predicate</span></tt> argument must be Assignable, Copy Constructible, and
the expression <tt class="literal"><span class="pre">p(x)</span></tt> must be valid where <tt class="literal"><span class="pre">p</span></tt> is an object of type
<tt class="literal"><span class="pre">Predicate</span></tt>, <tt class="literal"><span class="pre">x</span></tt> is an object of type
<tt class="literal"><span class="pre">iterator_traits&lt;Iterator&gt;::value_type</span></tt>, and where the type of
<tt class="literal"><span class="pre">p(x)</span></tt> must be convertible to <tt class="literal"><span class="pre">bool</span></tt>.</p>
</div>
<div class="section" id="filter-iterator-models">
<h1><a class="toc-backref" href="#id4" name="filter-iterator-models"><tt class="literal"><span class="pre">filter_iterator</span></tt> models</a></h1>
<p>The concepts that <tt class="literal"><span class="pre">filter_iterator</span></tt> models are dependent on which
concepts the <tt class="literal"><span class="pre">Iterator</span></tt> argument models, as specified in the
following tables.</p>
<table border="1" class="table">
<colgroup>
<col width="33%" />
<col width="67%" />
</colgroup>
<thead valign="bottom">
<tr><th>If <tt class="literal"><span class="pre">Iterator</span></tt> models</th>
<th>then <tt class="literal"><span class="pre">filter_iterator</span></tt> models</th>
</tr>
</thead>
<tbody valign="top">
<tr><td>Single Pass Iterator</td>
<td>Single Pass Iterator</td>
</tr>
<tr><td>Forward Traversal Iterator</td>
<td>Forward Traversal Iterator</td>
</tr>
</tbody>
</table>
<table border="1" class="table">
<colgroup>
<col width="41%" />
<col width="59%" />
</colgroup>
<thead valign="bottom">
<tr><th>If <tt class="literal"><span class="pre">Iterator</span></tt> models</th>
<th>then <tt class="literal"><span class="pre">filter_iterator</span></tt> models</th>
</tr>
</thead>
<tbody valign="top">
<tr><td>Readable Iterator</td>
<td>Readable Iterator</td>
</tr>
<tr><td>Writable Iterator</td>
<td>Writable Iterator</td>
</tr>
<tr><td>Lvalue Iterator</td>
<td>Lvalue Iterator</td>
</tr>
</tbody>
</table>
<table border="1" class="table">
<colgroup>
<col width="63%" />
<col width="38%" />
</colgroup>
<thead valign="bottom">
<tr><th>If <tt class="literal"><span class="pre">Iterator</span></tt> models</th>
<th>then <tt class="literal"><span class="pre">filter_iterator</span></tt> models</th>
</tr>
</thead>
<tbody valign="top">
<tr><td>Readable Iterator, Single Pass Iterator</td>
<td>Input Iterator</td>
</tr>
<tr><td>Readable Lvalue Iterator, Forward Traversal Iterator</td>
<td>Forward Iterator</td>
</tr>
<tr><td>Writable Lvalue Iterator, Forward Traversal Iterator</td>
<td>Mutable Forward Iterator</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">filter_iterator&lt;P1,</span> <span class="pre">X&gt;</span></tt> is interoperable with <tt class="literal"><span class="pre">filter_iterator&lt;P2,</span> <span class="pre">Y&gt;</span></tt>
if and only if <tt class="literal"><span class="pre">X</span></tt> is interoperable with <tt class="literal"><span class="pre">Y</span></tt>.</p>
</div>
<div class="section" id="filter-iterator-operations">
<h1><a class="toc-backref" href="#id5" name="filter-iterator-operations"><tt class="literal"><span class="pre">filter_iterator</span></tt> operations</a></h1>
<p>In addition to those operations required by the concepts that
<tt class="literal"><span class="pre">filter_iterator</span></tt> models, <tt class="literal"><span class="pre">filter_iterator</span></tt> provides the following
operations.</p>
<p><tt class="literal"><span class="pre">filter_iterator();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Requires:</th><td class="field-body"><tt class="literal"><span class="pre">Predicate</span></tt> and <tt class="literal"><span class="pre">Iterator</span></tt> must be Default Constructible.</td>
</tr>
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs a <tt class="literal"><span class="pre">filter_iterator</span></tt> whose``m_pred``, <tt class="literal"><span class="pre">m_iter</span></tt>, and <tt class="literal"><span class="pre">m_end</span></tt>
members are a default constructed.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">filter_iterator(Predicate</span> <span class="pre">f,</span> <span class="pre">Iterator</span> <span class="pre">x,</span> <span class="pre">Iterator</span> <span class="pre">end</span> <span class="pre">=</span> <span class="pre">Iterator());</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs a <tt class="literal"><span class="pre">filter_iterator</span></tt> where <tt class="literal"><span class="pre">m_iter</span></tt> is either
the first position in the range <tt class="literal"><span class="pre">[x,end)</span></tt> such that <tt class="literal"><span class="pre">f(*m_iter)</span> <span class="pre">==</span> <span class="pre">true</span></tt>
or else``m_iter == end``. The member <tt class="literal"><span class="pre">m_pred</span></tt> is constructed from
<tt class="literal"><span class="pre">f</span></tt> and <tt class="literal"><span class="pre">m_end</span></tt> from <tt class="literal"><span class="pre">end</span></tt>.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">filter_iterator(Iterator</span> <span class="pre">x,</span> <span class="pre">Iterator</span> <span class="pre">end</span> <span class="pre">=</span> <span class="pre">Iterator());</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Requires:</th><td class="field-body"><tt class="literal"><span class="pre">Predicate</span></tt> must be Default Constructible and
<tt class="literal"><span class="pre">Predicate</span></tt> is a class type (not a function pointer).</td>
</tr>
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs a <tt class="literal"><span class="pre">filter_iterator</span></tt> where <tt class="literal"><span class="pre">m_iter</span></tt> is either
the first position in the range <tt class="literal"><span class="pre">[x,end)</span></tt> such that <tt class="literal"><span class="pre">m_pred(*m_iter)</span> <span class="pre">==</span> <span class="pre">true</span></tt>
or else``m_iter == end``. The member <tt class="literal"><span class="pre">m_pred</span></tt> is default constructed.</td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template &lt;class OtherIterator&gt;
filter_iterator(
filter_iterator&lt;Predicate, OtherIterator&gt; const&amp; t
, typename enable_if_convertible&lt;OtherIterator, Iterator&gt;::type* = 0 // exposition
);``
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Requires:</th><td class="field-body"><tt class="literal"><span class="pre">OtherIterator</span></tt> is implicitly convertible to <tt class="literal"><span class="pre">Iterator</span></tt>.</td>
</tr>
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs a filter iterator whose members are copied from <tt class="literal"><span class="pre">t</span></tt>.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Predicate</span> <span class="pre">predicate()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">m_pred</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Iterator</span> <span class="pre">end()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">m_end</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Iterator</span> <span class="pre">const&amp;</span> <span class="pre">base()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">m_iterator</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">reference</span> <span class="pre">operator*()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*m_iter</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">filter_iterator&amp;</span> <span class="pre">operator++();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Increments <tt class="literal"><span class="pre">m_iter</span></tt> and then continues to
increment <tt class="literal"><span class="pre">m_iter</span></tt> until either <tt class="literal"><span class="pre">m_iter</span> <span class="pre">==</span> <span class="pre">m_end</span></tt>
or <tt class="literal"><span class="pre">m_pred(*m_iter)</span> <span class="pre">==</span> <span class="pre">true</span></tt>.</td>
</tr>
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*this</span></tt></td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template &lt;class Predicate, class Iterator&gt;
filter_iterator&lt;Predicate,Iterator&gt;
make_filter_iterator(Predicate f, Iterator x, Iterator end = Iterator());
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">filter_iterator&lt;Predicate,Iterator&gt;(f, x, end)</td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template &lt;class Predicate, class Iterator&gt;
filter_iterator&lt;Predicate,Iterator&gt;
make_filter_iterator(Iterator x, Iterator end = Iterator());
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">filter_iterator&lt;Predicate,Iterator&gt;(x, end)</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="example">
<h1><a class="toc-backref" href="#id6" name="example">Example</a></h1>
<p>This example uses <tt class="literal"><span class="pre">filter_iterator</span></tt> and then
<tt class="literal"><span class="pre">make_filter_iterator</span></tt> to output only the positive integers from an
array of integers. Then <tt class="literal"><span class="pre">make_filter_iterator</span></tt> is is used to output
the integers greater than <tt class="literal"><span class="pre">-2</span></tt>.</p>
<pre class="literal-block">
struct is_positive_number {
bool operator()(int x) { return 0 &lt; x; }
};
int main()
{
int numbers_[] = { 0, -1, 4, -3, 5, 8, -2 };
const int N = sizeof(numbers_)/sizeof(int);
typedef int* base_iterator;
base_iterator numbers(numbers_);
// Example using filter_iterator
typedef boost::filter_iterator&lt;is_positive_number, base_iterator&gt;
FilterIter;
is_positive_number predicate;
FilterIter filter_iter_first(predicate, numbers, numbers + N);
FilterIter filter_iter_last(predicate, numbers + N, numbers + N);
std::copy(filter_iter_first, filter_iter_last, std::ostream_iterator&lt;int&gt;(std::cout, &quot; &quot;));
std::cout &lt;&lt; std::endl;
// Example using make_filter_iterator()
std::copy(boost::make_filter_iterator&lt;is_positive_number&gt;(numbers, numbers + N),
boost::make_filter_iterator&lt;is_positive_number&gt;(numbers + N, numbers + N),
std::ostream_iterator&lt;int&gt;(std::cout, &quot; &quot;));
std::cout &lt;&lt; std::endl;
// Another example using make_filter_iterator()
std::copy(
boost::make_filter_iterator(
std::bind2nd(std::greater&lt;int&gt;(), -2)
, numbers, numbers + N)
, boost::make_filter_iterator(
std::bind2nd(std::greater&lt;int&gt;(), -2)
, numbers + N, numbers + N)
, std::ostream_iterator&lt;int&gt;(std::cout, &quot; &quot;)
);
std::cout &lt;&lt; std::endl;
return boost::exit_success;
}
</pre>
<p>The output is:</p>
<pre class="literal-block">
4 5 8
4 5 8
0 -1 4 5 8
</pre>
<p>The source code for this example can be found <a class="reference" href="../example/filter_iterator_example.cpp">here</a>.</p>
</div>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="filter_iterator.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

Binary file not shown.

View File

@ -1,29 +0,0 @@
+++++++++++++++++
Filter Iterator
+++++++++++++++++
:Author: David Abrahams, Jeremy Siek, Thomas Witt
:Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@ive.uni-hannover.de
:organization: `Boost Consulting`_, Indiana University `Open Systems
Lab`_, University of Hanover `Institute for Transport
Railway Operation and Construction`_
:date: $Date$
:copyright: Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003.
.. _`Boost Consulting`: http://www.boost-consulting.com
.. _`Open Systems Lab`: http://www.osl.iu.edu
.. _`Institute for Transport Railway Operation and Construction`: http://www.ive.uni-hannover.de
:abstract:
.. include:: filter_iterator_abstract.rst
.. contents:: Table of Contents
``filter_iterator`` synopsis
............................
.. include:: filter_iterator_ref.rst
.. include:: make_filter_iterator.rst
.. include:: filter_iterator_eg.rst

View File

@ -1,11 +0,0 @@
The filter iterator adaptor creates a view of an iterator range in
which some elements of the range are skipped. A predicate function
object controls which elements are skipped. When the predicate is
applied to an element, if it returns ``true`` then the element is
retained and if it returns ``false`` then the element is skipped
over. When skipping over elements, it is necessary for the filter
adaptor to know when to stop so as to avoid going past the end of the
underlying range. A filter iterator is therefore constructed with pair
of iterators indicating the range of elements in the unfiltered
sequence to be traversed.

View File

@ -1,69 +0,0 @@
Example
.......
This example uses ``filter_iterator`` and then
``make_filter_iterator`` to output only the positive integers from an
array of integers. Then ``make_filter_iterator`` is is used to output
the integers greater than ``-2``.
::
struct is_positive_number {
bool operator()(int x) { return 0 < x; }
};
int main()
{
int numbers_[] = { 0, -1, 4, -3, 5, 8, -2 };
const int N = sizeof(numbers_)/sizeof(int);
typedef int* base_iterator;
base_iterator numbers(numbers_);
// Example using filter_iterator
typedef boost::filter_iterator<is_positive_number, base_iterator>
FilterIter;
is_positive_number predicate;
FilterIter filter_iter_first(predicate, numbers, numbers + N);
FilterIter filter_iter_last(predicate, numbers + N, numbers + N);
std::copy(filter_iter_first, filter_iter_last, std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
// Example using make_filter_iterator()
std::copy(boost::make_filter_iterator<is_positive_number>(numbers, numbers + N),
boost::make_filter_iterator<is_positive_number>(numbers + N, numbers + N),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
// Another example using make_filter_iterator()
std::copy(
boost::make_filter_iterator(
std::bind2nd(std::greater<int>(), -2)
, numbers, numbers + N)
, boost::make_filter_iterator(
std::bind2nd(std::greater<int>(), -2)
, numbers + N, numbers + N)
, std::ostream_iterator<int>(std::cout, " ")
);
std::cout << std::endl;
return boost::exit_success;
}
The output is::
4 5 8
4 5 8
0 -1 4 5 8
The source code for this example can be found `here`__.
__ ../example/filter_iterator_example.cpp

View File

@ -1,249 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title></title>
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<div class="document">
<!-- Copyright David Abrahams, Jeremy Siek, and Thomas Witt -->
<!-- 2004. Use, modification and distribution is subject to the Boost -->
<!-- Software License, Version 1.0. (See accompanying file -->
<!-- LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -->
<pre class="literal-block">
template &lt;class Predicate, class Iterator&gt;
class filter_iterator
{
public:
typedef iterator_traits&lt;Iterator&gt;::value_type value_type;
typedef iterator_traits&lt;Iterator&gt;::reference reference;
typedef iterator_traits&lt;Iterator&gt;::pointer pointer;
typedef iterator_traits&lt;Iterator&gt;::difference_type difference_type;
typedef /* see below */ iterator_category;
filter_iterator();
filter_iterator(Predicate f, Iterator x, Iterator end = Iterator());
filter_iterator(Iterator x, Iterator end = Iterator());
template&lt;class OtherIterator&gt;
filter_iterator(
filter_iterator&lt;Predicate, OtherIterator&gt; const&amp; t
, typename enable_if_convertible&lt;OtherIterator, Iterator&gt;::type* = 0 // exposition
);
Predicate predicate() const;
Iterator end() const;
Iterator const&amp; base() const;
reference operator*() const;
filter_iterator&amp; operator++();
private:
Predicate m_pred; // exposition only
Iterator m_iter; // exposition only
Iterator m_end; // exposition only
};
</pre>
<p>If <tt class="literal"><span class="pre">Iterator</span></tt> models Readable Lvalue Iterator and Forward Traversal
Iterator then <tt class="literal"><span class="pre">iterator_category</span></tt> is convertible to
<tt class="literal"><span class="pre">std::forward_iterator_tag</span></tt>. Otherwise <tt class="literal"><span class="pre">iterator_category</span></tt> is
convertible to <tt class="literal"><span class="pre">std::input_iterator_tag</span></tt>.</p>
<div class="section" id="filter-iterator-requirements">
<h1><a name="filter-iterator-requirements"><tt class="literal"><span class="pre">filter_iterator</span></tt> requirements</a></h1>
<p>The <tt class="literal"><span class="pre">Iterator</span></tt> argument shall meet the requirements of Readable
Iterator and Single Pass Iterator or it shall meet the requirements of
Input Iterator.</p>
<p>The <tt class="literal"><span class="pre">Predicate</span></tt> argument must be Assignable, Copy Constructible, and
the expression <tt class="literal"><span class="pre">p(x)</span></tt> must be valid where <tt class="literal"><span class="pre">p</span></tt> is an object of type
<tt class="literal"><span class="pre">Predicate</span></tt>, <tt class="literal"><span class="pre">x</span></tt> is an object of type
<tt class="literal"><span class="pre">iterator_traits&lt;Iterator&gt;::value_type</span></tt>, and where the type of
<tt class="literal"><span class="pre">p(x)</span></tt> must be convertible to <tt class="literal"><span class="pre">bool</span></tt>.</p>
</div>
<div class="section" id="filter-iterator-models">
<h1><a name="filter-iterator-models"><tt class="literal"><span class="pre">filter_iterator</span></tt> models</a></h1>
<p>The concepts that <tt class="literal"><span class="pre">filter_iterator</span></tt> models are dependent on which
concepts the <tt class="literal"><span class="pre">Iterator</span></tt> argument models, as specified in the
following tables.</p>
<table border="1" class="table">
<colgroup>
<col width="33%" />
<col width="67%" />
</colgroup>
<thead valign="bottom">
<tr><th>If <tt class="literal"><span class="pre">Iterator</span></tt> models</th>
<th>then <tt class="literal"><span class="pre">filter_iterator</span></tt> models</th>
</tr>
</thead>
<tbody valign="top">
<tr><td>Single Pass Iterator</td>
<td>Single Pass Iterator</td>
</tr>
<tr><td>Forward Traversal Iterator</td>
<td>Forward Traversal Iterator</td>
</tr>
</tbody>
</table>
<table border="1" class="table">
<colgroup>
<col width="41%" />
<col width="59%" />
</colgroup>
<thead valign="bottom">
<tr><th>If <tt class="literal"><span class="pre">Iterator</span></tt> models</th>
<th>then <tt class="literal"><span class="pre">filter_iterator</span></tt> models</th>
</tr>
</thead>
<tbody valign="top">
<tr><td>Readable Iterator</td>
<td>Readable Iterator</td>
</tr>
<tr><td>Writable Iterator</td>
<td>Writable Iterator</td>
</tr>
<tr><td>Lvalue Iterator</td>
<td>Lvalue Iterator</td>
</tr>
</tbody>
</table>
<table border="1" class="table">
<colgroup>
<col width="63%" />
<col width="38%" />
</colgroup>
<thead valign="bottom">
<tr><th>If <tt class="literal"><span class="pre">Iterator</span></tt> models</th>
<th>then <tt class="literal"><span class="pre">filter_iterator</span></tt> models</th>
</tr>
</thead>
<tbody valign="top">
<tr><td>Readable Iterator, Single Pass Iterator</td>
<td>Input Iterator</td>
</tr>
<tr><td>Readable Lvalue Iterator, Forward Traversal Iterator</td>
<td>Forward Iterator</td>
</tr>
<tr><td>Writable Lvalue Iterator, Forward Traversal Iterator</td>
<td>Mutable Forward Iterator</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">filter_iterator&lt;P1,</span> <span class="pre">X&gt;</span></tt> is interoperable with <tt class="literal"><span class="pre">filter_iterator&lt;P2,</span> <span class="pre">Y&gt;</span></tt>
if and only if <tt class="literal"><span class="pre">X</span></tt> is interoperable with <tt class="literal"><span class="pre">Y</span></tt>.</p>
</div>
<div class="section" id="filter-iterator-operations">
<h1><a name="filter-iterator-operations"><tt class="literal"><span class="pre">filter_iterator</span></tt> operations</a></h1>
<p>In addition to those operations required by the concepts that
<tt class="literal"><span class="pre">filter_iterator</span></tt> models, <tt class="literal"><span class="pre">filter_iterator</span></tt> provides the following
operations.</p>
<p><tt class="literal"><span class="pre">filter_iterator();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Requires:</th><td class="field-body"><tt class="literal"><span class="pre">Predicate</span></tt> and <tt class="literal"><span class="pre">Iterator</span></tt> must be Default Constructible.</td>
</tr>
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs a <tt class="literal"><span class="pre">filter_iterator</span></tt> whose``m_pred``, <tt class="literal"><span class="pre">m_iter</span></tt>, and <tt class="literal"><span class="pre">m_end</span></tt>
members are a default constructed.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">filter_iterator(Predicate</span> <span class="pre">f,</span> <span class="pre">Iterator</span> <span class="pre">x,</span> <span class="pre">Iterator</span> <span class="pre">end</span> <span class="pre">=</span> <span class="pre">Iterator());</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs a <tt class="literal"><span class="pre">filter_iterator</span></tt> where <tt class="literal"><span class="pre">m_iter</span></tt> is either
the first position in the range <tt class="literal"><span class="pre">[x,end)</span></tt> such that <tt class="literal"><span class="pre">f(*m_iter)</span> <span class="pre">==</span> <span class="pre">true</span></tt>
or else``m_iter == end``. The member <tt class="literal"><span class="pre">m_pred</span></tt> is constructed from
<tt class="literal"><span class="pre">f</span></tt> and <tt class="literal"><span class="pre">m_end</span></tt> from <tt class="literal"><span class="pre">end</span></tt>.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">filter_iterator(Iterator</span> <span class="pre">x,</span> <span class="pre">Iterator</span> <span class="pre">end</span> <span class="pre">=</span> <span class="pre">Iterator());</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Requires:</th><td class="field-body"><tt class="literal"><span class="pre">Predicate</span></tt> must be Default Constructible and
<tt class="literal"><span class="pre">Predicate</span></tt> is a class type (not a function pointer).</td>
</tr>
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs a <tt class="literal"><span class="pre">filter_iterator</span></tt> where <tt class="literal"><span class="pre">m_iter</span></tt> is either
the first position in the range <tt class="literal"><span class="pre">[x,end)</span></tt> such that <tt class="literal"><span class="pre">m_pred(*m_iter)</span> <span class="pre">==</span> <span class="pre">true</span></tt>
or else``m_iter == end``. The member <tt class="literal"><span class="pre">m_pred</span></tt> is default constructed.</td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template &lt;class OtherIterator&gt;
filter_iterator(
filter_iterator&lt;Predicate, OtherIterator&gt; const&amp; t
, typename enable_if_convertible&lt;OtherIterator, Iterator&gt;::type* = 0 // exposition
);``
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Requires:</th><td class="field-body"><tt class="literal"><span class="pre">OtherIterator</span></tt> is implicitly convertible to <tt class="literal"><span class="pre">Iterator</span></tt>.</td>
</tr>
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs a filter iterator whose members are copied from <tt class="literal"><span class="pre">t</span></tt>.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Predicate</span> <span class="pre">predicate()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">m_pred</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Iterator</span> <span class="pre">end()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">m_end</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Iterator</span> <span class="pre">const&amp;</span> <span class="pre">base()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">m_iterator</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">reference</span> <span class="pre">operator*()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*m_iter</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">filter_iterator&amp;</span> <span class="pre">operator++();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Increments <tt class="literal"><span class="pre">m_iter</span></tt> and then continues to
increment <tt class="literal"><span class="pre">m_iter</span></tt> until either <tt class="literal"><span class="pre">m_iter</span> <span class="pre">==</span> <span class="pre">m_end</span></tt>
or <tt class="literal"><span class="pre">m_pred(*m_iter)</span> <span class="pre">==</span> <span class="pre">true</span></tt>.</td>
</tr>
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*this</span></tt></td>
</tr>
</tbody>
</table>
</div>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="filter_iterator_ref.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

View File

@ -1,169 +0,0 @@
.. Copyright David Abrahams, Jeremy Siek, and Thomas Witt
.. 2004. Use, modification and distribution is subject to the Boost
.. Software License, Version 1.0. (See accompanying file
.. LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
::
template <class Predicate, class Iterator>
class filter_iterator
{
public:
typedef iterator_traits<Iterator>::value_type value_type;
typedef iterator_traits<Iterator>::reference reference;
typedef iterator_traits<Iterator>::pointer pointer;
typedef iterator_traits<Iterator>::difference_type difference_type;
typedef /* see below */ iterator_category;
filter_iterator();
filter_iterator(Predicate f, Iterator x, Iterator end = Iterator());
filter_iterator(Iterator x, Iterator end = Iterator());
template<class OtherIterator>
filter_iterator(
filter_iterator<Predicate, OtherIterator> const& t
, typename enable_if_convertible<OtherIterator, Iterator>::type* = 0 // exposition
);
Predicate predicate() const;
Iterator end() const;
Iterator const& base() const;
reference operator*() const;
filter_iterator& operator++();
private:
Predicate m_pred; // exposition only
Iterator m_iter; // exposition only
Iterator m_end; // exposition only
};
If ``Iterator`` models Readable Lvalue Iterator and Forward Traversal
Iterator then ``iterator_category`` is convertible to
``std::forward_iterator_tag``. Otherwise ``iterator_category`` is
convertible to ``std::input_iterator_tag``.
``filter_iterator`` requirements
................................
The ``Iterator`` argument shall meet the requirements of Readable
Iterator and Single Pass Iterator or it shall meet the requirements of
Input Iterator.
The ``Predicate`` argument must be Assignable, Copy Constructible, and
the expression ``p(x)`` must be valid where ``p`` is an object of type
``Predicate``, ``x`` is an object of type
``iterator_traits<Iterator>::value_type``, and where the type of
``p(x)`` must be convertible to ``bool``.
``filter_iterator`` models
..........................
The concepts that ``filter_iterator`` models are dependent on which
concepts the ``Iterator`` argument models, as specified in the
following tables.
+-----------------------------+----------------------------------------------------------+
| If ``Iterator`` models | then ``filter_iterator`` models |
+=============================+==========================================================+
| Single Pass Iterator | Single Pass Iterator |
+-----------------------------+----------------------------------------------------------+
| Forward Traversal Iterator | Forward Traversal Iterator |
+-----------------------------+----------------------------------------------------------+
+--------------------------------+----------------------------------------------+
| If ``Iterator`` models | then ``filter_iterator`` models |
+================================+==============================================+
| Readable Iterator | Readable Iterator |
+--------------------------------+----------------------------------------------+
| Writable Iterator | Writable Iterator |
+--------------------------------+----------------------------------------------+
| Lvalue Iterator | Lvalue Iterator |
+--------------------------------+----------------------------------------------+
+-------------------------------------------------------+---------------------------------+
| If ``Iterator`` models | then ``filter_iterator`` models |
+=======================================================+=================================+
| Readable Iterator, Single Pass Iterator | Input Iterator |
+-------------------------------------------------------+---------------------------------+
| Readable Lvalue Iterator, Forward Traversal Iterator | Forward Iterator |
+-------------------------------------------------------+---------------------------------+
| Writable Lvalue Iterator, Forward Traversal Iterator | Mutable Forward Iterator |
+-------------------------------------------------------+---------------------------------+
``filter_iterator<P1, X>`` is interoperable with ``filter_iterator<P2, Y>``
if and only if ``X`` is interoperable with ``Y``.
``filter_iterator`` operations
..............................
In addition to those operations required by the concepts that
``filter_iterator`` models, ``filter_iterator`` provides the following
operations.
``filter_iterator();``
:Requires: ``Predicate`` and ``Iterator`` must be Default Constructible.
:Effects: Constructs a ``filter_iterator`` whose``m_pred``, ``m_iter``, and ``m_end``
members are a default constructed.
``filter_iterator(Predicate f, Iterator x, Iterator end = Iterator());``
:Effects: Constructs a ``filter_iterator`` where ``m_iter`` is either
the first position in the range ``[x,end)`` such that ``f(*m_iter) == true``
or else``m_iter == end``. The member ``m_pred`` is constructed from
``f`` and ``m_end`` from ``end``.
``filter_iterator(Iterator x, Iterator end = Iterator());``
:Requires: ``Predicate`` must be Default Constructible and
``Predicate`` is a class type (not a function pointer).
:Effects: Constructs a ``filter_iterator`` where ``m_iter`` is either
the first position in the range ``[x,end)`` such that ``m_pred(*m_iter) == true``
or else``m_iter == end``. The member ``m_pred`` is default constructed.
::
template <class OtherIterator>
filter_iterator(
filter_iterator<Predicate, OtherIterator> const& t
, typename enable_if_convertible<OtherIterator, Iterator>::type* = 0 // exposition
);``
:Requires: ``OtherIterator`` is implicitly convertible to ``Iterator``.
:Effects: Constructs a filter iterator whose members are copied from ``t``.
``Predicate predicate() const;``
:Returns: ``m_pred``
``Iterator end() const;``
:Returns: ``m_end``
``Iterator const& base() const;``
:Returns: ``m_iterator``
``reference operator*() const;``
:Returns: ``*m_iter``
``filter_iterator& operator++();``
:Effects: Increments ``m_iter`` and then continues to
increment ``m_iter`` until either ``m_iter == m_end``
or ``m_pred(*m_iter) == true``.
:Returns: ``*this``

View File

@ -1,8 +0,0 @@
The function output iterator adaptor makes it easier to create custom
output iterators. The adaptor takes a unary function and creates a
model of Output Iterator. Each item assigned to the output iterator is
passed as an argument to the unary function. The motivation for this
iterator is that creating a conforming output iterator is non-trivial,
particularly because the proper implementation usually requires a
proxy object.

View File

@ -1,62 +0,0 @@
::
template <class UnaryFunction>
class function_output_iterator {
public:
typedef std::output_iterator_tag iterator_category;
typedef void value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;
explicit function_output_iterator();
explicit function_output_iterator(const UnaryFunction& f);
/* see below */ operator*();
function_output_iterator& operator++();
function_output_iterator& operator++(int);
private:
UnaryFunction m_f; // exposition only
};
``function_output_iterator`` requirements
.........................................
``UnaryFunction`` must be Assignable and Copy Constructible.
``function_output_iterator`` models
...................................
``function_output_iterator`` is a model of the Writable and
Incrementable Iterator concepts.
``function_output_iterator`` operations
.......................................
``explicit function_output_iterator(const UnaryFunction& f = UnaryFunction());``
:Effects: Constructs an instance of ``function_output_iterator``
with ``m_f`` constructed from ``f``.
``operator*();``
:Returns: An object ``r`` of unspecified type such that ``r = t``
is equivalent to ``m_f(t)`` for all ``t``.
``function_output_iterator& operator++();``
:Returns: ``*this``
``function_output_iterator& operator++(int);``
:Returns: ``*this``

View File

@ -1,171 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>Function Output Iterator</title>
<meta name="author" content="David Abrahams, Jeremy Siek, Thomas Witt" />
<meta name="organization" content="Boost Consulting, Indiana University Open Systems Lab, University of Hanover Institute for Transport Railway Operation and Construction" />
<meta name="date" content="2004-11-01" />
<meta name="copyright" content="Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003." />
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">Function Output Iterator</h1>
<table class="docinfo" frame="void" rules="none">
<col class="docinfo-name" />
<col class="docinfo-content" />
<tbody valign="top">
<tr><th class="docinfo-name">Author:</th>
<td>David Abrahams, Jeremy Siek, Thomas Witt</td></tr>
<tr><th class="docinfo-name">Contact:</th>
<td><a class="first reference" href="mailto:dave&#64;boost-consulting.com">dave&#64;boost-consulting.com</a>, <a class="reference" href="mailto:jsiek&#64;osl.iu.edu">jsiek&#64;osl.iu.edu</a>, <a class="last reference" href="mailto:witt&#64;ive.uni-hannover.de">witt&#64;ive.uni-hannover.de</a></td></tr>
<tr><th class="docinfo-name">Organization:</th>
<td><a class="first reference" href="http://www.boost-consulting.com">Boost Consulting</a>, Indiana University <a class="reference" href="http://www.osl.iu.edu">Open Systems
Lab</a>, University of Hanover <a class="last reference" href="http://www.ive.uni-hannover.de">Institute for Transport
Railway Operation and Construction</a></td></tr>
<tr><th class="docinfo-name">Date:</th>
<td>2004-11-01</td></tr>
<tr><th class="docinfo-name">Copyright:</th>
<td>Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003.</td></tr>
</tbody>
</table>
<div class="document" id="function-output-iterator">
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">abstract:</th><td class="field-body">The function output iterator adaptor makes it easier to create custom
output iterators. The adaptor takes a unary function and creates a
model of Output Iterator. Each item assigned to the output iterator is
passed as an argument to the unary function. The motivation for this
iterator is that creating a conforming output iterator is non-trivial,
particularly because the proper implementation usually requires a
proxy object.</td>
</tr>
</tbody>
</table>
<div class="contents topic" id="table-of-contents">
<p class="topic-title first"><a name="table-of-contents">Table of Contents</a></p>
<ul class="simple">
<li><a class="reference" href="#function-output-iterator-requirements" id="id1" name="id1"><tt class="literal"><span class="pre">function_output_iterator</span></tt> requirements</a></li>
<li><a class="reference" href="#function-output-iterator-models" id="id2" name="id2"><tt class="literal"><span class="pre">function_output_iterator</span></tt> models</a></li>
<li><a class="reference" href="#function-output-iterator-operations" id="id3" name="id3"><tt class="literal"><span class="pre">function_output_iterator</span></tt> operations</a></li>
<li><a class="reference" href="#example" id="id4" name="id4">Example</a></li>
</ul>
</div>
<pre class="literal-block">
template &lt;class UnaryFunction&gt;
class function_output_iterator {
public:
typedef std::output_iterator_tag iterator_category;
typedef void value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;
explicit function_output_iterator();
explicit function_output_iterator(const UnaryFunction&amp; f);
/* see below */ operator*();
function_output_iterator&amp; operator++();
function_output_iterator&amp; operator++(int);
private:
UnaryFunction m_f; // exposition only
};
</pre>
<div class="section" id="function-output-iterator-requirements">
<h1><a class="toc-backref" href="#id1" name="function-output-iterator-requirements"><tt class="literal"><span class="pre">function_output_iterator</span></tt> requirements</a></h1>
<p><tt class="literal"><span class="pre">UnaryFunction</span></tt> must be Assignable and Copy Constructible.</p>
</div>
<div class="section" id="function-output-iterator-models">
<h1><a class="toc-backref" href="#id2" name="function-output-iterator-models"><tt class="literal"><span class="pre">function_output_iterator</span></tt> models</a></h1>
<p><tt class="literal"><span class="pre">function_output_iterator</span></tt> is a model of the Writable and
Incrementable Iterator concepts.</p>
</div>
<div class="section" id="function-output-iterator-operations">
<h1><a class="toc-backref" href="#id3" name="function-output-iterator-operations"><tt class="literal"><span class="pre">function_output_iterator</span></tt> operations</a></h1>
<p><tt class="literal"><span class="pre">explicit</span> <span class="pre">function_output_iterator(const</span> <span class="pre">UnaryFunction&amp;</span> <span class="pre">f</span> <span class="pre">=</span> <span class="pre">UnaryFunction());</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs an instance of <tt class="literal"><span class="pre">function_output_iterator</span></tt>
with <tt class="literal"><span class="pre">m_f</span></tt> constructed from <tt class="literal"><span class="pre">f</span></tt>.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">operator*();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">An object <tt class="literal"><span class="pre">r</span></tt> of unspecified type such that <tt class="literal"><span class="pre">r</span> <span class="pre">=</span> <span class="pre">t</span></tt>
is equivalent to <tt class="literal"><span class="pre">m_f(t)</span></tt> for all <tt class="literal"><span class="pre">t</span></tt>.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">function_output_iterator&amp;</span> <span class="pre">operator++();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*this</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">function_output_iterator&amp;</span> <span class="pre">operator++(int);</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*this</span></tt></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="example">
<h1><a class="toc-backref" href="#id4" name="example">Example</a></h1>
<pre class="literal-block">
struct string_appender
{
string_appender(std::string&amp; s)
: m_str(&amp;s)
{}
void operator()(const std::string&amp; x) const
{
*m_str += x;
}
std::string* m_str;
};
int main(int, char*[])
{
std::vector&lt;std::string&gt; x;
x.push_back(&quot;hello&quot;);
x.push_back(&quot; &quot;);
x.push_back(&quot;world&quot;);
x.push_back(&quot;!&quot;);
std::string s = &quot;&quot;;
std::copy(x.begin(), x.end(),
boost::make_function_output_iterator(string_appender(s)));
std::cout &lt;&lt; s &lt;&lt; std::endl;
return 0;
}
</pre>
</div>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="function_output_iterator.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

Binary file not shown.

View File

@ -1,24 +0,0 @@
++++++++++++++++++++++++++
Function Output Iterator
++++++++++++++++++++++++++
:Author: David Abrahams, Jeremy Siek, Thomas Witt
:Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@ive.uni-hannover.de
:organization: `Boost Consulting`_, Indiana University `Open Systems
Lab`_, University of Hanover `Institute for Transport
Railway Operation and Construction`_
:date: $Date$
:copyright: Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003.
.. _`Boost Consulting`: http://www.boost-consulting.com
.. _`Open Systems Lab`: http://www.osl.iu.edu
.. _`Institute for Transport Railway Operation and Construction`: http://www.ive.uni-hannover.de
:abstract:
.. include:: func_output_iter_abstract.rst
.. contents:: Table of Contents
.. include:: func_output_iter_ref.rst
.. include:: function_output_iterator_eg.rst

View File

@ -1,35 +0,0 @@
Example
.......
::
struct string_appender
{
string_appender(std::string& s)
: m_str(&s)
{}
void operator()(const std::string& x) const
{
*m_str += x;
}
std::string* m_str;
};
int main(int, char*[])
{
std::vector<std::string> x;
x.push_back("hello");
x.push_back(" ");
x.push_back("world");
x.push_back("!");
std::string s = "";
std::copy(x.begin(), x.end(),
boost::make_function_output_iterator(string_appender(s)));
std::cout << s << std::endl;
return 0;
}

View File

@ -1,32 +0,0 @@
#!/usr/bin/python
# Copyright David Abrahams 2004. Use, modification and distribution is
# subject to the Boost Software License, Version 1.0. (See accompanying
# file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#
# Generate html, TeX, and PDF versions of all the source files
#
import os
import sys
from syscmd import syscmd
from sources import sources
if 0:
for s in sources:
syscmd('boosthtml %s' % s)
else:
extensions = ('html', 'pdf')
if len(sys.argv) > 1:
extensions = sys.argv[1:]
all = [ '%s.%s' % (os.path.splitext(s)[0],ext)
for ext in extensions
for s in sources
]
print 'make %s' % ' '.join(all)
syscmd('make %s' % ' '.join(all))

View File

@ -1,241 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>The Boost.Iterator Library Boost</title>
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">The Boost.Iterator Library <a class="reference" href="../../../index.htm"><img alt="Boost" src="../../../boost.png" /></a></h1>
<div class="document" id="the-boost-iterator-library-logo">
<hr />
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Authors:</th><td class="field-body">David Abrahams, Jeremy Siek, Thomas Witt</td>
</tr>
<tr class="field"><th class="field-name">Contact:</th><td class="field-body"><a class="reference" href="mailto:dave&#64;boost-consulting.com">dave&#64;boost-consulting.com</a>, <a class="reference" href="mailto:jsiek&#64;osl.iu.edu">jsiek&#64;osl.iu.edu</a>, <a class="reference" href="mailto:witt&#64;styleadvisor.com">witt&#64;styleadvisor.com</a></td>
</tr>
<tr class="field"><th class="field-name">organizations:</th><td class="field-body"><a class="reference" href="http://www.boost-consulting.com">Boost Consulting</a>, Indiana University <a class="reference" href="http://www.osl.iu.edu">Open Systems
Lab</a>, <a class="reference" href="http://www.styleadvisor.com">Zephyr Associates, Inc.</a></td>
</tr>
<tr class="field"><th class="field-name">date:</th><td class="field-body">$Date$</td>
</tr>
<tr class="field"><th class="field-name">copyright:</th><td class="field-body">Copyright David Abrahams, Jeremy Siek, Thomas Witt 2003.</td>
</tr>
</tbody>
</table>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Abstract:</th><td class="field-body">The Boost Iterator Library contains two parts. The first
is a system of <a class="reference" href="../../../more/generic_programming.html#concept">concepts</a> which extend the C++ standard
iterator requirements. The second is a framework of
components for building iterators based on these
extended concepts and includes several useful iterator
adaptors. The extended iterator concepts have been
carefully designed so that old-style iterators
can fit in the new concepts and so that new-style
iterators will be compatible with old-style algorithms,
though algorithms may need to be updated if they want to
take full advantage of the new-style iterator
capabilities. Several components of this library have
been accepted into the C++ standard technical report.
The components of the Boost Iterator Library replace the
older Boost Iterator Adaptor Library.</td>
</tr>
</tbody>
</table>
<div class="contents topic" id="table-of-contents">
<p class="topic-title first"><a name="table-of-contents"><strong>Table of Contents</strong></a></p>
<ul class="simple">
<li><a class="reference" href="#new-style-iterators" id="id22" name="id22">New-Style Iterators</a></li>
<li><a class="reference" href="#iterator-facade-and-adaptor" id="id23" name="id23">Iterator Facade and Adaptor</a></li>
<li><a class="reference" href="#specialized-adaptors" id="id24" name="id24">Specialized Adaptors</a></li>
<li><a class="reference" href="#iterator-utilities" id="id25" name="id25">Iterator Utilities</a><ul>
<li><a class="reference" href="#traits" id="id26" name="id26">Traits</a></li>
<li><a class="reference" href="#testing-and-concept-checking" id="id27" name="id27">Testing and Concept Checking</a></li>
</ul>
</li>
<li><a class="reference" href="#upgrading-from-the-old-boost-iterator-adaptor-library" id="id28" name="id28">Upgrading from the old Boost Iterator Adaptor Library</a></li>
<li><a class="reference" href="#history" id="id29" name="id29">History</a></li>
</ul>
</div>
<hr />
<div class="section" id="new-style-iterators">
<h1><a class="toc-backref" href="#id22" name="new-style-iterators">New-Style Iterators</a></h1>
<p>The iterator categories defined in C++98 are extremely limiting
because they bind together two orthogonal concepts: traversal and
element access. For example, because a random access iterator is
required to return a reference (and not a proxy) when dereferenced,
it is impossible to capture the capabilities of
<tt class="literal"><span class="pre">vector&lt;bool&gt;::iterator</span></tt> using the C++98 categories. This is the
infamous &quot;<tt class="literal"><span class="pre">vector&lt;bool&gt;</span></tt> is not a container, and its iterators
aren't random access iterators&quot;, debacle about which Herb Sutter
wrote two papers for the standards comittee (<a class="reference" href="http://www.gotw.ca/publications/N1185.pdf">n1185</a> and <a class="reference" href="http://www.gotw.ca/publications/N1211.pdf">n1211</a>),
and a <a class="reference" href="http://www.gotw.ca/gotw/050.htm">Guru of the Week</a>. New-style iterators go well beyond
patching up <tt class="literal"><span class="pre">vector&lt;bool&gt;</span></tt>, though: there are lots of other
iterators already in use which can't be adequately represented by
the existing concepts. For details about the new iterator
concepts, see our</p>
<blockquote>
<a class="reference" href="new-iter-concepts.html">Standard Proposal For New-Style Iterators</a> (<a class="reference" href="new-iter-concepts.pdf">PDF</a>)</blockquote>
</div>
<div class="section" id="iterator-facade-and-adaptor">
<h1><a class="toc-backref" href="#id23" name="iterator-facade-and-adaptor">Iterator Facade and Adaptor</a></h1>
<p>Writing standard-conforming iterators is tricky, but the need comes
up often. In order to ease the implementation of new iterators,
the Boost.Iterator library provides the <tt class="literal"><span class="pre">iterator_facade</span></tt> class template,
which implements many useful defaults and compile-time checks
designed to help the iterator author ensure that his iterator is
correct.</p>
<p>It is also common to define a new iterator that is similar to some
underlying iterator or iterator-like type, but that modifies some
aspect of the underlying type's behavior. For that purpose, the
library supplies the <tt class="literal"><span class="pre">iterator_adaptor</span></tt> class template, which is specially
designed to take advantage of as much of the underlying type's
behavior as possible.</p>
<p>The documentation for these two classes can be found at the following
web pages:</p>
<ul class="simple">
<li><a class="reference" href="iterator_facade.html"><tt class="literal"><span class="pre">iterator_facade</span></tt></a> (<a class="reference" href="iterator_facade.pdf">PDF</a>)</li>
<li><a class="reference" href="iterator_adaptor.html"><tt class="literal"><span class="pre">iterator_adaptor</span></tt></a> (<a class="reference" href="iterator_adaptor.pdf">PDF</a>)</li>
</ul>
<p>Both <tt class="literal"><span class="pre">iterator_facade</span></tt> and <tt class="literal"><span class="pre">iterator_adaptor</span></tt> as well as many of the <a class="reference" href="#specialized-adaptors">specialized
adaptors</a> mentioned below have been proposed for standardization,
and accepted into the first C++ technical report; see our</p>
<blockquote>
<a class="reference" href="facade-and-adaptor.html">Standard Proposal For Iterator Facade and Adaptor</a> (<a class="reference" href="facade-and-adaptor.pdf">PDF</a>)</blockquote>
<p>for more details.</p>
</div>
<div class="section" id="specialized-adaptors">
<h1><a class="toc-backref" href="#id24" name="specialized-adaptors">Specialized Adaptors</a></h1>
<p>The iterator library supplies a useful suite of standard-conforming
iterator templates based on the Boost <a class="reference" href="#iterator-facade-and-adaptor">iterator facade and adaptor</a>.</p>
<ul class="simple">
<li><a class="reference" href="counting_iterator.html"><tt class="literal"><span class="pre">counting_iterator</span></tt></a> (<a class="reference" href="counting_iterator.pdf">PDF</a>): an iterator over a sequence of consecutive values.
Implements a &quot;lazy sequence&quot;</li>
<li><a class="reference" href="filter_iterator.html"><tt class="literal"><span class="pre">filter_iterator</span></tt></a> (<a class="reference" href="filter_iterator.pdf">PDF</a>): an iterator over the subset of elements of some
sequence which satisfy a given predicate</li>
<li><a class="reference" href="function_output_iterator.html"><tt class="literal"><span class="pre">function_output_iterator</span></tt></a> (<a class="reference" href="function_output_iterator.pdf">PDF</a>): an output iterator wrapping a unary function
object; each time an element is written into the dereferenced
iterator, it is passed as a parameter to the function object.</li>
<li><a class="reference" href="indirect_iterator.html"><tt class="literal"><span class="pre">indirect_iterator</span></tt></a> (<a class="reference" href="indirect_iterator.pdf">PDF</a>): an iterator over the objects <em>pointed-to</em> by the
elements of some sequence.</li>
<li><a class="reference" href="permutation_iterator.html"><tt class="literal"><span class="pre">permutation_iterator</span></tt></a> (<a class="reference" href="permutation_iterator.pdf">PDF</a>): an iterator over the elements of some random-access
sequence, rearranged according to some sequence of integer indices.</li>
<li><a class="reference" href="reverse_iterator.html"><tt class="literal"><span class="pre">reverse_iterator</span></tt></a> (<a class="reference" href="reverse_iterator.pdf">PDF</a>): an iterator which traverses the elements of some
bidirectional sequence in reverse. Corrects many of the
shortcomings of C++98's <tt class="literal"><span class="pre">std::reverse_iterator</span></tt>.</li>
<li><a class="reference" href="../../utility/shared_container_iterator.html"><tt class="literal"><span class="pre">shared_container_iterator</span></tt></a>: an iterator over elements of a container whose
lifetime is maintained by a <a class="reference" href="../../smart_ptr/shared_ptr.htm"><tt class="literal"><span class="pre">shared_ptr</span></tt></a> stored in the iterator.</li>
<li><a class="reference" href="transform_iterator.html"><tt class="literal"><span class="pre">transform_iterator</span></tt></a> (<a class="reference" href="transform_iterator.pdf">PDF</a>): an iterator over elements which are the result of
applying some functional transformation to the elements of an
underlying sequence. This component also replaces the old
<tt class="literal"><span class="pre">projection_iterator_adaptor</span></tt>.</li>
<li><a class="reference" href="zip_iterator.html"><tt class="literal"><span class="pre">zip_iterator</span></tt></a> (<a class="reference" href="zip_iterator.pdf">PDF</a>): an iterator over tuples of the elements at corresponding
positions of heterogeneous underlying iterators.</li>
</ul>
</div>
<div class="section" id="iterator-utilities">
<h1><a class="toc-backref" href="#id25" name="iterator-utilities">Iterator Utilities</a></h1>
<div class="section" id="traits">
<h2><a class="toc-backref" href="#id26" name="traits">Traits</a></h2>
<ul class="simple">
<li><a class="reference" href="pointee.html"><tt class="literal"><span class="pre">pointee.hpp</span></tt></a> (<a class="reference" href="pointee.pdf">PDF</a>): Provides the capability to deduce the referent types
of pointers, smart pointers and iterators in generic code. Used
in <tt class="literal"><span class="pre">indirect_iterator</span></tt>.</li>
<li><a class="reference" href="iterator_traits.html"><tt class="literal"><span class="pre">iterator_traits.hpp</span></tt></a> (<a class="reference" href="iterator_traits.pdf">PDF</a>): Provides <a class="reference" href="../../mpl/doc/index.html">MPL</a>-compatible metafunctions which
retrieve an iterator's traits. Also corrects for the deficiencies
of broken implementations of <tt class="literal"><span class="pre">std::iterator_traits</span></tt>.</li>
</ul>
<!-- * |interoperable|_ (PDF__): Provides an MPL_\ -compatible metafunction for
testing iterator interoperability -->
<!-- comment! __ interoperable.pdf -->
</div>
<div class="section" id="testing-and-concept-checking">
<h2><a class="toc-backref" href="#id27" name="testing-and-concept-checking">Testing and Concept Checking</a></h2>
<ul class="simple">
<li><a class="reference" href="iterator_concepts.html"><tt class="literal"><span class="pre">iterator_concepts.hpp</span></tt></a> (<a class="reference" href="iterator_concepts.pdf">PDF</a>): Concept checking classes for the new iterator concepts.</li>
<li><a class="reference" href="iterator_archetypes.html"><tt class="literal"><span class="pre">iterator_archetypes.hpp</span></tt></a> (<a class="reference" href="iterator_archetypes.pdf">PDF</a>): Concept archetype classes for the new iterators concepts.</li>
</ul>
</div>
</div>
<div class="section" id="upgrading-from-the-old-boost-iterator-adaptor-library">
<h1><a class="toc-backref" href="#id28" name="upgrading-from-the-old-boost-iterator-adaptor-library">Upgrading from the old Boost Iterator Adaptor Library</a></h1>
<a class="target" id="upgrading" name="upgrading"></a><p>If you have been using the old Boost Iterator Adaptor library to
implement iterators, you probably wrote a <tt class="literal"><span class="pre">Policies</span></tt> class which
captures the core operations of your iterator. In the new library
design, you'll move those same core operations into the body of the
iterator class itself. If you were writing a family of iterators,
you probably wrote a <a class="reference" href="../../../more/generic_programming.html#type_generator">type generator</a> to build the
<tt class="literal"><span class="pre">iterator_adaptor</span></tt> specialization you needed; in the new library
design you don't need a type generator (though may want to keep it
around as a compatibility aid for older code) because, due to the
use of the Curiously Recurring Template Pattern (CRTP) <a class="citation-reference" href="#cop95" id="id21" name="id21">[Cop95]</a>,
you can now define the iterator class yourself and acquire
functionality through inheritance from <tt class="literal"><span class="pre">iterator_facade</span></tt> or
<tt class="literal"><span class="pre">iterator_adaptor</span></tt>. As a result, you also get much finer control
over how your iterator works: you can add additional constructors,
or even override the iterator functionality provided by the
library.</p>
<p>If you're looking for the old <tt class="literal"><span class="pre">projection_iterator</span></tt> component,
its functionality has been merged into <tt class="literal"><span class="pre">transform_iterator</span></tt>: as
long as the function object's <tt class="literal"><span class="pre">result_type</span></tt> (or the <tt class="literal"><span class="pre">Reference</span></tt>
template argument, if explicitly specified) is a true reference
type, <tt class="literal"><span class="pre">transform_iterator</span></tt> will behave like
<tt class="literal"><span class="pre">projection_iterator</span></tt> used to.</p>
</div>
<div class="section" id="history">
<h1><a class="toc-backref" href="#id29" name="history">History</a></h1>
<p>In 2000 Dave Abrahams was writing an iterator for a container of
pointers, which would access the pointed-to elements when
dereferenced. Naturally, being a library writer, he decided to
generalize the idea and the Boost Iterator Adaptor library was born.
Dave was inspired by some writings of Andrei Alexandrescu and chose a
policy based design (though he probably didn't capture Andrei's idea
very well - there was only one policy class for all the iterator's
orthogonal properties). Soon Jeremy Siek realized he would need the
library and they worked together to produce a &quot;Boostified&quot; version,
which was reviewed and accepted into the library. They wrote a paper
and made several important revisions of the code.</p>
<p>Eventually, several shortcomings of the older library began to make
the need for a rewrite apparent. Dave and Jeremy started working
at the Santa Cruz C++ committee meeting in 2002, and had quickly
generated a working prototype. At the urging of Mat Marcus, they
decided to use the GenVoca/CRTP pattern approach, and moved the
policies into the iterator class itself. Thomas Witt expressed
interest and became the voice of strict compile-time checking for
the project, adding uses of the SFINAE technique to eliminate false
converting constructors and operators from the overload set. He
also recognized the need for a separate <tt class="literal"><span class="pre">iterator_facade</span></tt>, and
factored it out of <tt class="literal"><span class="pre">iterator_adaptor</span></tt>. Finally, after a
near-complete rewrite of the prototype, they came up with the
library you see today.</p>
<table class="citation" frame="void" id="cop95" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id21" name="cop95">[Cop95]</a></td><td>[Coplien, 1995] Coplien, J., Curiously Recurring Template
Patterns, C++ Report, February 1995, pp. 24-27.</td></tr>
</tbody>
</table>
<!-- LocalWords: Abrahams Siek Witt const bool Sutter's WG int UL LI href Lvalue
LocalWords: ReadableIterator WritableIterator SwappableIterator cv pre iter
LocalWords: ConstantLvalueIterator MutableLvalueIterator CopyConstructible TR
LocalWords: ForwardTraversalIterator BidirectionalTraversalIterator lvalue
LocalWords: RandomAccessTraversalIterator dereferenceable Incrementable tmp
LocalWords: incrementable xxx min prev inplace png oldeqnew AccessTag struct
LocalWords: TraversalTag typename lvalues DWA Hmm JGS -->
</div>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="index.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

View File

@ -1,319 +0,0 @@
+++++++++++++++++++++++++++++++++++++++++++++++++
The Boost.Iterator Library |(logo)|__
+++++++++++++++++++++++++++++++++++++++++++++++++
.. |(logo)| image:: ../../../boost.png
:alt: Boost
__ ../../../index.htm
-------------------------------------
:Authors: David Abrahams, Jeremy Siek, Thomas Witt
:Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@styleadvisor.com
:organizations: `Boost Consulting`_, Indiana University `Open Systems
Lab`_, `Zephyr Associates, Inc.`_
:date: $Date$
:copyright: Copyright David Abrahams, Jeremy Siek, Thomas Witt 2003.
.. _`Boost Consulting`: http://www.boost-consulting.com
.. _`Open Systems Lab`: http://www.osl.iu.edu
.. _`Zephyr Associates, Inc.`: http://www.styleadvisor.com
:Abstract: The Boost Iterator Library contains two parts. The first
is a system of concepts_ which extend the C++ standard
iterator requirements. The second is a framework of
components for building iterators based on these
extended concepts and includes several useful iterator
adaptors. The extended iterator concepts have been
carefully designed so that old-style iterators
can fit in the new concepts and so that new-style
iterators will be compatible with old-style algorithms,
though algorithms may need to be updated if they want to
take full advantage of the new-style iterator
capabilities. Several components of this library have
been accepted into the C++ standard technical report.
The components of the Boost Iterator Library replace the
older Boost Iterator Adaptor Library.
.. _concepts: ../../../more/generic_programming.html#concept
.. contents:: **Table of Contents**
-------------------------------------
=====================
New-Style Iterators
=====================
The iterator categories defined in C++98 are extremely limiting
because they bind together two orthogonal concepts: traversal and
element access. For example, because a random access iterator is
required to return a reference (and not a proxy) when dereferenced,
it is impossible to capture the capabilities of
``vector<bool>::iterator`` using the C++98 categories. This is the
infamous "``vector<bool>`` is not a container, and its iterators
aren't random access iterators", debacle about which Herb Sutter
wrote two papers for the standards comittee (n1185_ and n1211_),
and a `Guru of the Week`__. New-style iterators go well beyond
patching up ``vector<bool>``, though: there are lots of other
iterators already in use which can't be adequately represented by
the existing concepts. For details about the new iterator
concepts, see our
.. _n1185: http://www.gotw.ca/publications/N1185.pdf
.. _n1211: http://www.gotw.ca/publications/N1211.pdf
__ http://www.gotw.ca/gotw/050.htm
`Standard Proposal For New-Style Iterators`__ (PDF__)
__ new-iter-concepts.html
__ new-iter-concepts.pdf
=============================
Iterator Facade and Adaptor
=============================
Writing standard-conforming iterators is tricky, but the need comes
up often. In order to ease the implementation of new iterators,
the Boost.Iterator library provides the |facade| class template,
which implements many useful defaults and compile-time checks
designed to help the iterator author ensure that his iterator is
correct.
It is also common to define a new iterator that is similar to some
underlying iterator or iterator-like type, but that modifies some
aspect of the underlying type's behavior. For that purpose, the
library supplies the |adaptor| class template, which is specially
designed to take advantage of as much of the underlying type's
behavior as possible.
The documentation for these two classes can be found at the following
web pages:
* |facade|_ (PDF__)
* |adaptor|_ (PDF__)
.. |facade| replace:: ``iterator_facade``
.. _facade: iterator_facade.html
__ iterator_facade.pdf
.. |adaptor| replace:: ``iterator_adaptor``
.. _adaptor: iterator_adaptor.html
__ iterator_adaptor.pdf
Both |facade| and |adaptor| as well as many of the `specialized
adaptors`_ mentioned below have been proposed for standardization,
and accepted into the first C++ technical report; see our
`Standard Proposal For Iterator Facade and Adaptor`__ (PDF__)
for more details.
__ facade-and-adaptor.html
__ facade-and-adaptor.pdf
======================
Specialized Adaptors
======================
The iterator library supplies a useful suite of standard-conforming
iterator templates based on the Boost `iterator facade and adaptor`_.
* |counting|_ (PDF__): an iterator over a sequence of consecutive values.
Implements a "lazy sequence"
* |filter|_ (PDF__): an iterator over the subset of elements of some
sequence which satisfy a given predicate
* |function|_ (PDF__): an output iterator wrapping a unary function
object; each time an element is written into the dereferenced
iterator, it is passed as a parameter to the function object.
* |indirect|_ (PDF__): an iterator over the objects *pointed-to* by the
elements of some sequence.
* |permutation|_ (PDF__): an iterator over the elements of some random-access
sequence, rearranged according to some sequence of integer indices.
* |reverse|_ (PDF__): an iterator which traverses the elements of some
bidirectional sequence in reverse. Corrects many of the
shortcomings of C++98's ``std::reverse_iterator``.
* |shared|_: an iterator over elements of a container whose
lifetime is maintained by a |shared_ptr|_ stored in the iterator.
* |transform|_ (PDF__): an iterator over elements which are the result of
applying some functional transformation to the elements of an
underlying sequence. This component also replaces the old
``projection_iterator_adaptor``.
* |zip|_ (PDF__): an iterator over tuples of the elements at corresponding
positions of heterogeneous underlying iterators.
.. |counting| replace:: ``counting_iterator``
.. _counting: counting_iterator.html
__ counting_iterator.pdf
.. |filter| replace:: ``filter_iterator``
.. _filter: filter_iterator.html
__ filter_iterator.pdf
.. |function| replace:: ``function_output_iterator``
.. _function: function_output_iterator.html
__ function_output_iterator.pdf
.. |indirect| replace:: ``indirect_iterator``
.. _indirect: indirect_iterator.html
__ indirect_iterator.pdf
.. |permutation| replace:: ``permutation_iterator``
.. _permutation: permutation_iterator.html
__ permutation_iterator.pdf
.. |reverse| replace:: ``reverse_iterator``
.. _reverse: reverse_iterator.html
__ reverse_iterator.pdf
.. |shared| replace:: ``shared_container_iterator``
.. _shared: ../../utility/shared_container_iterator.html
.. |transform| replace:: ``transform_iterator``
.. _transform: transform_iterator.html
__ transform_iterator.pdf
.. |zip| replace:: ``zip_iterator``
.. _zip: zip_iterator.html
__ zip_iterator.pdf
.. |shared_ptr| replace:: ``shared_ptr``
.. _shared_ptr: ../../smart_ptr/shared_ptr.htm
====================
Iterator Utilities
====================
Traits
------
* |pointee|_ (PDF__): Provides the capability to deduce the referent types
of pointers, smart pointers and iterators in generic code. Used
in |indirect|.
* |iterator_traits|_ (PDF__): Provides MPL_\ -compatible metafunctions which
retrieve an iterator's traits. Also corrects for the deficiencies
of broken implementations of ``std::iterator_traits``.
.. * |interoperable|_ (PDF__): Provides an MPL_\ -compatible metafunction for
testing iterator interoperability
.. |pointee| replace:: ``pointee.hpp``
.. _pointee: pointee.html
__ pointee.pdf
.. |iterator_traits| replace:: ``iterator_traits.hpp``
.. _iterator_traits: iterator_traits.html
__ iterator_traits.pdf
.. |interoperable| replace:: ``interoperable.hpp``
.. _interoperable: interoperable.html
.. comment! __ interoperable.pdf
.. _MPL: ../../mpl/doc/index.html
Testing and Concept Checking
----------------------------
* |iterator_concepts|_ (PDF__): Concept checking classes for the new iterator concepts.
* |iterator_archetypes|_ (PDF__): Concept archetype classes for the new iterators concepts.
.. |iterator_concepts| replace:: ``iterator_concepts.hpp``
.. _iterator_concepts: iterator_concepts.html
__ iterator_concepts.pdf
.. |iterator_archetypes| replace:: ``iterator_archetypes.hpp``
.. _iterator_archetypes: iterator_archetypes.html
__ iterator_archetypes.pdf
=======================================================
Upgrading from the old Boost Iterator Adaptor Library
=======================================================
.. _Upgrading:
If you have been using the old Boost Iterator Adaptor library to
implement iterators, you probably wrote a ``Policies`` class which
captures the core operations of your iterator. In the new library
design, you'll move those same core operations into the body of the
iterator class itself. If you were writing a family of iterators,
you probably wrote a `type generator`_ to build the
``iterator_adaptor`` specialization you needed; in the new library
design you don't need a type generator (though may want to keep it
around as a compatibility aid for older code) because, due to the
use of the Curiously Recurring Template Pattern (CRTP) [Cop95]_,
you can now define the iterator class yourself and acquire
functionality through inheritance from ``iterator_facade`` or
``iterator_adaptor``. As a result, you also get much finer control
over how your iterator works: you can add additional constructors,
or even override the iterator functionality provided by the
library.
.. _`type generator`: ../../../more/generic_programming.html#type_generator
If you're looking for the old ``projection_iterator`` component,
its functionality has been merged into ``transform_iterator``: as
long as the function object's ``result_type`` (or the ``Reference``
template argument, if explicitly specified) is a true reference
type, ``transform_iterator`` will behave like
``projection_iterator`` used to.
=========
History
=========
In 2000 Dave Abrahams was writing an iterator for a container of
pointers, which would access the pointed-to elements when
dereferenced. Naturally, being a library writer, he decided to
generalize the idea and the Boost Iterator Adaptor library was born.
Dave was inspired by some writings of Andrei Alexandrescu and chose a
policy based design (though he probably didn't capture Andrei's idea
very well - there was only one policy class for all the iterator's
orthogonal properties). Soon Jeremy Siek realized he would need the
library and they worked together to produce a "Boostified" version,
which was reviewed and accepted into the library. They wrote a paper
and made several important revisions of the code.
Eventually, several shortcomings of the older library began to make
the need for a rewrite apparent. Dave and Jeremy started working
at the Santa Cruz C++ committee meeting in 2002, and had quickly
generated a working prototype. At the urging of Mat Marcus, they
decided to use the GenVoca/CRTP pattern approach, and moved the
policies into the iterator class itself. Thomas Witt expressed
interest and became the voice of strict compile-time checking for
the project, adding uses of the SFINAE technique to eliminate false
converting constructors and operators from the overload set. He
also recognized the need for a separate ``iterator_facade``, and
factored it out of ``iterator_adaptor``. Finally, after a
near-complete rewrite of the prototype, they came up with the
library you see today.
.. [Cop95] [Coplien, 1995] Coplien, J., Curiously Recurring Template
Patterns, C++ Report, February 1995, pp. 24-27.
..
LocalWords: Abrahams Siek Witt const bool Sutter's WG int UL LI href Lvalue
LocalWords: ReadableIterator WritableIterator SwappableIterator cv pre iter
LocalWords: ConstantLvalueIterator MutableLvalueIterator CopyConstructible TR
LocalWords: ForwardTraversalIterator BidirectionalTraversalIterator lvalue
LocalWords: RandomAccessTraversalIterator dereferenceable Incrementable tmp
LocalWords: incrementable xxx min prev inplace png oldeqnew AccessTag struct
LocalWords: TraversalTag typename lvalues DWA Hmm JGS

View File

@ -1,332 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>Indirect Iterator</title>
<meta name="author" content="David Abrahams, Jeremy Siek, Thomas Witt" />
<meta name="organization" content="Boost Consulting, Indiana University Open Systems Lab, University of Hanover Institute for Transport Railway Operation and Construction" />
<meta name="date" content="2004-11-01" />
<meta name="copyright" content="Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003." />
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">Indirect Iterator</h1>
<table class="docinfo" frame="void" rules="none">
<col class="docinfo-name" />
<col class="docinfo-content" />
<tbody valign="top">
<tr><th class="docinfo-name">Author:</th>
<td>David Abrahams, Jeremy Siek, Thomas Witt</td></tr>
<tr><th class="docinfo-name">Contact:</th>
<td><a class="first reference" href="mailto:dave&#64;boost-consulting.com">dave&#64;boost-consulting.com</a>, <a class="reference" href="mailto:jsiek&#64;osl.iu.edu">jsiek&#64;osl.iu.edu</a>, <a class="last reference" href="mailto:witt&#64;ive.uni-hannover.de">witt&#64;ive.uni-hannover.de</a></td></tr>
<tr><th class="docinfo-name">Organization:</th>
<td><a class="first reference" href="http://www.boost-consulting.com">Boost Consulting</a>, Indiana University <a class="reference" href="http://www.osl.iu.edu">Open Systems
Lab</a>, University of Hanover <a class="last reference" href="http://www.ive.uni-hannover.de">Institute for Transport
Railway Operation and Construction</a></td></tr>
<tr><th class="docinfo-name">Date:</th>
<td>2004-11-01</td></tr>
<tr><th class="docinfo-name">Copyright:</th>
<td>Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003.</td></tr>
</tbody>
</table>
<div class="document" id="indirect-iterator">
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">abstract:</th><td class="field-body"><tt class="literal"><span class="pre">indirect_iterator</span></tt> adapts an iterator by applying an
<em>extra</em> dereference inside of <tt class="literal"><span class="pre">operator*()</span></tt>. For example, this
iterator adaptor makes it possible to view a container of pointers
(e.g. <tt class="literal"><span class="pre">list&lt;foo*&gt;</span></tt>) as if it were a container of the pointed-to type
(e.g. <tt class="literal"><span class="pre">list&lt;foo&gt;</span></tt>). <tt class="literal"><span class="pre">indirect_iterator</span></tt> depends on two
auxiliary traits, <tt class="literal"><span class="pre">pointee</span></tt> and <tt class="literal"><span class="pre">indirect_reference</span></tt>, to
provide support for underlying iterators whose <tt class="literal"><span class="pre">value_type</span></tt> is
not an iterator.</td>
</tr>
</tbody>
</table>
<div class="contents topic" id="table-of-contents">
<p class="topic-title first"><a name="table-of-contents">Table of Contents</a></p>
<ul class="simple">
<li><a class="reference" href="#indirect-iterator-synopsis" id="id2" name="id2"><tt class="literal"><span class="pre">indirect_iterator</span></tt> synopsis</a></li>
<li><a class="reference" href="#indirect-iterator-requirements" id="id3" name="id3"><tt class="literal"><span class="pre">indirect_iterator</span></tt> requirements</a></li>
<li><a class="reference" href="#indirect-iterator-models" id="id4" name="id4"><tt class="literal"><span class="pre">indirect_iterator</span></tt> models</a></li>
<li><a class="reference" href="#indirect-iterator-operations" id="id5" name="id5"><tt class="literal"><span class="pre">indirect_iterator</span></tt> operations</a></li>
<li><a class="reference" href="#example" id="id6" name="id6">Example</a></li>
</ul>
</div>
<div class="section" id="indirect-iterator-synopsis">
<h1><a class="toc-backref" href="#id2" name="indirect-iterator-synopsis"><tt class="literal"><span class="pre">indirect_iterator</span></tt> synopsis</a></h1>
<pre class="literal-block">
template &lt;
class Iterator
, class Value = use_default
, class CategoryOrTraversal = use_default
, class Reference = use_default
, class Difference = use_default
&gt;
class indirect_iterator
{
public:
typedef /* see below */ value_type;
typedef /* see below */ reference;
typedef /* see below */ pointer;
typedef /* see below */ difference_type;
typedef /* see below */ iterator_category;
indirect_iterator();
indirect_iterator(Iterator x);
template &lt;
class Iterator2, class Value2, class Category2
, class Reference2, class Difference2
&gt;
indirect_iterator(
indirect_iterator&lt;
Iterator2, Value2, Category2, Reference2, Difference2
&gt; const&amp; y
, typename enable_if_convertible&lt;Iterator2, Iterator&gt;::type* = 0 // exposition
);
Iterator const&amp; base() const;
reference operator*() const;
indirect_iterator&amp; operator++();
indirect_iterator&amp; operator--();
private:
Iterator m_iterator; // exposition
};
</pre>
<p>The member types of <tt class="literal"><span class="pre">indirect_iterator</span></tt> are defined according to
the following pseudo-code, where <tt class="literal"><span class="pre">V</span></tt> is
<tt class="literal"><span class="pre">iterator_traits&lt;Iterator&gt;::value_type</span></tt></p>
<pre class="literal-block">
if (Value is use_default) then
typedef remove_const&lt;pointee&lt;V&gt;::type&gt;::type value_type;
else
typedef remove_const&lt;Value&gt;::type value_type;
if (Reference is use_default) then
if (Value is use_default) then
typedef indirect_reference&lt;V&gt;::type reference;
else
typedef Value&amp; reference;
else
typedef Reference reference;
if (Value is use_default) then
typedef pointee&lt;V&gt;::type* pointer;
else
typedef Value* pointer;
if (Difference is use_default)
typedef iterator_traits&lt;Iterator&gt;::difference_type difference_type;
else
typedef Difference difference_type;
if (CategoryOrTraversal is use_default)
typedef <em>iterator-category</em> (
iterator_traversal&lt;Iterator&gt;::type,``reference``,``value_type``
) iterator_category;
else
typedef <em>iterator-category</em> (
CategoryOrTraversal,``reference``,``value_type``
) iterator_category;
</pre>
</div>
<div class="section" id="indirect-iterator-requirements">
<h1><a class="toc-backref" href="#id3" name="indirect-iterator-requirements"><tt class="literal"><span class="pre">indirect_iterator</span></tt> requirements</a></h1>
<p>The expression <tt class="literal"><span class="pre">*v</span></tt>, where <tt class="literal"><span class="pre">v</span></tt> is an object of
<tt class="literal"><span class="pre">iterator_traits&lt;Iterator&gt;::value_type</span></tt>, shall be valid
expression and convertible to <tt class="literal"><span class="pre">reference</span></tt>. <tt class="literal"><span class="pre">Iterator</span></tt> shall
model the traversal concept indicated by <tt class="literal"><span class="pre">iterator_category</span></tt>.
<tt class="literal"><span class="pre">Value</span></tt>, <tt class="literal"><span class="pre">Reference</span></tt>, and <tt class="literal"><span class="pre">Difference</span></tt> shall be chosen so
that <tt class="literal"><span class="pre">value_type</span></tt>, <tt class="literal"><span class="pre">reference</span></tt>, and <tt class="literal"><span class="pre">difference_type</span></tt> meet
the requirements indicated by <tt class="literal"><span class="pre">iterator_category</span></tt>.</p>
<p>[Note: there are further requirements on the
<tt class="literal"><span class="pre">iterator_traits&lt;Iterator&gt;::value_type</span></tt> if the <tt class="literal"><span class="pre">Value</span></tt>
parameter is not <tt class="literal"><span class="pre">use_default</span></tt>, as implied by the algorithm for
deducing the default for the <tt class="literal"><span class="pre">value_type</span></tt> member.]</p>
</div>
<div class="section" id="indirect-iterator-models">
<h1><a class="toc-backref" href="#id4" name="indirect-iterator-models"><tt class="literal"><span class="pre">indirect_iterator</span></tt> models</a></h1>
<p>In addition to the concepts indicated by <tt class="literal"><span class="pre">iterator_category</span></tt>
and by <tt class="literal"><span class="pre">iterator_traversal&lt;indirect_iterator&gt;::type</span></tt>, a
specialization of <tt class="literal"><span class="pre">indirect_iterator</span></tt> models the following
concepts, Where <tt class="literal"><span class="pre">v</span></tt> is an object of
<tt class="literal"><span class="pre">iterator_traits&lt;Iterator&gt;::value_type</span></tt>:</p>
<blockquote>
<ul class="simple">
<li>Readable Iterator if <tt class="literal"><span class="pre">reference(*v)</span></tt> is convertible to
<tt class="literal"><span class="pre">value_type</span></tt>.</li>
<li>Writable Iterator if <tt class="literal"><span class="pre">reference(*v)</span> <span class="pre">=</span> <span class="pre">t</span></tt> is a valid
expression (where <tt class="literal"><span class="pre">t</span></tt> is an object of type
<tt class="literal"><span class="pre">indirect_iterator::value_type</span></tt>)</li>
<li>Lvalue Iterator if <tt class="literal"><span class="pre">reference</span></tt> is a reference type.</li>
</ul>
</blockquote>
<p><tt class="literal"><span class="pre">indirect_iterator&lt;X,V1,C1,R1,D1&gt;</span></tt> is interoperable with
<tt class="literal"><span class="pre">indirect_iterator&lt;Y,V2,C2,R2,D2&gt;</span></tt> if and only if <tt class="literal"><span class="pre">X</span></tt> is
interoperable with <tt class="literal"><span class="pre">Y</span></tt>.</p>
</div>
<div class="section" id="indirect-iterator-operations">
<h1><a class="toc-backref" href="#id5" name="indirect-iterator-operations"><tt class="literal"><span class="pre">indirect_iterator</span></tt> operations</a></h1>
<p>In addition to the operations required by the concepts described
above, specializations of <tt class="literal"><span class="pre">indirect_iterator</span></tt> provide the
following operations.</p>
<p><tt class="literal"><span class="pre">indirect_iterator();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Requires:</th><td class="field-body"><tt class="literal"><span class="pre">Iterator</span></tt> must be Default Constructible.</td>
</tr>
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs an instance of <tt class="literal"><span class="pre">indirect_iterator</span></tt> with
a default-constructed <tt class="literal"><span class="pre">m_iterator</span></tt>.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">indirect_iterator(Iterator</span> <span class="pre">x);</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs an instance of <tt class="literal"><span class="pre">indirect_iterator</span></tt> with
<tt class="literal"><span class="pre">m_iterator</span></tt> copy constructed from <tt class="literal"><span class="pre">x</span></tt>.</td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template &lt;
class Iterator2, class Value2, unsigned Access, class Traversal
, class Reference2, class Difference2
&gt;
indirect_iterator(
indirect_iterator&lt;
Iterator2, Value2, Access, Traversal, Reference2, Difference2
&gt; const&amp; y
, typename enable_if_convertible&lt;Iterator2, Iterator&gt;::type* = 0 // exposition
);
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Requires:</th><td class="field-body"><tt class="literal"><span class="pre">Iterator2</span></tt> is implicitly convertible to <tt class="literal"><span class="pre">Iterator</span></tt>.</td>
</tr>
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs an instance of <tt class="literal"><span class="pre">indirect_iterator</span></tt> whose
<tt class="literal"><span class="pre">m_iterator</span></tt> subobject is constructed from <tt class="literal"><span class="pre">y.base()</span></tt>.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Iterator</span> <span class="pre">const&amp;</span> <span class="pre">base()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">m_iterator</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">reference</span> <span class="pre">operator*()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">**m_iterator</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">indirect_iterator&amp;</span> <span class="pre">operator++();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><tt class="literal"><span class="pre">++m_iterator</span></tt></td>
</tr>
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*this</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">indirect_iterator&amp;</span> <span class="pre">operator--();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><tt class="literal"><span class="pre">--m_iterator</span></tt></td>
</tr>
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*this</span></tt></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="example">
<h1><a class="toc-backref" href="#id6" name="example">Example</a></h1>
<p>This example prints an array of characters, using
<tt class="literal"><span class="pre">indirect_iterator</span></tt> to access the array of characters through an
array of pointers. Next <tt class="literal"><span class="pre">indirect_iterator</span></tt> is used with the
<tt class="literal"><span class="pre">transform</span></tt> algorithm to copy the characters (incremented by one) to
another array. A constant indirect iterator is used for the source and
a mutable indirect iterator is used for the destination. The last part
of the example prints the original array of characters, but this time
using the <tt class="literal"><span class="pre">make_indirect_iterator</span></tt> helper function.</p>
<pre class="literal-block">
char characters[] = &quot;abcdefg&quot;;
const int N = sizeof(characters)/sizeof(char) - 1; // -1 since characters has a null char
char* pointers_to_chars[N]; // at the end.
for (int i = 0; i &lt; N; ++i)
pointers_to_chars[i] = &amp;characters[i];
// Example of using indirect_iterator
boost::indirect_iterator&lt;char**, char&gt;
indirect_first(pointers_to_chars), indirect_last(pointers_to_chars + N);
std::copy(indirect_first, indirect_last, std::ostream_iterator&lt;char&gt;(std::cout, &quot;,&quot;));
std::cout &lt;&lt; std::endl;
// Example of making mutable and constant indirect iterators
char mutable_characters[N];
char* pointers_to_mutable_chars[N];
for (int j = 0; j &lt; N; ++j)
pointers_to_mutable_chars[j] = &amp;mutable_characters[j];
boost::indirect_iterator&lt;char* const*&gt; mutable_indirect_first(pointers_to_mutable_chars),
mutable_indirect_last(pointers_to_mutable_chars + N);
boost::indirect_iterator&lt;char* const*, char const&gt; const_indirect_first(pointers_to_chars),
const_indirect_last(pointers_to_chars + N);
std::transform(const_indirect_first, const_indirect_last,
mutable_indirect_first, std::bind1st(std::plus&lt;char&gt;(), 1));
std::copy(mutable_indirect_first, mutable_indirect_last,
std::ostream_iterator&lt;char&gt;(std::cout, &quot;,&quot;));
std::cout &lt;&lt; std::endl;
// Example of using make_indirect_iterator()
std::copy(boost::make_indirect_iterator(pointers_to_chars),
boost::make_indirect_iterator(pointers_to_chars + N),
std::ostream_iterator&lt;char&gt;(std::cout, &quot;,&quot;));
std::cout &lt;&lt; std::endl;
</pre>
<p>The output is:</p>
<pre class="literal-block">
a,b,c,d,e,f,g,
b,c,d,e,f,g,h,
a,b,c,d,e,f,g,
</pre>
<p>The source code for this example can be found <a class="reference" href="../example/indirect_iterator_example.cpp">here</a>.</p>
</div>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="indirect_iterator.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

Binary file not shown.

View File

@ -1,30 +0,0 @@
+++++++++++++++++++
Indirect Iterator
+++++++++++++++++++
:Author: David Abrahams, Jeremy Siek, Thomas Witt
:Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@ive.uni-hannover.de
:organization: `Boost Consulting`_, Indiana University `Open Systems
Lab`_, University of Hanover `Institute for Transport
Railway Operation and Construction`_
:date: $Date$
:copyright: Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003.
.. _`Boost Consulting`: http://www.boost-consulting.com
.. _`Open Systems Lab`: http://www.osl.iu.edu
.. _`Institute for Transport Railway Operation and Construction`: http://www.ive.uni-hannover.de
:abstract:
.. include:: indirect_iterator_abstract.rst
.. contents:: Table of Contents
``indirect_iterator`` synopsis
..............................
.. include:: indirect_iterator_ref.rst
.. include:: indirect_iterator_eg.rst
.. _iterator-category: iterator_facade.html#iterator-category
.. |iterator-category| replace:: *iterator-category*

View File

@ -1,11 +0,0 @@
``indirect_iterator`` adapts an iterator by applying an
*extra* dereference inside of ``operator*()``. For example, this
iterator adaptor makes it possible to view a container of pointers
(e.g. ``list<foo*>``) as if it were a container of the pointed-to type
(e.g. ``list<foo>``). ``indirect_iterator`` depends on two
auxiliary traits, ``pointee`` and ``indirect_reference``, to
provide support for underlying iterators whose ``value_type`` is
not an iterator.

View File

@ -1,69 +0,0 @@
Example
.......
This example prints an array of characters, using
``indirect_iterator`` to access the array of characters through an
array of pointers. Next ``indirect_iterator`` is used with the
``transform`` algorithm to copy the characters (incremented by one) to
another array. A constant indirect iterator is used for the source and
a mutable indirect iterator is used for the destination. The last part
of the example prints the original array of characters, but this time
using the ``make_indirect_iterator`` helper function.
::
char characters[] = "abcdefg";
const int N = sizeof(characters)/sizeof(char) - 1; // -1 since characters has a null char
char* pointers_to_chars[N]; // at the end.
for (int i = 0; i < N; ++i)
pointers_to_chars[i] = &characters[i];
// Example of using indirect_iterator
boost::indirect_iterator<char**, char>
indirect_first(pointers_to_chars), indirect_last(pointers_to_chars + N);
std::copy(indirect_first, indirect_last, std::ostream_iterator<char>(std::cout, ","));
std::cout << std::endl;
// Example of making mutable and constant indirect iterators
char mutable_characters[N];
char* pointers_to_mutable_chars[N];
for (int j = 0; j < N; ++j)
pointers_to_mutable_chars[j] = &mutable_characters[j];
boost::indirect_iterator<char* const*> mutable_indirect_first(pointers_to_mutable_chars),
mutable_indirect_last(pointers_to_mutable_chars + N);
boost::indirect_iterator<char* const*, char const> const_indirect_first(pointers_to_chars),
const_indirect_last(pointers_to_chars + N);
std::transform(const_indirect_first, const_indirect_last,
mutable_indirect_first, std::bind1st(std::plus<char>(), 1));
std::copy(mutable_indirect_first, mutable_indirect_last,
std::ostream_iterator<char>(std::cout, ","));
std::cout << std::endl;
// Example of using make_indirect_iterator()
std::copy(boost::make_indirect_iterator(pointers_to_chars),
boost::make_indirect_iterator(pointers_to_chars + N),
std::ostream_iterator<char>(std::cout, ","));
std::cout << std::endl;
The output is::
a,b,c,d,e,f,g,
b,c,d,e,f,g,h,
a,b,c,d,e,f,g,
The source code for this example can be found `here`__.
__ ../example/indirect_iterator_example.cpp

View File

@ -1,245 +0,0 @@
Index: indirect_iterator_ref.rst
===================================================================
RCS file: /cvsroot/boost/boost/libs/iterator/doc/indirect_iterator_ref.rst,v
retrieving revision 1.2
retrieving revision 1.21
diff -w -d -u -b -r1.2 -r1.21
--- indirect_iterator_ref.rst 22 Sep 2003 19:55:00 -0000 1.2
+++ indirect_iterator_ref.rst 15 Jan 2004 00:01:33 -0000 1.21
@@ -3,82 +3,139 @@
template <
class Iterator
, class Value = use_default
Issue 9.15
- , unsigned Access = use_default_access
- , class Traversal = use_default
+ , class CategoryOrTraversal = use_default
, class Reference = use_default
, class Difference = use_default
>
class indirect_iterator
Issue 9.37x
- : public iterator_adaptor</* see discussion */>
{
- friend class iterator_core_access;
public:
+ typedef /* see below */ value_type;
+ typedef /* see below */ reference;
+ typedef /* see below */ pointer;
+ typedef /* see below */ difference_type;
+ typedef /* see below */ iterator_category;
+
indirect_iterator();
indirect_iterator(Iterator x);
+
Issue 9.15
template <
- class Iterator2, class Value2, unsigned Access2, class Traversal2
+ class Iterator2, class Value2, class Category2
, class Reference2, class Difference2
>
indirect_iterator(
indirect_iterator<
- Iterator2, Value2, Access2, Traversal2, Reference2, Difference2
+ Iterator2, Value2, Category2, Reference2, Difference2
> const& y
, typename enable_if_convertible<Iterator2, Iterator>::type* = 0 // exposition
);
Issue 9.37x
- private: // as-if specification
- typename indirect_iterator::reference dereference() const
- {
- return **this->base();
- }
+
+ Iterator const& base() const;
+ reference operator*() const;
+ indirect_iterator& operator++();
+ indirect_iterator& operator--();
+ private:
+ Iterator m_iterator; // exposition
};
+
+The member types of ``indirect_iterator`` are defined according to
+the following pseudo-code, where ``V`` is
+``iterator_traits<Iterator>::value_type``
+
+.. parsed-literal::
+
+ if (Value is use_default) then
+ typedef remove_const<pointee<V>::type>::type value_type;
+ else
+ typedef remove_const<Value>::type value_type;
+
+ if (Reference is use_default) then
+ if (Value is use_default) then
+ typedef indirect_reference<V>::type reference;
+ else
+ typedef Value& reference;
+ else
+ typedef Reference reference;
+
+ if (Value is use_default) then
+ typedef pointee<V>::type\* pointer;
+ else
+ typedef Value\* pointer;
+
+ if (Difference is use_default)
+ typedef iterator_traits<Iterator>::difference_type difference_type;
+ else
+ typedef Difference difference_type;
+
+ if (CategoryOrTraversal is use_default)
+ typedef |iterator-category|_\ (
+ iterator_traversal<Iterator>::type,``reference``,``value_type``
+ ) iterator_category;
+ else
+ typedef |iterator-category|_\ (
+ CategoryOrTraversal,``reference``,``value_type``
+ ) iterator_category;
+
+
``indirect_iterator`` requirements
..................................
Issue 9.40x
-The ``value_type`` of the ``Iterator`` template parameter should
-itself be dereferenceable. The return type of the ``operator*`` for
-the ``value_type`` must be the same type as the ``Reference`` template
-parameter. The ``Value`` template parameter will be the ``value_type``
-for the ``indirect_iterator``, unless ``Value`` is const. If ``Value``
-is ``const X``, then ``value_type`` will be *non-* ``const X``. The
-default for ``Value`` is
+The expression ``*v``, where ``v`` is an object of
+``iterator_traits<Iterator>::value_type``, shall be valid
+expression and convertible to ``reference``. ``Iterator`` shall
+model the traversal concept indicated by ``iterator_category``.
+``Value``, ``Reference``, and ``Difference`` shall be chosen so
+that ``value_type``, ``reference``, and ``difference_type`` meet
+the requirements indicated by ``iterator_category``.
-::
+[Note: there are further requirements on the
+``iterator_traits<Iterator>::value_type`` if the ``Value``
+parameter is not ``use_default``, as implied by the algorithm for
+deducing the default for the ``value_type`` member.]
- iterator_traits< iterator_traits<Iterator>::value_type >::value_type
Issue 9.37x
+``indirect_iterator`` models
+............................
-If the default is used for ``Value``, then there must be a valid
-specialization of ``iterator_traits`` for the value type of the base
-iterator.
+In addition to the concepts indicated by ``iterator_category``
+and by ``iterator_traversal<indirect_iterator>::type``, a
+specialization of ``indirect_iterator`` models the following
+concepts, Where ``v`` is an object of
+``iterator_traits<Iterator>::value_type``:
-The ``Reference`` parameter will be the ``reference`` type of the
-``indirect_iterator``. The default is ``Value&``.
+ * Readable Iterator if ``reference(*v)`` is convertible to
+ ``value_type``.
-The ``Access`` and ``Traversal`` parameters are passed unchanged to
-the corresponding parameters of the ``iterator_adaptor`` base
-class, and the ``Iterator`` parameter is passed unchanged as the
-``Base`` parameter to the ``iterator_adaptor`` base class.
+ * Writable Iterator if ``reference(*v) = t`` is a valid
+ expression (where ``t`` is an object of type
+ ``indirect_iterator::value_type``)
-The indirect iterator will model the most refined standard traversal
-concept that is modeled by the ``Iterator`` type. The indirect
-iterator will model the most refined standard access concept that is
-modeled by the value type of ``Iterator``.
+ * Lvalue Iterator if ``reference`` is a reference type.
+
+``indirect_iterator<X,V1,C1,R1,D1>`` is interoperable with
+``indirect_iterator<Y,V2,C2,R2,D2>`` if and only if ``X`` is
+interoperable with ``Y``.
``indirect_iterator`` operations
................................
Issue 9.37x
+In addition to the operations required by the concepts described
+above, specializations of ``indirect_iterator`` provide the
+following operations.
+
+
Issue 9.28 and 9.37x
``indirect_iterator();``
:Requires: ``Iterator`` must be Default Constructible.
:Returns: An instance of ``indirect_iterator`` with
- a default constructed base object.
+ a default-constructed ``m_iterator``.
Issue 9.37x
``indirect_iterator(Iterator x);``
:Returns: An instance of ``indirect_iterator`` with
- the ``iterator_adaptor`` subobject copy constructed from ``x``.
+ ``m_iterator`` copy constructed from ``x``.
::
Issue 9.29
@@ -94,5 +151,27 @@
);
:Requires: ``Iterator2`` is implicitly convertible to ``Iterator``.
-:Returns: An instance of ``indirect_iterator`` that is a copy of ``y``.
+:Returns: An instance of ``indirect_iterator`` whose
+ ``m_iterator`` subobject is constructed from ``y.base()``.
+
Issue 9.37x
+``Iterator const& base() const;``
+:Returns: ``m_iterator``
+
+
+``reference operator*() const;``
+
+:Returns: ``**m_iterator``
+
+
+``indirect_iterator& operator++();``
+
+:Effects: ``++m_iterator``
+:Returns: ``*this``
+
+
+``indirect_iterator& operator--();``
+
+:Effects: ``--m_iterator``
+:Returns: ``*this``

View File

@ -1,220 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title></title>
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<div class="document">
<pre class="literal-block">
template &lt;
class Iterator
, class Value = use_default
, class CategoryOrTraversal = use_default
, class Reference = use_default
, class Difference = use_default
&gt;
class indirect_iterator
{
public:
typedef /* see below */ value_type;
typedef /* see below */ reference;
typedef /* see below */ pointer;
typedef /* see below */ difference_type;
typedef /* see below */ iterator_category;
indirect_iterator();
indirect_iterator(Iterator x);
template &lt;
class Iterator2, class Value2, class Category2
, class Reference2, class Difference2
&gt;
indirect_iterator(
indirect_iterator&lt;
Iterator2, Value2, Category2, Reference2, Difference2
&gt; const&amp; y
, typename enable_if_convertible&lt;Iterator2, Iterator&gt;::type* = 0 // exposition
);
Iterator const&amp; base() const;
reference operator*() const;
indirect_iterator&amp; operator++();
indirect_iterator&amp; operator--();
private:
Iterator m_iterator; // exposition
};
</pre>
<p>The member types of <tt class="literal"><span class="pre">indirect_iterator</span></tt> are defined according to
the following pseudo-code, where <tt class="literal"><span class="pre">V</span></tt> is
<tt class="literal"><span class="pre">iterator_traits&lt;Iterator&gt;::value_type</span></tt></p>
<pre class="literal-block">
if (Value is use_default) then
typedef remove_const&lt;pointee&lt;V&gt;::type&gt;::type value_type;
else
typedef remove_const&lt;Value&gt;::type value_type;
if (Reference is use_default) then
if (Value is use_default) then
typedef indirect_reference&lt;V&gt;::type reference;
else
typedef Value&amp; reference;
else
typedef Reference reference;
if (Value is use_default) then
typedef pointee&lt;V&gt;::type* pointer;
else
typedef Value* pointer;
if (Difference is use_default)
typedef iterator_traits&lt;Iterator&gt;::difference_type difference_type;
else
typedef Difference difference_type;
if (CategoryOrTraversal is use_default)
typedef <em>iterator-category</em> (
iterator_traversal&lt;Iterator&gt;::type,``reference``,``value_type``
) iterator_category;
else
typedef <em>iterator-category</em> (
CategoryOrTraversal,``reference``,``value_type``
) iterator_category;
</pre>
<div class="section" id="indirect-iterator-requirements">
<h1><a name="indirect-iterator-requirements"><tt class="literal"><span class="pre">indirect_iterator</span></tt> requirements</a></h1>
<p>The expression <tt class="literal"><span class="pre">*v</span></tt>, where <tt class="literal"><span class="pre">v</span></tt> is an object of
<tt class="literal"><span class="pre">iterator_traits&lt;Iterator&gt;::value_type</span></tt>, shall be valid
expression and convertible to <tt class="literal"><span class="pre">reference</span></tt>. <tt class="literal"><span class="pre">Iterator</span></tt> shall
model the traversal concept indicated by <tt class="literal"><span class="pre">iterator_category</span></tt>.
<tt class="literal"><span class="pre">Value</span></tt>, <tt class="literal"><span class="pre">Reference</span></tt>, and <tt class="literal"><span class="pre">Difference</span></tt> shall be chosen so
that <tt class="literal"><span class="pre">value_type</span></tt>, <tt class="literal"><span class="pre">reference</span></tt>, and <tt class="literal"><span class="pre">difference_type</span></tt> meet
the requirements indicated by <tt class="literal"><span class="pre">iterator_category</span></tt>.</p>
<p>[Note: there are further requirements on the
<tt class="literal"><span class="pre">iterator_traits&lt;Iterator&gt;::value_type</span></tt> if the <tt class="literal"><span class="pre">Value</span></tt>
parameter is not <tt class="literal"><span class="pre">use_default</span></tt>, as implied by the algorithm for
deducing the default for the <tt class="literal"><span class="pre">value_type</span></tt> member.]</p>
</div>
<div class="section" id="indirect-iterator-models">
<h1><a name="indirect-iterator-models"><tt class="literal"><span class="pre">indirect_iterator</span></tt> models</a></h1>
<p>In addition to the concepts indicated by <tt class="literal"><span class="pre">iterator_category</span></tt>
and by <tt class="literal"><span class="pre">iterator_traversal&lt;indirect_iterator&gt;::type</span></tt>, a
specialization of <tt class="literal"><span class="pre">indirect_iterator</span></tt> models the following
concepts, Where <tt class="literal"><span class="pre">v</span></tt> is an object of
<tt class="literal"><span class="pre">iterator_traits&lt;Iterator&gt;::value_type</span></tt>:</p>
<blockquote>
<ul class="simple">
<li>Readable Iterator if <tt class="literal"><span class="pre">reference(*v)</span></tt> is convertible to
<tt class="literal"><span class="pre">value_type</span></tt>.</li>
<li>Writable Iterator if <tt class="literal"><span class="pre">reference(*v)</span> <span class="pre">=</span> <span class="pre">t</span></tt> is a valid
expression (where <tt class="literal"><span class="pre">t</span></tt> is an object of type
<tt class="literal"><span class="pre">indirect_iterator::value_type</span></tt>)</li>
<li>Lvalue Iterator if <tt class="literal"><span class="pre">reference</span></tt> is a reference type.</li>
</ul>
</blockquote>
<p><tt class="literal"><span class="pre">indirect_iterator&lt;X,V1,C1,R1,D1&gt;</span></tt> is interoperable with
<tt class="literal"><span class="pre">indirect_iterator&lt;Y,V2,C2,R2,D2&gt;</span></tt> if and only if <tt class="literal"><span class="pre">X</span></tt> is
interoperable with <tt class="literal"><span class="pre">Y</span></tt>.</p>
</div>
<div class="section" id="indirect-iterator-operations">
<h1><a name="indirect-iterator-operations"><tt class="literal"><span class="pre">indirect_iterator</span></tt> operations</a></h1>
<p>In addition to the operations required by the concepts described
above, specializations of <tt class="literal"><span class="pre">indirect_iterator</span></tt> provide the
following operations.</p>
<p><tt class="literal"><span class="pre">indirect_iterator();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Requires:</th><td class="field-body"><tt class="literal"><span class="pre">Iterator</span></tt> must be Default Constructible.</td>
</tr>
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs an instance of <tt class="literal"><span class="pre">indirect_iterator</span></tt> with
a default-constructed <tt class="literal"><span class="pre">m_iterator</span></tt>.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">indirect_iterator(Iterator</span> <span class="pre">x);</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs an instance of <tt class="literal"><span class="pre">indirect_iterator</span></tt> with
<tt class="literal"><span class="pre">m_iterator</span></tt> copy constructed from <tt class="literal"><span class="pre">x</span></tt>.</td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template &lt;
class Iterator2, class Value2, unsigned Access, class Traversal
, class Reference2, class Difference2
&gt;
indirect_iterator(
indirect_iterator&lt;
Iterator2, Value2, Access, Traversal, Reference2, Difference2
&gt; const&amp; y
, typename enable_if_convertible&lt;Iterator2, Iterator&gt;::type* = 0 // exposition
);
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Requires:</th><td class="field-body"><tt class="literal"><span class="pre">Iterator2</span></tt> is implicitly convertible to <tt class="literal"><span class="pre">Iterator</span></tt>.</td>
</tr>
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs an instance of <tt class="literal"><span class="pre">indirect_iterator</span></tt> whose
<tt class="literal"><span class="pre">m_iterator</span></tt> subobject is constructed from <tt class="literal"><span class="pre">y.base()</span></tt>.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Iterator</span> <span class="pre">const&amp;</span> <span class="pre">base()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">m_iterator</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">reference</span> <span class="pre">operator*()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">**m_iterator</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">indirect_iterator&amp;</span> <span class="pre">operator++();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><tt class="literal"><span class="pre">++m_iterator</span></tt></td>
</tr>
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*this</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">indirect_iterator&amp;</span> <span class="pre">operator--();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><tt class="literal"><span class="pre">--m_iterator</span></tt></td>
</tr>
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*this</span></tt></td>
</tr>
</tbody>
</table>
</div>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="indirect_iterator_ref.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

View File

@ -1,177 +0,0 @@
::
template <
class Iterator
, class Value = use_default
, class CategoryOrTraversal = use_default
, class Reference = use_default
, class Difference = use_default
>
class indirect_iterator
{
public:
typedef /* see below */ value_type;
typedef /* see below */ reference;
typedef /* see below */ pointer;
typedef /* see below */ difference_type;
typedef /* see below */ iterator_category;
indirect_iterator();
indirect_iterator(Iterator x);
template <
class Iterator2, class Value2, class Category2
, class Reference2, class Difference2
>
indirect_iterator(
indirect_iterator<
Iterator2, Value2, Category2, Reference2, Difference2
> const& y
, typename enable_if_convertible<Iterator2, Iterator>::type* = 0 // exposition
);
Iterator const& base() const;
reference operator*() const;
indirect_iterator& operator++();
indirect_iterator& operator--();
private:
Iterator m_iterator; // exposition
};
The member types of ``indirect_iterator`` are defined according to
the following pseudo-code, where ``V`` is
``iterator_traits<Iterator>::value_type``
.. parsed-literal::
if (Value is use_default) then
typedef remove_const<pointee<V>::type>::type value_type;
else
typedef remove_const<Value>::type value_type;
if (Reference is use_default) then
if (Value is use_default) then
typedef indirect_reference<V>::type reference;
else
typedef Value& reference;
else
typedef Reference reference;
if (Value is use_default) then
typedef pointee<V>::type\* pointer;
else
typedef Value\* pointer;
if (Difference is use_default)
typedef iterator_traits<Iterator>::difference_type difference_type;
else
typedef Difference difference_type;
if (CategoryOrTraversal is use_default)
typedef *iterator-category* (
iterator_traversal<Iterator>::type,``reference``,``value_type``
) iterator_category;
else
typedef *iterator-category* (
CategoryOrTraversal,``reference``,``value_type``
) iterator_category;
``indirect_iterator`` requirements
..................................
The expression ``*v``, where ``v`` is an object of
``iterator_traits<Iterator>::value_type``, shall be valid
expression and convertible to ``reference``. ``Iterator`` shall
model the traversal concept indicated by ``iterator_category``.
``Value``, ``Reference``, and ``Difference`` shall be chosen so
that ``value_type``, ``reference``, and ``difference_type`` meet
the requirements indicated by ``iterator_category``.
[Note: there are further requirements on the
``iterator_traits<Iterator>::value_type`` if the ``Value``
parameter is not ``use_default``, as implied by the algorithm for
deducing the default for the ``value_type`` member.]
``indirect_iterator`` models
............................
In addition to the concepts indicated by ``iterator_category``
and by ``iterator_traversal<indirect_iterator>::type``, a
specialization of ``indirect_iterator`` models the following
concepts, Where ``v`` is an object of
``iterator_traits<Iterator>::value_type``:
* Readable Iterator if ``reference(*v)`` is convertible to
``value_type``.
* Writable Iterator if ``reference(*v) = t`` is a valid
expression (where ``t`` is an object of type
``indirect_iterator::value_type``)
* Lvalue Iterator if ``reference`` is a reference type.
``indirect_iterator<X,V1,C1,R1,D1>`` is interoperable with
``indirect_iterator<Y,V2,C2,R2,D2>`` if and only if ``X`` is
interoperable with ``Y``.
``indirect_iterator`` operations
................................
In addition to the operations required by the concepts described
above, specializations of ``indirect_iterator`` provide the
following operations.
``indirect_iterator();``
:Requires: ``Iterator`` must be Default Constructible.
:Effects: Constructs an instance of ``indirect_iterator`` with
a default-constructed ``m_iterator``.
``indirect_iterator(Iterator x);``
:Effects: Constructs an instance of ``indirect_iterator`` with
``m_iterator`` copy constructed from ``x``.
::
template <
class Iterator2, class Value2, unsigned Access, class Traversal
, class Reference2, class Difference2
>
indirect_iterator(
indirect_iterator<
Iterator2, Value2, Access, Traversal, Reference2, Difference2
> const& y
, typename enable_if_convertible<Iterator2, Iterator>::type* = 0 // exposition
);
:Requires: ``Iterator2`` is implicitly convertible to ``Iterator``.
:Effects: Constructs an instance of ``indirect_iterator`` whose
``m_iterator`` subobject is constructed from ``y.base()``.
``Iterator const& base() const;``
:Returns: ``m_iterator``
``reference operator*() const;``
:Returns: ``**m_iterator``
``indirect_iterator& operator++();``
:Effects: ``++m_iterator``
:Returns: ``*this``
``indirect_iterator& operator--();``
:Effects: ``--m_iterator``
:Returns: ``*this``

View File

@ -1,29 +0,0 @@
.. Copyright David Abrahams 2004. Use, modification and distribution is
.. subject to the Boost Software License, Version 1.0. (See accompanying
.. file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
::
template <class Dereferenceable>
struct indirect_reference
{
typedef /* see below */ type;
};
:Requires: For an object ``x`` of type ``Dereferenceable``, ``*x``
is well-formed. If ``++x`` is ill-formed it shall neither be
ambiguous nor shall it violate access control, and
``pointee<Dereferenceable>::type&`` shall be well-formed.
Otherwise ``iterator_traits<Dereferenceable>::reference`` shall
be well formed. [Note: These requirements need not apply to
explicit or partial specializations of ``indirect_reference``]
``type`` is determined according to the following algorithm, where
``x`` is an object of type ``Dereferenceable``::
if ( ++x is ill-formed )
return ``pointee<Dereferenceable>::type&``
else
std::iterator_traits<Dereferenceable>::reference

View File

@ -1,232 +0,0 @@
++++++++++++++++++++++++++++
Interoperability Revisited
++++++++++++++++++++++++++++
:date: $Date$
:copyright: Copyright Thomas Witt 2004.
Problem
=======
The current iterator_facade specification makes it unneccessarily tedious to
implement interoperable iterators.
In the following text a simplified example of the current iterator_facade specification is used to
illustrate the problem.
In the current specification binary operators are implemented in the following way:
template <class Derived>
struct Facade
{
};
template <class T1, T2>
struct is_interoperable :
or_<
is_convertible<T1, T2>
, is_convertible<T2, T1>
>
{};
template<
class Derived1
, class Derived2
>
enable_if<is_interoperable<Derived1, Derived2>, bool> operator==(
Derived1 const& lhs
, Derived2 const& rhs
)
{
return static_cast<Derived1 const&>(lhs).equal_to(static_cast<Derived2 const&(rhs));
}
The problem with this is that operator== always forwards to Derived1::equal_to. The net effect is that the
following "obvious" implementation of to interoperable types does not quite work.
struct Mutable : Facade<Mutable>
{
bool equal_to(Mutable const&);
};
struct Constant : Facade<Constant>
{
Constant();
Constant(Constant const&);
Constant(Mutable const&);
...
bool equal_to(Constant const&);
};
Constant c;
Mutable m;
c == m; // ok, dispatched to Constant::equal_to
m == c; // !! error, dispatched to Mutable::equal_to
Instead the following "slightly" more complicated implementation is neccessary
struct Mutable : Facade<Mutable>
{
template <class T>
enable_if<is_convertible<Mutable, T> || is_convertible<T, Mutable>, bool>::type equal_to(T const&);
};
struct Constant : Tag<Constant>
{
Constant();
Constant(Constant const&);
Constant(Mutable const&);
template <class T>
enable_if<is_convertible<Constant, T> || is_convertible<T, Constant>, bool>::type equal_to(T const&);
};
Beside the fact that the code is significantly more complex to understand and to teach there is
a major design problem lurking here. Note that in both types equal_to is a function template with
an unconstrained argument T. This is neccessary so that further types can be made interoperable with
Mutable or Constant. Would Mutable be defined as
struct Mutable : Facade<Mutable>
{
bool equal_to(Mutable const&);
bool equal_to(Constant const&);
};
Constant and Mutable would still be interoperable but no further interoperable could be added
without changing Mutable. Even if this would be considered acceptable the current specification forces
a two way dependency between interoperable types. Note in the templated equal_to case this dependency
is implicitly created when specializing equal_to.
Solution
========
The two way dependency can be avoided by enabling type conversion in the binary operator
implementation. Note that this is the usual way interoperability betwween types is achieved
for binary operators and one reason why binary operators are usually implemented as non-members.
A simple implementation of this strategy would look like this
template<
class T1
, class T2
>
struct interoperable_base :
if_<
is_convertible<
T2
, T1
>
, T1
, T2>
{};
template<
class Derived1
, class Derived2
>
enable_if<is_interoperable<Derived1, Derived2>, bool> operator==(
Derived1 const& lhs
, Derived2 const& rhs
)
{
typedef interoperable_base<
Derived1
, Derived2
>::type Base;
return static_cast<Base const&>(lhs).equal_to(static_cast<Derived2 const&(rhs));
}
This way our original simple and "obvious" implementation would work again.
c == m; // ok, dispatched to Constant::equal_to
m == c; // ok, dispatched to Constant::equal_to, m converted to Constant
The backdraw of this approach is that a possibly costly conversion of iterator objects
is forced on the user even in cases where direct comparison could be implemented
in a much more efficient way. This problem arises especially for iterator_adaptor
specializations and can be significantly slow down the iteration over ranges. Given the fact
that iteration is a very basic operation this possible performance degradation is not
acceptable.
Luckily whe can have our cake and eat it by a slightly more clever implementation of the binary
operators.
template<
class Derived1
, class Derived2
>
enable_if<is_convertible<Derived2, Derived1>, bool> operator==(
Derived1 const& lhs
, Derived2 const& rhs
)
{
return static_cast<Derived1 const&>(lhs).equal_to(static_cast<Derived2 const&(rhs));
}
template<
class Derived1
, class Derived2
>
enable_if<is_convertible<Derived1, Derived2>, bool> operator==(
Derived1 const& lhs
, Derived2 const& rhs
)
{
return static_cast<Derived2 const&>(rhs).equal_to(static_cast<Derived1 const&(lhs));
}
Given our simple and obvious definition of Mutable and Constant nothing has changed yet.
c == m; // ok, dispatched to Constant::equal_to, m converted to Constant
m == c; // ok, dispatched to Constant::equal_to, m converted to Constant
But now the user can avoid the type conversion by supplying the appropriate overload in Constant
struct Constant : Facade<Constant>
{
Constant();
Constant(Constant const&);
Constant(Mutable const&);
...
bool equal_to(Constant const&);
bool equal_to(Mutable const&);
};
c == m; // ok, dispatched to Constant::equal_to(Mutable const&), no conversion
m == c; // ok, dispatched to Constant::equal_to(Mutable const&), no conversion
This definition of operator== introduces a possible ambiguity when both types are convertible
to each other. I don't think this is a problem as this behaviour is the same with concrete types.
I.e.
struct A {};
bool operator==(A, A);
struct B { B(A); };
bool operator==(B, B);
A a;
B b(a);
a == b; // error, ambiguous overload
Effect
======
Iterator implementations using iterator_facade look exactly as if they were
"hand-implemented" (I am working on better wording).
a) Less burden for the user
b) The definition (standardese) of specialized adpters might be easier
(This has to be proved yet)

View File

@ -1,170 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>Problem with is_writable and is_swappable in N1550</title>
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">Problem with <tt class="literal"><span class="pre">is_writable</span></tt> and <tt class="literal"><span class="pre">is_swappable</span></tt> in <a class="reference" href="http://www.boost-consulting.com/writing/n1550.html">N1550</a></h1>
<div class="document" id="problem-with-is-writable-and-is-swappable-in-n1550">
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Author:</th><td class="field-body">David Abrahams and Jeremy Siek</td>
</tr>
<tr class="field"><th class="field-name">Contact:</th><td class="field-body"><a class="reference" href="mailto:dave&#64;boost-consulting.com">dave&#64;boost-consulting.com</a>, <a class="reference" href="mailto:jsiek&#64;osl.iu.edu">jsiek&#64;osl.iu.edu</a></td>
</tr>
<tr class="field"><th class="field-name">Organization:</th><td class="field-body"><a class="reference" href="http://www.boost-consulting.com">Boost Consulting</a>, Indiana University Bloomington</td>
</tr>
<tr class="field"><th class="field-name">date:</th><td class="field-body">$Date$</td>
</tr>
<tr class="field"><th class="field-name">Copyright:</th><td class="field-body">Copyright David Abrahams, Jeremy Siek 2003. Use, modification and
distribution is subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy
at <a class="reference" href="http://www.boost.org/LICENSE_1_0.txt">http://www.boost.org/LICENSE_1_0.txt</a>)</td>
</tr>
</tbody>
</table>
<div class="contents topic" id="table-of-contents">
<p class="topic-title first"><a name="table-of-contents">Table of Contents</a></p>
<ul class="simple">
<li><a class="reference" href="#introduction" id="id1" name="id1">Introduction</a></li>
<li><a class="reference" href="#proposed-resolution" id="id2" name="id2">Proposed Resolution</a></li>
<li><a class="reference" href="#rationale" id="id3" name="id3">Rationale</a></li>
</ul>
</div>
<div class="section" id="introduction">
<h1><a class="toc-backref" href="#id1" name="introduction">Introduction</a></h1>
<p>The <tt class="literal"><span class="pre">is_writable</span></tt> and <tt class="literal"><span class="pre">is_swappable</span></tt> traits classes in <a class="reference" href="http://www.boost-consulting.com/writing/n1550.html">N1550</a>
provide a mechanism for determining at compile time if an iterator
type is a model of the new Writable Iterator and Swappable Iterator
concepts, analogous to <tt class="literal"><span class="pre">iterator_traits&lt;X&gt;::iterator_category</span></tt>
for the old iterator concepts. For backward compatibility,
<tt class="literal"><span class="pre">is_writable</span></tt> and <tt class="literal"><span class="pre">is_swappable</span></tt> not only work with new
iterators, but they also are intended to work for old
iterators (iterators that meet the requirements for one of the
iterator concepts in the current standard). In the case of old
iterators, the writability and swapability is deduced based on the
<tt class="literal"><span class="pre">iterator_category</span></tt> and also the <tt class="literal"><span class="pre">reference</span></tt> type. The
specification for this deduction gives false positives for forward
iterators that have non-assignable value types.</p>
<p>To review, the part of the <tt class="literal"><span class="pre">is_writable</span></tt> trait definition which
applies to old iterators is:</p>
<pre class="literal-block">
if (cat is convertible to output_iterator_tag)
return true;
else if (cat is convertible to forward_iterator_tag
and iterator_traits&lt;Iterator&gt;::reference is a
mutable reference)
return true;
else
return false;
</pre>
<p>Suppose the <tt class="literal"><span class="pre">value_type</span></tt> of the iterator <tt class="literal"><span class="pre">It</span></tt> has a private
assignment operator:</p>
<pre class="literal-block">
class B {
public:
...
private:
B&amp; operator=(const B&amp;);
};
</pre>
<p>and suppose the <tt class="literal"><span class="pre">reference</span></tt> type of the iterator is <tt class="literal"><span class="pre">B&amp;</span></tt>. In
that case, <tt class="literal"><span class="pre">is_writable&lt;It&gt;::value</span></tt> will be true when in fact
attempting to write into <tt class="literal"><span class="pre">B</span></tt> will cause an error.</p>
<p>The same problem applies to <tt class="literal"><span class="pre">is_swappable</span></tt>.</p>
</div>
<div class="section" id="proposed-resolution">
<h1><a class="toc-backref" href="#id2" name="proposed-resolution">Proposed Resolution</a></h1>
<ol class="arabic">
<li><p class="first">Remove the <tt class="literal"><span class="pre">is_writable</span></tt> and <tt class="literal"><span class="pre">is_swappable</span></tt> traits, and remove the
requirements in the Writable Iterator and Swappable Iterator concepts
that require their models to support these traits.</p>
</li>
<li><p class="first">Change the <tt class="literal"><span class="pre">is_readable</span></tt> specification to be:
<tt class="literal"><span class="pre">is_readable&lt;X&gt;::type</span></tt> is <tt class="literal"><span class="pre">true_type</span></tt> if the
result type of <tt class="literal"><span class="pre">X::operator*</span></tt> is convertible to
<tt class="literal"><span class="pre">iterator_traits&lt;X&gt;::value_type</span></tt> and is <tt class="literal"><span class="pre">false_type</span></tt>
otherwise. Also, <tt class="literal"><span class="pre">is_readable</span></tt> is required to satisfy
the requirements for the UnaryTypeTrait concept
(defined in the type traits proposal).</p>
<p>Remove the requirement for support of the <tt class="literal"><span class="pre">is_readable</span></tt> trait from
the Readable Iterator concept.</p>
</li>
<li><p class="first">Remove the <tt class="literal"><span class="pre">iterator_tag</span></tt> class.</p>
</li>
<li><p class="first">Change the specification of <tt class="literal"><span class="pre">traversal_category</span></tt> to:</p>
<pre class="literal-block">
traversal-category(Iterator) =
let cat = iterator_traits&lt;Iterator&gt;::iterator_category
if (cat is convertible to incrementable_iterator_tag)
return cat; // Iterator is a new iterator
else if (cat is convertible to random_access_iterator_tag)
return random_access_traversal_tag;
else if (cat is convertible to bidirectional_iterator_tag)
return bidirectional_traversal_tag;
else if (cat is convertible to forward_iterator_tag)
return forward_traversal_tag;
else if (cat is convertible to input_iterator_tag)
return single_pass_iterator_tag;
else if (cat is convertible to output_iterator_tag)
return incrementable_iterator_tag;
else
return null_category_tag;
</pre>
</li>
</ol>
</div>
<div class="section" id="rationale">
<h1><a class="toc-backref" href="#id3" name="rationale">Rationale</a></h1>
<ol class="arabic simple">
<li>There are two reasons for removing <tt class="literal"><span class="pre">is_writable</span></tt>
and <tt class="literal"><span class="pre">is_swappable</span></tt>. The first is that we do not know of
a way to fix the specification so that it gives the correct
answer for all iterators. Second, there was only a weak
motivation for having <tt class="literal"><span class="pre">is_writable</span></tt> and <tt class="literal"><span class="pre">is_swappable</span></tt>
there in the first place. The main motivation was simply
uniformity: we have tags for the old iterator categories
so we should have tags for the new iterator categories.
While having tags and the capability to dispatch based
on the traversal categories is often used, we see
less of a need for dispatching based on writability
and swappability, since typically algorithms
that need these capabilities have no alternative if
they are not provided.</li>
<li>We discovered that the <tt class="literal"><span class="pre">is_readable</span></tt> trait can be implemented
using only the iterator type itself and its <tt class="literal"><span class="pre">value_type</span></tt>.
Therefore we remove the requirement for <tt class="literal"><span class="pre">is_readable</span></tt> from the
Readable Iterator concept, and change the definition of
<tt class="literal"><span class="pre">is_readable</span></tt> so that it works for any iterator type.</li>
<li>The purpose of the <tt class="literal"><span class="pre">iterator_tag</span></tt> class was to
bundle the traversal and access category tags
into the <tt class="literal"><span class="pre">iterator_category</span></tt> typedef.
With <tt class="literal"><span class="pre">is_writable</span></tt> and <tt class="literal"><span class="pre">is_swappable</span></tt> gone, and
<tt class="literal"><span class="pre">is_readable</span></tt> no longer in need of special hints,
there is no reason for iterators to provide
information about the access capabilities of an iterator.
Thus there is no need for the <tt class="literal"><span class="pre">iterator_tag</span></tt>. The
traversal tag can be directly used for the
<tt class="literal"><span class="pre">iterator_category</span></tt>. If a new iterator is intended to be backward
compatible with old iterator concepts, a tag type
that is convertible to both one of the new traversal tags
and also to an old iterator tag can be created and use
for the <tt class="literal"><span class="pre">iterator_category</span></tt>.</li>
<li>The changes to the specification of <tt class="literal"><span class="pre">traversal_category</span></tt> are a
direct result of the removal of <tt class="literal"><span class="pre">iterator_tag</span></tt>.</li>
</ol>
</div>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="issues.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

View File

@ -1,152 +0,0 @@
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Problem with ``is_writable`` and ``is_swappable`` in N1550_
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
.. _N1550: http://www.boost-consulting.com/writing/n1550.html
.. _N1530: http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1530.html
:Author: David Abrahams and Jeremy Siek
:Contact: dave@boost-consulting.com, jsiek@osl.iu.edu
:Organization: `Boost Consulting`_, Indiana University Bloomington
:date: $Date$
:Copyright: Copyright David Abrahams, Jeremy Siek 2003. Use, modification and
distribution is subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy
at http://www.boost.org/LICENSE_1_0.txt)
.. _`Boost Consulting`: http://www.boost-consulting.com
.. contents:: Table of Contents
==============
Introduction
==============
The ``is_writable`` and ``is_swappable`` traits classes in N1550_
provide a mechanism for determining at compile time if an iterator
type is a model of the new Writable Iterator and Swappable Iterator
concepts, analogous to ``iterator_traits<X>::iterator_category``
for the old iterator concepts. For backward compatibility,
``is_writable`` and ``is_swappable`` not only work with new
iterators, but they also are intended to work for old
iterators (iterators that meet the requirements for one of the
iterator concepts in the current standard). In the case of old
iterators, the writability and swapability is deduced based on the
``iterator_category`` and also the ``reference`` type. The
specification for this deduction gives false positives for forward
iterators that have non-assignable value types.
To review, the part of the ``is_writable`` trait definition which
applies to old iterators is::
if (cat is convertible to output_iterator_tag)
return true;
else if (cat is convertible to forward_iterator_tag
and iterator_traits<Iterator>::reference is a
mutable reference)
return true;
else
return false;
Suppose the ``value_type`` of the iterator ``It`` has a private
assignment operator::
class B {
public:
...
private:
B& operator=(const B&);
};
and suppose the ``reference`` type of the iterator is ``B&``. In
that case, ``is_writable<It>::value`` will be true when in fact
attempting to write into ``B`` will cause an error.
The same problem applies to ``is_swappable``.
====================
Proposed Resolution
====================
1. Remove the ``is_writable`` and ``is_swappable`` traits, and remove the
requirements in the Writable Iterator and Swappable Iterator concepts
that require their models to support these traits.
2. Change the ``is_readable`` specification to be:
``is_readable<X>::type`` is ``true_type`` if the
result type of ``X::operator*`` is convertible to
``iterator_traits<X>::value_type`` and is ``false_type``
otherwise. Also, ``is_readable`` is required to satisfy
the requirements for the UnaryTypeTrait concept
(defined in the type traits proposal).
Remove the requirement for support of the ``is_readable`` trait from
the Readable Iterator concept.
3. Remove the ``iterator_tag`` class.
4. Change the specification of ``traversal_category`` to::
traversal-category(Iterator) =
let cat = iterator_traits<Iterator>::iterator_category
if (cat is convertible to incrementable_iterator_tag)
return cat; // Iterator is a new iterator
else if (cat is convertible to random_access_iterator_tag)
return random_access_traversal_tag;
else if (cat is convertible to bidirectional_iterator_tag)
return bidirectional_traversal_tag;
else if (cat is convertible to forward_iterator_tag)
return forward_traversal_tag;
else if (cat is convertible to input_iterator_tag)
return single_pass_iterator_tag;
else if (cat is convertible to output_iterator_tag)
return incrementable_iterator_tag;
else
return null_category_tag;
==========
Rationale
==========
1. There are two reasons for removing ``is_writable``
and ``is_swappable``. The first is that we do not know of
a way to fix the specification so that it gives the correct
answer for all iterators. Second, there was only a weak
motivation for having ``is_writable`` and ``is_swappable``
there in the first place. The main motivation was simply
uniformity: we have tags for the old iterator categories
so we should have tags for the new iterator categories.
While having tags and the capability to dispatch based
on the traversal categories is often used, we see
less of a need for dispatching based on writability
and swappability, since typically algorithms
that need these capabilities have no alternative if
they are not provided.
2. We discovered that the ``is_readable`` trait can be implemented
using only the iterator type itself and its ``value_type``.
Therefore we remove the requirement for ``is_readable`` from the
Readable Iterator concept, and change the definition of
``is_readable`` so that it works for any iterator type.
3. The purpose of the ``iterator_tag`` class was to
bundle the traversal and access category tags
into the ``iterator_category`` typedef.
With ``is_writable`` and ``is_swappable`` gone, and
``is_readable`` no longer in need of special hints,
there is no reason for iterators to provide
information about the access capabilities of an iterator.
Thus there is no need for the ``iterator_tag``. The
traversal tag can be directly used for the
``iterator_category``. If a new iterator is intended to be backward
compatible with old iterator concepts, a tag type
that is convertible to both one of the new traversal tags
and also to an old iterator tag can be created and use
for the ``iterator_category``.
4. The changes to the specification of ``traversal_category`` are a
direct result of the removal of ``iterator_tag``.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,447 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>Iterator Adaptor</title>
<meta name="author" content="David Abrahams, Jeremy Siek, Thomas Witt" />
<meta name="organization" content="Boost Consulting, Indiana University Open Systems Lab, University of Hanover Institute for Transport Railway Operation and Construction" />
<meta name="date" content="2004-11-01" />
<meta name="copyright" content="Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003." />
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">Iterator Adaptor</h1>
<table class="docinfo" frame="void" rules="none">
<col class="docinfo-name" />
<col class="docinfo-content" />
<tbody valign="top">
<tr><th class="docinfo-name">Author:</th>
<td>David Abrahams, Jeremy Siek, Thomas Witt</td></tr>
<tr><th class="docinfo-name">Contact:</th>
<td><a class="first reference" href="mailto:dave&#64;boost-consulting.com">dave&#64;boost-consulting.com</a>, <a class="reference" href="mailto:jsiek&#64;osl.iu.edu">jsiek&#64;osl.iu.edu</a>, <a class="last reference" href="mailto:witt&#64;ive.uni-hannover.de">witt&#64;ive.uni-hannover.de</a></td></tr>
<tr><th class="docinfo-name">Organization:</th>
<td><a class="first reference" href="http://www.boost-consulting.com">Boost Consulting</a>, Indiana University <a class="reference" href="http://www.osl.iu.edu">Open Systems
Lab</a>, University of Hanover <a class="last reference" href="http://www.ive.uni-hannover.de">Institute for Transport
Railway Operation and Construction</a></td></tr>
<tr><th class="docinfo-name">Date:</th>
<td>2004-11-01</td></tr>
<tr><th class="docinfo-name">Copyright:</th>
<td>Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003.</td></tr>
</tbody>
</table>
<div class="document" id="iterator-adaptor">
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">abstract:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
<!-- Version 1.1 of this ReStructuredText document corresponds to
n1530_, the paper accepted by the LWG. -->
<!-- Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003. -->
<p>Each specialization of the <tt class="literal"><span class="pre">iterator_adaptor</span></tt> class template is derived from
a specialization of <tt class="literal"><span class="pre">iterator_facade</span></tt>. The core interface functions
expected by <tt class="literal"><span class="pre">iterator_facade</span></tt> are implemented in terms of the
<tt class="literal"><span class="pre">iterator_adaptor</span></tt>'s <tt class="literal"><span class="pre">Base</span></tt> template parameter. A class derived
from <tt class="literal"><span class="pre">iterator_adaptor</span></tt> typically redefines some of the core
interface functions to adapt the behavior of the <tt class="literal"><span class="pre">Base</span></tt> type.
Whether the derived class models any of the standard iterator concepts
depends on the operations supported by the <tt class="literal"><span class="pre">Base</span></tt> type and which
core interface functions of <tt class="literal"><span class="pre">iterator_facade</span></tt> are redefined in the
<tt class="literal"><span class="pre">Derived</span></tt> class.</p>
<div class="contents topic" id="table-of-contents">
<p class="topic-title first"><a name="table-of-contents">Table of Contents</a></p>
<ul class="simple">
<li><a class="reference" href="#overview" id="id6" name="id6">Overview</a></li>
<li><a class="reference" href="#reference" id="id7" name="id7">Reference</a><ul>
<li><a class="reference" href="#iterator-adaptor-requirements" id="id8" name="id8"><tt class="literal"><span class="pre">iterator_adaptor</span></tt> requirements</a></li>
<li><a class="reference" href="#iterator-adaptor-base-class-parameters" id="id9" name="id9"><tt class="literal"><span class="pre">iterator_adaptor</span></tt> base class parameters</a></li>
<li><a class="reference" href="#iterator-adaptor-public-operations" id="id10" name="id10"><tt class="literal"><span class="pre">iterator_adaptor</span></tt> public operations</a></li>
<li><a class="reference" href="#iterator-adaptor-protected-member-functions" id="id11" name="id11"><tt class="literal"><span class="pre">iterator_adaptor</span></tt> protected member functions</a></li>
<li><a class="reference" href="#iterator-adaptor-private-member-functions" id="id12" name="id12"><tt class="literal"><span class="pre">iterator_adaptor</span></tt> private member functions</a></li>
</ul>
</li>
<li><a class="reference" href="#tutorial-example" id="id13" name="id13">Tutorial Example</a></li>
</ul>
</div>
<div class="section" id="overview">
<h1><a class="toc-backref" href="#id6" name="overview">Overview</a></h1>
<!-- Version 1.2 of this ReStructuredText document corresponds to
n1530_, the paper accepted by the LWG for TR1. -->
<!-- Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003. -->
<p>The <tt class="literal"><span class="pre">iterator_adaptor</span></tt> class template adapts some <tt class="literal"><span class="pre">Base</span></tt> <a class="footnote-reference" href="#base" id="id1" name="id1"><sup>1</sup></a>
type to create a new iterator. Instantiations of <tt class="literal"><span class="pre">iterator_adaptor</span></tt>
are derived from a corresponding instantiation of <tt class="literal"><span class="pre">iterator_facade</span></tt>
and implement the core behaviors in terms of the <tt class="literal"><span class="pre">Base</span></tt> type. In
essence, <tt class="literal"><span class="pre">iterator_adaptor</span></tt> merely forwards all operations to an
instance of the <tt class="literal"><span class="pre">Base</span></tt> type, which it stores as a member.</p>
<table class="footnote" frame="void" id="base" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a name="base">[1]</a></td><td><em>(<a class="fn-backref" href="#id1">1</a>, <a class="fn-backref" href="#id3">2</a>)</em> The term &quot;Base&quot; here does not refer to a base class and is
not meant to imply the use of derivation. We have followed the lead
of the standard library, which provides a base() function to access
the underlying iterator object of a <tt class="literal"><span class="pre">reverse_iterator</span></tt> adaptor.</td></tr>
</tbody>
</table>
<p>The user of <tt class="literal"><span class="pre">iterator_adaptor</span></tt> creates a class derived from an
instantiation of <tt class="literal"><span class="pre">iterator_adaptor</span></tt> and then selectively
redefines some of the core member functions described in the
<tt class="literal"><span class="pre">iterator_facade</span></tt> core requirements table. The <tt class="literal"><span class="pre">Base</span></tt> type need
not meet the full requirements for an iterator; it need only
support the operations used by the core interface functions of
<tt class="literal"><span class="pre">iterator_adaptor</span></tt> that have not been redefined in the user's
derived class.</p>
<p>Several of the template parameters of <tt class="literal"><span class="pre">iterator_adaptor</span></tt> default
to <tt class="literal"><span class="pre">use_default</span></tt>. This allows the
user to make use of a default parameter even when she wants to
specify a parameter later in the parameter list. Also, the
defaults for the corresponding associated types are somewhat
complicated, so metaprogramming is required to compute them, and
<tt class="literal"><span class="pre">use_default</span></tt> can help to simplify the implementation. Finally,
the identity of the <tt class="literal"><span class="pre">use_default</span></tt> type is not left unspecified
because specification helps to highlight that the <tt class="literal"><span class="pre">Reference</span></tt>
template parameter may not always be identical to the iterator's
<tt class="literal"><span class="pre">reference</span></tt> type, and will keep users from making mistakes based on
that assumption.</p>
</div>
<div class="section" id="reference">
<h1><a class="toc-backref" href="#id7" name="reference">Reference</a></h1>
<!-- Version 1.4 of this ReStructuredText document corresponds to
n1530_, the paper accepted by the LWG for TR1. -->
<!-- Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003. -->
<pre class="literal-block">
template &lt;
class Derived
, class Base
, class Value = use_default
, class CategoryOrTraversal = use_default
, class Reference = use_default
, class Difference = use_default
&gt;
class iterator_adaptor
: public iterator_facade&lt;Derived, <em>V'</em>, <em>C'</em>, <em>R'</em>, <em>D'</em>&gt; // see <a class="reference" href="#base-parameters">details</a>
{
friend class iterator_core_access;
public:
iterator_adaptor();
explicit iterator_adaptor(Base iter);
Base const&amp; base() const;
protected:
typedef iterator_adaptor iterator_adaptor_;
Base const&amp; base_reference() const;
Base&amp; base_reference();
private: // Core iterator interface for iterator_facade.
typename iterator_adaptor::reference dereference() const;
template &lt;
class OtherDerived, class OtherIterator, class V, class C, class R, class D
&gt;
bool equal(iterator_adaptor&lt;OtherDerived, OtherIterator, V, C, R, D&gt; const&amp; x) const;
void advance(typename iterator_adaptor::difference_type n);
void increment();
void decrement();
template &lt;
class OtherDerived, class OtherIterator, class V, class C, class R, class D
&gt;
typename iterator_adaptor::difference_type distance_to(
iterator_adaptor&lt;OtherDerived, OtherIterator, V, C, R, D&gt; const&amp; y) const;
private:
Base m_iterator; // exposition only
};
</pre>
<a class="target" id="requirements" name="requirements"></a><div class="section" id="iterator-adaptor-requirements">
<h2><a class="toc-backref" href="#id8" name="iterator-adaptor-requirements"><tt class="literal"><span class="pre">iterator_adaptor</span></tt> requirements</a></h2>
<p><tt class="literal"><span class="pre">static_cast&lt;Derived*&gt;(iterator_adaptor*)</span></tt> shall be well-formed.
The <tt class="literal"><span class="pre">Base</span></tt> argument shall be Assignable and Copy Constructible.</p>
<a class="target" id="base-parameters" name="base-parameters"></a></div>
<div class="section" id="iterator-adaptor-base-class-parameters">
<h2><a class="toc-backref" href="#id9" name="iterator-adaptor-base-class-parameters"><tt class="literal"><span class="pre">iterator_adaptor</span></tt> base class parameters</a></h2>
<p>The <em>V'</em>, <em>C'</em>, <em>R'</em>, and <em>D'</em> parameters of the <tt class="literal"><span class="pre">iterator_facade</span></tt>
used as a base class in the summary of <tt class="literal"><span class="pre">iterator_adaptor</span></tt>
above are defined as follows:</p>
<pre class="literal-block">
<em>V'</em> = if (Value is use_default)
return iterator_traits&lt;Base&gt;::value_type
else
return Value
<em>C'</em> = if (CategoryOrTraversal is use_default)
return iterator_traversal&lt;Base&gt;::type
else
return CategoryOrTraversal
<em>R'</em> = if (Reference is use_default)
if (Value is use_default)
return iterator_traits&lt;Base&gt;::reference
else
return Value&amp;
else
return Reference
<em>D'</em> = if (Difference is use_default)
return iterator_traits&lt;Base&gt;::difference_type
else
return Difference
</pre>
<!-- ``iterator_adaptor`` models
- - - - - - - - - - - - - - - - - - - - - - - - - - -
In order for ``Derived`` to model the iterator concepts corresponding
to ``iterator_traits<Derived>::iterator_category``, the expressions
involving ``m_iterator`` in the specifications of those private member
functions of ``iterator_adaptor`` that may be called by
``iterator_facade<Derived, V, C, R, D>`` in evaluating any valid
expression involving ``Derived`` in those concepts' requirements. -->
<!-- The above is confusing and needs a rewrite. -JGS -->
<!-- That's why it's removed. We're embracing inheritance, remember? -->
</div>
<div class="section" id="iterator-adaptor-public-operations">
<h2><a class="toc-backref" href="#id10" name="iterator-adaptor-public-operations"><tt class="literal"><span class="pre">iterator_adaptor</span></tt> public operations</a></h2>
<p><tt class="literal"><span class="pre">iterator_adaptor();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Requires:</th><td class="field-body">The <tt class="literal"><span class="pre">Base</span></tt> type must be Default Constructible.</td>
</tr>
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">An instance of <tt class="literal"><span class="pre">iterator_adaptor</span></tt> with
<tt class="literal"><span class="pre">m_iterator</span></tt> default constructed.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">explicit</span> <span class="pre">iterator_adaptor(Base</span> <span class="pre">iter);</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">An instance of <tt class="literal"><span class="pre">iterator_adaptor</span></tt> with
<tt class="literal"><span class="pre">m_iterator</span></tt> copy constructed from <tt class="literal"><span class="pre">iter</span></tt>.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Base</span> <span class="pre">const&amp;</span> <span class="pre">base()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">m_iterator</span></tt></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="iterator-adaptor-protected-member-functions">
<h2><a class="toc-backref" href="#id11" name="iterator-adaptor-protected-member-functions"><tt class="literal"><span class="pre">iterator_adaptor</span></tt> protected member functions</a></h2>
<p><tt class="literal"><span class="pre">Base</span> <span class="pre">const&amp;</span> <span class="pre">base_reference()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">A const reference to <tt class="literal"><span class="pre">m_iterator</span></tt>.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Base&amp;</span> <span class="pre">base_reference();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">A non-const reference to <tt class="literal"><span class="pre">m_iterator</span></tt>.</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="iterator-adaptor-private-member-functions">
<h2><a class="toc-backref" href="#id12" name="iterator-adaptor-private-member-functions"><tt class="literal"><span class="pre">iterator_adaptor</span></tt> private member functions</a></h2>
<p><tt class="literal"><span class="pre">typename</span> <span class="pre">iterator_adaptor::reference</span> <span class="pre">dereference()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*m_iterator</span></tt></td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template &lt;
class OtherDerived, class OtherIterator, class V, class C, class R, class D
&gt;
bool equal(iterator_adaptor&lt;OtherDerived, OtherIterator, V, C, R, D&gt; const&amp; x) const;
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">m_iterator</span> <span class="pre">==</span> <span class="pre">x.base()</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">void</span> <span class="pre">advance(typename</span> <span class="pre">iterator_adaptor::difference_type</span> <span class="pre">n);</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><tt class="literal"><span class="pre">m_iterator</span> <span class="pre">+=</span> <span class="pre">n;</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">void</span> <span class="pre">increment();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><tt class="literal"><span class="pre">++m_iterator;</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">void</span> <span class="pre">decrement();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><tt class="literal"><span class="pre">--m_iterator;</span></tt></td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template &lt;
class OtherDerived, class OtherIterator, class V, class C, class R, class D
&gt;
typename iterator_adaptor::difference_type distance_to(
iterator_adaptor&lt;OtherDerived, OtherIterator, V, C, R, D&gt; const&amp; y) const;
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">y.base()</span> <span class="pre">-</span> <span class="pre">m_iterator</span></tt></td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="section" id="tutorial-example">
<h1><a class="toc-backref" href="#id13" name="tutorial-example">Tutorial Example</a></h1>
<!-- Copyright David Abrahams 2004. Use, modification and distribution is -->
<!-- subject to the Boost Software License, Version 1.0. (See accompanying -->
<!-- file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -->
<p>In this section we'll further refine the <tt class="literal"><span class="pre">node_iter</span></tt> class
template we developed in the <a class="reference" href="iterator_facade.html#tutorial-example"><tt class="literal"><span class="pre">iterator_facade</span></tt> tutorial</a>. If you haven't already
read that material, you should go back now and check it out because
we're going to pick up right where it left off.</p>
<div class="sidebar">
<p class="sidebar-title first"><tt class="literal"><span class="pre">node_base*</span></tt> really <em>is</em> an iterator</p>
<p>It's not really a very interesting iterator, since <tt class="literal"><span class="pre">node_base</span></tt>
is an abstract class: a pointer to a <tt class="literal"><span class="pre">node_base</span></tt> just points
at some base subobject of an instance of some other class, and
incrementing a <tt class="literal"><span class="pre">node_base*</span></tt> moves it past this base subobject
to who-knows-where? The most we can do with that incremented
position is to compare another <tt class="literal"><span class="pre">node_base*</span></tt> to it. In other
words, the original iterator traverses a one-element array.</p>
</div>
<p>You probably didn't think of it this way, but the <tt class="literal"><span class="pre">node_base*</span></tt>
object that underlies <tt class="literal"><span class="pre">node_iterator</span></tt> is itself an iterator,
just like all other pointers. If we examine that pointer closely
from an iterator perspective, we can see that it has much in common
with the <tt class="literal"><span class="pre">node_iterator</span></tt> we're building. First, they share most
of the same associated types (<tt class="literal"><span class="pre">value_type</span></tt>, <tt class="literal"><span class="pre">reference</span></tt>,
<tt class="literal"><span class="pre">pointer</span></tt>, and <tt class="literal"><span class="pre">difference_type</span></tt>). Second, even some of the
core functionality is the same: <tt class="literal"><span class="pre">operator*</span></tt> and <tt class="literal"><span class="pre">operator==</span></tt> on
the <tt class="literal"><span class="pre">node_iterator</span></tt> return the result of invoking the same
operations on the underlying pointer, via the <tt class="literal"><span class="pre">node_iterator</span></tt>'s
<a class="reference" href="iterator_facade.html#implementing-the-core-operations"><tt class="literal"><span class="pre">dereference</span></tt> and <tt class="literal"><span class="pre">equal</span></tt> member functions</a>). The only real behavioral difference
between <tt class="literal"><span class="pre">node_base*</span></tt> and <tt class="literal"><span class="pre">node_iterator</span></tt> can be observed when
they are incremented: <tt class="literal"><span class="pre">node_iterator</span></tt> follows the
<tt class="literal"><span class="pre">m_next</span></tt> pointer, while <tt class="literal"><span class="pre">node_base*</span></tt> just applies an address offset.</p>
<p>It turns out that the pattern of building an iterator on another
iterator-like type (the <tt class="literal"><span class="pre">Base</span></tt> <a class="footnote-reference" href="#base" id="id3" name="id3"><sup>1</sup></a> type) while modifying
just a few aspects of the underlying type's behavior is an
extremely common one, and it's the pattern addressed by
<tt class="literal"><span class="pre">iterator_adaptor</span></tt>. Using <tt class="literal"><span class="pre">iterator_adaptor</span></tt> is very much like
using <tt class="literal"><span class="pre">iterator_facade</span></tt>, but because iterator_adaptor tries to
mimic as much of the <tt class="literal"><span class="pre">Base</span></tt> type's behavior as possible, we
neither have to supply a <tt class="literal"><span class="pre">Value</span></tt> argument, nor implement any core
behaviors other than <tt class="literal"><span class="pre">increment</span></tt>. The implementation of
<tt class="literal"><span class="pre">node_iter</span></tt> is thus reduced to:</p>
<pre class="literal-block">
template &lt;class Value&gt;
class node_iter
: public boost::iterator_adaptor&lt;
node_iter&lt;Value&gt; // Derived
, Value* // Base
, boost::use_default // Value
, boost::forward_traversal_tag // CategoryOrTraversal
&gt;
{
private:
struct enabler {}; // a private type avoids misuse
public:
node_iter()
: node_iter::iterator_adaptor_(0) {}
explicit node_iter(Value* p)
: node_iter::iterator_adaptor_(p) {}
template &lt;class OtherValue&gt;
node_iter(
node_iter&lt;OtherValue&gt; const&amp; other
, typename boost::enable_if&lt;
boost::is_convertible&lt;OtherValue*,Value*&gt;
, enabler
&gt;::type = enabler()
)
: node_iter::iterator_adaptor_(other.base()) {}
private:
friend class boost::iterator_core_access;
void increment() { this-&gt;base_reference() = this-&gt;base()-&gt;next(); }
};
</pre>
<p>Note the use of <tt class="literal"><span class="pre">node_iter::iterator_adaptor_</span></tt> here: because
<tt class="literal"><span class="pre">iterator_adaptor</span></tt> defines a nested <tt class="literal"><span class="pre">iterator_adaptor_</span></tt> type
that refers to itself, that gives us a convenient way to refer to
the complicated base class type of <tt class="literal"><span class="pre">node_iter&lt;Value&gt;</span></tt>. [Note:
this technique is known not to work with Borland C++ 5.6.4 and
Metrowerks CodeWarrior versions prior to 9.0]</p>
<p>You can see an example program that exercises this version of the
node iterators <a class="reference" href="../example/node_iterator3.cpp">here</a>.</p>
<p>In the case of <tt class="literal"><span class="pre">node_iter</span></tt>, it's not very compelling to pass
<tt class="literal"><span class="pre">boost::use_default</span></tt> as <tt class="literal"><span class="pre">iterator_adaptor</span></tt>'s <tt class="literal"><span class="pre">Value</span></tt>
argument; we could have just passed <tt class="literal"><span class="pre">node_iter</span></tt>'s <tt class="literal"><span class="pre">Value</span></tt>
along to <tt class="literal"><span class="pre">iterator_adaptor</span></tt>, and that'd even be shorter! Most
iterator class templates built with <tt class="literal"><span class="pre">iterator_adaptor</span></tt> are
parameterized on another iterator type, rather than on its
<tt class="literal"><span class="pre">value_type</span></tt>. For example, <tt class="literal"><span class="pre">boost::reverse_iterator</span></tt> takes an
iterator type argument and reverses its direction of traversal,
since the original iterator and the reversed one have all the same
associated types, <tt class="literal"><span class="pre">iterator_adaptor</span></tt>'s delegation of default
types to its <tt class="literal"><span class="pre">Base</span></tt> saves the implementor of
<tt class="literal"><span class="pre">boost::reverse_iterator</span></tt> from writing:</p>
<pre class="literal-block">
std::iterator_traits&lt;Iterator&gt;::<em>some-associated-type</em>
</pre>
<p>at least four times.</p>
<p>We urge you to review the documentation and implementations of
<a class="reference" href="reverse_iterator.html"><tt class="literal"><span class="pre">reverse_iterator</span></tt></a> and the other Boost <a class="reference" href="index.html#specialized-adaptors">specialized iterator
adaptors</a> to get an idea of the sorts of things you can do with
<tt class="literal"><span class="pre">iterator_adaptor</span></tt>. In particular, have a look at
<a class="reference" href="transform_iterator.html"><tt class="literal"><span class="pre">transform_iterator</span></tt></a>, which is perhaps the most straightforward
adaptor, and also <a class="reference" href="counting_iterator.html"><tt class="literal"><span class="pre">counting_iterator</span></tt></a>, which demonstrates that
<tt class="literal"><span class="pre">iterator_adaptor</span></tt>'s <tt class="literal"><span class="pre">Base</span></tt> type needn't be an iterator.</p>
</div>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="iterator_adaptor.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

Binary file not shown.

View File

@ -1,37 +0,0 @@
+++++++++++++++++
Iterator Adaptor
+++++++++++++++++
:Author: David Abrahams, Jeremy Siek, Thomas Witt
:Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@ive.uni-hannover.de
:organization: `Boost Consulting`_, Indiana University `Open Systems
Lab`_, University of Hanover `Institute for Transport
Railway Operation and Construction`_
:date: $Date$
:copyright: Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003.
.. _`Boost Consulting`: http://www.boost-consulting.com
.. _`Open Systems Lab`: http://www.osl.iu.edu
.. _`Institute for Transport Railway Operation and Construction`: http://www.ive.uni-hannover.de
:abstract:
.. include:: iterator_adaptor_abstract.rst
.. contents:: Table of Contents
Overview
========
.. include:: iterator_adaptor_body.rst
Reference
=========
.. include:: iterator_adaptor_ref.rst
Tutorial Example
================
.. include:: iterator_adaptor_tutorial.rst

View File

@ -1,22 +0,0 @@
Index: iterator_adaptor_abstract.rst
===================================================================
RCS file: /cvsroot/boost/boost/libs/iterator/doc/iterator_adaptor_abstract.rst,v
retrieving revision 1.1
retrieving revision 1.2
diff -b -d -u -r1.1 -r1.2
--- iterator_adaptor_abstract.rst 5 Aug 2003 18:19:55 -0000 1.1
+++ iterator_adaptor_abstract.rst 24 Nov 2003 05:02:46 -0000 1.2
@@ -1,5 +1,11 @@ Issue 9.21
-The ``iterator_adaptor`` is a base class template derived from an
-instantiation of ``iterator_facade``. The core interface functions
+.. Version 1.1 of this ReStructuredText document corresponds to
+ n1530_, the paper accepted by the LWG.
+
+.. Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003. All
+ rights reserved
+
+Each specialization of the ``iterator_adaptor`` class template is derived from
+a specialization of ``iterator_facade``. The core interface functions
expected by ``iterator_facade`` are implemented in terms of the
``iterator_adaptor``\ 's ``Base`` template parameter. A class derived
from ``iterator_adaptor`` typically redefines some of the core

View File

@ -1,15 +0,0 @@
.. Version 1.1 of this ReStructuredText document corresponds to
n1530_, the paper accepted by the LWG.
.. Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003.
Each specialization of the ``iterator_adaptor`` class template is derived from
a specialization of ``iterator_facade``. The core interface functions
expected by ``iterator_facade`` are implemented in terms of the
``iterator_adaptor``\ 's ``Base`` template parameter. A class derived
from ``iterator_adaptor`` typically redefines some of the core
interface functions to adapt the behavior of the ``Base`` type.
Whether the derived class models any of the standard iterator concepts
depends on the operations supported by the ``Base`` type and which
core interface functions of ``iterator_facade`` are redefined in the
``Derived`` class.

View File

@ -1,35 +0,0 @@
Index: iterator_adaptor_body.rst
===================================================================
RCS file: /cvsroot/boost/boost/libs/iterator/doc/iterator_adaptor_body.rst,v
retrieving revision 1.2
retrieving revision 1.3
diff -b -d -u -r1.2 -r1.3
--- iterator_adaptor_body.rst 22 Sep 2003 19:55:00 -0000 1.2
+++ iterator_adaptor_body.rst 24 Nov 2003 05:02:46 -0000 1.3
@@ -1,3 +1,9 @@
+.. Version 1.2 of this ReStructuredText document corresponds to
+ n1530_, the paper accepted by the LWG for TR1.
+
+.. Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003. All
+ rights reserved
+
The ``iterator_adaptor`` class template adapts some ``Base`` [#base]_
type to create a new iterator. Instantiations of ``iterator_adaptor``
are derived from a corresponding instantiation of ``iterator_facade``
@@ -19,7 +25,7 @@ Issue 9.1 et al
redefined in the user's derived class.
Several of the template parameters of ``iterator_adaptor`` default
-to ``use_default`` (or ``use_default_access``). This allows the
+to ``use_default``. This allows the
user to make use of a default parameter even when she wants to
specify a parameter later in the parameter list. Also, the
defaults for the corresponding associated types are somewhat
@@ -28,6 +34,6 @@ Issue 9.45y
the identity of the ``use_default`` type is not left unspecified
because specification helps to highlight that the ``Reference``
template parameter may not always be identical to the iterator's
-``reference`` type, and will keep users making mistakes based on
+``reference`` type, and will keep users from making mistakes based on
that assumption.

View File

@ -1,39 +0,0 @@
.. Version 1.2 of this ReStructuredText document corresponds to
n1530_, the paper accepted by the LWG for TR1.
.. Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003.
The ``iterator_adaptor`` class template adapts some ``Base`` [#base]_
type to create a new iterator. Instantiations of ``iterator_adaptor``
are derived from a corresponding instantiation of ``iterator_facade``
and implement the core behaviors in terms of the ``Base`` type. In
essence, ``iterator_adaptor`` merely forwards all operations to an
instance of the ``Base`` type, which it stores as a member.
.. [#base] The term "Base" here does not refer to a base class and is
not meant to imply the use of derivation. We have followed the lead
of the standard library, which provides a base() function to access
the underlying iterator object of a ``reverse_iterator`` adaptor.
The user of ``iterator_adaptor`` creates a class derived from an
instantiation of ``iterator_adaptor`` and then selectively
redefines some of the core member functions described in the
``iterator_facade`` core requirements table. The ``Base`` type need
not meet the full requirements for an iterator; it need only
support the operations used by the core interface functions of
``iterator_adaptor`` that have not been redefined in the user's
derived class.
Several of the template parameters of ``iterator_adaptor`` default
to ``use_default``. This allows the
user to make use of a default parameter even when she wants to
specify a parameter later in the parameter list. Also, the
defaults for the corresponding associated types are somewhat
complicated, so metaprogramming is required to compute them, and
``use_default`` can help to simplify the implementation. Finally,
the identity of the ``use_default`` type is not left unspecified
because specification helps to highlight that the ``Reference``
template parameter may not always be identical to the iterator's
``reference`` type, and will keep users from making mistakes based on
that assumption.

View File

@ -1,234 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title></title>
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<div class="document">
<!-- Version 1.4 of this ReStructuredText document corresponds to
n1530_, the paper accepted by the LWG for TR1. -->
<!-- Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003. -->
<pre class="literal-block">
template &lt;
class Derived
, class Base
, class Value = use_default
, class CategoryOrTraversal = use_default
, class Reference = use_default
, class Difference = use_default
&gt;
class iterator_adaptor
: public iterator_facade&lt;Derived, <em>V'</em>, <em>C'</em>, <em>R'</em>, <em>D'</em>&gt; // see <a class="reference" href="#base-parameters">details</a>
{
friend class iterator_core_access;
public:
iterator_adaptor();
explicit iterator_adaptor(Base iter);
Base const&amp; base() const;
protected:
typedef iterator_adaptor iterator_adaptor_;
Base const&amp; base_reference() const;
Base&amp; base_reference();
private: // Core iterator interface for iterator_facade.
typename iterator_adaptor::reference dereference() const;
template &lt;
class OtherDerived, class OtherIterator, class V, class C, class R, class D
&gt;
bool equal(iterator_adaptor&lt;OtherDerived, OtherIterator, V, C, R, D&gt; const&amp; x) const;
void advance(typename iterator_adaptor::difference_type n);
void increment();
void decrement();
template &lt;
class OtherDerived, class OtherIterator, class V, class C, class R, class D
&gt;
typename iterator_adaptor::difference_type distance_to(
iterator_adaptor&lt;OtherDerived, OtherIterator, V, C, R, D&gt; const&amp; y) const;
private:
Base m_iterator; // exposition only
};
</pre>
<a class="target" id="requirements" name="requirements"></a><div class="section" id="iterator-adaptor-requirements">
<h1><a name="iterator-adaptor-requirements"><tt class="literal"><span class="pre">iterator_adaptor</span></tt> requirements</a></h1>
<p><tt class="literal"><span class="pre">static_cast&lt;Derived*&gt;(iterator_adaptor*)</span></tt> shall be well-formed.
The <tt class="literal"><span class="pre">Base</span></tt> argument shall be Assignable and Copy Constructible.</p>
<a class="target" id="base-parameters" name="base-parameters"></a></div>
<div class="section" id="iterator-adaptor-base-class-parameters">
<h1><a name="iterator-adaptor-base-class-parameters"><tt class="literal"><span class="pre">iterator_adaptor</span></tt> base class parameters</a></h1>
<p>The <em>V'</em>, <em>C'</em>, <em>R'</em>, and <em>D'</em> parameters of the <tt class="literal"><span class="pre">iterator_facade</span></tt>
used as a base class in the summary of <tt class="literal"><span class="pre">iterator_adaptor</span></tt>
above are defined as follows:</p>
<pre class="literal-block">
<em>V'</em> = if (Value is use_default)
return iterator_traits&lt;Base&gt;::value_type
else
return Value
<em>C'</em> = if (CategoryOrTraversal is use_default)
return iterator_traversal&lt;Base&gt;::type
else
return CategoryOrTraversal
<em>R'</em> = if (Reference is use_default)
if (Value is use_default)
return iterator_traits&lt;Base&gt;::reference
else
return Value&amp;
else
return Reference
<em>D'</em> = if (Difference is use_default)
return iterator_traits&lt;Base&gt;::difference_type
else
return Difference
</pre>
<!-- ``iterator_adaptor`` models
- - - - - - - - - - - - - - - - - - - - - - - - - - -
In order for ``Derived`` to model the iterator concepts corresponding
to ``iterator_traits<Derived>::iterator_category``, the expressions
involving ``m_iterator`` in the specifications of those private member
functions of ``iterator_adaptor`` that may be called by
``iterator_facade<Derived, V, C, R, D>`` in evaluating any valid
expression involving ``Derived`` in those concepts' requirements. -->
<!-- The above is confusing and needs a rewrite. -JGS -->
<!-- That's why it's removed. We're embracing inheritance, remember? -->
</div>
<div class="section" id="iterator-adaptor-public-operations">
<h1><a name="iterator-adaptor-public-operations"><tt class="literal"><span class="pre">iterator_adaptor</span></tt> public operations</a></h1>
<p><tt class="literal"><span class="pre">iterator_adaptor();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Requires:</th><td class="field-body">The <tt class="literal"><span class="pre">Base</span></tt> type must be Default Constructible.</td>
</tr>
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">An instance of <tt class="literal"><span class="pre">iterator_adaptor</span></tt> with
<tt class="literal"><span class="pre">m_iterator</span></tt> default constructed.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">explicit</span> <span class="pre">iterator_adaptor(Base</span> <span class="pre">iter);</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">An instance of <tt class="literal"><span class="pre">iterator_adaptor</span></tt> with
<tt class="literal"><span class="pre">m_iterator</span></tt> copy constructed from <tt class="literal"><span class="pre">iter</span></tt>.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Base</span> <span class="pre">const&amp;</span> <span class="pre">base()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">m_iterator</span></tt></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="iterator-adaptor-protected-member-functions">
<h1><a name="iterator-adaptor-protected-member-functions"><tt class="literal"><span class="pre">iterator_adaptor</span></tt> protected member functions</a></h1>
<p><tt class="literal"><span class="pre">Base</span> <span class="pre">const&amp;</span> <span class="pre">base_reference()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">A const reference to <tt class="literal"><span class="pre">m_iterator</span></tt>.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Base&amp;</span> <span class="pre">base_reference();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">A non-const reference to <tt class="literal"><span class="pre">m_iterator</span></tt>.</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="iterator-adaptor-private-member-functions">
<h1><a name="iterator-adaptor-private-member-functions"><tt class="literal"><span class="pre">iterator_adaptor</span></tt> private member functions</a></h1>
<p><tt class="literal"><span class="pre">typename</span> <span class="pre">iterator_adaptor::reference</span> <span class="pre">dereference()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*m_iterator</span></tt></td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template &lt;
class OtherDerived, class OtherIterator, class V, class C, class R, class D
&gt;
bool equal(iterator_adaptor&lt;OtherDerived, OtherIterator, V, C, R, D&gt; const&amp; x) const;
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">m_iterator</span> <span class="pre">==</span> <span class="pre">x.base()</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">void</span> <span class="pre">advance(typename</span> <span class="pre">iterator_adaptor::difference_type</span> <span class="pre">n);</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><tt class="literal"><span class="pre">m_iterator</span> <span class="pre">+=</span> <span class="pre">n;</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">void</span> <span class="pre">increment();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><tt class="literal"><span class="pre">++m_iterator;</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">void</span> <span class="pre">decrement();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><tt class="literal"><span class="pre">--m_iterator;</span></tt></td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template &lt;
class OtherDerived, class OtherIterator, class V, class C, class R, class D
&gt;
typename iterator_adaptor::difference_type distance_to(
iterator_adaptor&lt;OtherDerived, OtherIterator, V, C, R, D&gt; const&amp; y) const;
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">y.base()</span> <span class="pre">-</span> <span class="pre">m_iterator</span></tt></td>
</tr>
</tbody>
</table>
</div>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="iterator_adaptor_ref.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

View File

@ -1,177 +0,0 @@
.. Version 1.4 of this ReStructuredText document corresponds to
n1530_, the paper accepted by the LWG for TR1.
.. Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003.
.. parsed-literal::
template <
class Derived
, class Base
, class Value = use_default
, class CategoryOrTraversal = use_default
, class Reference = use_default
, class Difference = use_default
>
class iterator_adaptor
: public iterator_facade<Derived, *V'*, *C'*, *R'*, *D'*> // see details__
{
friend class iterator_core_access;
public:
iterator_adaptor();
explicit iterator_adaptor(Base iter);
Base const& base() const;
protected:
typedef iterator_adaptor iterator_adaptor\_;
Base const& base_reference() const;
Base& base_reference();
private: // Core iterator interface for iterator_facade.
typename iterator_adaptor::reference dereference() const;
template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D
>
bool equal(iterator_adaptor<OtherDerived, OtherIterator, V, C, R, D> const& x) const;
void advance(typename iterator_adaptor::difference_type n);
void increment();
void decrement();
template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D
>
typename iterator_adaptor::difference_type distance_to(
iterator_adaptor<OtherDerived, OtherIterator, V, C, R, D> const& y) const;
private:
Base m_iterator; // exposition only
};
__ base_parameters_
.. _requirements:
``iterator_adaptor`` requirements
---------------------------------
``static_cast<Derived*>(iterator_adaptor*)`` shall be well-formed.
The ``Base`` argument shall be Assignable and Copy Constructible.
.. _base_parameters:
``iterator_adaptor`` base class parameters
------------------------------------------
The *V'*, *C'*, *R'*, and *D'* parameters of the ``iterator_facade``
used as a base class in the summary of ``iterator_adaptor``
above are defined as follows:
.. parsed-literal::
*V'* = if (Value is use_default)
return iterator_traits<Base>::value_type
else
return Value
*C'* = if (CategoryOrTraversal is use_default)
return iterator_traversal<Base>::type
else
return CategoryOrTraversal
*R'* = if (Reference is use_default)
if (Value is use_default)
return iterator_traits<Base>::reference
else
return Value&
else
return Reference
*D'* = if (Difference is use_default)
return iterator_traits<Base>::difference_type
else
return Difference
.. ``iterator_adaptor`` models
---------------------------
In order for ``Derived`` to model the iterator concepts corresponding
to ``iterator_traits<Derived>::iterator_category``, the expressions
involving ``m_iterator`` in the specifications of those private member
functions of ``iterator_adaptor`` that may be called by
``iterator_facade<Derived, V, C, R, D>`` in evaluating any valid
expression involving ``Derived`` in those concepts' requirements.
.. The above is confusing and needs a rewrite. -JGS
.. That's why it's removed. We're embracing inheritance, remember?
``iterator_adaptor`` public operations
--------------------------------------
``iterator_adaptor();``
:Requires: The ``Base`` type must be Default Constructible.
:Returns: An instance of ``iterator_adaptor`` with
``m_iterator`` default constructed.
``explicit iterator_adaptor(Base iter);``
:Returns: An instance of ``iterator_adaptor`` with
``m_iterator`` copy constructed from ``iter``.
``Base const& base() const;``
:Returns: ``m_iterator``
``iterator_adaptor`` protected member functions
-----------------------------------------------
``Base const& base_reference() const;``
:Returns: A const reference to ``m_iterator``.
``Base& base_reference();``
:Returns: A non-const reference to ``m_iterator``.
``iterator_adaptor`` private member functions
---------------------------------------------
``typename iterator_adaptor::reference dereference() const;``
:Returns: ``*m_iterator``
::
template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D
>
bool equal(iterator_adaptor<OtherDerived, OtherIterator, V, C, R, D> const& x) const;
:Returns: ``m_iterator == x.base()``
``void advance(typename iterator_adaptor::difference_type n);``
:Effects: ``m_iterator += n;``
``void increment();``
:Effects: ``++m_iterator;``
``void decrement();``
:Effects: ``--m_iterator;``
::
template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D
>
typename iterator_adaptor::difference_type distance_to(
iterator_adaptor<OtherDerived, OtherIterator, V, C, R, D> const& y) const;
:Returns: ``y.base() - m_iterator``

View File

@ -1,135 +0,0 @@
.. Copyright David Abrahams 2004. Use, modification and distribution is
.. subject to the Boost Software License, Version 1.0. (See accompanying
.. file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
In this section we'll further refine the ``node_iter`` class
template we developed in the |fac_tut|_. If you haven't already
read that material, you should go back now and check it out because
we're going to pick up right where it left off.
.. |fac_tut| replace:: ``iterator_facade`` tutorial
.. _fac_tut: iterator_facade.html#tutorial-example
.. sidebar:: ``node_base*`` really *is* an iterator
It's not really a very interesting iterator, since ``node_base``
is an abstract class: a pointer to a ``node_base`` just points
at some base subobject of an instance of some other class, and
incrementing a ``node_base*`` moves it past this base subobject
to who-knows-where? The most we can do with that incremented
position is to compare another ``node_base*`` to it. In other
words, the original iterator traverses a one-element array.
You probably didn't think of it this way, but the ``node_base*``
object that underlies ``node_iterator`` is itself an iterator,
just like all other pointers. If we examine that pointer closely
from an iterator perspective, we can see that it has much in common
with the ``node_iterator`` we're building. First, they share most
of the same associated types (``value_type``, ``reference``,
``pointer``, and ``difference_type``). Second, even some of the
core functionality is the same: ``operator*`` and ``operator==`` on
the ``node_iterator`` return the result of invoking the same
operations on the underlying pointer, via the ``node_iterator``\ 's
|dereference_and_equal|_). The only real behavioral difference
between ``node_base*`` and ``node_iterator`` can be observed when
they are incremented: ``node_iterator`` follows the
``m_next`` pointer, while ``node_base*`` just applies an address offset.
.. |dereference_and_equal| replace:: ``dereference`` and ``equal`` member functions
.. _dereference_and_equal: iterator_facade.html#implementing-the-core-operations
It turns out that the pattern of building an iterator on another
iterator-like type (the ``Base`` [#base]_ type) while modifying
just a few aspects of the underlying type's behavior is an
extremely common one, and it's the pattern addressed by
``iterator_adaptor``. Using ``iterator_adaptor`` is very much like
using ``iterator_facade``, but because iterator_adaptor tries to
mimic as much of the ``Base`` type's behavior as possible, we
neither have to supply a ``Value`` argument, nor implement any core
behaviors other than ``increment``. The implementation of
``node_iter`` is thus reduced to::
template <class Value>
class node_iter
: public boost::iterator_adaptor<
node_iter<Value> // Derived
, Value* // Base
, boost::use_default // Value
, boost::forward_traversal_tag // CategoryOrTraversal
>
{
private:
struct enabler {}; // a private type avoids misuse
public:
node_iter()
: node_iter::iterator_adaptor_(0) {}
explicit node_iter(Value* p)
: node_iter::iterator_adaptor_(p) {}
template <class OtherValue>
node_iter(
node_iter<OtherValue> const& other
, typename boost::enable_if<
boost::is_convertible<OtherValue*,Value*>
, enabler
>::type = enabler()
)
: node_iter::iterator_adaptor_(other.base()) {}
private:
friend class boost::iterator_core_access;
void increment() { this->base_reference() = this->base()->next(); }
};
Note the use of ``node_iter::iterator_adaptor_`` here: because
``iterator_adaptor`` defines a nested ``iterator_adaptor_`` type
that refers to itself, that gives us a convenient way to refer to
the complicated base class type of ``node_iter<Value>``. [Note:
this technique is known not to work with Borland C++ 5.6.4 and
Metrowerks CodeWarrior versions prior to 9.0]
You can see an example program that exercises this version of the
node iterators `here`__.
__ ../example/node_iterator3.cpp
In the case of ``node_iter``, it's not very compelling to pass
``boost::use_default`` as ``iterator_adaptor``\ 's ``Value``
argument; we could have just passed ``node_iter``\ 's ``Value``
along to ``iterator_adaptor``, and that'd even be shorter! Most
iterator class templates built with ``iterator_adaptor`` are
parameterized on another iterator type, rather than on its
``value_type``. For example, ``boost::reverse_iterator`` takes an
iterator type argument and reverses its direction of traversal,
since the original iterator and the reversed one have all the same
associated types, ``iterator_adaptor``\ 's delegation of default
types to its ``Base`` saves the implementor of
``boost::reverse_iterator`` from writing:
.. parsed-literal::
std::iterator_traits<Iterator>::*some-associated-type*
at least four times.
We urge you to review the documentation and implementations of
|reverse_iterator|_ and the other Boost `specialized iterator
adaptors`__ to get an idea of the sorts of things you can do with
``iterator_adaptor``. In particular, have a look at
|transform_iterator|_, which is perhaps the most straightforward
adaptor, and also |counting_iterator|_, which demonstrates that
``iterator_adaptor``\ 's ``Base`` type needn't be an iterator.
.. |reverse_iterator| replace:: ``reverse_iterator``
.. _reverse_iterator: reverse_iterator.html
.. |counting_iterator| replace:: ``counting_iterator``
.. _counting_iterator: counting_iterator.html
.. |transform_iterator| replace:: ``transform_iterator``
.. _transform_iterator: transform_iterator.html
__ index.html#specialized-adaptors

View File

@ -1,220 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>Iterator Archetype</title>
<meta name="author" content="David Abrahams, Jeremy Siek, Thomas Witt" />
<meta name="organization" content="Boost Consulting, Indiana University Open Systems Lab, Zephyr Associates, Inc." />
<meta name="date" content="2004-11-01" />
<meta name="copyright" content="Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2004." />
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">Iterator Archetype</h1>
<table class="docinfo" frame="void" rules="none">
<col class="docinfo-name" />
<col class="docinfo-content" />
<tbody valign="top">
<tr><th class="docinfo-name">Author:</th>
<td>David Abrahams, Jeremy Siek, Thomas Witt</td></tr>
<tr><th class="docinfo-name">Contact:</th>
<td><a class="first reference" href="mailto:dave&#64;boost-consulting.com">dave&#64;boost-consulting.com</a>, <a class="reference" href="mailto:jsiek&#64;osl.iu.edu">jsiek&#64;osl.iu.edu</a>, <a class="last reference" href="mailto:witt&#64;styleadvisor.com">witt&#64;styleadvisor.com</a></td></tr>
<tr><th class="docinfo-name">Organization:</th>
<td><a class="first reference" href="http://www.boost-consulting.com">Boost Consulting</a>, Indiana University <a class="reference" href="http://www.osl.iu.edu">Open Systems
Lab</a>, <a class="last reference" href="http://www.styleadvisor.com">Zephyr Associates, Inc.</a></td></tr>
<tr><th class="docinfo-name">Date:</th>
<td>2004-11-01</td></tr>
<tr><th class="docinfo-name">Copyright:</th>
<td>Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2004.</td></tr>
</tbody>
</table>
<div class="document" id="iterator-archetype">
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">abstract:</th><td class="field-body">The <tt class="literal"><span class="pre">iterator_archetype</span></tt> class constructs a minimal implementation of
one of the iterator access concepts and one of the iterator traversal concepts.
This is used for doing a compile-time check to see if a the type requirements
of a template are really enough to cover the implementation of the template.
For further information see the documentation for the <a class="reference" href="../../concept_check/index.html"><tt class="literal"><span class="pre">boost::concept_check</span></tt></a> library.</td>
</tr>
</tbody>
</table>
<div class="contents topic" id="table-of-contents">
<p class="topic-title first"><a name="table-of-contents">Table of Contents</a></p>
<ul class="simple">
<li><a class="reference" href="#reference" id="id1" name="id1">Reference</a><ul>
<li><a class="reference" href="#iterator-archetype-synopsis" id="id2" name="id2"><tt class="literal"><span class="pre">iterator_archetype</span></tt> Synopsis</a></li>
<li><a class="reference" href="#access-category-tags" id="id3" name="id3"><tt class="literal"><span class="pre">Access</span> <span class="pre">Category</span> <span class="pre">Tags</span></tt></a></li>
<li><a class="reference" href="#iterator-archetype-requirements" id="id4" name="id4"><tt class="literal"><span class="pre">iterator_archetype</span></tt> Requirements</a></li>
<li><a class="reference" href="#iterator-archetype-models" id="id5" name="id5"><tt class="literal"><span class="pre">iterator_archetype</span></tt> Models</a></li>
<li><a class="reference" href="#traits" id="id6" name="id6"><tt class="literal"><span class="pre">Traits</span></tt></a></li>
</ul>
</li>
</ul>
</div>
<div class="section" id="reference">
<h1><a class="toc-backref" href="#id1" name="reference">Reference</a></h1>
<div class="section" id="iterator-archetype-synopsis">
<h2><a class="toc-backref" href="#id2" name="iterator-archetype-synopsis"><tt class="literal"><span class="pre">iterator_archetype</span></tt> Synopsis</a></h2>
<pre class="literal-block">
namespace iterator_archetypes
{
// Access categories
typedef /*implementation defined*/ readable_iterator_t;
typedef /*implementation defined*/ writable_iterator_t;
typedef /*implementation defined*/ readable_writable_iterator_t;
typedef /*implementation defined*/ readable_lvalue_iterator_t;
typedef /*implementation defined*/ writable_lvalue_iterator_t;
}
template &lt;
class Value
, class AccessCategory
, class TraversalCategory
&gt;
class iterator_archetype
{
typedef /* see below */ value_type;
typedef /* see below */ reference;
typedef /* see below */ pointer;
typedef /* see below */ difference_type;
typedef /* see below */ iterator_category;
};
</pre>
</div>
<div class="section" id="access-category-tags">
<h2><a class="toc-backref" href="#id3" name="access-category-tags"><tt class="literal"><span class="pre">Access</span> <span class="pre">Category</span> <span class="pre">Tags</span></tt></a></h2>
<p>The access category types provided correspond to the following
standard iterator access concept combinations:</p>
<pre class="literal-block">
readable_iterator_t :=
Readable Iterator
writable_iterator_t :=
Writeable Iterator
readable_writable_iterator_t :=
Readable Iterator &amp; Writeable Iterator &amp; Swappable Iterator
readable_lvalue_iterator_t :=
Readable Iterator &amp; Lvalue Iterator
writeable_lvalue_iterator_t :=
Readable Iterator &amp; Writeable Iterator &amp; Swappable Iterator &amp; Lvalue Iterator
</pre>
</div>
<div class="section" id="iterator-archetype-requirements">
<h2><a class="toc-backref" href="#id4" name="iterator-archetype-requirements"><tt class="literal"><span class="pre">iterator_archetype</span></tt> Requirements</a></h2>
<p>The <tt class="literal"><span class="pre">AccessCategory</span></tt> argument must be one of the predefined access
category tags. The <tt class="literal"><span class="pre">TraversalCategory</span></tt> must be one of the standard
traversal tags. The <tt class="literal"><span class="pre">Value</span></tt> type must satisfy the requirements of
the iterator concept specified by <tt class="literal"><span class="pre">AccessCategory</span></tt> and
<tt class="literal"><span class="pre">TraversalCategory</span></tt> as implied by the nested traits types.</p>
</div>
<div class="section" id="iterator-archetype-models">
<h2><a class="toc-backref" href="#id5" name="iterator-archetype-models"><tt class="literal"><span class="pre">iterator_archetype</span></tt> Models</a></h2>
<p><tt class="literal"><span class="pre">iterator_archetype</span></tt> models the iterator concepts specified by the
<tt class="literal"><span class="pre">AccessCategory</span></tt> and <tt class="literal"><span class="pre">TraversalCategory</span></tt>
arguments. <tt class="literal"><span class="pre">iterator_archetype</span></tt> does not model any other access
concepts or any more derived traversal concepts.</p>
</div>
<div class="section" id="traits">
<h2><a class="toc-backref" href="#id6" name="traits"><tt class="literal"><span class="pre">Traits</span></tt></a></h2>
<p>The nested trait types are defined as follows:</p>
<pre class="literal-block">
if (AccessCategory == readable_iterator_t)
value_type = Value
reference = Value
pointer = Value*
else if (AccessCategory == writable_iterator_t)
value_type = void
reference = void
pointer = void
else if (AccessCategory == readable_writable_iterator_t)
value_type = Value
reference :=
A type X that is convertible to Value for which the following
expression is valid. Given an object x of type X and v of type
Value.
x = v
pointer = Value*
else if (AccessCategory == readable_lvalue_iterator_t)
value_type = Value
reference = Value const&amp;
pointer = Value const*
else if (AccessCategory == writable_lvalue_iterator_t)
value_type = Value
reference = Value&amp;
pointer = Value*
if ( TraversalCategory is convertible to forward_traversal_tag )
difference_type := ptrdiff_t
else
difference_type := unspecified type
iterator_category :=
A type X satisfying the following two constraints:
1. X is convertible to X1, and not to any more-derived
type, where X1 is defined by:
if (reference is a reference type
&amp;&amp; TraversalCategory is convertible to forward_traversal_tag)
{
if (TraversalCategory is convertible to random_access_traversal_tag)
X1 = random_access_iterator_tag
else if (TraversalCategory is convertible to bidirectional_traversal_tag)
X1 = bidirectional_iterator_tag
else
X1 = forward_iterator_tag
}
else
{
if (TraversalCategory is convertible to single_pass_traversal_tag
&amp;&amp; reference != void)
X1 = input_iterator_tag
else
X1 = output_iterator_tag
}
2. X is convertible to TraversalCategory
</pre>
</div>
</div>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="iterator_archetypes.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

Binary file not shown.

View File

@ -1,189 +0,0 @@
++++++++++++++++++++
Iterator Archetype
++++++++++++++++++++
:Author: David Abrahams, Jeremy Siek, Thomas Witt
:Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@styleadvisor.com
:organization: `Boost Consulting`_, Indiana University `Open Systems
Lab`_, `Zephyr Associates, Inc.`_
:date: $Date$
:copyright: Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2004.
.. _`Boost Consulting`: http://www.boost-consulting.com
.. _`Open Systems Lab`: http://www.osl.iu.edu
.. _`Zephyr Associates, Inc.`: http://www.styleadvisor.com
:abstract: The ``iterator_archetype`` class constructs a minimal implementation of
one of the iterator access concepts and one of the iterator traversal concepts.
This is used for doing a compile-time check to see if a the type requirements
of a template are really enough to cover the implementation of the template.
For further information see the documentation for the |concepts|_ library.
.. |concepts| replace:: ``boost::concept_check``
.. _concepts: ../../concept_check/index.html
.. contents:: Table of Contents
Reference
=========
``iterator_archetype`` Synopsis
...............................
::
namespace iterator_archetypes
{
// Access categories
typedef /*implementation defined*/ readable_iterator_t;
typedef /*implementation defined*/ writable_iterator_t;
typedef /*implementation defined*/ readable_writable_iterator_t;
typedef /*implementation defined*/ readable_lvalue_iterator_t;
typedef /*implementation defined*/ writable_lvalue_iterator_t;
}
template <
class Value
, class AccessCategory
, class TraversalCategory
>
class iterator_archetype
{
typedef /* see below */ value_type;
typedef /* see below */ reference;
typedef /* see below */ pointer;
typedef /* see below */ difference_type;
typedef /* see below */ iterator_category;
};
``Access Category Tags``
........................
The access category types provided correspond to the following
standard iterator access concept combinations:
::
readable_iterator_t :=
Readable Iterator
writable_iterator_t :=
Writeable Iterator
readable_writable_iterator_t :=
Readable Iterator & Writeable Iterator & Swappable Iterator
readable_lvalue_iterator_t :=
Readable Iterator & Lvalue Iterator
writeable_lvalue_iterator_t :=
Readable Iterator & Writeable Iterator & Swappable Iterator & Lvalue Iterator
``iterator_archetype`` Requirements
...................................
The ``AccessCategory`` argument must be one of the predefined access
category tags. The ``TraversalCategory`` must be one of the standard
traversal tags. The ``Value`` type must satisfy the requirements of
the iterator concept specified by ``AccessCategory`` and
``TraversalCategory`` as implied by the nested traits types.
``iterator_archetype`` Models
.............................
``iterator_archetype`` models the iterator concepts specified by the
``AccessCategory`` and ``TraversalCategory``
arguments. ``iterator_archetype`` does not model any other access
concepts or any more derived traversal concepts.
``Traits``
..........
The nested trait types are defined as follows:
::
if (AccessCategory == readable_iterator_t)
value_type = Value
reference = Value
pointer = Value*
else if (AccessCategory == writable_iterator_t)
value_type = void
reference = void
pointer = void
else if (AccessCategory == readable_writable_iterator_t)
value_type = Value
reference :=
A type X that is convertible to Value for which the following
expression is valid. Given an object x of type X and v of type
Value.
x = v
pointer = Value*
else if (AccessCategory == readable_lvalue_iterator_t)
value_type = Value
reference = Value const&
pointer = Value const*
else if (AccessCategory == writable_lvalue_iterator_t)
value_type = Value
reference = Value&
pointer = Value*
if ( TraversalCategory is convertible to forward_traversal_tag )
difference_type := ptrdiff_t
else
difference_type := unspecified type
iterator_category :=
A type X satisfying the following two constraints:
1. X is convertible to X1, and not to any more-derived
type, where X1 is defined by:
if (reference is a reference type
&& TraversalCategory is convertible to forward_traversal_tag)
{
if (TraversalCategory is convertible to random_access_traversal_tag)
X1 = random_access_iterator_tag
else if (TraversalCategory is convertible to bidirectional_traversal_tag)
X1 = bidirectional_iterator_tag
else
X1 = forward_iterator_tag
}
else
{
if (TraversalCategory is convertible to single_pass_traversal_tag
&& reference != void)
X1 = input_iterator_tag
else
X1 = output_iterator_tag
}
2. X is convertible to TraversalCategory

View File

@ -1,123 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>Iterator Concepts</title>
<meta name="author" content="David Abrahams, Jeremy Siek, Thomas Witt" />
<meta name="organization" content="Boost Consulting, Indiana University Open Systems Lab, Zephyr Associates, Inc." />
<meta name="date" content="2004-11-01" />
<meta name="copyright" content="Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2004." />
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">Iterator Concepts</h1>
<table class="docinfo" frame="void" rules="none">
<col class="docinfo-name" />
<col class="docinfo-content" />
<tbody valign="top">
<tr><th class="docinfo-name">Author:</th>
<td>David Abrahams, Jeremy Siek, Thomas Witt</td></tr>
<tr><th class="docinfo-name">Contact:</th>
<td><a class="first reference" href="mailto:dave&#64;boost-consulting.com">dave&#64;boost-consulting.com</a>, <a class="reference" href="mailto:jsiek&#64;osl.iu.edu">jsiek&#64;osl.iu.edu</a>, <a class="last reference" href="mailto:witt&#64;styleadvisor.com">witt&#64;styleadvisor.com</a></td></tr>
<tr><th class="docinfo-name">Organization:</th>
<td><a class="first reference" href="http://www.boost-consulting.com">Boost Consulting</a>, Indiana University <a class="reference" href="http://www.osl.iu.edu">Open Systems
Lab</a>, <a class="last reference" href="http://www.styleadvisor.com">Zephyr Associates, Inc.</a></td></tr>
<tr><th class="docinfo-name">Date:</th>
<td>2004-11-01</td></tr>
<tr><th class="docinfo-name">Copyright:</th>
<td>Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2004.</td></tr>
</tbody>
</table>
<div class="document" id="iterator-concepts">
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">abstract:</th><td class="field-body">The iterator concept checking classes provide a mechanism for
a template to report better error messages when a user instantiates
the template with a type that does not meet the requirements of
the template.</td>
</tr>
</tbody>
</table>
<p>For an introduction to using concept checking classes, see
the documentation for the <a class="reference" href="../../concept_check/index.html"><tt class="literal"><span class="pre">boost::concept_check</span></tt></a> library.</p>
<div class="section" id="reference">
<h1><a name="reference">Reference</a></h1>
<div class="section" id="iterator-access-concepts">
<h2><a name="iterator-access-concepts">Iterator Access Concepts</a></h2>
<ul class="simple">
<li><a class="reference" href="ReadableIterator.html"><em>Readable Iterator</em></a></li>
<li><a class="reference" href="WritableIterator.html"><em>Writable Iterator</em></a></li>
<li><a class="reference" href="SwappableIterator.html"><em>Swappable Iterator</em></a></li>
<li><a class="reference" href="LvalueIterator.html"><em>Lvalue Iterator</em></a></li>
</ul>
</div>
<div class="section" id="iterator-traversal-concepts">
<h2><a name="iterator-traversal-concepts">Iterator Traversal Concepts</a></h2>
<ul class="simple">
<li><a class="reference" href="IncrementableIterator.html"><em>Incrementable Iterator</em></a></li>
<li><a class="reference" href="SinglePassIterator.html"><em>Single Pass Iterator</em></a></li>
<li><a class="reference" href="ForwardTraversal.html"><em>Forward Traversal</em></a></li>
<li><a class="reference" href="BidirectionalTraversal.html"><em>Bidirectional Traversal</em></a></li>
<li><a class="reference" href="RandomAccessTraversal.html"><em>Random Access Traversal</em></a></li>
</ul>
</div>
<div class="section" id="iterator-concepts-hpp-synopsis">
<h2><a name="iterator-concepts-hpp-synopsis"><tt class="literal"><span class="pre">iterator_concepts.hpp</span></tt> Synopsis</a></h2>
<pre class="literal-block">
namespace boost_concepts {
// Iterator Access Concepts
template &lt;typename Iterator&gt;
class ReadableIteratorConcept;
template &lt;
typename Iterator
, typename ValueType = std::iterator_traits&lt;Iterator&gt;::value_type
&gt;
class WritableIteratorConcept;
template &lt;typename Iterator&gt;
class SwappableIteratorConcept;
template &lt;typename Iterator&gt;
class LvalueIteratorConcept;
// Iterator Traversal Concepts
template &lt;typename Iterator&gt;
class IncrementableIteratorConcept;
template &lt;typename Iterator&gt;
class SinglePassIteratorConcept;
template &lt;typename Iterator&gt;
class ForwardTraversalConcept;
template &lt;typename Iterator&gt;
class BidirectionalTraversalConcept;
template &lt;typename Iterator&gt;
class RandomAccessTraversalConcept;
// Interoperability
template &lt;typename Iterator, typename ConstIterator&gt;
class InteroperableIteratorConcept;
}
</pre>
</div>
</div>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="iterator_concepts.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

Binary file not shown.

View File

@ -1,128 +0,0 @@
++++++++++++++++++
Iterator Concepts
++++++++++++++++++
:Author: David Abrahams, Jeremy Siek, Thomas Witt
:Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@styleadvisor.com
:organization: `Boost Consulting`_, Indiana University `Open Systems
Lab`_, `Zephyr Associates, Inc.`_
:date: $Date$
:copyright: Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2004.
.. _`Boost Consulting`: http://www.boost-consulting.com
.. _`Open Systems Lab`: http://www.osl.iu.edu
.. _`Zephyr Associates, Inc.`: http://www.styleadvisor.com
:abstract: The iterator concept checking classes provide a mechanism for
a template to report better error messages when a user instantiates
the template with a type that does not meet the requirements of
the template.
For an introduction to using concept checking classes, see
the documentation for the |concepts|_ library.
.. |concepts| replace:: ``boost::concept_check``
.. _concepts: ../../concept_check/index.html
Reference
=========
Iterator Access Concepts
........................
* |Readable|_
* |Writable|_
* |Swappable|_
* |Lvalue|_
.. |Readable| replace:: *Readable Iterator*
.. _Readable: ReadableIterator.html
.. |Writable| replace:: *Writable Iterator*
.. _Writable: WritableIterator.html
.. |Swappable| replace:: *Swappable Iterator*
.. _Swappable: SwappableIterator.html
.. |Lvalue| replace:: *Lvalue Iterator*
.. _Lvalue: LvalueIterator.html
Iterator Traversal Concepts
...........................
* |Incrementable|_
* |SinglePass|_
* |Forward|_
* |Bidir|_
* |Random|_
.. |Incrementable| replace:: *Incrementable Iterator*
.. _Incrementable: IncrementableIterator.html
.. |SinglePass| replace:: *Single Pass Iterator*
.. _SinglePass: SinglePassIterator.html
.. |Forward| replace:: *Forward Traversal*
.. _Forward: ForwardTraversal.html
.. |Bidir| replace:: *Bidirectional Traversal*
.. _Bidir: BidirectionalTraversal.html
.. |Random| replace:: *Random Access Traversal*
.. _Random: RandomAccessTraversal.html
``iterator_concepts.hpp`` Synopsis
..................................
::
namespace boost_concepts {
// Iterator Access Concepts
template <typename Iterator>
class ReadableIteratorConcept;
template <
typename Iterator
, typename ValueType = std::iterator_traits<Iterator>::value_type
>
class WritableIteratorConcept;
template <typename Iterator>
class SwappableIteratorConcept;
template <typename Iterator>
class LvalueIteratorConcept;
// Iterator Traversal Concepts
template <typename Iterator>
class IncrementableIteratorConcept;
template <typename Iterator>
class SinglePassIteratorConcept;
template <typename Iterator>
class ForwardTraversalConcept;
template <typename Iterator>
class BidirectionalTraversalConcept;
template <typename Iterator>
class RandomAccessTraversalConcept;
// Interoperability
template <typename Iterator, typename ConstIterator>
class InteroperableIteratorConcept;
}

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@ -1,40 +0,0 @@
++++++++++++++++
Iterator Facade
++++++++++++++++
:Author: David Abrahams, Jeremy Siek, Thomas Witt
:Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@ive.uni-hannover.de
:organization: `Boost Consulting`_, Indiana University `Open Systems
Lab`_, University of Hanover `Institute for Transport
Railway Operation and Construction`_
:date: $Date$
:copyright: Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003.
.. _`Boost Consulting`: http://www.boost-consulting.com
.. _`Open Systems Lab`: http://www.osl.iu.edu
.. _`Institute for Transport Railway Operation and Construction`: http://www.ive.uni-hannover.de
:abstract:
.. include:: iterator_facade_abstract.rst
.. contents:: Table of Contents
Overview
========
.. include:: iterator_facade_body.rst
Reference
=========
.. include:: iterator_facade_ref.rst
.. _counting: counting_iterator.html
Tutorial Example
================
.. include:: iterator_facade_tutorial.rst

View File

@ -1,4 +0,0 @@
``iterator_facade`` is a base class template that implements the
interface of standard iterators in terms of a few core functions
and associated types, to be supplied by a derived iterator class.

View File

@ -1,191 +0,0 @@
.. Version 1.1 of this ReStructuredText document corresponds to
n1530_, the paper accepted by the LWG for TR1.
.. Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003.
While the iterator interface is rich, there is a core subset of the
interface that is necessary for all the functionality. We have
identified the following core behaviors for iterators:
* dereferencing
* incrementing
* decrementing
* equality comparison
* random-access motion
* distance measurement
In addition to the behaviors listed above, the core interface elements
include the associated types exposed through iterator traits:
``value_type``, ``reference``, ``difference_type``, and
``iterator_category``.
Iterator facade uses the Curiously Recurring Template
Pattern (CRTP) [Cop95]_ so that the user can specify the behavior
of ``iterator_facade`` in a derived class. Former designs used
policy objects to specify the behavior, but that approach was
discarded for several reasons:
1. the creation and eventual copying of the policy object may create
overhead that can be avoided with the current approach.
2. The policy object approach does not allow for custom constructors
on the created iterator types, an essential feature if
``iterator_facade`` should be used in other library
implementations.
3. Without the use of CRTP, the standard requirement that an
iterator's ``operator++`` returns the iterator type itself
would mean that all iterators built with the library would
have to be specializations of ``iterator_facade<...>``, rather
than something more descriptive like
``indirect_iterator<T*>``. Cumbersome type generator
metafunctions would be needed to build new parameterized
iterators, and a separate ``iterator_adaptor`` layer would be
impossible.
Usage
-----
The user of ``iterator_facade`` derives his iterator class from a
specialization of ``iterator_facade`` and passes the derived
iterator class as ``iterator_facade``\ 's first template parameter.
The order of the other template parameters have been carefully
chosen to take advantage of useful defaults. For example, when
defining a constant lvalue iterator, the user can pass a
const-qualified version of the iterator's ``value_type`` as
``iterator_facade``\ 's ``Value`` parameter and omit the
``Reference`` parameter which follows.
The derived iterator class must define member functions implementing
the iterator's core behaviors. The following table describes
expressions which are required to be valid depending on the category
of the derived iterator type. These member functions are described
briefly below and in more detail in the iterator facade
requirements.
+------------------------+-------------------------------+
|Expression |Effects |
+========================+===============================+
|``i.dereference()`` |Access the value referred to |
+------------------------+-------------------------------+
|``i.equal(j)`` |Compare for equality with ``j``|
+------------------------+-------------------------------+
|``i.increment()`` |Advance by one position |
+------------------------+-------------------------------+
|``i.decrement()`` |Retreat by one position |
+------------------------+-------------------------------+
|``i.advance(n)`` |Advance by ``n`` positions |
+------------------------+-------------------------------+
|``i.distance_to(j)`` |Measure the distance to ``j`` |
+------------------------+-------------------------------+
.. Should we add a comment that a zero overhead implementation of iterator_facade
is possible with proper inlining?
In addition to implementing the core interface functions, an iterator
derived from ``iterator_facade`` typically defines several
constructors. To model any of the standard iterator concepts, the
iterator must at least have a copy constructor. Also, if the iterator
type ``X`` is meant to be automatically interoperate with another
iterator type ``Y`` (as with constant and mutable iterators) then
there must be an implicit conversion from ``X`` to ``Y`` or from ``Y``
to ``X`` (but not both), typically implemented as a conversion
constructor. Finally, if the iterator is to model Forward Traversal
Iterator or a more-refined iterator concept, a default constructor is
required.
Iterator Core Access
--------------------
``iterator_facade`` and the operator implementations need to be able
to access the core member functions in the derived class. Making the
core member functions public would expose an implementation detail to
the user. The design used here ensures that implementation details do
not appear in the public interface of the derived iterator type.
Preventing direct access to the core member functions has two
advantages. First, there is no possibility for the user to accidently
use a member function of the iterator when a member of the value_type
was intended. This has been an issue with smart pointer
implementations in the past. The second and main advantage is that
library implementers can freely exchange a hand-rolled iterator
implementation for one based on ``iterator_facade`` without fear of
breaking code that was accessing the public core member functions
directly.
In a naive implementation, keeping the derived class' core member
functions private would require it to grant friendship to
``iterator_facade`` and each of the seven operators. In order to
reduce the burden of limiting access, ``iterator_core_access`` is
provided, a class that acts as a gateway to the core member functions
in the derived iterator class. The author of the derived class only
needs to grant friendship to ``iterator_core_access`` to make his core
member functions available to the library.
.. This is no long uptodate -thw
.. Yes it is; I made sure of it! -DWA
``iterator_core_access`` will be typically implemented as an empty
class containing only private static member functions which invoke the
iterator core member functions. There is, however, no need to
standardize the gateway protocol. Note that even if
``iterator_core_access`` used public member functions it would not
open a safety loophole, as every core member function preserves the
invariants of the iterator.
``operator[]``
--------------
The indexing operator for a generalized iterator presents special
challenges. A random access iterator's ``operator[]`` is only
required to return something convertible to its ``value_type``.
Requiring that it return an lvalue would rule out currently-legal
random-access iterators which hold the referenced value in a data
member (e.g. |counting|_), because ``*(p+n)`` is a reference
into the temporary iterator ``p+n``, which is destroyed when
``operator[]`` returns.
.. |counting| replace:: ``counting_iterator``
Writable iterators built with ``iterator_facade`` implement the
semantics required by the preferred resolution to `issue 299`_ and
adopted by proposal n1550_: the result of ``p[n]`` is an object
convertible to the iterator's ``value_type``, and ``p[n] = x`` is
equivalent to ``*(p + n) = x`` (Note: This result object may be
implemented as a proxy containing a copy of ``p+n``). This approach
will work properly for any random-access iterator regardless of the
other details of its implementation. A user who knows more about
the implementation of her iterator is free to implement an
``operator[]`` that returns an lvalue in the derived iterator
class; it will hide the one supplied by ``iterator_facade`` from
clients of her iterator.
.. _n1550: http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/papers/2003/n1550.html
.. _`issue 299`: http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-active.html#299
.. _`operator arrow`:
``operator->``
--------------
The ``reference`` type of a readable iterator (and today's input
iterator) need not in fact be a reference, so long as it is
convertible to the iterator's ``value_type``. When the ``value_type``
is a class, however, it must still be possible to access members
through ``operator->``. Therefore, an iterator whose ``reference``
type is not in fact a reference must return a proxy containing a copy
of the referenced value from its ``operator->``.
The return types for ``iterator_facade``\ 's ``operator->`` and
``operator[]`` are not explicitly specified. Instead, those types
are described in terms of a set of requirements, which must be
satisfied by the ``iterator_facade`` implementation.
.. [Cop95] [Coplien, 1995] Coplien, J., Curiously Recurring Template
Patterns, C++ Report, February 1995, pp. 24-27.

View File

@ -1,437 +0,0 @@
.. Version 1.3 of this ReStructuredText document corresponds to
n1530_, the paper accepted by the LWG for TR1.
.. Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003.
.. parsed-literal::
template <
class Derived
, class Value
, class CategoryOrTraversal
, class Reference = Value&
, class Difference = ptrdiff_t
>
class iterator_facade {
public:
typedef remove_const<Value>::type value_type;
typedef Reference reference;
typedef Value\* pointer;
typedef Difference difference_type;
typedef /* see below__ \*/ iterator_category;
reference operator\*() const;
/* see below__ \*/ operator->() const;
/* see below__ \*/ operator[](difference_type n) const;
Derived& operator++();
Derived operator++(int);
Derived& operator--();
Derived operator--(int);
Derived& operator+=(difference_type n);
Derived& operator-=(difference_type n);
Derived operator-(difference_type n) const;
protected:
typedef iterator_facade iterator_facade\_;
};
// Comparison operators
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type // exposition
operator ==(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator !=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator <(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator <=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator >(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator >=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
// Iterator difference
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
/* see below__ \*/
operator-(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
// Iterator addition
template <class Dr, class V, class TC, class R, class D>
Derived operator+ (iterator_facade<Dr,V,TC,R,D> const&,
typename Derived::difference_type n);
template <class Dr, class V, class TC, class R, class D>
Derived operator+ (typename Derived::difference_type n,
iterator_facade<Dr,V,TC,R,D> const&);
__ `iterator category`_
__ `operator arrow`_
__ brackets_
__ minus_
.. _`iterator category`:
The ``iterator_category`` member of ``iterator_facade`` is
.. parsed-literal::
*iterator-category*\ (CategoryOrTraversal, value_type, reference)
where *iterator-category* is defined as follows:
.. include:: facade_iterator_category.rst
The ``enable_if_interoperable`` template used above is for exposition
purposes. The member operators should only be in an overload set
provided the derived types ``Dr1`` and ``Dr2`` are interoperable,
meaning that at least one of the types is convertible to the other. The
``enable_if_interoperable`` approach uses SFINAE to take the operators
out of the overload set when the types are not interoperable.
The operators should behave *as-if* ``enable_if_interoperable``
were defined to be::
template <bool, typename> enable_if_interoperable_impl
{};
template <typename T> enable_if_interoperable_impl<true,T>
{ typedef T type; };
template<typename Dr1, typename Dr2, typename T>
struct enable_if_interoperable
: enable_if_interoperable_impl<
is_convertible<Dr1,Dr2>::value || is_convertible<Dr2,Dr1>::value
, T
>
{};
``iterator_facade`` Requirements
--------------------------------
The following table describes the typical valid expressions on
``iterator_facade``\ 's ``Derived`` parameter, depending on the
iterator concept(s) it will model. The operations in the first
column must be made accessible to member functions of class
``iterator_core_access``. In addition,
``static_cast<Derived*>(iterator_facade*)`` shall be well-formed.
In the table below, ``F`` is ``iterator_facade<X,V,C,R,D>``, ``a`` is an
object of type ``X``, ``b`` and ``c`` are objects of type ``const X``,
``n`` is an object of ``F::difference_type``, ``y`` is a constant
object of a single pass iterator type interoperable with ``X``, and ``z``
is a constant object of a random access traversal iterator type
interoperable with ``X``.
.. _`core operations`:
.. topic:: ``iterator_facade`` Core Operations
+--------------------+----------------------+-------------------------+---------------------------+
|Expression |Return Type |Assertion/Note |Used to implement Iterator |
| | | |Concept(s) |
+====================+======================+=========================+===========================+
|``c.dereference()`` |``F::reference`` | |Readable Iterator, Writable|
| | | |Iterator |
+--------------------+----------------------+-------------------------+---------------------------+
|``c.equal(y)`` |convertible to bool |true iff ``c`` and ``y`` |Single Pass Iterator |
| | |refer to the same | |
| | |position. | |
+--------------------+----------------------+-------------------------+---------------------------+
|``a.increment()`` |unused | |Incrementable Iterator |
+--------------------+----------------------+-------------------------+---------------------------+
|``a.decrement()`` |unused | |Bidirectional Traversal |
| | | |Iterator |
+--------------------+----------------------+-------------------------+---------------------------+
|``a.advance(n)`` |unused | |Random Access Traversal |
| | | |Iterator |
+--------------------+----------------------+-------------------------+---------------------------+
|``c.distance_to(z)``|convertible to |equivalent to |Random Access Traversal |
| |``F::difference_type``|``distance(c, X(z))``. |Iterator |
+--------------------+----------------------+-------------------------+---------------------------+
``iterator_facade`` operations
------------------------------
The operations in this section are described in terms of operations on
the core interface of ``Derived`` which may be inaccessible
(i.e. private). The implementation should access these operations
through member functions of class ``iterator_core_access``.
``reference operator*() const;``
:Returns: ``static_cast<Derived const*>(this)->dereference()``
``operator->() const;`` (see below__)
__ `operator arrow`_
:Returns: If ``reference`` is a reference type, an object
of type ``pointer`` equal to::
&static_cast<Derived const*>(this)->dereference()
Otherwise returns an object of unspecified type such that,
``(*static_cast<Derived const*>(this))->m`` is equivalent to ``(w = **static_cast<Derived const*>(this),
w.m)`` for some temporary object ``w`` of type ``value_type``.
.. _brackets:
*unspecified* ``operator[](difference_type n) const;``
:Returns: an object convertible to ``value_type``. For constant
objects ``v`` of type ``value_type``, and ``n`` of type
``difference_type``, ``(*this)[n] = v`` is equivalent to
``*(*this + n) = v``, and ``static_cast<value_type
const&>((*this)[n])`` is equivalent to
``static_cast<value_type const&>(*(*this + n))``
``Derived& operator++();``
:Effects:
::
static_cast<Derived*>(this)->increment();
return *static_cast<Derived*>(this);
``Derived operator++(int);``
:Effects:
::
Derived tmp(static_cast<Derived const*>(this));
++*this;
return tmp;
``Derived& operator--();``
:Effects:
::
static_cast<Derived*>(this)->decrement();
return *static_cast<Derived*>(this);
``Derived operator--(int);``
:Effects:
::
Derived tmp(static_cast<Derived const*>(this));
--*this;
return tmp;
``Derived& operator+=(difference_type n);``
:Effects:
::
static_cast<Derived*>(this)->advance(n);
return *static_cast<Derived*>(this);
``Derived& operator-=(difference_type n);``
:Effects:
::
static_cast<Derived*>(this)->advance(-n);
return *static_cast<Derived*>(this);
``Derived operator-(difference_type n) const;``
:Effects:
::
Derived tmp(static_cast<Derived const*>(this));
return tmp -= n;
::
template <class Dr, class V, class TC, class R, class D>
Derived operator+ (iterator_facade<Dr,V,TC,R,D> const&,
typename Derived::difference_type n);
template <class Dr, class V, class TC, class R, class D>
Derived operator+ (typename Derived::difference_type n,
iterator_facade<Dr,V,TC,R,D> const&);
:Effects:
::
Derived tmp(static_cast<Derived const*>(this));
return tmp += n;
::
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator ==(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
:Returns:
if ``is_convertible<Dr2,Dr1>::value``
then
``((Dr1 const&)lhs).equal((Dr2 const&)rhs)``.
Otherwise,
``((Dr2 const&)rhs).equal((Dr1 const&)lhs)``.
::
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator !=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
:Returns:
if ``is_convertible<Dr2,Dr1>::value``
then
``!((Dr1 const&)lhs).equal((Dr2 const&)rhs)``.
Otherwise,
``!((Dr2 const&)rhs).equal((Dr1 const&)lhs)``.
::
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator <(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
:Returns:
if ``is_convertible<Dr2,Dr1>::value``
then
``((Dr1 const&)lhs).distance_to((Dr2 const&)rhs) < 0``.
Otherwise,
``((Dr2 const&)rhs).distance_to((Dr1 const&)lhs) > 0``.
::
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator <=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
:Returns:
if ``is_convertible<Dr2,Dr1>::value``
then
``((Dr1 const&)lhs).distance_to((Dr2 const&)rhs) <= 0``.
Otherwise,
``((Dr2 const&)rhs).distance_to((Dr1 const&)lhs) >= 0``.
::
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator >(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
:Returns:
if ``is_convertible<Dr2,Dr1>::value``
then
``((Dr1 const&)lhs).distance_to((Dr2 const&)rhs) > 0``.
Otherwise,
``((Dr2 const&)rhs).distance_to((Dr1 const&)lhs) < 0``.
::
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator >=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
:Returns:
if ``is_convertible<Dr2,Dr1>::value``
then
``((Dr1 const&)lhs).distance_to((Dr2 const&)rhs) >= 0``.
Otherwise,
``((Dr2 const&)rhs).distance_to((Dr1 const&)lhs) <= 0``.
.. _minus:
::
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,difference>::type
operator -(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
:Return Type:
if ``is_convertible<Dr2,Dr1>::value``
then
``difference`` shall be
``iterator_traits<Dr1>::difference_type``.
Otherwise
``difference`` shall be ``iterator_traits<Dr2>::difference_type``
:Returns:
if ``is_convertible<Dr2,Dr1>::value``
then
``-((Dr1 const&)lhs).distance_to((Dr2 const&)rhs)``.
Otherwise,
``((Dr2 const&)rhs).distance_to((Dr1 const&)lhs)``.

View File

@ -1,523 +0,0 @@
.. Copyright David Abrahams 2004. Use, modification and distribution is
.. subject to the Boost Software License, Version 1.0. (See accompanying
.. file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
In this section we'll walk through the implementation of a few
iterators using ``iterator_facade``, based around the simple
example of a linked list of polymorphic objects. This example was
inspired by a `posting`__ by Keith Macdonald on the `Boost-Users`_
mailing list.
.. _`Boost-Users`: ../../../more/mailing_lists.htm#users
__ http://thread.gmane.org/gmane.comp.lib.boost.user/5100
The Problem
-----------
Say we've written a polymorphic linked list node base class::
# include <iostream>
struct node_base
{
node_base() : m_next(0) {}
// Each node manages all of its tail nodes
virtual ~node_base() { delete m_next; }
// Access the rest of the list
node_base* next() const { return m_next; }
// print to the stream
virtual void print(std::ostream& s) const = 0;
// double the value
virtual void double_me() = 0;
void append(node_base* p)
{
if (m_next)
m_next->append(p);
else
m_next = p;
}
private:
node_base* m_next;
};
Lists can hold objects of different types by linking together
specializations of the following template::
template <class T>
struct node : node_base
{
node(T x)
: m_value(x)
{}
void print(std::ostream& s) const { s << this->m_value; }
void double_me() { m_value += m_value; }
private:
T m_value;
};
And we can print any node using the following streaming operator::
inline std::ostream& operator<<(std::ostream& s, node_base const& n)
{
n.print(s);
return s;
}
Our first challenge is to build an appropriate iterator over these
lists.
A Basic Iterator Using ``iterator_facade``
------------------------------------------
We will construct a ``node_iterator`` class using inheritance from
``iterator_facade`` to implement most of the iterator's operations.
::
# include "node.hpp"
# include <boost/iterator/iterator_facade.hpp>
class node_iterator
: public boost::iterator_facade<...>
{
...
};
Template Arguments for ``iterator_facade``
..........................................
``iterator_facade`` has several template parameters, so we must decide
what types to use for the arguments. The parameters are ``Derived``,
``Value``, ``CategoryOrTraversal``, ``Reference``, and ``Difference``.
``Derived``
'''''''''''
Because ``iterator_facade`` is meant to be used with the CRTP
[Cop95]_ the first parameter is the iterator class name itself,
``node_iterator``.
``Value``
'''''''''
The ``Value`` parameter determines the ``node_iterator``\ 's
``value_type``. In this case, we are iterating over ``node_base``
objects, so ``Value`` will be ``node_base``.
``CategoryOrTraversal``
'''''''''''''''''''''''
Now we have to determine which `iterator traversal concept`_ our
``node_iterator`` is going to model. Singly-linked lists only have
forward links, so our iterator can't can't be a `bidirectional
traversal iterator`_. Our iterator should be able to make multiple
passes over the same linked list (unlike, say, an
``istream_iterator`` which consumes the stream it traverses), so it
must be a `forward traversal iterator`_. Therefore, we'll pass
``boost::forward_traversal_tag`` in this position [#category]_.
.. [#category] ``iterator_facade`` also supports old-style category
tags, so we could have passed ``std::forward_iterator_tag`` here;
either way, the resulting iterator's ``iterator_category`` will
end up being ``std::forward_iterator_tag``.
``Reference``
'''''''''''''
The ``Reference`` argument becomes the type returned by
``node_iterator``\ 's dereference operation, and will also be the
same as ``std::iterator_traits<node_iterator>::reference``. The
library's default for this parameter is ``Value&``; since
``node_base&`` is a good choice for the iterator's ``reference``
type, we can omit this argument, or pass ``use_default``.
``Difference``
''''''''''''''
The ``Difference`` argument determines how the distance between
two ``node_iterator``\ s will be measured and will also be the
same as ``std::iterator_traits<node_iterator>::difference_type``.
The library's default for ``Difference`` is ``std::ptrdiff_t``, an
appropriate type for measuring the distance between any two
addresses in memory, and one that works for almost any iterator,
so we can omit this argument, too.
The declaration of ``node_iterator`` will therefore look something
like::
# include "node.hpp"
# include <boost/iterator/iterator_facade.hpp>
class node_iterator
: public boost::iterator_facade<
node_iterator
, node_base
, boost::forward_traversal_tag
>
{
...
};
Constructors and Data Members
.............................
Next we need to decide how to represent the iterator's position.
This representation will take the form of data members, so we'll
also need to write constructors to initialize them. The
``node_iterator``\ 's position is quite naturally represented using
a pointer to a ``node_base``. We'll need a constructor to build an
iterator from a ``node_base*``, and a default constructor to
satisfy the `forward traversal iterator`_ requirements [#default]_.
Our ``node_iterator`` then becomes::
# include "node.hpp"
# include <boost/iterator/iterator_facade.hpp>
class node_iterator
: public boost::iterator_facade<
node_iterator
, node_base
, boost::forward_traversal_tag
>
{
public:
node_iterator()
: m_node(0)
{}
explicit node_iterator(node_base* p)
: m_node(p)
{}
private:
...
node_base* m_node;
};
.. [#default] Technically, the C++ standard places almost no
requirements on a default-constructed iterator, so if we were
really concerned with efficiency, we could've written the
default constructor to leave ``m_node`` uninitialized.
Implementing the Core Operations
................................
The last step is to implement the `core operations`_ required by
the concepts we want our iterator to model. Referring to the
table__, we can see that the first three rows are applicable
because ``node_iterator`` needs to satisfy the requirements for
`readable iterator`_, `single pass iterator`_, and `incrementable
iterator`_.
__ `core operations`_
We therefore need to supply ``dereference``,
``equal``, and ``increment`` members. We don't want these members
to become part of ``node_iterator``\ 's public interface, so we can
make them private and grant friendship to
``boost::iterator_core_access``, a "back-door" that
``iterator_facade`` uses to get access to the core operations::
# include "node.hpp"
# include <boost/iterator/iterator_facade.hpp>
class node_iterator
: public boost::iterator_facade<
node_iterator
, node_base
, boost::forward_traversal_tag
>
{
public:
node_iterator()
: m_node(0) {}
explicit node_iterator(node_base* p)
: m_node(p) {}
private:
friend class boost::iterator_core_access;
void increment() { m_node = m_node->next(); }
bool equal(node_iterator const& other) const
{
return this->m_node == other.m_node;
}
node_base& dereference() const { return *m_node; }
node_base* m_node;
};
Voil<EFBFBD>; a complete and conforming readable, forward-traversal
iterator! For a working example of its use, see `this program`__.
__ ../example/node_iterator1.cpp
A constant ``node_iterator``
----------------------------
.. Sidebar:: Constant and Mutable iterators
The term **mutable iterator** means an iterator through which
the object it references (its "referent") can be modified. A
**constant iterator** is one which doesn't allow modification of
its referent.
The words *constant* and *mutable* don't refer to the ability to
modify the iterator itself. For example, an ``int const*`` is a
non-\ ``const`` *constant iterator*, which can be incremented
but doesn't allow modification of its referent, and ``int*
const`` is a ``const`` *mutable iterator*, which cannot be
modified but which allows modification of its referent.
Confusing? We agree, but those are the standard terms. It
probably doesn't help much that a container's constant iterator
is called ``const_iterator``.
Now, our ``node_iterator`` gives clients access to both ``node``\
's ``print(std::ostream&) const`` member function, but also its
mutating ``double_me()`` member. If we wanted to build a
*constant* ``node_iterator``, we'd only have to make three
changes:
.. parsed-literal::
class const_node_iterator
: public boost::iterator_facade<
node_iterator
, node_base **const**
, boost::forward_traversal_tag
>
{
public:
const_node_iterator()
: m_node(0) {}
explicit const_node_iterator(node_base* p)
: m_node(p) {}
private:
friend class boost::iterator_core_access;
void increment() { m_node = m_node->next(); }
bool equal(const_node_iterator const& other) const
{
return this->m_node == other.m_node;
}
node_base **const**\ & dereference() const { return \*m_node; }
node_base **const**\ * m_node;
};
.. Sidebar:: ``const`` and an iterator's ``value_type``
The C++ standard requires an iterator's ``value_type`` *not* be
``const``\ -qualified, so ``iterator_facade`` strips the
``const`` from its ``Value`` parameter in order to produce the
iterator's ``value_type``. Making the ``Value`` argument
``const`` provides a useful hint to ``iterator_facade`` that the
iterator is a *constant iterator*, and the default ``Reference``
argument will be correct for all lvalue iterators.
As a matter of fact, ``node_iterator`` and ``const_node_iterator``
are so similar that it makes sense to factor the common code out
into a template as follows::
template <class Value>
class node_iter
: public boost::iterator_facade<
node_iter<Value>
, Value
, boost::forward_traversal_tag
>
{
public:
node_iter()
: m_node(0) {}
explicit node_iter(Value* p)
: m_node(p) {}
private:
friend class boost::iterator_core_access;
bool equal(node_iter<Value> const& other) const
{
return this->m_node == other.m_node;
}
void increment()
{ m_node = m_node->next(); }
Value& dereference() const
{ return *m_node; }
Value* m_node;
};
typedef node_iter<node_base> node_iterator;
typedef node_iter<node_base const> node_const_iterator;
Interoperability
----------------
Our ``const_node_iterator`` works perfectly well on its own, but
taken together with ``node_iterator`` it doesn't quite meet
expectations. For example, we'd like to be able to pass a
``node_iterator`` where a ``node_const_iterator`` was expected,
just as you can with ``std::list<int>``\ 's ``iterator`` and
``const_iterator``. Furthermore, given a ``node_iterator`` and a
``node_const_iterator`` into the same list, we should be able to
compare them for equality.
This expected ability to use two different iterator types together
is known as |interoperability|_. Achieving interoperability in
our case is as simple as templatizing the ``equal`` function and
adding a templatized converting constructor [#broken]_ [#random]_::
template <class Value>
class node_iter
: public boost::iterator_facade<
node_iter<Value>
, Value
, boost::forward_traversal_tag
>
{
public:
node_iter()
: m_node(0) {}
explicit node_iter(Value* p)
: m_node(p) {}
template <class OtherValue>
node_iter(node_iter<OtherValue> const& other)
: m_node(other.m_node) {}
private:
friend class boost::iterator_core_access;
template <class> friend class node_iter;
template <class OtherValue>
bool equal(node_iter<OtherValue> const& other) const
{
return this->m_node == other.m_node;
}
void increment()
{ m_node = m_node->next(); }
Value& dereference() const
{ return *m_node; }
Value* m_node;
};
typedef impl::node_iterator<node_base> node_iterator;
typedef impl::node_iterator<node_base const> node_const_iterator;
.. |interoperability| replace:: **interoperability**
.. _interoperability: new-iter-concepts.html#interoperable-iterators-lib-interoperable-iterators
.. [#broken] If you're using an older compiler and it can't handle
this example, see the `example code`__ for workarounds.
.. [#random] If ``node_iterator`` had been a `random access
traversal iterator`_, we'd have had to templatize its
``distance_to`` function as well.
__ ../example/node_iterator2.hpp
You can see an example program which exercises our interoperable
iterators `here`__.
__ ../example/node_iterator2.cpp
Telling the Truth
-----------------
Now ``node_iterator`` and ``node_const_iterator`` behave exactly as
you'd expect... almost. We can compare them and we can convert in
one direction: from ``node_iterator`` to ``node_const_iterator``.
If we try to convert from ``node_const_iterator`` to
``node_iterator``, we'll get an error when the converting
constructor tries to initialize ``node_iterator``\ 's ``m_node``, a
``node*`` with a ``node const*``. So what's the problem?
The problem is that
``boost::``\ |is_convertible|_\ ``<node_const_iterator,node_iterator>::value``
will be ``true``, but it should be ``false``. |is_convertible|_
lies because it can only see as far as the *declaration* of
``node_iter``\ 's converting constructor, but can't look inside at
the *definition* to make sure it will compile. A perfect solution
would make ``node_iter``\ 's converting constructor disappear when
the ``m_node`` conversion would fail.
.. |is_convertible| replace:: ``is_convertible``
.. _is_convertible: ../../type_traits/index.html#relationships
In fact, that sort of magic is possible using
|enable_if|__. By rewriting the converting constructor as
follows, we can remove it from the overload set when it's not
appropriate::
#include <boost/type_traits/is_convertible.hpp>
#include <boost/utility/enable_if.hpp>
...
private:
struct enabler {};
public:
template <class OtherValue>
node_iter(
node_iter<OtherValue> const& other
, typename boost::enable_if<
boost::is_convertible<OtherValue*,Value*>
, enabler
>::type = enabler()
)
: m_node(other.m_node) {}
.. |enable_if| replace:: ``boost::enable_if``
__ ../../utility/enable_if.html
Wrap Up
-------
This concludes our ``iterator_facade`` tutorial, but before you
stop reading we urge you to take a look at |iterator_adaptor|__.
There's another way to approach writing these iterators which might
even be superior.
.. |iterator_adaptor| replace:: ``iterator_adaptor``
__ iterator_adaptor.html
.. _`iterator traversal concept`: new-iter-concepts.html#iterator-traversal-concepts-lib-iterator-traversal
.. _`readable iterator`: new-iter-concepts.html#readable-iterators-lib-readable-iterators
.. _`lvalue iterator`: new-iter-concepts.html#lvalue-iterators-lib-lvalue-iterators
.. _`single pass iterator`: new-iter-concepts.html#single-pass-iterators-lib-single-pass-iterators
.. _`incrementable iterator`: new-iter-concepts.html#incrementable-iterators-lib-incrementable-iterators
.. _`forward traversal iterator`: new-iter-concepts.html#forward-traversal-iterators-lib-forward-traversal-iterators
.. _`bidirectional traversal iterator`: new-iter-concepts.html#bidirectional-traversal-iterators-lib-bidirectional-traversal-iterators
.. _`random access traversal iterator`: new-iter-concepts.html#random-access-traversal-iterators-lib-random-access-traversal-iterators

View File

@ -1,120 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>Iterator Traits</title>
<meta name="author" content="David Abrahams" />
<meta name="organization" content="Boost Consulting" />
<meta name="date" content="2004-11-01" />
<meta name="copyright" content="Copyright David Abrahams 2004." />
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">Iterator Traits</h1>
<table class="docinfo" frame="void" rules="none">
<col class="docinfo-name" />
<col class="docinfo-content" />
<tbody valign="top">
<tr><th class="docinfo-name">Author:</th>
<td>David Abrahams</td></tr>
<tr><th class="docinfo-name">Contact:</th>
<td><a class="first last reference" href="mailto:dave&#64;boost-consulting.com">dave&#64;boost-consulting.com</a></td></tr>
<tr><th class="docinfo-name">Organization:</th>
<td><a class="first last reference" href="http://www.boost-consulting.com">Boost Consulting</a></td></tr>
<tr><th class="docinfo-name">Date:</th>
<td>2004-11-01</td></tr>
<tr><th class="docinfo-name">Copyright:</th>
<td>Copyright David Abrahams 2004.</td></tr>
</tbody>
</table>
<div class="document" id="iterator-traits">
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">abstract:</th><td class="field-body">Header <tt class="literal"><span class="pre">&lt;boost/iterator/iterator_traits.hpp&gt;</span></tt> provides
the ability to access an iterator's associated types using
MPL-compatible <a class="reference" href="../../mpl/doc/index.html#metafunctions">metafunctions</a>.</td>
</tr>
</tbody>
</table>
<div class="section" id="overview">
<h1><a name="overview">Overview</a></h1>
<p><tt class="literal"><span class="pre">std::iterator_traits</span></tt> provides access to five associated types
of any iterator: its <tt class="literal"><span class="pre">value_type</span></tt>, <tt class="literal"><span class="pre">reference</span></tt>, <tt class="literal"><span class="pre">pointer</span></tt>,
<tt class="literal"><span class="pre">iterator_category</span></tt>, and <tt class="literal"><span class="pre">difference_type</span></tt>. Unfortunately,
such a &quot;multi-valued&quot; traits template can be difficult to use in a
metaprogramming context. <tt class="literal"><span class="pre">&lt;boost/iterator/iterator_traits.hpp&gt;</span></tt>
provides access to these types using a standard <a class="reference" href="../../mpl/doc/index.html#metafunctions">metafunctions</a>.</p>
</div>
<div class="section" id="summary">
<h1><a name="summary">Summary</a></h1>
<p>Header <tt class="literal"><span class="pre">&lt;boost/iterator/iterator_traits.hpp&gt;</span></tt>:</p>
<pre class="literal-block">
template &lt;class Iterator&gt;
struct iterator_value
{
typedef typename
std::iterator_traits&lt;Iterator&gt;::value_type
type;
};
template &lt;class Iterator&gt;
struct iterator_reference
{
typedef typename
std::iterator_traits&lt;Iterator&gt;::reference
type;
};
template &lt;class Iterator&gt;
struct iterator_pointer
{
typedef typename
std::iterator_traits&lt;Iterator&gt;::pointer
type;
};
template &lt;class Iterator&gt;
struct iterator_difference
{
typedef typename
detail::iterator_traits&lt;Iterator&gt;::difference_type
type;
};
template &lt;class Iterator&gt;
struct iterator_category
{
typedef typename
detail::iterator_traits&lt;Iterator&gt;::iterator_category
type;
};
</pre>
</div>
<div class="section" id="broken-compiler-notes">
<h1><a name="broken-compiler-notes">Broken Compiler Notes</a></h1>
<p>Because of workarounds in Boost, you may find that these
<a class="reference" href="../../mpl/doc/index.html#metafunctions">metafunctions</a> actually work better than the facilities provided by
your compiler's standard library.</p>
<p>On compilers that don't support partial specialization, such as
Microsoft Visual C++ 6.0 or 7.0, you may need to manually invoke
<a class="reference" href="../../type_traits/index.html#transformations">BOOST_BROKEN_COMPILER_TYPE_TRAITS_SPECIALIZATION</a> on the
<tt class="literal"><span class="pre">value_type</span></tt> of pointers that are passed to these metafunctions.</p>
<p>Because of bugs in the implementation of GCC-2.9x, the name of
<tt class="literal"><span class="pre">iterator_category</span></tt> is changed to <tt class="literal"><span class="pre">iterator_category_</span></tt> on that
compiler. A macro, <tt class="literal"><span class="pre">BOOST_ITERATOR_CATEGORY</span></tt>, that expands to
either <tt class="literal"><span class="pre">iterator_category</span></tt> or <tt class="literal"><span class="pre">iterator_category_</span></tt>, as
appropriate to the platform, is provided for portability.</p>
</div>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="iterator_traits.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

Binary file not shown.

View File

@ -1,94 +0,0 @@
+++++++++++++++++
Iterator Traits
+++++++++++++++++
:Author: David Abrahams
:Contact: dave@boost-consulting.com
:organization: `Boost Consulting`_
:date: $Date$
:copyright: Copyright David Abrahams 2004.
.. _`Boost Consulting`: http://www.boost-consulting.com
:abstract: Header ``<boost/iterator/iterator_traits.hpp>`` provides
the ability to access an iterator's associated types using
MPL-compatible metafunctions_.
.. _metafunctions: ../../mpl/doc/index.html#metafunctions
Overview
========
``std::iterator_traits`` provides access to five associated types
of any iterator: its ``value_type``, ``reference``, ``pointer``,
``iterator_category``, and ``difference_type``. Unfortunately,
such a "multi-valued" traits template can be difficult to use in a
metaprogramming context. ``<boost/iterator/iterator_traits.hpp>``
provides access to these types using a standard metafunctions_.
Summary
=======
Header ``<boost/iterator/iterator_traits.hpp>``::
template <class Iterator>
struct iterator_value
{
typedef typename
std::iterator_traits<Iterator>::value_type
type;
};
template <class Iterator>
struct iterator_reference
{
typedef typename
std::iterator_traits<Iterator>::reference
type;
};
template <class Iterator>
struct iterator_pointer
{
typedef typename
std::iterator_traits<Iterator>::pointer
type;
};
template <class Iterator>
struct iterator_difference
{
typedef typename
detail::iterator_traits<Iterator>::difference_type
type;
};
template <class Iterator>
struct iterator_category
{
typedef typename
detail::iterator_traits<Iterator>::iterator_category
type;
};
Broken Compiler Notes
=====================
Because of workarounds in Boost, you may find that these
metafunctions_ actually work better than the facilities provided by
your compiler's standard library.
On compilers that don't support partial specialization, such as
Microsoft Visual C++ 6.0 or 7.0, you may need to manually invoke
BOOST_BROKEN_COMPILER_TYPE_TRAITS_SPECIALIZATION_ on the
``value_type`` of pointers that are passed to these metafunctions.
Because of bugs in the implementation of GCC-2.9x, the name of
``iterator_category`` is changed to ``iterator_category_`` on that
compiler. A macro, ``BOOST_ITERATOR_CATEGORY``, that expands to
either ``iterator_category`` or ``iterator_category_``, as
appropriate to the platform, is provided for portability.
.. _BOOST_BROKEN_COMPILER_TYPE_TRAITS_SPECIALIZATION: ../../type_traits/index.html#transformations

View File

@ -1,9 +0,0 @@
::
template <class Incrementable>
counting_iterator<Incrementable> make_counting_iterator(Incrementable x);
:Returns: An instance of ``counting_iterator<Incrementable>``
with ``current`` constructed from ``x``.

View File

@ -1,45 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title></title>
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<div class="document">
<pre class="literal-block">
template &lt;class Predicate, class Iterator&gt;
filter_iterator&lt;Predicate,Iterator&gt;
make_filter_iterator(Predicate f, Iterator x, Iterator end = Iterator());
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">filter_iterator&lt;Predicate,Iterator&gt;(f, x, end)</td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template &lt;class Predicate, class Iterator&gt;
filter_iterator&lt;Predicate,Iterator&gt;
make_filter_iterator(Iterator x, Iterator end = Iterator());
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">filter_iterator&lt;Predicate,Iterator&gt;(x, end)</td>
</tr>
</tbody>
</table>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="make_filter_iterator.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

View File

@ -1,16 +0,0 @@
::
template <class Predicate, class Iterator>
filter_iterator<Predicate,Iterator>
make_filter_iterator(Predicate f, Iterator x, Iterator end = Iterator());
:Returns: filter_iterator<Predicate,Iterator>(f, x, end)
::
template <class Predicate, class Iterator>
filter_iterator<Predicate,Iterator>
make_filter_iterator(Iterator x, Iterator end = Iterator());
:Returns: filter_iterator<Predicate,Iterator>(x, end)

View File

@ -1,9 +0,0 @@
::
template <class BidirectionalIterator>
reverse_iterator<BidirectionalIterator>n
make_reverse_iterator(BidirectionalIterator x);
:Returns: An instance of ``reverse_iterator<BidirectionalIterator>``
with a ``current`` constructed from ``x``.

View File

@ -1,19 +0,0 @@
::
template <class UnaryFunction, class Iterator>
transform_iterator<UnaryFunction, Iterator>
make_transform_iterator(Iterator it, UnaryFunction fun);
:Returns: An instance of ``transform_iterator<UnaryFunction, Iterator>`` with ``m_f``
initialized to ``f`` and ``m_iterator`` initialized to ``x``.
::
template <class UnaryFunction, class Iterator>
transform_iterator<UnaryFunction, Iterator>
make_transform_iterator(Iterator it);
:Returns: An instance of ``transform_iterator<UnaryFunction, Iterator>`` with ``m_f``
default constructed and ``m_iterator`` initialized to ``x``.

View File

@ -1,8 +0,0 @@
::
template<typename IteratorTuple>
zip_iterator<IteratorTuple>
make_zip_iterator(IteratorTuple t);
:Returns: An instance of ``zip_iterator<IteratorTuple>`` with ``m_iterator_tuple``
initialized to ``t``.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,799 +0,0 @@
++++++++++++++++++++++
New Iterator Concepts
++++++++++++++++++++++
.. Version 1.25 of this ReStructuredText document is the same as
n1550_, the paper accepted by the LWG.
:Author: David Abrahams, Jeremy Siek, Thomas Witt
:Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@styleadvisor.com
:organization: `Boost Consulting`_, Indiana University `Open Systems
Lab`_, `Zephyr Associates, Inc.`_
:date: $Date$
:Number: This is a revised version of n1550_\ =03-0133, which was
accepted for Technical Report 1 by the C++ standard
committee's library working group. This proposal is a
revision of paper n1297_, n1477_, and n1531_.
:copyright: Copyright David Abrahams, Jeremy Siek, and Thomas Witt
2003.
.. _`Boost Consulting`: http://www.boost-consulting.com
.. _`Open Systems Lab`: http://www.osl.iu.edu
.. _`Zephyr Associates, Inc.`: http://www.styleadvisor.com
.. _`Institute for Transport Railway Operation and Construction`:
http://www.ive.uni-hannover.de
:Abstract: We propose a new system of iterator concepts that treat
access and positioning independently. This allows the
concepts to more closely match the requirements
of algorithms and provides better categorizations
of iterators that are used in practice.
.. contents:: Table of Contents
.. _n1297: http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2001/n1297.html
.. _n1477: http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1477.html
.. _n1531: http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1531.html
.. _n1550: http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1550.html
============
Motivation
============
The standard iterator categories and requirements are flawed because
they use a single hierarchy of concepts to address two orthogonal
issues: *iterator traversal* and *value access*. As a result, many
algorithms with requirements expressed in terms of the iterator
categories are too strict. Also, many real-world iterators can not be
accurately categorized. A proxy-based iterator with random-access
traversal, for example, may only legally have a category of "input
iterator", so generic algorithms are unable to take advantage of its
random-access capabilities. The current iterator concept hierarchy is
geared towards iterator traversal (hence the category names), while
requirements that address value access sneak in at various places. The
following table gives a summary of the current value access
requirements in the iterator categories.
+------------------------------------------------------------------------------+
|Value Access Requirements in Existing Iterator Categories |
+========================+=====================================================+
|Output Iterator |``*i = a`` |
+------------------------+-----------------------------------------------------+
|Input Iterator |``*i`` is convertible to ``T`` |
+------------------------+-----------------------------------------------------+
|Forward Iterator |``*i`` is ``T&`` (or ``const T&`` once `issue 200`_ |
| |is resolved) |
+------------------------+-----------------------------------------------------+
|Random Access Iterator |``i[n]`` is convertible to ``T`` (also ``i[n] = t`` |
| |is required for mutable iterators once `issue 299`_ |
| |is resolved) |
+------------------------+-----------------------------------------------------+
.. _issue 200: http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/lwg-active.html#200
.. _issue 299: http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/lwg-active.html#299
Because iterator traversal and value access are mixed together in a
single hierarchy, many useful iterators can not be appropriately
categorized. For example, ``vector<bool>::iterator`` is almost a
random access iterator, but the return type is not ``bool&`` (see
`issue 96`_ and Herb Sutter's paper J16/99-0008 = WG21
N1185). Therefore, the iterators of ``vector<bool>`` only meet the
requirements of input iterator and output iterator. This is so
nonintuitive that the C++ standard contradicts itself on this point.
In paragraph 23.2.4/1 it says that a ``vector`` is a sequence that
supports random access iterators.
.. _issue 96: http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/lwg-active.html#96
Another difficult-to-categorize iterator is the transform iterator, an
adaptor which applies a unary function object to the dereferenced
value of the some underlying iterator (see `transform_iterator`_).
For unary functions such as ``times``, the return type of
``operator*`` clearly needs to be the ``result_type`` of the function
object, which is typically not a reference. Because random access
iterators are required to return lvalues from ``operator*``, if you
wrap ``int*`` with a transform iterator, you do not get a random
access iterator as might be expected, but an input iterator.
.. _`transform_iterator`: http://www.boost.org/libs/utility/transform_iterator.htm
A third example is found in the vertex and edge iterators of the
`Boost Graph Library`_. These iterators return vertex and edge
descriptors, which are lightweight handles created on-the-fly. They
must be returned by-value. As a result, their current standard
iterator category is ``input_iterator_tag``, which means that,
strictly speaking, you could not use these iterators with algorithms
like ``min_element()``. As a temporary solution, the concept
`Multi-Pass Input Iterator`_ was introduced to describe the vertex and
edge descriptors, but as the design notes for the concept suggest, a
better solution is needed.
.. _Boost Graph Library: http://www.boost.org/libs/graph/doc/table_of_contents.html
.. _Multi-Pass Input Iterator: http://www.boost.org/libs/utility/MultiPassInputIterator.html
In short, there are many useful iterators that do not fit into the
current standard iterator categories. As a result, the following bad
things happen:
- Iterators are often mis-categorized.
- Algorithm requirements are more strict than necessary, because they
cannot separate the need for random access or bidirectional
traversal from the need for a true reference return type.
========================
Impact on the Standard
========================
This proposal for TR1 is a pure extension. Further, the new iterator
concepts are backward-compatible with the old iterator requirements,
and old iterators are forward-compatible with the new iterator
concepts. That is to say, iterators that satisfy the old requirements
also satisfy appropriate concepts in the new system, and iterators
modeling the new concepts will automatically satisfy the appropriate
old requirements.
.. I think we need to say something about the resolution to allow
convertibility to any of the old-style tags as a TR issue (hope it
made it). -DWA
.. Hmm, not sure I understand. Are you talking about whether a
standards conforming input iterator is allowed to have
a tag that is not input_iterator_tag but that
is convertible to input_iterator_tag? -JGS
Possible (but not proposed) Changes to the Working Paper
========================================================
The extensions in this paper suggest several changes we might make
to the working paper for the next standard. These changes are not
a formal part of this proposal for TR1.
Changes to Algorithm Requirements
+++++++++++++++++++++++++++++++++
The algorithms in the standard library could benefit from the new
iterator concepts because the new concepts provide a more accurate way
to express their type requirements. The result is algorithms that are
usable in more situations and have fewer type requirements.
For the next working paper (but not for TR1), the committee should
consider the following changes to the type requirements of algorithms.
These changes are phrased as textual substitutions, listing the
algorithms to which each textual substitution applies.
Forward Iterator -> Forward Traversal Iterator and Readable Iterator
``find_end, adjacent_find, search, search_n, rotate_copy,
lower_bound, upper_bound, equal_range, binary_search,
min_element, max_element``
Forward Iterator (1) -> Single Pass Iterator and Readable Iterator,
Forward Iterator (2) -> Forward Traversal Iterator and Readable Iterator
``find_first_of``
Forward Iterator -> Readable Iterator and Writable Iterator
``iter_swap``
Forward Iterator -> Single Pass Iterator and Writable Iterator
``fill, generate``
Forward Iterator -> Forward Traversal Iterator and Swappable Iterator
``rotate``
Forward Iterator (1) -> Swappable Iterator and Single Pass Iterator,
Forward Iterator (2) -> Swappable Iterator and Incrementable Iterator
``swap_ranges``
Forward Iterator -> Forward Traversal Iterator and Readable Iterator and Writable Iterator
``remove, remove_if, unique``
Forward Iterator -> Single Pass Iterator and Readable Iterator and Writable Iterator
``replace, replace_if``
Bidirectional Iterator -> Bidirectional Traversal Iterator and Swappable Iterator
``reverse``
Bidirectional Iterator -> Bidirectional Traversal Iterator and Readable and Swappable Iterator
``partition``
Bidirectional Iterator (1) -> Bidirectional Traversal Iterator and Readable Iterator,
Bidirectional Iterator (2) -> Bidirectional Traversal Iterator and Writable Iterator
``copy_backwards``
Bidirectional Iterator -> Bidirectional Traversal Iterator and Swappable Iterator and Readable Iterator
``next_permutation, prev_permutation``
Bidirectional Iterator -> Bidirectional Traversal Iterator and Readable Iterator and Writable Iterator
``stable_partition, inplace_merge``
Bidirectional Iterator -> Bidirectional Traversal Iterator and Readable Iterator
``reverse_copy``
Random Access Iterator -> Random Access Traversal Iterator and Readable and Writable Iterator
``random_shuffle, sort, stable_sort, partial_sort, nth_element, push_heap, pop_heap
make_heap, sort_heap``
Input Iterator (2) -> Incrementable Iterator and Readable Iterator
``equal, mismatch``
Input Iterator (2) -> Incrementable Iterator and Readable Iterator
``transform``
Deprecations
++++++++++++
For the next working paper (but not for TR1), the committee should
consider deprecating the old iterator tags, and
std::iterator_traits, since it will be superceded by individual
traits metafunctions.
``vector<bool>``
++++++++++++++++
For the next working paper (but not for TR1), the committee should
consider reclassifying ``vector<bool>::iterator`` as a Random
Access Traversal Iterator and Readable Iterator and Writable
Iterator.
========
Design
========
The iterator requirements are to be separated into two groups. One set
of concepts handles the syntax and semantics of value access:
- Readable Iterator
- Writable Iterator
- Swappable Iterator
- Lvalue Iterator
The access concepts describe requirements related to ``operator*`` and
``operator->``, including the ``value_type``, ``reference``, and
``pointer`` associated types.
The other set of concepts handles traversal:
- Incrementable Iterator
- Single Pass Iterator
- Forward Traversal Iterator
- Bidirectional Traversal Iterator
- Random Access Traversal Iterator
The refinement relationships for the traversal concepts are in the
following diagram.
.. image:: traversal.png
In addition to the iterator movement operators, such as
``operator++``, the traversal concepts also include requirements on
position comparison such as ``operator==`` and ``operator<``. The
reason for the fine grain slicing of the concepts into the
Incrementable and Single Pass is to provide concepts that are exact
matches with the original input and output iterator requirements.
This proposal also includes a concept for specifying when an iterator
is interoperable with another iterator, in the sense that ``int*`` is
interoperable with ``int const*``.
- Interoperable Iterators
The relationship between the new iterator concepts and the old are
given in the following diagram.
.. image:: oldeqnew.png
Like the old iterator requirements, we provide tags for purposes of
dispatching based on the traversal concepts. The tags are related via
inheritance so that a tag is convertible to another tag if the concept
associated with the first tag is a refinement of the second tag.
Our design reuses ``iterator_traits<Iter>::iterator_category`` to
indicate an iterator's traversal capability. To specify
capabilities not captured by any old-style iterator category, an
iterator designer can use an ``iterator_category`` type that is
convertible to both the the most-derived old iterator category tag
which fits, and the appropriate new iterator traversal tag.
.. dwa2003/1/2: Note that we are not *requiring* convertibility to
a new-style traversal tag in order to meet new concepts.
Old-style iterators still fit, after all.
We do not provide tags for the purposes of dispatching based on the
access concepts, in part because we could not find a way to
automatically infer the right access tags for old-style iterators.
An iterator's writability may be dependent on the assignability of
its ``value_type`` and there's no known way to detect whether an
arbitrary type is assignable. Fortunately, the need for
dispatching based on access capability is not as great as the need
for dispatching based on traversal capability.
A difficult design decision concerned the ``operator[]``. The direct
approach for specifying ``operator[]`` would have a return type of
``reference``; the same as ``operator*``. However, going in this
direction would mean that an iterator satisfying the old Random Access
Iterator requirements would not necessarily be a model of Readable or
Writable Lvalue Iterator. Instead we have chosen a design that
matches the preferred resolution of `issue 299`_: ``operator[]`` is
only required to return something convertible to the ``value_type``
(for a Readable Iterator), and is required to support assignment
``i[n] = t`` (for a Writable Iterator).
===============
Proposed Text
===============
Addition to [lib.iterator.requirements]
=======================================
Iterator Value Access Concepts [lib.iterator.value.access]
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
In the tables below, ``X`` is an iterator type, ``a`` is a constant
object of type ``X``, ``R`` is
``std::iterator_traits<X>::reference``, ``T`` is
``std::iterator_traits<X>::value_type``, and ``v`` is a constant
object of type ``T``.
.. _Readable Iterator:
Readable Iterators [lib.readable.iterators]
-------------------------------------------
A class or built-in type ``X`` models the *Readable Iterator* concept
for value type ``T`` if, in addition to ``X`` being Assignable and
Copy Constructible, the following expressions are valid and respect
the stated semantics. ``U`` is the type of any specified member of
type ``T``.
+-----------------------------------------------------------------------------------------------------------------------------+
|Readable Iterator Requirements (in addition to Assignable and Copy Constructible) |
+-----------------------------------+------------------------+----------------------------------------------------------------+
|Expression |Return Type |Note/Precondition |
+===================================+========================+================================================================+
|``iterator_traits<X>::value_type`` |``T`` |Any non-reference, |
| | |non-cv-qualified type |
+-----------------------------------+------------------------+----------------------------------------------------------------+
|``*a`` | Convertible to ``T`` |pre: ``a`` is dereferenceable. If ``a == b`` then ``*a`` |
| | | is equivalent to ``*b``. |
+-----------------------------------+------------------------+----------------------------------------------------------------+
|``a->m`` |``U&`` |pre: ``pre: (*a).m`` is well-defined. Equivalent to ``(*a).m``. |
+-----------------------------------+------------------------+----------------------------------------------------------------+
.. We won't say anything about iterator_traits<X>::reference until the DR is resolved. -JGS
.. _Writable Iterator:
Writable Iterators [lib.writable.iterators]
-------------------------------------------
A class or built-in type ``X`` models the *Writable Iterator* concept
if, in addition to ``X`` being Copy Constructible, the following
expressions are valid and respect the stated semantics. Writable
Iterators have an associated *set of value types*.
+---------------------------------------------------------------------+
|Writable Iterator Requirements (in addition to Copy Constructible) |
+-------------------------+--------------+----------------------------+
|Expression |Return Type |Precondition |
+=========================+==============+============================+
|``*a = o`` | | pre: The type of ``o`` |
| | | is in the set of |
| | | value types of ``X`` |
+-------------------------+--------------+----------------------------+
Swappable Iterators [lib.swappable.iterators]
---------------------------------------------
A class or built-in type ``X`` models the *Swappable Iterator* concept
if, in addition to ``X`` being Copy Constructible, the following
expressions are valid and respect the stated semantics.
+---------------------------------------------------------------------+
|Swappable Iterator Requirements (in addition to Copy Constructible) |
+-------------------------+-------------+-----------------------------+
|Expression |Return Type |Postcondition |
+=========================+=============+=============================+
|``iter_swap(a, b)`` |``void`` |the pointed to values are |
| | |exchanged |
+-------------------------+-------------+-----------------------------+
[*Note:* An iterator that is a model of the `Readable Iterator`_ and
`Writable Iterator`_ concepts is also a model of *Swappable
Iterator*. *--end note*]
Lvalue Iterators [lib.lvalue.iterators]
---------------------------------------
The *Lvalue Iterator* concept adds the requirement that the return
type of ``operator*`` type be a reference to the value type of the
iterator.
+-------------------------------------------------------------+
| Lvalue Iterator Requirements |
+-------------+-----------+-----------------------------------+
|Expression |Return Type|Note/Assertion |
+=============+===========+===================================+
|``*a`` | ``T&`` |``T`` is *cv* |
| | |``iterator_traits<X>::value_type`` |
| | |where *cv* is an optional |
| | |cv-qualification. pre: ``a`` is |
| | |dereferenceable. |
+-------------+-----------+-----------------------------------+
If ``X`` is a `Writable Iterator`_ then ``a == b`` if and only if
``*a`` is the same object as ``*b``. If ``X`` is a `Readable
Iterator`_ then ``a == b`` implies ``*a`` is the same object as
``*b``.
Iterator Traversal Concepts [lib.iterator.traversal]
++++++++++++++++++++++++++++++++++++++++++++++++++++
In the tables below, ``X`` is an iterator type, ``a`` and ``b`` are
constant objects of type ``X``, ``r`` and ``s`` are mutable objects of
type ``X``, ``T`` is ``std::iterator_traits<X>::value_type``, and
``v`` is a constant object of type ``T``.
Incrementable Iterators [lib.incrementable.iterators]
-----------------------------------------------------
A class or built-in type ``X`` models the *Incrementable Iterator*
concept if, in addition to ``X`` being Assignable and Copy
Constructible, the following expressions are valid and respect the
stated semantics.
+------------------------------------------------------------------------------------+
|Incrementable Iterator Requirements (in addition to Assignable, Copy Constructible) |
| |
+--------------------------------+-------------------------------+-------------------+
|Expression |Return Type |Assertion |
+================================+===============================+===================+
|``++r`` |``X&`` |``&r == &++r`` |
+--------------------------------+-------------------------------+-------------------+
|``r++`` | | |
+--------------------------------+-------------------------------+-------------------+
|``*r++`` | | |
+--------------------------------+-------------------------------+-------------------+
|``iterator_traversal<X>::type`` |Convertible to | |
| |``incrementable_traversal_tag``| |
+--------------------------------+-------------------------------+-------------------+
If ``X`` is a `Writable Iterator`_ then ``X a(r++);`` is equivalent
to ``X a(r); ++r;`` and ``*r++ = o`` is equivalent
to ``*r = o; ++r``.
If ``X`` is a `Readable Iterator`_ then ``T z(*r++);`` is equivalent
to ``T z(*r); ++r;``.
.. TR1: incrementable_iterator_tag changed to
incrementable_traversal_tag for consistency.
Single Pass Iterators [lib.single.pass.iterators]
-------------------------------------------------
A class or built-in type ``X`` models the *Single Pass Iterator*
concept if the following expressions are valid and respect the stated
semantics.
+--------------------------------------------------------------------------------------------------------+
|Single Pass Iterator Requirements (in addition to Incrementable Iterator and Equality |
|Comparable) |
+--------------------------------+-----------------------------+-------------+---------------------------+
|Expression |Return Type | Operational |Assertion/ |
| | | Semantics |Pre-/Post-condition |
+================================+=============================+=============+===========================+
|``++r`` |``X&`` | |pre: ``r`` is |
| | | |dereferenceable; post: |
| | | |``r`` is dereferenceable or|
| | | |``r`` is past-the-end |
+--------------------------------+-----------------------------+-------------+---------------------------+
|``a == b`` |convertible to ``bool`` | |``==`` is an equivalence |
| | | |relation over its domain |
+--------------------------------+-----------------------------+-------------+---------------------------+
|``a != b`` |convertible to ``bool`` |``!(a == b)``| |
+--------------------------------+-----------------------------+-------------+---------------------------+
|``iterator_traversal<X>::type`` |Convertible to | | |
| |``single_pass_traversal_tag``| | |
+--------------------------------+-----------------------------+-------------+---------------------------+
.. TR1: single_pass_iterator_tag changed to
single_pass_traversal_tag for consistency
Forward Traversal Iterators [lib.forward.traversal.iterators]
-------------------------------------------------------------
A class or built-in type ``X`` models the *Forward Traversal Iterator*
concept if, in addition to ``X`` meeting the requirements of Default
Constructible and Single Pass Iterator, the following expressions are
valid and respect the stated semantics.
+--------------------------------------------------------------------------------------------------------+
|Forward Traversal Iterator Requirements (in addition to Default Constructible and Single Pass Iterator) |
+---------------------------------------+-----------------------------------+----------------------------+
|Expression |Return Type |Assertion/Note |
+=======================================+===================================+============================+
|``X u;`` |``X&`` |note: ``u`` may have a |
| | |singular value. |
+---------------------------------------+-----------------------------------+----------------------------+
|``++r`` |``X&`` |``r == s`` and ``r`` is |
| | |dereferenceable implies |
| | |``++r == ++s.`` |
+---------------------------------------+-----------------------------------+----------------------------+
|``iterator_traits<X>::difference_type``|A signed integral type representing| |
| |the distance between iterators | |
| | | |
+---------------------------------------+-----------------------------------+----------------------------+
|``iterator_traversal<X>::type`` |Convertible to | |
| |``forward_traversal_tag`` | |
+---------------------------------------+-----------------------------------+----------------------------+
.. TR1: forward_traversal_iterator_tag changed to
forward_traversal_tag for consistency
Bidirectional Traversal Iterators [lib.bidirectional.traversal.iterators]
-------------------------------------------------------------------------
A class or built-in type ``X`` models the *Bidirectional Traversal
Iterator* concept if, in addition to ``X`` meeting the requirements of
Forward Traversal Iterator, the following expressions are valid and
respect the stated semantics.
+-----------------------------------------------------------------------------------------------------+
|Bidirectional Traversal Iterator Requirements (in addition to Forward Traversal |
|Iterator) |
+--------------------------------+-------------------------------+--------------+---------------------+
|Expression |Return Type | Operational |Assertion/ |
| | | Semantics |Pre-/Post-condition |
+================================+===============================+==============+=====================+
|``--r`` |``X&`` | |pre: there exists |
| | | |``s`` such that ``r |
| | | |== ++s``. post: |
| | | |``s`` is |
| | | |dereferenceable. |
| | | | |
| | | |``++(--r) == r``. |
| | | |``--r == --s`` |
| | | |implies ``r == |
| | | |s``. ``&r == &--r``. |
+--------------------------------+-------------------------------+--------------+---------------------+
|``r--`` |convertible to ``const X&`` |:: | |
| | | | |
| | | { | |
| | | X tmp = r; | |
| | | --r; | |
| | | return tmp;| |
| | | } | |
+--------------------------------+-------------------------------+--------------+---------------------+
|``iterator_traversal<X>::type`` |Convertible to | | |
| |``bidirectional_traversal_tag``| | |
| | | | |
+--------------------------------+-------------------------------+--------------+---------------------+
.. TR1: bidirectional_traversal_iterator_tag changed to
bidirectional_traversal_tag for consistency
Random Access Traversal Iterators [lib.random.access.traversal.iterators]
-------------------------------------------------------------------------
A class or built-in type ``X`` models the *Random Access Traversal
Iterator* concept if the following expressions are valid and respect
the stated semantics. In the table below, ``Distance`` is
``iterator_traits<X>::difference_type`` and ``n`` represents a
constant object of type ``Distance``.
+------------------------------------------------------------------------------------------------------------------+
|Random Access Traversal Iterator Requirements (in addition to Bidirectional Traversal Iterator) |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|Expression |Return Type |Operational Semantics |Assertion/ |
| | | |Precondition |
+===============================+=================================+=========================+======================+
|``r += n`` |``X&`` |:: | |
| | | | |
| | | { | |
| | | Distance m = n; | |
| | | if (m >= 0) | |
| | | while (m--) | |
| | | ++r; | |
| | | else | |
| | | while (m++) | |
| | | --r; | |
| | | return r; | |
| | | } | |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``a + n``, ``n + a`` |``X`` |``{ X tmp = a; return tmp| |
| | |+= n; }`` | |
| | | | |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``r -= n`` |``X&`` |``return r += -n`` | |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``a - n`` |``X`` |``{ X tmp = a; return tmp| |
| | |-= n; }`` | |
| | | | |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``b - a`` |``Distance`` |``a < b ? distance(a,b) |pre: there exists a |
| | |: -distance(b,a)`` |value ``n`` of |
| | | |``Distance`` such that|
| | | |``a + n == b``. ``b |
| | | |== a + (b - a)``. |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``a[n]`` |convertible to T |``*(a + n)`` |pre: a is a `Readable |
| | | |Iterator`_ |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``a[n] = v`` |convertible to T |``*(a + n) = v`` |pre: a is a `Writable |
| | | |Iterator`_ |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``a < b`` |convertible to ``bool`` |``b - a > 0`` |``<`` is a total |
| | | |ordering relation |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``a > b`` |convertible to ``bool`` |``b < a`` |``>`` is a total |
| | | |ordering relation |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``a >= b`` |convertible to ``bool`` |``!(a < b)`` | |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``a <= b`` |convertible to ``bool`` |``!(a > b)`` | |
+-------------------------------+---------------------------------+-------------------------+----------------------+
|``iterator_traversal<X>::type``|Convertible to | | |
| |``random_access_traversal_tag`` | | |
+-------------------------------+---------------------------------+-------------------------+----------------------+
.. TR1: random_access_traversal_iterator_tag changed to
random_access_traversal_tag for consistency
Interoperable Iterators [lib.interoperable.iterators]
-----------------------------------------------------
A class or built-in type ``X`` that models Single Pass Iterator is
*interoperable with* a class or built-in type ``Y`` that also models
Single Pass Iterator if the following expressions are valid and
respect the stated semantics. In the tables below, ``x`` is an object
of type ``X``, ``y`` is an object of type ``Y``, ``Distance`` is
``iterator_traits<Y>::difference_type``, and ``n`` represents a
constant object of type ``Distance``.
+-----------+-----------------------+---------------------------------------------------+
|Expression |Return Type |Assertion/Precondition/Postcondition |
+===========+=======================+===================================================+
|``y = x`` |``Y`` |post: ``y == x`` |
+-----------+-----------------------+---------------------------------------------------+
|``Y(x)`` |``Y`` |post: ``Y(x) == x`` |
+-----------+-----------------------+---------------------------------------------------+
|``x == y`` |convertible to ``bool``|``==`` is an equivalence relation over its domain. |
+-----------+-----------------------+---------------------------------------------------+
|``y == x`` |convertible to ``bool``|``==`` is an equivalence relation over its domain. |
+-----------+-----------------------+---------------------------------------------------+
|``x != y`` |convertible to ``bool``|``bool(a==b) != bool(a!=b)`` over its domain. |
+-----------+-----------------------+---------------------------------------------------+
|``y != x`` |convertible to ``bool``|``bool(a==b) != bool(a!=b)`` over its domain. |
+-----------+-----------------------+---------------------------------------------------+
If ``X`` and ``Y`` both model Random Access Traversal Iterator then
the following additional requirements must be met.
+-----------+-----------------------+---------------------+--------------------------------------+
|Expression |Return Type |Operational Semantics|Assertion/ Precondition |
+===========+=======================+=====================+======================================+
|``x < y`` |convertible to ``bool``|``y - x > 0`` |``<`` is a total ordering relation |
+-----------+-----------------------+---------------------+--------------------------------------+
|``y < x`` |convertible to ``bool``|``x - y > 0`` |``<`` is a total ordering relation |
+-----------+-----------------------+---------------------+--------------------------------------+
|``x > y`` |convertible to ``bool``|``y < x`` |``>`` is a total ordering relation |
+-----------+-----------------------+---------------------+--------------------------------------+
|``y > x`` |convertible to ``bool``|``x < y`` |``>`` is a total ordering relation |
+-----------+-----------------------+---------------------+--------------------------------------+
|``x >= y`` |convertible to ``bool``|``!(x < y)`` | |
+-----------+-----------------------+---------------------+--------------------------------------+
|``y >= x`` |convertible to ``bool``|``!(y < x)`` | |
+-----------+-----------------------+---------------------+--------------------------------------+
|``x <= y`` |convertible to ``bool``|``!(x > y)`` | |
+-----------+-----------------------+---------------------+--------------------------------------+
|``y <= x`` |convertible to ``bool``|``!(y > x)`` | |
+-----------+-----------------------+---------------------+--------------------------------------+
|``y - x`` |``Distance`` |``distance(Y(x),y)`` |pre: there exists a value ``n`` of |
| | | |``Distance`` such that ``x + n == y``.|
| | | |``y == x + (y - x)``. |
+-----------+-----------------------+---------------------+--------------------------------------+
|``x - y`` |``Distance`` |``distance(y,Y(x))`` |pre: there exists a value ``n`` of |
| | | |``Distance`` such that ``y + n == x``.|
| | | |``x == y + (x - y)``. |
+-----------+-----------------------+---------------------+--------------------------------------+
Addition to [lib.iterator.synopsis]
===================================
::
// lib.iterator.traits, traits and tags
template <class Iterator> struct is_readable_iterator;
template <class Iterator> struct iterator_traversal;
struct incrementable_traversal_tag { };
struct single_pass_traversal_tag : incrementable_traversal_tag { };
struct forward_traversal_tag : single_pass_traversal_tag { };
struct bidirectional_traversal_tag : forward_traversal_tag { };
struct random_access_traversal_tag : bidirectional_traversal_tag { };
Addition to [lib.iterator.traits]
=================================
The ``is_readable_iterator`` class
template satisfies the UnaryTypeTrait_ requirements.
Given an iterator type ``X``, ``is_readable_iterator<X>::value``
yields ``true`` if, for an object ``a`` of type ``X``, ``*a`` is
convertible to ``iterator_traits<X>::value_type``, and ``false``
otherwise.
``iterator_traversal<X>::type`` is
.. parsed-literal::
*category-to-traversal*\ (iterator_traits<X>::iterator_category)
where *category-to-traversal* is defined as follows
.. _`category-to-traversal`:
.. parsed-literal::
*category-to-traversal*\ (C) =
if (C is convertible to incrementable_traversal_tag)
return C;
else if (C is convertible to random_access_iterator_tag)
return random_access_traversal_tag;
else if (C is convertible to bidirectional_iterator_tag)
return bidirectional_traversal_tag;
else if (C is convertible to forward_iterator_tag)
return forward_traversal_tag;
else if (C is convertible to input_iterator_tag)
return single_pass_traversal_tag;
else if (C is convertible to output_iterator_tag)
return incrementable_traversal_tag;
else
*the program is ill-formed*
===========
Footnotes
===========
.. _UnaryTypeTrait: n1519_
The UnaryTypeTrait concept is defined in n1519_; the LWG is
considering adding the requirement that specializations are derived
from their nested ``::type``.
.. _n1519: http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1519.htm
..
LocalWords: Abrahams Siek Witt const bool Sutter's WG int UL LI href Lvalue
LocalWords: ReadableIterator WritableIterator SwappableIterator cv pre iter
LocalWords: ConstantLvalueIterator MutableLvalueIterator CopyConstructible TR
LocalWords: ForwardTraversalIterator BidirectionalTraversalIterator lvalue
LocalWords: RandomAccessTraversalIterator dereferenceable Incrementable tmp
LocalWords: incrementable xxx min prev inplace png oldeqnew AccessTag struct
LocalWords: TraversalTag typename lvalues DWA Hmm JGS mis enum

Some files were not shown because too many files have changed in this diff Show More