Compare commits

..

5 Commits

Author SHA1 Message Date
597229b10b *** empty log message ***
[SVN r11537]
2001-11-02 20:12:01 +00:00
2e74e298c8 towards a fix
[SVN r11536]
2001-11-02 17:19:18 +00:00
79c6d11694 changed named parameters, still need to add suppose for no template part. spec.
[SVN r11416]
2001-10-21 16:37:25 +00:00
d5443d7fe2 removed less() function from policies
policies now operate on whole adaptors rather than Base types


[SVN r11377]
2001-10-12 21:58:50 +00:00
41be2127df This commit was manufactured by cvs2svn to create branch
'iterator_adaptor_update'.

[SVN r11341]
2001-10-04 21:02:13 +00:00
10 changed files with 161 additions and 1204 deletions

View File

@ -56,7 +56,9 @@
# include <boost/type_traits.hpp>
# include <boost/detail/numeric_traits.hpp>
# include <boost/static_assert.hpp>
# include <boost/limits.hpp>
# ifndef BOOST_NO_LIMITS
# include <limits>
# endif
namespace boost {
@ -133,7 +135,7 @@ namespace detail {
// For a while, this wasn't true, but we rely on it below. This is a regression assert.
BOOST_STATIC_ASSERT(::boost::is_integral<char>::value);
# ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
# if defined(BOOST_HAS_LONG_LONG)
# if defined(ULLONG_MAX) || defined(ULONG_LONG_MAX)
BOOST_STATIC_CONSTANT(bool,
value = (
std::numeric_limits<T>::is_specialized
@ -197,20 +199,15 @@ struct counting_iterator_policies : public default_iterator_policies
template <class Incrementable>
struct counting_iterator_generator
{
typedef typename boost::remove_const<
Incrementable
>::type value_type;
typedef counting_iterator_traits<Incrementable> traits;
typedef counting_iterator_traits<value_type> traits;
typedef iterator_adaptor<
value_type
, counting_iterator_policies<value_type>
, value_type
, value_type const&
, value_type const*
, typename traits::iterator_category
, typename traits::difference_type
typedef iterator_adaptor<Incrementable,
counting_iterator_policies<Incrementable>,
Incrementable,
const Incrementable&,
const Incrementable*,
typename traits::iterator_category,
typename traits::difference_type
> type;
};

View File

@ -1,55 +0,0 @@
// (C) Copyright Jeremy Siek 2001. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// Revision History:
// 27 Feb 2001 Jeremy Siek
// Initial checkin.
#ifndef BOOST_FUNCTION_OUTPUT_ITERATOR_HPP
#define BOOST_FUNCTION_OUTPUT_ITERATOR_HPP
#include <iterator>
namespace boost {
template <class UnaryFunction>
class function_output_iterator {
typedef function_output_iterator self;
public:
typedef std::output_iterator_tag iterator_category;
typedef void value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;
explicit function_output_iterator(const UnaryFunction& f = UnaryFunction())
: m_f(f) {}
struct output_proxy {
output_proxy(UnaryFunction& f) : m_f(f) { }
template <class T> output_proxy& operator=(const T& value) {
m_f(value);
return *this;
}
UnaryFunction& m_f;
};
output_proxy operator*() { return output_proxy(m_f); }
self& operator++() { return *this; }
self& operator++(int) { return *this; }
private:
UnaryFunction m_f;
};
template <class UnaryFunction>
inline function_output_iterator<UnaryFunction>
make_function_output_iterator(const UnaryFunction& f = UnaryFunction()) {
return function_output_iterator<UnaryFunction>(f);
}
} // namespace boost
#endif // BOOST_FUNCTION_OUTPUT_ITERATOR_HPP

View File

@ -1,426 +0,0 @@
// (C) Copyright Jeremy Siek and David Abrahams 2000-2001. Permission to copy,
// use, modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided "as is"
// without express or implied warranty, and with no claim as to its suitability
// for any purpose.
//
// Revision History:
// 11 Feb 2001 Use new iterator_adaptor interface, Fixes for Borland.
// (Dave Abrahams)
// 04 Feb 2001 Support for user-defined iterator categories (Dave Abrahams)
// 30 Jan 2001 Initial Checkin (Dave Abrahams)
#ifndef BOOST_HALF_OPEN_RANGE_HPP_
# define BOOST_HALF_OPEN_RANGE_HPP_
# include <boost/counting_iterator.hpp>
# include <functional>
# include <cassert>
# include <boost/operators.hpp>
# include <string>
# include <stdexcept>
# include <iterator>
namespace boost {
namespace detail {
// Template class choose_finish -- allows us to maintain the invariant that
// start() <= finish() on half_open_range specializations that support random
// access.
#ifdef __MWERKS__
template <class T>
const T& choose_finish(const T&, const T& finish, std::input_iterator_tag)
{
return finish;
}
template <class T>
const T& choose_finish(const T&, const T& finish, std::output_iterator_tag)
{
return finish;
}
template <class T>
const T& choose_finish(const T& start, const T& finish, std::random_access_iterator_tag)
{
return finish < start ? start : finish;
}
#else
template <bool is_random_access> struct finish_chooser;
template <>
struct finish_chooser<false>
{
template <class T>
struct rebind
{
static T choose(const T&, const T& finish)
{ return finish; }
};
};
template <>
struct finish_chooser<true>
{
template <class T>
struct rebind
{
static T choose(const T& start, const T& finish)
{ return finish < start ? start : finish; }
};
};
template <class Category, class Incrementable>
struct choose_finish
{
static const Incrementable choose(const Incrementable& start, const Incrementable& finish)
{
return finish_chooser<(
::boost::is_convertible<Category*,std::random_access_iterator_tag*>::value
)>::template rebind<Incrementable>::choose(start, finish);
}
};
#endif
}
template <class Incrementable>
struct half_open_range
{
typedef typename counting_iterator_generator<Incrementable>::type iterator;
private: // utility type definitions
// Using iter_t prevents compiler confusion with boost::iterator
typedef typename counting_iterator_generator<Incrementable>::type iter_t;
typedef std::less<Incrementable> less_value;
typedef typename iter_t::iterator_category category;
typedef half_open_range<Incrementable> self;
public:
typedef iter_t const_iterator;
typedef typename iterator::value_type value_type;
typedef typename iterator::difference_type difference_type;
typedef typename iterator::reference reference;
typedef typename iterator::reference const_reference;
typedef typename iterator::pointer pointer;
typedef typename iterator::pointer const_pointer;
// It would be nice to select an unsigned type, but this is appropriate
// since the library makes an attempt to select a difference_type which can
// hold the difference between any two iterators.
typedef typename iterator::difference_type size_type;
half_open_range(Incrementable start, Incrementable finish)
: m_start(start),
m_finish(
#ifndef __MWERKS__
detail::choose_finish<category,Incrementable>::choose(start, finish)
#else
detail::choose_finish(start, finish, category())
#endif
)
{}
// Implicit conversion from std::pair<Incrementable,Incrementable> allows us
// to accept the results of std::equal_range(), for example.
half_open_range(const std::pair<Incrementable,Incrementable>& x)
: m_start(x.first),
m_finish(
#ifndef __MWERKS__
detail::choose_finish<category,Incrementable>::choose(x.first, x.second)
#else
detail::choose_finish(x.first, x.second, category())
#endif
)
{}
half_open_range& operator=(const self& x)
{
m_start = x.m_start;
m_finish = x.m_finish;
return *this;
}
half_open_range& operator=(const std::pair<Incrementable,Incrementable>& x)
{
m_start = x.first;
m_finish =
#ifndef __MWERKS__
detail::choose_finish<category,Incrementable>::choose(x.first, x.second);
#else
detail::choose_finish(x.first, x.second, category();
#endif
}
iterator begin() const { return iterator(m_start); }
iterator end() const { return iterator(m_finish); }
Incrementable front() const { assert(!this->empty()); return m_start; }
Incrementable back() const { assert(!this->empty()); return boost::prior(m_finish); }
Incrementable start() const { return m_start; }
Incrementable finish() const { return m_finish; }
size_type size() const { return boost::detail::distance(begin(), end()); }
bool empty() const
{
return m_finish == m_start;
}
void swap(half_open_range& x) {
std::swap(m_start, x.m_start);
std::swap(m_finish, x.m_finish);
}
public: // functions requiring random access elements
// REQUIRES: x is reachable from this->front()
bool contains(const value_type& x) const
{
BOOST_STATIC_ASSERT((boost::is_same<category, std::random_access_iterator_tag>::value));
return !less_value()(x, m_start) && less_value()(x, m_finish);
}
bool contains(const half_open_range& x) const
{
BOOST_STATIC_ASSERT((boost::is_same<category, std::random_access_iterator_tag>::value));
return x.empty() || !less_value()(x.m_start, m_start) && !less_value()(m_finish, x.m_finish);
}
bool intersects(const half_open_range& x) const
{
BOOST_STATIC_ASSERT((boost::is_same<category, std::random_access_iterator_tag>::value));
return less_value()(
less_value()(this->m_start, x.m_start) ? x.m_start : this->m_start,
less_value()(this->m_finish, x.m_finish) ? this->m_finish : x.m_finish);
}
half_open_range& operator&=(const half_open_range& x)
{
BOOST_STATIC_ASSERT((boost::is_same<category, std::random_access_iterator_tag>::value));
if (less_value()(this->m_start, x.m_start))
this->m_start = x.m_start;
if (less_value()(x.m_finish, this->m_finish))
this->m_finish = x.m_finish;
if (less_value()(this->m_finish, this->m_start))
this->m_start = this->m_finish;
return *this;
}
half_open_range& operator|=(const half_open_range& x)
{
BOOST_STATIC_ASSERT((boost::is_same<category, std::random_access_iterator_tag>::value));
if (!x.empty())
{
if (this->empty())
{
*this = x;
}
else
{
if (less_value()(x.m_start, this->m_start))
this->m_start = x.m_start;
if (less_value()(this->m_finish, x.m_finish))
this->m_finish = x.m_finish;
}
}
return *this;
}
// REQUIRES: x is reachable from this->front()
const_iterator find(const value_type& x) const
{
BOOST_STATIC_ASSERT((boost::is_same<category, std::random_access_iterator_tag>::value));
return const_iterator(this->contains(x) ? x : m_finish);
}
// REQUIRES: index >= 0 && index < size()
value_type operator[](size_type index) const
{
assert(index >= 0 && index < size());
return m_start + index;
}
value_type at(size_type index) const
{
if (index < 0 || index >= size())
throw std::out_of_range(std::string("half_open_range"));
return m_start + index;
}
private: // data members
Incrementable m_start, m_finish;
};
template <class Incrementable>
half_open_range<Incrementable> operator|(
half_open_range<Incrementable> x,
const half_open_range<Incrementable>& y)
{
return x |= y;
}
template <class Incrementable>
half_open_range<Incrementable> operator&(
half_open_range<Incrementable> x,
const half_open_range<Incrementable>& y)
{
return x &= y;
}
template <class Incrementable>
inline bool operator==(
const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
const bool y_empty = y.empty();
return x.empty() ? y_empty : !y_empty && x.start() == y.start() && x.finish() == y.finish();
}
template <class Incrementable>
inline bool operator!=(
const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return !(x == y);
}
template <class Incrementable>
inline half_open_range<Incrementable>
make_half_open_range(Incrementable first, Incrementable last)
{
return half_open_range<Incrementable>(first, last);
}
template <class Incrementable>
bool intersects(
const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return x.intersects(y);
}
template <class Incrementable>
bool contains(
const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return x.contains(y);
}
} // namespace boost
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
namespace std {
template <class Incrementable> struct less<boost::half_open_range<Incrementable> >
: binary_function<
boost::half_open_range<Incrementable>,
boost::half_open_range<Incrementable>,bool>
{
bool operator()(
const boost::half_open_range<Incrementable>& x,
const boost::half_open_range<Incrementable>& y) const
{
less<Incrementable> cmp;
return !y.empty() && (
cmp(x.start(), y.start())
|| !cmp(y.start(), x.start())
&& cmp(x.finish(), y.finish()));
}
};
template <class Incrementable> struct less_equal<boost::half_open_range<Incrementable> >
: binary_function<
boost::half_open_range<Incrementable>,
boost::half_open_range<Incrementable>,bool>
{
bool operator()(
const boost::half_open_range<Incrementable>& x,
const boost::half_open_range<Incrementable>& y) const
{
typedef boost::half_open_range<Incrementable> range;
less<range> cmp;
return !cmp(y,x);
}
};
template <class Incrementable> struct greater<boost::half_open_range<Incrementable> >
: binary_function<
boost::half_open_range<Incrementable>,
boost::half_open_range<Incrementable>,bool>
{
bool operator()(
const boost::half_open_range<Incrementable>& x,
const boost::half_open_range<Incrementable>& y) const
{
typedef boost::half_open_range<Incrementable> range;
less<range> cmp;
return cmp(y,x);
}
};
template <class Incrementable> struct greater_equal<boost::half_open_range<Incrementable> >
: binary_function<
boost::half_open_range<Incrementable>,
boost::half_open_range<Incrementable>,bool>
{
bool operator()(
const boost::half_open_range<Incrementable>& x,
const boost::half_open_range<Incrementable>& y) const
{
typedef boost::half_open_range<Incrementable> range;
less<range> cmp;
return !cmp(x,y);
}
};
} // namespace std
#else
namespace boost {
// Can't partially specialize std::less et al, so we must provide the operators
template <class Incrementable>
bool operator<(const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return !y.empty() && (
x.empty() || std::less<Incrementable>()(x.start(), y.start())
|| !std::less<Incrementable>()(y.start(), x.start())
&& std::less<Incrementable>()(x.finish(), y.finish()));
}
template <class Incrementable>
bool operator>(const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return y < x;
}
template <class Incrementable>
bool operator<=(const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return !(y < x);
}
template <class Incrementable>
bool operator>=(const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return !(x < y);
}
} // namespace boost
#endif
#endif // BOOST_HALF_OPEN_RANGE_HPP_

View File

@ -1,60 +0,0 @@
// interator.hpp workarounds for non-conforming standard libraries ---------//
// (C) Copyright Boost.org 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 12 Jan 01 added <cstddef> for std::ptrdiff_t (Jens Maurer)
// 28 Jun 00 Workarounds to deal with known MSVC bugs (David Abrahams)
// 26 Jun 00 Initial version (Jeremy Siek)
#ifndef BOOST_ITERATOR_HPP
#define BOOST_ITERATOR_HPP
#include <iterator>
#include <cstddef> // std::ptrdiff_t
#include <boost/config.hpp>
namespace boost
{
# if defined(BOOST_NO_STD_ITERATOR) && !defined(BOOST_MSVC_STD_ITERATOR)
template <class Category, class T,
class Distance = std::ptrdiff_t,
class Pointer = T*, class Reference = T&>
struct iterator
{
typedef T value_type;
typedef Distance difference_type;
typedef Pointer pointer;
typedef Reference reference;
typedef Category iterator_category;
};
# else
// declare iterator_base in namespace detail to work around MSVC bugs which
// prevent derivation from an identically-named class in a different namespace.
namespace detail {
template <class Category, class T, class Distance, class Pointer, class Reference>
# if !defined(BOOST_MSVC_STD_ITERATOR)
struct iterator_base : std::iterator<Category, T, Distance, Pointer, Reference> {};
# else
struct iterator_base : std::iterator<Category, T, Distance>
{
typedef Reference reference;
typedef Pointer pointer;
typedef Distance difference_type;
};
# endif
}
template <class Category, class T, class Distance = std::ptrdiff_t,
class Pointer = T*, class Reference = T&>
struct iterator : detail::iterator_base<Category, T, Distance, Pointer, Reference> {};
# endif
} // namespace boost
#endif // BOOST_ITERATOR_HPP

View File

@ -12,18 +12,6 @@
//
// Revision History:
// 01 Feb 2002 Jeremy Siek
// Added more comments in default_iterator_policies.
// 08 Jan 2001 David Abrahams
// Moved concept checks into a separate class, which makes MSVC
// better at dealing with them.
// 07 Jan 2001 David Abrahams
// Choose proxy for operator->() only if the reference type is not a reference.
// Updated workarounds for __MWERKS__ == 0x2406
// 20 Dec 2001 David Abrahams
// Adjusted is_convertible workarounds for __MWERKS__ == 0x2406
// 03 Nov 2001 Jeremy Siek
// Changed the named template parameter interface and internal.
// 04 Oct 2001 Jeremy Siek
// Changed projection_iterator to not rely on the default reference,
// working around a limitation of detail::iterator_traits.
@ -126,10 +114,11 @@
# include <boost/type_traits.hpp>
# include <boost/detail/iterator.hpp>
# include <boost/detail/select_type.hpp>
# include <boost/pending/ct_if.hpp>
// I was having some problems with VC6. I couldn't tell whether our hack for
// stock GCC was causing problems so I needed an easy way to turn it on and
// off. Now we can test the hack with various compilers and still have an
// off. Now we can test the hack with various compilers and still have an
// "out" if it doesn't work. -dwa 7/31/00
# if __GNUC__ == 2 && __GNUC_MINOR__ <= 96 && !defined(__STL_USE_NAMESPACES)
# define BOOST_RELOPS_AMBIGUITY_BUG 1
@ -147,7 +136,7 @@ namespace boost {
template <class Policies, class Adapted, class Traits>
struct TrivialIteratorPoliciesConcept
{
typedef typename Traits::reference reference;
typedef typename Traits::reference Reference;
void constraints() {
function_requires< AssignableConcept<Policies> >();
function_requires< DefaultConstructibleConcept<Policies> >();
@ -157,7 +146,7 @@ struct TrivialIteratorPoliciesConcept
const_constraints();
}
void const_constraints() const {
reference r = p.dereference(x);
Reference r = p.dereference(x);
b = p.equal(x, x);
ignore_unused_variable_warning(r);
}
@ -173,7 +162,7 @@ struct ForwardIteratorPoliciesConcept
{
typedef typename Traits::iterator_category iterator_category;
void constraints() {
function_requires<
function_requires<
TrivialIteratorPoliciesConcept<Policies, Adapted, Traits>
>();
@ -191,7 +180,7 @@ struct BidirectionalIteratorPoliciesConcept
{
typedef typename Traits::iterator_category iterator_category;
void constraints() {
function_requires<
function_requires<
ForwardIteratorPoliciesConcept<Policies, Adapted, Traits>
>();
@ -209,7 +198,7 @@ struct RandomAccessIteratorPoliciesConcept
typedef typename Traits::difference_type DifferenceType;
typedef typename Traits::iterator_category iterator_category;
void constraints() {
function_requires<
function_requires<
BidirectionalIteratorPoliciesConcept<Policies, Adapted, Traits>
>();
@ -233,15 +222,9 @@ struct RandomAccessIteratorPoliciesConcept
// class if you want to customize particular policies.
struct default_iterator_policies
{
// Some of the member functions were defined static, but Borland
// got confused and thought they were non-const. Also, Sun C++
// does not like static function templates.
//
// The reason some members were defined static is because there is
// not state (data members) needed by those members of the
// default_iterator_policies class. If your policies class member
// functions need to access state stored in the policies object,
// then the member functions should not be static (they can't be).
// Some of these members were defined static, but Borland got confused
// and thought they were non-const. Also, Sun C++ does not like static
// function templates.
template <class Base>
void initialize(Base&)
@ -273,7 +256,7 @@ struct default_iterator_policies
{ return x.base() == y.base(); }
};
// putting the comparisons in a base class avoids the g++
// putting the comparisons in a base class avoids the g++
// ambiguous overload bug due to the relops operators
#ifdef BOOST_RELOPS_AMBIGUITY_BUG
@ -281,7 +264,7 @@ template <class Derived, class Base>
struct iterator_comparisons : Base { };
template <class D1, class D2, class Base1, class Base2>
inline bool operator==(const iterator_comparisons<D1,Base1>& xb,
inline bool operator==(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
@ -290,7 +273,7 @@ inline bool operator==(const iterator_comparisons<D1,Base1>& xb,
}
template <class D1, class D2, class Base1, class Base2>
inline bool operator!=(const iterator_comparisons<D1,Base1>& xb,
inline bool operator!=(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
@ -299,39 +282,39 @@ inline bool operator!=(const iterator_comparisons<D1,Base1>& xb,
}
template <class D1, class D2, class Base1, class Base2>
inline bool operator<(const iterator_comparisons<D1,Base1>& xb,
inline bool operator<(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().distance(y, x) < 0;
return x.policies().distance(x, y) > 0;
}
template <class D1, class D2, class Base1, class Base2>
inline bool operator>(const iterator_comparisons<D1,Base1>& xb,
inline bool operator>(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().distance(y, x) > 0;
}
template <class D1, class D2, class Base1, class Base2>
inline bool operator>=(const iterator_comparisons<D1,Base1>& xb,
inline bool operator>=(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().distance(y, x) >= 0;
return !(x.policies().distance(x, y) > 0);
}
template <class D1, class D2, class Base1, class Base2>
inline bool operator<=(const iterator_comparisons<D1,Base1>& xb,
inline bool operator<=(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().distance(y, x) <= 0;
return !(x.policies().distance(y, x) > 0);
}
#endif
@ -356,8 +339,11 @@ namespace detail {
template <class Iter>
inline operator_arrow_proxy<typename Iter::value_type>
operator_arrow(const Iter& i, std::input_iterator_tag) {
typedef typename Iter::value_type value_t; // VC++ needs this typedef
return operator_arrow_proxy<value_t>(*i);
return operator_arrow_proxy<
#ifndef BOOST_MSVC
typename
#endif
Iter::value_type>(*i);
}
template <class Iter>
@ -366,14 +352,18 @@ namespace detail {
return &(*i);
}
template <class Value, class Reference, class Pointer>
template <class Category, class Value, class Pointer>
struct operator_arrow_result_generator
{
typedef operator_arrow_proxy<Value> proxy;
// Borland chokes unless it's an actual enum (!)
enum { use_proxy = !boost::is_reference<Reference>::value };
typedef typename boost::detail::if_true<(use_proxy)>::template
enum { is_input_iter
= (boost::is_convertible<Category*,std::input_iterator_tag*>::value
& !boost::is_convertible<Category*,std::forward_iterator_tag*>::value)
};
typedef typename boost::detail::if_true<(is_input_iter)>::template
then<
proxy,
// else
@ -382,7 +372,7 @@ namespace detail {
};
# if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) || defined(BOOST_NO_STD_ITERATOR_TRAITS)
# ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
// Select default pointer and reference types for adapted non-pointer
// iterators based on the iterator and the value_type. Poor man's partial
@ -435,14 +425,14 @@ namespace detail {
typename iterator_traits<Iterator>::pointer,
Value*
>::type pointer;
typedef typename if_true<(
::boost::is_same<Value,typename iterator_traits<Iterator>::value_type>::value
)>::template then<
typename iterator_traits<Iterator>::reference,
Value&
>::type reference;
};
# endif
@ -491,8 +481,8 @@ namespace detail {
template <class Base, class Traits>
struct select {
typedef typename Traits::value_type Value;
typedef typename boost::detail::iterator_defaults<Base,Value>::pointer
type;
typedef typename boost::detail::iterator_defaults<Base,Value>::pointer
type;
};
};
template <> struct default_generator<default_pointer>
@ -502,8 +492,8 @@ namespace detail {
template <class Base, class Traits>
struct select {
typedef typename Traits::value_type Value;
typedef typename boost::detail::iterator_defaults<Base,Value>::reference
type;
typedef typename boost::detail::iterator_defaults<Base,Value>::reference
type;
};
};
template <> struct default_generator<default_reference>
@ -551,7 +541,7 @@ template <class Difference> struct difference_type_is
{
typedef detail::cons_type<detail::difference_type_tag, Difference> type;
};
template <class IteratorCategory> struct iterator_category_is
template <class IteratorCategory> struct iterator_category_is
: public named_template_param_base
{
typedef detail::cons_type<detail::iterator_category_tag, IteratorCategory> type;
@ -565,24 +555,24 @@ namespace detail {
// An associative list is a list of key-value pairs. The list is
// built out of cons_type's and is terminated by end_of_list.
# if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) || defined(__BORLANDC__)
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class AssocList, class Key>
struct find_param;
struct find_param_continue {
template <class AssocList, class Key2> struct select {
template <class AssocList, class Key2> struct bind {
typedef typename AssocList::first_type Head;
typedef typename Head::first_type Key1;
typedef typename Head::second_type Value;
typedef typename if_true<(is_same<Key1, Key2>::value)>::template
then<Value,
typedef typename ct_if<is_same<Key1, Key2>::value,
Value,
typename find_param<typename AssocList::second_type, Key2>::type
>::type type;
};
};
struct find_param_end {
template <class AssocList, class Key>
struct select { typedef detail::default_argument type; };
struct bind { typedef detail::default_argument type; };
};
template <class AssocList> struct find_param_helper1
{ typedef find_param_continue type; };
@ -592,9 +582,9 @@ namespace detail {
template <class AssocList, class Key>
struct find_param {
typedef typename find_param_helper1<AssocList>::type select1;
typedef typename select1::template select<AssocList, Key>::type type;
typedef typename select1::template bind<AssocList, Key>::type type;
};
# else
#else
template <class AssocList, class Key> struct find_param;
template <class Key>
@ -611,44 +601,22 @@ namespace detail {
struct find_param<detail::cons_type< detail::cons_type<Key1, Value>, Rest>, Key2> {
typedef typename find_param<Rest, Key2>::type type;
};
# endif
#endif
struct make_named_arg {
template <class Key, class Value>
struct select { typedef typename Value::type type; };
struct bind { typedef typename Value::type type; };
};
struct make_key_value {
template <class Key, class Value>
struct select { typedef detail::cons_type<Key, Value> type; };
struct bind { typedef detail::cons_type<Key, Value> type; };
};
template <class Value>
struct is_named_parameter
{
enum { value = is_convertible< typename add_reference< Value >::type, add_reference< named_template_param_base >::type >::value };
};
# if defined(__MWERKS__) && __MWERKS__ <= 0x2406 // workaround for broken is_convertible implementation
template <class T> struct is_named_parameter<value_type_is<T> > { enum { value = true }; };
template <class T> struct is_named_parameter<reference_is<T> > { enum { value = true }; };
template <class T> struct is_named_parameter<pointer_is<T> > { enum { value = true }; };
template <class T> struct is_named_parameter<difference_type_is<T> > { enum { value = true }; };
template <class T> struct is_named_parameter<iterator_category_is<T> > { enum { value = true }; };
# endif
template <class Key, class Value>
struct make_arg {
# ifdef __BORLANDC__
// Borland C++ doesn't like the extra indirection of is_named_parameter
typedef typename
if_true<(is_convertible<Value,named_template_param_base>::value)>::
template then<make_named_arg, make_key_value>::type Make;
# else
enum { is_named = is_named_parameter<Value>::value };
typedef typename if_true<(is_named)>::template
then<make_named_arg, make_key_value>::type Make;
# endif
typedef typename Make::template select<Key, Value>::type type;
class make_arg {
enum { is_named = is_convertible<Value, named_template_param_base>::value };
typedef typename ct_if<is_named, make_named_arg, make_key_value>::type Make;
typedef typename Make::template bind<Key, Value>::type type;
};
// Mechanism for resolving the default argument for a template parameter.
@ -659,14 +627,16 @@ namespace detail {
struct choose_default {
template <class Arg, class DefaultGen, class Base, class Traits>
struct select {
struct bind {
#if 1
typedef typename default_generator<DefaultGen>::type Gen;
typedef typename Gen::template select<Base,Traits>::type type;
#endif
};
};
struct choose_arg {
template <class Arg, class DefaultGen, class Base, class Traits>
struct select {
struct bind {
typedef Arg type;
};
};
@ -683,7 +653,7 @@ namespace detail {
Selector;
public:
typedef typename Selector
::template select<Arg, DefaultGen, Base, Traits>::type type;
::template bind<Arg, DefaultGen, Base, Traits>::type type;
};
template <class Base, class Value, class Reference, class Pointer,
@ -691,7 +661,7 @@ namespace detail {
class iterator_adaptor_traits_gen
{
// Form an associative list out of the template parameters
// If the argument is a normal parameter (not named) then make_arg
// If the argument is a normal parameter (not named) then make_arg
// creates a key-value pair. If the argument is a named parameter,
// then make_arg extracts the key-value pair defined inside the
// named parameter.
@ -716,9 +686,9 @@ namespace detail {
typedef typename resolve_default<Val, default_value_type, Base, Traits0>::type
value_type;
// if getting default value type from iterator_traits, then it won't be const
typedef typename resolve_default<Diff, default_difference_type, Base,
typedef typename resolve_default<Diff, default_difference_type, Base,
Traits0>::type difference_type;
typedef typename resolve_default<Cat, default_iterator_category, Base,
typedef typename resolve_default<Cat, default_iterator_category, Base,
Traits0>::type iterator_category;
typedef boost::iterator<iterator_category, value_type, difference_type,
@ -731,47 +701,26 @@ namespace detail {
pointer;
typedef typename resolve_default<Ref, default_reference, Base, Traits1>::type
reference;
public:
typedef boost::iterator<iterator_category,
typename remove_const<value_type>::type,
typename remove_const<value_type>::type,
difference_type, pointer, reference> type;
};
// This is really a partial concept check for iterators. Should it
// be moved or done differently?
template <class Category, class Value, class Difference, class Pointer, class Reference>
struct validator
{
BOOST_STATIC_CONSTANT(
bool, is_input_or_output_iter
= (boost::is_convertible<Category*,std::input_iterator_tag*>::value
| boost::is_convertible<Category*,std::output_iterator_tag*>::value));
// Iterators should satisfy one of the known categories
BOOST_STATIC_ASSERT(is_input_or_output_iter);
// Iterators >= ForwardIterator must produce real references
// as required by the C++ standard requirements in Table 74.
BOOST_STATIC_CONSTANT(
bool, forward_iter_with_real_reference
= ((!boost::is_convertible<Category*,std::forward_iterator_tag*>::value)
| boost::is_same<Reference,Value&>::value
| boost::is_same<Reference,typename add_const<Value>::type&>::value));
BOOST_STATIC_ASSERT(forward_iter_with_real_reference);
};
} // namespace detail
// This macro definition is only temporary in this file
# if !defined(BOOST_MSVC) || BOOST_MSVC > 1300
# if !defined(BOOST_MSVC)
# define BOOST_ARG_DEPENDENT_TYPENAME typename
# else
# define BOOST_ARG_DEPENDENT_TYPENAME
# endif
template <class T> struct undefined;
//============================================================================
//iterator_adaptor - Adapts a generic piece of data as an iterator. Adaptation
// is especially easy if the data being adapted is itself an iterator
@ -800,12 +749,12 @@ namespace detail {
//
// Distance - the difference_type of the resulting iterator. If not
// supplied, iterator_traits<Base>::difference_type is used.
template <class Base, class Policies,
class Value = ::boost::detail::default_argument,
class Reference = ::boost::detail::default_argument,
class Pointer = ::boost::detail::default_argument,
class Category = ::boost::detail::default_argument,
class Distance = ::boost::detail::default_argument
template <class Base, class Policies,
class Value = detail::default_argument,
class Reference = detail::default_argument,
class Pointer = detail::default_argument,
class Category = detail::default_argument,
class Distance = detail::default_argument
>
struct iterator_adaptor :
#ifdef BOOST_RELOPS_AMBIGUITY_BUG
@ -819,8 +768,7 @@ struct iterator_adaptor :
{
typedef iterator_adaptor<Base,Policies,Value,Reference,Pointer,Category,Distance> self;
public:
typedef detail::iterator_adaptor_traits_gen<Base,Value,Reference,Pointer,Category,Distance> TraitsGen;
typedef typename TraitsGen::type Traits;
typedef typename detail::iterator_adaptor_traits_gen<Base,Value,Reference,Pointer,Category,Distance>::type Traits;
typedef typename Traits::difference_type difference_type;
typedef typename Traits::value_type value_type;
@ -832,19 +780,32 @@ struct iterator_adaptor :
typedef Policies policies_type;
private:
typedef detail::validator<
iterator_category,value_type,difference_type,pointer,reference
> concept_check;
BOOST_STATIC_CONSTANT(bool, is_input_or_output_iter
= (boost::is_convertible<iterator_category*,std::input_iterator_tag*>::value
|| boost::is_convertible<iterator_category*,std::output_iterator_tag*>::value));
// Iterators should satisfy one of the known categories
BOOST_STATIC_ASSERT(is_input_or_output_iter);
// Iterators >= ForwardIterator must produce real references
// as required by the C++ standard requirements in Table 74.
BOOST_STATIC_CONSTANT(bool, forward_iter_with_real_reference =
(!boost::is_convertible<iterator_category*,std::forward_iterator_tag*>::value
|| boost::is_same<reference,value_type&>::value
|| boost::is_same<reference,const value_type&>::value));
#if !defined(BOOST_MSVC)
// This check gives incorrect results in iter_traits_gen_test.cpp
BOOST_STATIC_ASSERT(forward_iter_with_real_reference);
#endif
public:
iterator_adaptor()
{
}
iterator_adaptor() { }
explicit
iterator_adaptor(const Base& it, const Policies& p = Policies())
: m_iter_p(it, p) {
policies().initialize(base());
policies().initialize(base());
}
template <class Iter2, class Value2, class Pointer2, class Reference2>
@ -855,9 +816,9 @@ struct iterator_adaptor :
policies().initialize(base());
}
#if defined(BOOST_MSVC) && BOOST_MSVC <= 1300 || defined(__BORLANDC__)
#if defined(BOOST_MSVC) || defined(__BORLANDC__)
// This is required to prevent a bug in how VC++ generates
// the assignment operator for compressed_pair
// the assignment operator for compressed_pairv
iterator_adaptor& operator= (const iterator_adaptor& x) {
m_iter_p = x.m_iter_p;
return *this;
@ -872,7 +833,7 @@ struct iterator_adaptor :
# pragma warning( disable : 4284 )
#endif
typename boost::detail::operator_arrow_result_generator<value_type,reference,pointer>::type
typename boost::detail::operator_arrow_result_generator<iterator_category,value_type,pointer>::type
operator->() const
{ return detail::operator_arrow(*this, iterator_category()); }
@ -882,36 +843,36 @@ struct iterator_adaptor :
value_type operator[](difference_type n) const
{ return *(*this + n); }
self& operator++() {
#if !defined(__MWERKS__) || __MWERKS__ >= 0x2405
policies().increment(*this);
#else
#ifdef __MWERKS__
// Odd bug, MWERKS couldn't deduce the type for the member template
// Workaround by explicitly specifying the type.
policies().increment<self>(*this);
#else
policies().increment(*this);
#endif
return *this;
}
self operator++(int) { self tmp(*this); ++*this; return tmp; }
self& operator--() {
#if !defined(__MWERKS__) || __MWERKS__ >= 0x2405
policies().decrement(*this);
#else
#ifdef __MWERKS__
policies().decrement<self>(*this);
#else
policies().decrement(*this);
#endif
return *this;
}
self operator--(int) { self tmp(*this); --*this; return tmp; }
self& operator+=(difference_type n) {
policies().advance(*this, n);
return *this;
}
self& operator-=(difference_type n) {
policies().advance(*this, -n);
return *this;
@ -969,7 +930,7 @@ operator-(
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
class Reference1, class Reference2, class Pointer1, class Pointer2,
class Category, class Distance>
inline bool
inline bool
operator==(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
@ -980,53 +941,53 @@ operator==(
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
class Reference1, class Reference2, class Pointer1, class Pointer2,
class Category, class Distance>
inline bool
inline bool
operator<(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return x.policies().distance(y, x) < 0;
return x.policies().distance(x, y) > 0;
}
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
class Reference1, class Reference2, class Pointer1, class Pointer2,
class Category, class Distance>
inline bool
inline bool
operator>(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
{
return x.policies().distance(y, x) > 0;
}
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
class Reference1, class Reference2, class Pointer1, class Pointer2,
class Category, class Distance>
inline bool
inline bool
operator>=(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return x.policies().distance(y, x) >= 0;
return !(x.policies().distance(x, y) > 0);
}
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
class Reference1, class Reference2, class Pointer1, class Pointer2,
class Category, class Distance>
inline bool
inline bool
operator<=(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return x.policies().distance(y, x) <= 0;
return !(x.policies().distance(y, x) > 0);
}
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
class Reference1, class Reference2, class Pointer1, class Pointer2,
class Category, class Distance>
inline bool
inline bool
operator!=(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return !x.policies().equal(x, y);
@ -1044,7 +1005,7 @@ struct transform_iterator_policies : public default_iterator_policies
{
transform_iterator_policies() { }
transform_iterator_policies(const AdaptableUnaryFunction& f) : m_f(f) { }
template <class IteratorAdaptor>
typename IteratorAdaptor::reference
dereference(const IteratorAdaptor& iter) const
@ -1058,7 +1019,7 @@ class transform_iterator_generator
{
typedef typename AdaptableUnaryFunction::result_type value_type;
public:
typedef iterator_adaptor<Iterator,
typedef iterator_adaptor<Iterator,
transform_iterator_policies<AdaptableUnaryFunction>,
value_type, value_type, value_type*, std::input_iterator_tag>
type;
@ -1097,7 +1058,7 @@ struct indirect_iterator_policies : public default_iterator_policies
};
namespace detail {
# if !defined(BOOST_MSVC) || BOOST_MSVC > 1300 // strangely instantiated even when unused! Maybe try a recursive template someday ;-)
# if !defined(BOOST_MSVC) // stragely instantiated even when unused! Maybe try a recursive template someday ;-)
template <class T>
struct traits_of_value_type {
typedef typename boost::detail::iterator_traits<T>::value_type outer_value;
@ -1110,12 +1071,12 @@ namespace detail {
template <class OuterIterator, // Mutable or Immutable, does not matter
class Value
#if !defined(BOOST_MSVC) || BOOST_MSVC > 1300
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::traits_of_value_type<
OuterIterator>::value_type
#endif
, class Reference
#if !defined(BOOST_MSVC) || BOOST_MSVC > 1300
, class Reference
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::traits_of_value_type<
OuterIterator>::reference
#else
@ -1123,8 +1084,8 @@ template <class OuterIterator, // Mutable or Immutable, does not matter
#endif
, class Category = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<
OuterIterator>::iterator_category
, class Pointer
#if !defined(BOOST_MSVC) || BOOST_MSVC > 1300
, class Pointer
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::traits_of_value_type<
OuterIterator>::pointer
#else
@ -1139,28 +1100,28 @@ struct indirect_iterator_generator
template <class OuterIterator, // Mutable or Immutable, does not matter
class Value
#if !defined(BOOST_MSVC) || BOOST_MSVC > 1300
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::traits_of_value_type<
OuterIterator>::value_type
#endif
, class Reference
#if !defined(BOOST_MSVC) || BOOST_MSVC > 1300
, class Reference
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::traits_of_value_type<
OuterIterator>::reference
#else
= Value &
#endif
, class ConstReference = Value const&
, class ConstReference = const Value&
, class Category = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<
OuterIterator>::iterator_category
, class Pointer
#if !defined(BOOST_MSVC) || BOOST_MSVC > 1300
, class Pointer
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::traits_of_value_type<
OuterIterator>::pointer
#else
= Value*
#endif
, class ConstPointer = Value const*
, class ConstPointer = const Value*
>
struct indirect_iterator_pair_generator
{
@ -1170,7 +1131,7 @@ struct indirect_iterator_pair_generator
Value, ConstReference,Category,ConstPointer>::type const_iterator;
};
#if !defined(BOOST_MSVC) || BOOST_MSVC > 1300
#ifndef BOOST_MSVC
template <class OuterIterator>
inline typename indirect_iterator_generator<OuterIterator>::type
make_indirect_iterator(OuterIterator base)
@ -1189,29 +1150,29 @@ struct reverse_iterator_policies : public default_iterator_policies
template <class IteratorAdaptor>
typename IteratorAdaptor::reference dereference(const IteratorAdaptor& x) const
{ return *boost::prior(x.base()); }
template <class BidirectionalIterator>
void increment(BidirectionalIterator& x) const
{ --x.base(); }
template <class BidirectionalIterator>
void decrement(BidirectionalIterator& x) const
{ ++x.base(); }
template <class BidirectionalIterator, class DifferenceType>
void advance(BidirectionalIterator& x, DifferenceType n) const
{ x.base() -= n; }
template <class Iterator1, class Iterator2>
typename Iterator1::difference_type distance(
const Iterator1& x, const Iterator2& y) const
{ return x.base() - y.base(); }
template <class Iterator1, class Iterator2>
bool equal(const Iterator1& x, const Iterator2& y) const
{ return x.base() == y.base(); }
};
template <class BidirectionalIterator,
class Value = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<BidirectionalIterator>::value_type,
class Reference = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_defaults<BidirectionalIterator,Value>::reference,
@ -1247,7 +1208,7 @@ struct projection_iterator_policies : public default_iterator_policies
return m_f(*iter.base());
}
AdaptableUnaryFunction m_f;
AdaptableUnaryFunction m_f;
};
template <class AdaptableUnaryFunction, class Iterator>
@ -1276,7 +1237,7 @@ struct projection_iterator_pair_generator {
template <class AdaptableUnaryFunction, class Iterator>
inline typename projection_iterator_generator<AdaptableUnaryFunction, Iterator>::type
make_projection_iterator(
Iterator iter,
Iterator iter,
const AdaptableUnaryFunction& f = AdaptableUnaryFunction())
{
typedef typename projection_iterator_generator<AdaptableUnaryFunction, Iterator>::type result_t;
@ -1286,7 +1247,7 @@ make_projection_iterator(
template <class AdaptableUnaryFunction, class Iterator>
inline typename const_projection_iterator_generator<AdaptableUnaryFunction, Iterator>::type
make_const_projection_iterator(
Iterator iter,
Iterator iter,
const AdaptableUnaryFunction& f = AdaptableUnaryFunction())
{
typedef typename const_projection_iterator_generator<AdaptableUnaryFunction, Iterator>::type result_t;
@ -1302,7 +1263,7 @@ class filter_iterator_policies
public:
filter_iterator_policies() { }
filter_iterator_policies(const Predicate& p, const Iterator& end)
filter_iterator_policies(const Predicate& p, const Iterator& end)
: m_predicate(p), m_end(end) { }
void initialize(Iterator& x) {
@ -1356,7 +1317,7 @@ namespace detail {
template <class Iterator>
struct non_bidirectional_category
{
# if !defined(__MWERKS__) || __MWERKS__ > 0x2406
# if !defined(__MWERKS__) || __MWERKS__ > 0x4000
typedef typename reduce_to_base_class<
std::forward_iterator_tag,
typename iterator_traits<Iterator>::iterator_category
@ -1382,7 +1343,7 @@ namespace detail {
};
}
template <class Predicate, class Iterator,
template <class Predicate, class Iterator,
class Value = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<Iterator>::value_type,
class Reference = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_defaults<Iterator,Value>::reference,
class Pointer = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_defaults<Iterator,Value>::pointer,
@ -1392,7 +1353,7 @@ template <class Predicate, class Iterator,
class filter_iterator_generator {
BOOST_STATIC_CONSTANT(bool, is_bidirectional
= (boost::is_convertible<Category*, std::bidirectional_iterator_tag*>::value));
#if !defined(BOOST_MSVC) || BOOST_MSVC > 1300 // I don't have any idea why this occurs, but it doesn't seem to hurt too badly.
#ifndef BOOST_MSVC // I don't have any idea why this occurs, but it doesn't seem to hurt too badly.
BOOST_STATIC_ASSERT(!is_bidirectional);
#endif
typedef filter_iterator_policies<Predicate,Iterator> policies_type;

View File

@ -1,75 +0,0 @@
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef BOOST_INT_ITERATOR_H
#define BOOST_INT_ITERATOR_H
#include <boost/iterator.hpp>
#if !defined BOOST_MSVC
#include <boost/operators.hpp>
#endif
#include <iostream>
//using namespace std;
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
namespace boost {
#endif
// this should use random_access_iterator_helper but I've had
// VC++ portablility problems with that. -JGS
template <class IntT>
class int_iterator
{
typedef int_iterator self;
public:
typedef std::random_access_iterator_tag iterator_category;
typedef IntT value_type;
typedef IntT& reference;
typedef IntT* pointer;
typedef std::ptrdiff_t difference_type;
inline int_iterator() : _i(0) { }
inline int_iterator(IntT i) : _i(i) { }
inline int_iterator(const self& x) : _i(x._i) { }
inline self& operator=(const self& x) { _i = x._i; return *this; }
inline IntT operator*() { return _i; }
inline IntT operator[](IntT n) { return _i + n; }
inline self& operator++() { ++_i; return *this; }
inline self operator++(int) { self t = *this; ++_i; return t; }
inline self& operator+=(IntT n) { _i += n; return *this; }
inline self operator+(IntT n) { self t = *this; t += n; return t; }
inline self& operator--() { --_i; return *this; }
inline self operator--(int) { self t = *this; --_i; return t; }
inline self& operator-=(IntT n) { _i -= n; return *this; }
inline IntT operator-(const self& x) const { return _i - x._i; }
inline bool operator==(const self& x) const { return _i == x._i; }
// vc++ had a problem finding != in random_access_iterator_helper
// need to look into this... for now implementing everything here -JGS
inline bool operator!=(const self& x) const { return _i != x._i; }
inline bool operator<(const self& x) const { return _i < x._i; }
inline bool operator<=(const self& x) const { return _i <= x._i; }
inline bool operator>(const self& x) const { return _i > x._i; }
inline bool operator>=(const self& x) const { return _i >= x._i; }
protected:
IntT _i;
};
template <class IntT>
inline int_iterator<IntT>
operator+(IntT n, int_iterator<IntT> t) { t += n; return t; }
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
} /* namespace boost */
#endif
#ifdef BOOST_NO_OPERATORS_IN_NAMESPACE
namespace boost {
using ::int_iterator;
}
#endif
#endif /* BOOST_INT_ITERATOR_H */

View File

@ -1,59 +0,0 @@
// (C) Copyright David Abrahams and Jeremy Siek 2000-2001. Permission to copy,
// use, modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided "as is"
// without express or implied warranty, and with no claim as to its suitability
// for any purpose.
//
// Revision History:
// 04 Jan 2001 Factored counting_iterator stuff into
// boost/counting_iterator.hpp (David Abrahams)
#ifndef BOOST_INTEGER_RANGE_HPP_
#define BOOST_INTEGER_RANGE_HPP_
#include <boost/config.hpp>
#include <boost/counting_iterator.hpp>
namespace boost {
//=============================================================================
// Counting Iterator and Integer Range Class
template <class IntegerType>
struct integer_range {
typedef typename counting_iterator_generator<IntegerType>::type iterator;
typedef iterator const_iterator;
typedef IntegerType value_type;
typedef std::ptrdiff_t difference_type;
typedef IntegerType reference;
typedef IntegerType const_reference;
typedef const IntegerType* pointer;
typedef const IntegerType* const_pointer;
typedef IntegerType size_type;
integer_range(IntegerType start, IntegerType finish)
: m_start(start), m_finish(finish) { }
iterator begin() const { return iterator(m_start); }
iterator end() const { return iterator(m_finish); }
size_type size() const { return m_finish - m_start; }
bool empty() const { return m_finish == m_start; }
void swap(integer_range& x) {
std::swap(m_start, x.m_start);
std::swap(m_finish, x.m_finish);
}
protected:
IntegerType m_start, m_finish;
};
template <class IntegerType>
inline integer_range<IntegerType>
make_integer_range(IntegerType first, IntegerType last)
{
return integer_range<IntegerType>(first, last);
}
} // namespace boost
#endif // BOOST_INTEGER_RANGE_HPP_

View File

@ -1 +0,0 @@
#include <boost/iterator_adaptors.hpp>

View File

@ -1,253 +0,0 @@
#ifndef BOOST_ITERATOR_TESTS_HPP
# define BOOST_ITERATOR_TESTS_HPP
// This is meant to be the beginnings of a comprehensive, generic
// test suite for STL concepts such as iterators and containers.
//
// Revision History:
// 28 Apr 2002 Fixed input iterator requirements.
// For a == b a++ == b++ is no longer required.
// See 24.1.1/3 for details.
// (Thomas Witt)
// 08 Feb 2001 Fixed bidirectional iterator test so that
// --i is no longer a precondition.
// (Jeremy Siek)
// 04 Feb 2001 Added lvalue test, corrected preconditions
// (David Abrahams)
# include <iterator>
# include <assert.h>
# include <boost/type_traits.hpp>
# include <boost/static_assert.hpp>
# include <boost/concept_archetype.hpp> // for detail::dummy_constructor
namespace boost {
// use this for the value type
struct dummyT {
dummyT() { }
dummyT(detail::dummy_constructor) { }
dummyT(int x) : m_x(x) { }
int foo() const { return m_x; }
bool operator==(const dummyT& d) const { return m_x == d.m_x; }
int m_x;
};
// Tests whether type Iterator satisfies the requirements for a
// TrivialIterator.
// Preconditions: i != j, *i == val
template <class Iterator, class T>
void trivial_iterator_test(const Iterator i, const Iterator j, T val)
{
Iterator k;
assert(i == i);
assert(j == j);
assert(i != j);
#ifdef BOOST_NO_STD_ITERATOR_TRAITS
T v = *i;
#else
typename std::iterator_traits<Iterator>::value_type v = *i;
#endif
assert(v == val);
#if 0
// hmm, this will give a warning for transform_iterator... perhaps
// this should be separated out into a stand-alone test since there
// are several situations where it can't be used, like for
// integer_range::iterator.
assert(v == i->foo());
#endif
k = i;
assert(k == k);
assert(k == i);
assert(k != j);
assert(*k == val);
}
// Preconditions: i != j
template <class Iterator, class T>
void mutable_trivial_iterator_test(const Iterator i, const Iterator j, T val)
{
*i = val;
trivial_iterator_test(i, j, val);
}
// Preconditions: *i == v1, *++i == v2
template <class Iterator, class T>
void input_iterator_test(Iterator i, T v1, T v2)
{
Iterator i1(i);
assert(i == i1);
assert(!(i != i1));
// I can see no generic way to create an input iterator
// that is in the domain of== of i and != i.
// The following works for istream_iterator but is not
// guaranteed to work for arbitrary input iterators.
//
// Iterator i2;
//
// assert(i != i2);
// assert(!(i == i2));
assert(*i1 == v1);
assert(*i == v1);
// we cannot test for equivalence of (void)++i & (void)i++
// as i is only guaranteed to be single pass.
assert(*i++ == v1);
i1 = i;
assert(i == i1);
assert(!(i != i1));
assert(*i1 == v2);
assert(*i == v2);
// i is dereferencable, so it must be incrementable.
++i;
// how to test for operator-> ?
}
// how to test output iterator?
template <bool is_pointer> struct lvalue_test
{
template <class Iterator> static void check(Iterator)
{
# ifndef BOOST_NO_STD_ITERATOR_TRAITS
typedef typename std::iterator_traits<Iterator>::reference reference;
typedef typename std::iterator_traits<Iterator>::value_type value_type;
# else
typedef typename Iterator::reference reference;
typedef typename Iterator::value_type value_type;
# endif
BOOST_STATIC_ASSERT(boost::is_reference<reference>::value);
BOOST_STATIC_ASSERT((boost::is_same<reference,value_type&>::value
|| boost::is_same<reference,const value_type&>::value
));
}
};
# ifdef BOOST_NO_STD_ITERATOR_TRAITS
template <> struct lvalue_test<true> {
template <class T> static void check(T) {}
};
#endif
template <class Iterator, class T>
void forward_iterator_test(Iterator i, T v1, T v2)
{
input_iterator_test(i, v1, v2);
Iterator i1 = i, i2 = i;
assert(i == i1++);
assert(i != ++i2);
trivial_iterator_test(i, i1, v1);
trivial_iterator_test(i, i2, v1);
++i;
assert(i == i1);
assert(i == i2);
++i1;
++i2;
trivial_iterator_test(i, i1, v2);
trivial_iterator_test(i, i2, v2);
// borland doesn't allow non-type template parameters
# if !defined(__BORLANDC__) || (__BORLANDC__ > 0x551)
lvalue_test<(boost::is_pointer<Iterator>::value)>::check(i);
#endif
}
// Preconditions: *i == v1, *++i == v2
template <class Iterator, class T>
void bidirectional_iterator_test(Iterator i, T v1, T v2)
{
forward_iterator_test(i, v1, v2);
++i;
Iterator i1 = i, i2 = i;
assert(i == i1--);
assert(i != --i2);
trivial_iterator_test(i, i1, v2);
trivial_iterator_test(i, i2, v2);
--i;
assert(i == i1);
assert(i == i2);
++i1;
++i2;
trivial_iterator_test(i, i1, v1);
trivial_iterator_test(i, i2, v1);
}
// mutable_bidirectional_iterator_test
// Preconditions: [i,i+N) is a valid range
template <class Iterator, class TrueVals>
void random_access_iterator_test(Iterator i, int N, TrueVals vals)
{
bidirectional_iterator_test(i, vals[0], vals[1]);
const Iterator j = i;
int c;
for (c = 0; c < N-1; ++c) {
assert(i == j + c);
assert(*i == vals[c]);
assert(*i == j[c]);
assert(*i == *(j + c));
assert(*i == *(c + j));
++i;
assert(i > j);
assert(i >= j);
assert(j <= i);
assert(j < i);
}
Iterator k = j + N - 1;
for (c = 0; c < N-1; ++c) {
assert(i == k - c);
assert(*i == vals[N - 1 - c]);
assert(*i == j[N - 1 - c]);
Iterator q = k - c;
assert(*i == *q);
assert(i > j);
assert(i >= j);
assert(j <= i);
assert(j < i);
--i;
}
}
// Precondition: i != j
template <class Iterator, class ConstIterator>
void const_nonconst_iterator_test(Iterator i, ConstIterator j)
{
assert(i != j);
assert(j != i);
ConstIterator k(i);
assert(k == i);
assert(i == k);
k = i;
assert(k == i);
assert(i == k);
}
} // namespace boost
#endif // BOOST_ITERATOR_TESTS_HPP

View File

@ -1,72 +0,0 @@
// (C) Copyright Toon Knapen 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
//
#ifndef boost_permutation_iterator_hpp
#define boost_permutation_iterator_hpp
#include <boost/iterator_adaptors.hpp>
namespace boost {
template < typename IndexIterator >
struct permutation_iterator_policies : public default_iterator_policies
{
permutation_iterator_policies() {}
permutation_iterator_policies(IndexIterator order_it)
: order_it_( order_it )
{}
template <class IteratorAdaptor>
typename IteratorAdaptor::reference dereference(const IteratorAdaptor& x) const
{ return *(x.base() + *order_it_); }
template <class IteratorAdaptor>
void increment(IteratorAdaptor&)
{ ++order_it_; }
template <class IteratorAdaptor>
void decrement(IteratorAdaptor&)
{ --order_it_; }
template <class IteratorAdaptor, class DifferenceType>
void advance(IteratorAdaptor& x, DifferenceType n)
{ std::advance( order_it_, n ); }
template <class IteratorAdaptor1, class IteratorAdaptor2>
typename IteratorAdaptor1::difference_type
distance(const IteratorAdaptor1& x, const IteratorAdaptor2& y) const
{ return std::distance( x.policies().order_it_, y.policies().order_it_ ); }
template <class IteratorAdaptor1, class IteratorAdaptor2>
bool equal(const IteratorAdaptor1& x, const IteratorAdaptor2& y) const
{ return x.policies().order_it_ == y.policies().order_it_; }
IndexIterator order_it_;
};
template < typename ElementIterator, typename IndexIterator >
struct permutation_iterator_generator
{
typedef boost::iterator_adaptor
< ElementIterator,
permutation_iterator_policies< IndexIterator >
> type;
};
template < class IndexIterator, class ElementIterator >
inline typename permutation_iterator_generator< ElementIterator, IndexIterator >::type
make_permutation_iterator(ElementIterator base, IndexIterator order)
{
typedef typename permutation_iterator_generator< ElementIterator, IndexIterator >::type result_t;
return result_t( base, order );
}
} // namespace boost
#endif // boost_permutation_iterator_hpp